[go: up one dir, main page]

KR20150062084A - Lithium sulfur battery comprising electrode protective film, and method for preparing the same - Google Patents

Lithium sulfur battery comprising electrode protective film, and method for preparing the same Download PDF

Info

Publication number
KR20150062084A
KR20150062084A KR1020130146679A KR20130146679A KR20150062084A KR 20150062084 A KR20150062084 A KR 20150062084A KR 1020130146679 A KR1020130146679 A KR 1020130146679A KR 20130146679 A KR20130146679 A KR 20130146679A KR 20150062084 A KR20150062084 A KR 20150062084A
Authority
KR
South Korea
Prior art keywords
electrode
sulfur battery
lithium sulfur
group
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020130146679A
Other languages
Korean (ko)
Inventor
김철환
홍영진
정민영
최경린
김병주
박범우
Original Assignee
(주)오렌지파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)오렌지파워 filed Critical (주)오렌지파워
Priority to KR1020130146679A priority Critical patent/KR20150062084A/en
Priority to PCT/KR2014/004177 priority patent/WO2015080357A1/en
Publication of KR20150062084A publication Critical patent/KR20150062084A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 설퍼 전지 전극용 보호막, 이를 포함하는 리튬 설퍼 전지 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 S-S 결합을 포함하는 올리고머 또는 폴리머 화합물에 의한 코팅층이 활물질층 표면 또는 분리막에 형성되어 이를 포함하는 리튬 설퍼 전지에서 리튬폴리설파이드의 전해액으로의 용출을 방지하여 초기 충방전 효율 및 수명특성이 향상된 리튬 설퍼 전지에 관한 것에 관한 것이다. More particularly, the present invention relates to a protective film for a lithium sulfur battery electrode, a lithium sulfur battery including the same, and more particularly, The present invention relates to a lithium sulfur battery having improved initial charging / discharging efficiency and life span characteristics by preventing dissolution of lithium polysulfide into an electrolytic solution in a lithium sulfur battery.

Description

전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법{Lithium sulfur battery comprising electrode protective film, and method for preparing the same} [0001] The present invention relates to a lithium sulfur battery including an electrode protective film and a method for manufacturing the same,

본 발명은 리튬 설퍼 전지 전극용 보호막, 이를 포함하는 리튬 설퍼 전지 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 리튬폴리설파이드가 전해액으로 용출되는 것을 방지할 수 있는 리튬 설퍼 전지 전극용 보호막, 이를 포함하는 리튬 설퍼 전지 및 이의 제조 방법에 관한 것이다.
The present invention relates to a protective film for a lithium sulfur battery electrode, a lithium sulfur battery including the same, and a manufacturing method thereof, and more particularly, to a lithium sulfur battery electrode protective film capable of preventing lithium polysulfide from being eluted into an electrolyte solution And a method for producing the lithium sulfur battery.

휴대 전자기기의 발전으로 가볍고 고용량 전지에 대한 요구가 갈수록 증가하고 있다. 이러한 요구를 만족시키는 이차 전지로 황계 물질을 양극 활물질로 사용하는 리튬 설퍼 전지에 대한 개발이 활발하게 진행되고 있다.With the development of portable electronic devices, the demand for lightweight and high capacity batteries is increasing. Development of a lithium sulfur battery using a sulfur material as a cathode active material as a secondary battery satisfying these demands is actively under way.

리튬 설퍼 전지는 황-황 결합(Sulfur-Sulfur bond)을 가지는 황 계열 화합물 을 양극 활물질로 사용하고, 리튬과 같은 알카리 금속을 음극 활물질로 사용하는 이차 전지이다. 환원 반응시(방전시) S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응시(충전시) S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성한다. The lithium sulfur battery is a secondary battery using a sulfur-based compound having a sulfur-sulfur bond as a cathode active material and an alkali metal such as lithium as an anode active material. Reduction reaction (discharge) Reduces the oxidation number of S as the SS bond is cut off, and the oxidation-reduction reaction in which the SS bond is formed again by increasing the oxidation number of S during the oxidation reaction (charging) .

아래에서 보는 바와 같이 S8 이 Li2S까지 완전히 환원되었을 때(이용율 100%) 어느 화학종보다 큰 용량 밀도를 나타낸다. 리튬 설퍼 전지는 음극 활물질로 사용되는 리튬 금속을 사용할 경우 에너지 밀도가 3830 mAh/g이고, 양극 활물질로 사용되는 황(S8)을 사용할 경우 에너지 밀도가 1675 mAh/g으로, 현재까지 개발되고 있는 전지 중에서 에너지 밀도면에서 가장 유망한 전지이다. 또한 양극 활물질로 사용되는 황계 물질은 자체가 값싸고 환경친화적인 물질이라는 장점이 있다.As shown below, when S 8 is fully reduced to Li 2 S (100% utilization), it exhibits a higher capacity density than any chemical species. The lithium sulfur battery has an energy density of 3830 mAh / g when lithium metal is used as a negative active material and an energy density of 1675 mAh / g when sulfur (S 8 ) is used as a positive electrode active material. It is the most promising battery in energy density. In addition, sulfur compounds used as cathode active materials are advantageous in that they are inexpensive and environmentally friendly.

Figure pat00001
Figure pat00001

그러나, 아직 리튬 설퍼 전지 시스템으로 상용화에 성공한 예는 없는 실정이다. 리튬 설퍼 전지는 산화-환원 반응 시 황이 전해질로 유출되어 전지 수명이 열화되고, 적절한 전해액을 선택하지 못했을 경우 황의 환원 물질인 리튬폴리설파이드가 석출되어 더 이상 전기화학반응에 참여하지 못하게 되는 문제점이 있기 때문이다. 황 양극으로부터 리튬 폴리설파이드가 용출되어 확산되면 양극의 전기화학 반응 영역을 벗어나 양극에서 반응에 참여하는 황의 양이 감소하여 용량 감소 (capacity loss)로 나타난다. 또한, 폴리설파이드의 용출은 전해액의 점도를 증가시켜 수명 특성을 감소시키고 전기 전도성을 증가시켜 자기 방전 특성에도 나쁜 영향을 미친다. 그리고 지속적인 충방전 반응으로 폴리설파이드가 리튬 금속과 반응하여 리튬 금속 표면에 Li2S가 고착되어 반응 활성도가 낮아지고 전위 특성이 나빠지는 문제점이 있다.
However, there is no example of commercialization of lithium sulfur battery system yet. In the lithium sulfur battery, when sulfur is discharged to the electrolyte during the oxidation-reduction reaction, the battery life is deteriorated. When the appropriate electrolyte is not selected, lithium polysulfide, which is a reducing material of sulfur, precipitates and is no longer able to participate in the electrochemical reaction Because. When the lithium polysulfide elutes and diffuses from the sulfur anode, the amount of sulfur participating in the reaction decreases from the electrochemical reaction region of the anode to the anode, resulting in a capacity loss. In addition, the elution of the polysulfide increases the viscosity of the electrolytic solution, thereby decreasing the lifetime characteristics and increasing the electrical conductivity, thereby adversely affecting the self-discharge characteristics. And the polysulfide reacts with the lithium metal due to the continuous charge-discharge reaction, and Li 2 S is fixed to the surface of the lithium metal, which lowers the reaction activity and disadvantageously deteriorates the dislocation characteristics.

대한민국 공개특허 10-2005-0023123 호Korean Patent Publication No. 10-2005-0023123 대한민국 공개특허 10-2012-0046609 호Korean Patent Publication No. 10-2012-0046609

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 리튬폴리설파이드가 전해액으로 용출되는 것을 방지할 수 있는 전극 보호막을 포함하는 리튬 설퍼 전지를 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a lithium sulfur battery including an electrode protection film that can prevent lithium polysulfide from being eluted into an electrolyte solution.

본 발명은 또한, 상기 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법을 제공하는 것을 목적으로 한다.
Another object of the present invention is to provide a method of manufacturing a lithium sulfur battery including the above-described electrode protection film.

본 발명은 상기와 같은 과제를 해결하기 위하여, In order to solve the above problems,

양극;anode;

상기 양극과 대향하는 음극;A negative electrode facing the positive electrode;

상기 양극과 음극 사이에 위치하는 세퍼레이터; 및A separator positioned between the anode and the cathode; And

상기 양극과 상기 세퍼레이터 사이 또는 상기 음극과 상기 세퍼레이터 사이에 위치하고, 아래 화학식 1 또는 2 로 표시되는 화합물을 포함하는 보호막;을 구비하는 전극 보호막을 포함하는 리튬 설퍼 전지;를 제공한다.And a protective film disposed between the positive electrode and the separator or between the negative electrode and the separator and comprising a compound represented by the following Chemical Formula 1 or 2:

[화학식 1] [Chemical Formula 1]

Figure pat00002
Figure pat00002

[화학식 2](2)

Figure pat00003
Figure pat00003

(상기 화학식 1 또는 2 에서 R1 및 R2 는 각각 독립적으로 (CH2)n 이고, n은 1 내지 5이고, Y는 하이드록시기, 알데하이드기, 카르복시기, 아마이드기, 시안기 로부터 선택된 어느 하나이고, m1 및 m2는 1 내지 1000의 정수임)(Wherein R 1 and R 2 are each independently (CH 2 ) n , n is 1 to 5, and Y is any one selected from a hydroxyl group, an aldehyde group, a carboxyl group, an amide group, And m1 and m2 are integers of 1 to 1000)

본 발명에 의한 리튬 설퍼 전지용 보호막은 상기 화학식 1 또는 2로 표시되는 디설파이드(disulfide) 결합을 포함하는 화합물을 포함하고, 상기 화합물이 폴리설파이드가 전해질로 용출되는 것을 방지한다. The protective film for a lithium sulfur battery according to the present invention comprises a compound containing a disulfide bond represented by the above formula (1) or (2), and the compound prevents the polysulfide from eluting into the electrolyte.

또한 상기 화합물의 Y 로 표시되는 작용기는 리튬 이온의 전도도를 향상시켜 리튬이온의 확산을 용이하게 한다.
Further, the functional group represented by Y of the above compound improves the conductivity of lithium ions and facilitates the diffusion of lithium ions.

본 발명은 또한, The present invention also relates to

아래 화학식 3 또는 4 로 표시되는 화합물 및 용매를 포함하는 리튬 설퍼 전지 전극 보호막용 조성물을 준비하는 단계; Preparing a composition for a lithium sulfur battery electrode protective film comprising a compound represented by the following Chemical Formula 3 or 4 and a solvent;

전극 또는 분리막 표면에 상기 전극 보호막용 조성물을 도포하는 단계; Applying the composition for an electrode protecting film to a surface of an electrode or a separation membrane;

전극 또는 분리막 표면에 도포된 상기 화학식 3 또는 4로 표시되는 화합물을 활성화시키기 위하여 열처리 하는 단계; 및 Heat-treating the electrode or the surface of the separation membrane to activate the compound represented by Chemical Formula 3 or 4 applied thereto; And

상기 전극 및 분리막을 포함하는 전지 셀을 형성하는 단계; 를 포함하는 제 1 항의 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법을 제공한다. Forming a battery cell including the electrode and the separator; Wherein the electrode protective film is formed on the electrode protective film.

[화학식 3] (3)

Figure pat00004
Figure pat00004

[화학식 4][Chemical Formula 4]

Figure pat00005
Figure pat00005

(상기 화학식 3 또는 4 에서 R1 및 R2 는 각각 독립적으로 (CH2)n 이고, n은 1 내지 5이고, Y는 하이드록시기, 알데하이드기, 카르복시기, 아마이드기, 시안기 로부터 선택된 어느 하나임)(Wherein R 1 and R 2 are each independently (CH 2 ) n , n is 1 to 5, and Y is any one selected from a hydroxyl group, an aldehyde group, a carboxyl group, an amide group and a cyano group )

본 발명에 의한 리튬 설퍼 전지의 제조 방법에 있어서, 상기 전극 또는 분리막 표면에 도포된 상기 화학식 3 또는 4로 표시되는 화합물을 활성화시키기 위하여 열처리 하는 단계에서는 70 내지 150 ℃ 에서 열처리하는 것을 특징으로 한다. In the method for manufacturing a lithium sulfur battery according to the present invention, the heat treatment is performed at 70 to 150 ° C in the step of heat-treating the compound represented by Formula 3 or 4 coated on the surface of the electrode or separation membrane.

전극 보호막용 조성물에 포함되는 상기 화학식 3 또는 4 의 화합물의 두개의 싸이올(-SH)기, S-S기는 상기 열처리 단계에서 산화되어 디설파이드(disulfide) 결합을 형성할 수 있으며, 이러한 반응이 연속적으로 일어나는 경우 아래와 같이 디설파이드(disulfide) 결합을 포함하는 올리고머 또는 폴리머를 생성할 수 있다.The two thiol (-SH) groups and the SS groups of the compound of Formula 3 or 4 contained in the composition for the electrode protective film can be oxidized in the heat treatment step to form disulfide bonds, and the reaction occurs continuously Oligomers or polymers containing disulfide bonds can be produced as follows.

Figure pat00006
Figure pat00006

본 발명에 의한 리튬 설퍼 전지의 제조 방법에 있어서, 화학식 3 으로 표시되는 화합물은 아래 화학식 5 인 것을 특징으로 한다.In the method for producing a lithium sulfur battery according to the present invention, the compound represented by the formula (3) is represented by the following formula (5).

[화학식 5]  [Chemical Formula 5]

Figure pat00007

Figure pat00007

본 발명에 의한 리튬 설퍼 전지의 제조 방법에 있어서, 상기 화학식 5로 표시되는 알파 리포산(α-lipoic acid)은 열처리시 아래와 같은 개환 반응을 통해 싸이올(thiol) 화합물을 형성하고 이후 이온성 고분자화 반응(ionic polymerization)에 의해 디설파이드(disulfide) 고분자를 형성한다. In the method for producing a lithium sulfur battery according to the present invention, the α-lipoic acid represented by Chemical Formula 5 forms a thiol compound through a ring-opening reaction during heat treatment, The disulfide polymer is formed by ionic polymerization.

Figure pat00008

Figure pat00008

상기 알파 리포산(α-lipoic acid)은 초기 방전시 아래와 같은 개환 반응을 통해 싸이올(thiol) 화합물을 형성하고 이후 이온성 고분자화 반응(ionic polymerization)에 의해 디설파이드(disulfide) 고분자가 형성된다. The α-lipoic acid forms a thiol compound through a ring-opening reaction at the time of initial discharge, and then a disulfide polymer is formed by ionic polymerization.

Figure pat00009

Figure pat00009

상기 화학식 4 에서 두개의 싸이올(-SH)기는 열처리에 의한 활성화 외에도 초기 충방전을 위한 활성화 전압 인가시 산화되어 디설파이드(disulfide) 결합을 형성할 수 있으며, 이러한 반응이 연속적으로 일어나는 경우 디설파이드(disulfide) 결합을 포함하는 올리고머 또는 폴리머를 생성할 수 있다.
The two thiol (-SH) groups in the above formula (4) can be oxidized to form disulfide bonds when an activation voltage for initial charge-discharge is applied in addition to activation by heat treatment. When such a reaction occurs consecutively, disulfide ) ≪ / RTI > linkage.

본 발명에 의한 리튬 설퍼 전지의 제조 방법에 있어서, 상기 화학식 3 또는 화학식 4로 표시되는 화합물은 상기 보호막용 조성물 100 중량부에 대하여 1 내지 20 중량% 의 비율로 포함되는 것을 특징으로 한다.
In the method for producing a lithium sulfur battery according to the present invention, the compound represented by Chemical Formula 3 or 4 is contained in an amount of 1 to 20% by weight based on 100 parts by weight of the protective film composition.

본 발명에 의한 리튬 설퍼 전지 전극용 보호막은 S-S 결합을 포함하는 올리고머 또는 폴리머를 포함하고, 상기 올리고머 또는 폴리머에 의해 코팅된 전극 또는 분리막을 포함하는 리튬 설퍼 전지는 리튬폴리설파이드가 전해액으로 용출되는 것을 방지하여 초기 충방전 효율 및 수명특성을 향상시킬 수 있다.
The lithium sulfur battery cell according to the present invention includes an electrode or separator coated with the oligomer or polymer, wherein the lithium sulfur battery includes an oligomer or polymer including SS bond, and the lithium polysulfide is eluted into an electrolytic solution So that the initial charging / discharging efficiency and lifetime characteristics can be improved.

도 1은 본 발명의 일 실시예 및 비교예에 의하여 제조된 리튬 설퍼 전지의 충방전 특성을 나타낸다.
도 2는 본 발명의 일 실시예 및 비교예에 의하여 제조된 리튬 설퍼 전지의 수명특성을 나타낸다.
도 3은 본 발명의 일 실시예에 의하여 제조된 전극보호막의 XPS를 나타낸다.
1 shows the charging / discharging characteristics of a lithium sulfur battery manufactured according to one embodiment of the present invention and a comparative example.
FIG. 2 shows lifetime characteristics of a lithium sulfur battery manufactured according to one embodiment of the present invention and a comparative example.
3 shows XPS of an electrode protection film manufactured according to an embodiment of the present invention.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나, 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
Hereinafter, preferred embodiments and comparative examples of the present invention will be described. However, the following embodiments are merely preferred embodiments of the present invention, and the present invention is not limited to the following embodiments.

<실시예 1> 전극용 보호막을 포함하는 전지의 제조&Lt; Example 1 > Manufacture of battery including protective film for electrode

황 원소 60 중량%, 도전재로 케첸 블랙 20 중량%, 바인더로 폴리비닐리덴플루오라이드 20 중량% 를 N-메틸피롤리돈 용매에서 혼합하여 리튬 설퍼 전지용 양극 활물질 슬러리를 제조하였다. 60 weight% of sulfur element, 20 weight% of Ketjenblack as a conductive material and 20 weight% of polyvinylidene fluoride as a binder were mixed in N-methylpyrrolidone solvent to prepare a cathode active material slurry for a lithium sulfur battery.

이 슬러리를 탄소-코팅된 알루미늄 전류 집전체에 코팅하고, 슬러리가 코팅된 전류 집전체를 12시간 이상 60℃ 진공 오븐에서 건조하여 Φ14 크기를 가진, 0.65 mAh/cm2 의 양극판을 제조하였다. The slurry of carbon-coating the whole coated aluminum current collector and a positive electrode plate having a size of Φ14, 0.65 mAh / cm 2 was prepared by drying the slurry coating from the entire current collector 60 ℃ vacuum oven for 12 hours or more.

전극 보호막용 조성물로 알파 리포산(α-lipoic acid) 5 중량%를 1,3-디옥솔란, 디메톡시에탄에 1:1의 비율로 혼합된 용매에 용해시켜서 제조하고, 상기 양극판의 표면에 코팅하고 알파 리포산(α-lipoic acid) 을 활성화시키기 위하여 70℃ 에서 열처리하였다. 5% by weight of alpha-lipoic acid was dissolved in a mixed solvent of 1,3-dioxolane and dimethoxyethane in a ratio of 1: 1 as a composition for an electrode protecting film, and the resultant was coated on the surface of the positive electrode plate And heat-treated at 70 ° C to activate alpha-lipoic acid.

상기 양극판과 리튬 호일 음극을 사용하여 리튬 설퍼 전지를 제조하였다. 이 때 전해액으로는 1M LiTFSI를 1,3-디옥솔란, 디메톡시에탄에 1:1의 비율로 용해시켜서 사용하였다.
A lithium sulfur battery was prepared using the positive electrode plate and the lithium foil negative electrode. At this time, 1 M LiTFSI was dissolved in 1,3-dioxolane and dimethoxyethane at a ratio of 1: 1.

<< 비교예Comparative Example 1> 1>

전해액에 알파 리포산(α-lipoic acid)을 첨가하지 않은 것을 제외하고 상기 실시예 1과 동일하게 하여 비교예 1의 리튬 설퍼 전지를 제조하였다.
A lithium sulfur battery of Comparative Example 1 was prepared in the same manner as in Example 1 except that alpha-lipoic acid was not added to the electrolyte solution.

<< 실험예Experimental Example 1> 전지의  1> 충방전Charging and discharging 특성 평가 Character rating

상기 실시예 1 및 비교예 1에서 제조된 리튬 설퍼 전지에 대해 충방전 특성을 측정하고 그 결과를 도 1에 나타내었다.
Charge-discharge characteristics of the lithium sulfur battery prepared in Example 1 and Comparative Example 1 were measured, and the results are shown in FIG.

<< 실험예Experimental Example 2> 전지의 수명 특성 평가 2> Evaluation of battery lifetime characteristics

상기 실시예 1 및 비교예 1에서 제조된 리튬 설퍼 전지에 대해 수명 특성을 측정하고 그 결과를 도 2에 나타내었다.
The life characteristics of the lithium sulfur batteries prepared in Example 1 and Comparative Example 1 were measured and the results are shown in FIG.

<< 실험예Experimental Example 3> 전해액 내 용출된  3> Electrolyte-eluted 폴리설파이드Polysulfide 측정 Measure

상기 실시예 1 및 비교예 1에서 제조된 리튬 설퍼 전지를 0.5C에서 10회, 50회, 100회 충방전 후, Cell을 분해하여 Cell 내 전해질을 dimethoxyethane (DME) 용액으로 30배 희석하였다. 리튬 설퍼 전지의 경우 전해액으로 용출된 폴리설파이드에 따라 전해액의 흡광도가 변화하므로 UV-Visible Spectrophotometer를 이용하여 희석된 용액의 405nm에서 흡광도를 측정하여 전해액 내 용출된 폴리설파이드의 농도를 측정하였으며 그 결과를 아래 표 1과 같다. The lithium sulfur batteries prepared in Example 1 and Comparative Example 1 were charged and discharged at 0.5 C for 10 times, 50 times, and 100 times. Cells were decomposed and electrolytes in the cells were diluted 30 times with dimethoxyethane (DME) solution. For the lithium sulfur battery, the absorbance of the electrolyte changes according to the polysulfide eluted with the electrolyte. Therefore, the absorbance of the diluted solution was measured at 405 nm using a UV-Visible spectrophotometer, and the concentration of the polysulfide eluted in the electrolyte solution was measured. Table 1 below.

10회 충방전 후After 10 charge / discharge cycles 50회 충방전 후After 50 charge / discharge cycles 100회 충방전 후After 100 cycles of charging and discharging 비교예Comparative Example 0.350.35 0.400.40 0.420.42 실시예Example 0.110.11 0.140.14 0.170.17

상기 표 1에서 비교예의 경우 실시예보다 흡광도가 높으며 충방전이 진행될수록 용출되는 폴리설파이드가 증가하여 흡광도가 증가하는 것을 알 수 있다.
In Table 1, the absorbance of the comparative example is higher than that of the Examples, and the polysulfide eluted as the charging / discharging progresses increases and the absorbance increases.

<< 실험예Experimental Example 4>  4> XPSXPS (X-(X- rayray photoelectronphotoelectron spectroscopyspectroscopy ) 분석) analysis

상기 실시예 1 및 비교예 1에서 제조된 리튬 설퍼 전지에서 양극활물질 슬러리에 첨가한 알파 리포산(α-lipoic acid)이 중합 반응에 의해 고분자를 형성하였는지 여부를 XPS(X-ray photoelectron spectroscopy)에 의한 결합 에너지 분포로 측정하고 그 결과를 도 3에 나타내었다. It was confirmed by X-ray photoelectron spectroscopy (XPS) whether alpha-lipoic acid added to the cathode active material slurry in the lithium sulfur battery prepared in Example 1 and Comparative Example 1 formed a polymer by polymerization reaction The binding energy distribution was measured and the results are shown in FIG.

도 3에서 보는 바와 같이 본 발명의 실시예에 의하여 제조된 리튬 설퍼 전지의 경우 고분자 형성에 의하여 S-S 결합에 의한 160 내지 165eV 범위에서 피크가 검출되는 것을 확인할 수 있다. As shown in FIG. 3, in the case of the lithium sulfur battery manufactured according to the embodiment of the present invention, peaks were detected in the range of 160 to 165 eV due to the S-S bond due to polymer formation.

Claims (5)

양극;
상기 양극과 대향하는 음극;
상기 양극과 음극 사이에 위치하는 세퍼레이터; 및
상기 양극과 상기 세퍼레이터 사이 또는 상기 음극과 상기 세퍼레이터 사이에 위치하고, 아래 화학식 1 또는 2 로 표시되는 화합물을 포함하는 보호막;을 구비하는 전극 보호막을 포함하는 리튬 설퍼 전지.
[화학식 1]
Figure pat00010

[화학식 2]
Figure pat00011

(상기 화학식 1 또는 2 에서 R1 및 R2 는 각각 독립적으로 (CH2)n 이고, n은 1 내지 5이고, Y는 하이드록시기, 알데하이드기, 카르복시기, 아마이드기, 시안기로 이루어진 그룹에서 선택된 어느 하나이고, m1 및 m2는 1 내지 1000의 정수임)
anode;
A negative electrode facing the positive electrode;
A separator positioned between the anode and the cathode; And
And a protective film disposed between the positive electrode and the separator or between the negative electrode and the separator and comprising a compound represented by Chemical Formula 1 or 2 below.
[Chemical Formula 1]
Figure pat00010

(2)
Figure pat00011

(Wherein R 1 and R 2 are each independently (CH 2 ) n , n is 1 to 5, and Y is selected from the group consisting of a hydroxyl group, an aldehyde group, a carboxyl group, an amide group and a cyano group And m1 and m2 are an integer of 1 to 1000)
제 1 항에 있어서,
상기 전지는 S(2P3/2)의 결합 에너지를 나타내는 XPS 피크가 162 내지 164 eV 에서 나타나는 것인 리튬 설퍼 전지.
The method according to claim 1,
Wherein the battery exhibits an XPS peak at 162 to 164 eV that represents the binding energy of S (2P3 / 2).
아래 화학식 3 또는 4 로 표시되는 화합물 및 용매를 포함하는 리튬 설퍼 전지 전극 보호막용 조성물을 준비하는 단계;
전극 또는 분리막 표면에 상기 전극 보호막용 조성물을 도포하는 단계;
전극 또는 분리막 표면에 도포된 상기 화학식 3 또는 4로 표시되는 화합물을 활성화시키기 위하여 열처리 하는 단계; 및
상기 전극 및 분리막을 포함하는 전지 셀을 형성하는 단계; 를 포함하는 제 1 항의 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법.
[화학식 3]
Figure pat00012

[화학식 4]
Figure pat00013

(상기 화학식 3 또는 4 에서 R1 및 R2 는 각각 독립적으로 (CH2)n 이고, n은 0 내지 10 이고, Y는 하이드록시기, 알데하이드기, 카르복시기, 아마이드기, 시안기 로부터 선택된 어느 하나임)
Preparing a composition for a lithium sulfur battery electrode protective film comprising a compound represented by the following Chemical Formula 3 or 4 and a solvent;
Applying the composition for an electrode protecting film to a surface of an electrode or a separation membrane;
Heat-treating the electrode or the surface of the separation membrane to activate the compound represented by Chemical Formula 3 or 4 applied thereto; And
Forming a battery cell including the electrode and the separator; The method of manufacturing a lithium sulfur battery according to claim 1,
(3)
Figure pat00012

[Chemical Formula 4]
Figure pat00013

(Wherein R 1 and R 2 are each independently (CH 2 ) n , n is 0 to 10, and Y is any one selected from a hydroxyl group, an aldehyde group, a carboxyl group, an amide group and a cyano group )
제 3 항에 있어서,
상기 화학식 3 으로 표시되는 화합물은 아래 화학식 5 인 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법.
[화학식 5]
Figure pat00014

The method of claim 3,
Wherein the compound represented by Formula 3 comprises an electrode protective layer represented by Formula 5 below.
[Chemical Formula 5]
Figure pat00014

제 3 항에 있어서,
상기 화학식 3 또는 화학식 4로 표시되는 화합물은 상기 보호막용 조성물 100 중량부에 대하여 1 내지 20 중량% 의 비율로 포함되는 것을 특징으로 하는 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법.
The method of claim 3,
Wherein the compound represented by Formula 3 or Formula 4 is contained in an amount of 1 to 20% by weight based on 100 parts by weight of the composition for a protective film.
KR1020130146679A 2013-11-28 2013-11-28 Lithium sulfur battery comprising electrode protective film, and method for preparing the same Withdrawn KR20150062084A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130146679A KR20150062084A (en) 2013-11-28 2013-11-28 Lithium sulfur battery comprising electrode protective film, and method for preparing the same
PCT/KR2014/004177 WO2015080357A1 (en) 2013-11-28 2014-05-09 Lithium-sulfur battery including protective film for lithium-sulfur battery electrode and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130146679A KR20150062084A (en) 2013-11-28 2013-11-28 Lithium sulfur battery comprising electrode protective film, and method for preparing the same

Publications (1)

Publication Number Publication Date
KR20150062084A true KR20150062084A (en) 2015-06-05

Family

ID=53199274

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130146679A Withdrawn KR20150062084A (en) 2013-11-28 2013-11-28 Lithium sulfur battery comprising electrode protective film, and method for preparing the same

Country Status (2)

Country Link
KR (1) KR20150062084A (en)
WO (1) WO2015080357A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190060184A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 Cathode for lithium-sulfur battery, method for preparing the same, and lithium-sulfur battery comprising the same
WO2019216713A1 (en) * 2018-05-10 2019-11-14 주식회사 엘지화학 Lithium metal secondary battery with improved safety, and battery module including same
WO2021010753A1 (en) * 2019-07-16 2021-01-21 주식회사 엘지화학 Lithium metal anode and lithium metal battery comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3148428A1 (en) * 2023-05-05 2024-11-08 Arkema France Functionalized fluorinated polymer and process for its preparation
FR3148427B1 (en) * 2023-05-05 2025-04-04 Arkema France Process for producing a fluoropolymer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558842B1 (en) * 2001-05-16 2006-03-10 에스케이씨 주식회사 Organic Electrolyte and Lithium Battery
KR100497251B1 (en) * 2003-08-20 2005-06-23 삼성에스디아이 주식회사 Protective composition for negative electrode of lithium sulfur battery and lithium sulfur battery fabricated by using same
JP4305277B2 (en) * 2004-05-18 2009-07-29 堺化学工業株式会社 Electrode interface protective film forming agent and lithium secondary battery for lithium secondary battery
JP4952680B2 (en) * 2008-08-05 2012-06-13 ソニー株式会社 Lithium ion secondary battery and negative electrode for lithium ion secondary battery
KR20130040819A (en) * 2010-04-12 2013-04-24 닛토덴코 가부시키가이샤 Ion-conducting organic-inorganic composite particles, particle-containing resin composition, and ion-conducting molded body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190060184A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 Cathode for lithium-sulfur battery, method for preparing the same, and lithium-sulfur battery comprising the same
WO2019216713A1 (en) * 2018-05-10 2019-11-14 주식회사 엘지화학 Lithium metal secondary battery with improved safety, and battery module including same
JP2021501456A (en) * 2018-05-10 2021-01-14 エルジー・ケム・リミテッド Lithium metal secondary battery with improved safety and battery module containing it
US11450894B2 (en) 2018-05-10 2022-09-20 Lg Energy Solution, Ltd. Lithium metal secondary battery having improved safety and battery module including the same
WO2021010753A1 (en) * 2019-07-16 2021-01-21 주식회사 엘지화학 Lithium metal anode and lithium metal battery comprising same
KR20210009188A (en) * 2019-07-16 2021-01-26 주식회사 엘지화학 Lithium metal anode and lithium metal anode including the same
US20210344006A1 (en) * 2019-07-16 2021-11-04 Lg Chem, Ltd. Lithium metal negative electrode and lithium metal battery including the same
US12046746B2 (en) 2019-07-16 2024-07-23 Lg Energy Solution, Ltd. Lithium metal negative electrode and lithium metal battery including the same

Also Published As

Publication number Publication date
WO2015080357A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
CN107742728B (en) An integrated construction process of electrolyte/electrode interface in all-solid-state lithium battery
EP2797142B1 (en) Anode for lithium secondary battery and lithium secondary battery including same
CN109565034B (en) Method for manufacturing an electrode comprising a polymer electrolyte and electrode thus obtained
Huang et al. The effect of solid electrolyte interface formation conditions on the aging performance of Li-ion cells
KR102321503B1 (en) Anode Active Material of Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
EP2985818A1 (en) Anode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
KR101882975B1 (en) Method for menufacturing a cathode of lithium primary battery
CN113539694B (en) A kind of method for reducing negative electrode pre-metallization oxidation potential and its application, electrochemical energy storage device
KR102006164B1 (en) Positive active material for sodium ion rechargeable battery and method of manufacturing thereof
KR102367371B1 (en) Anode and Lithium Secondary Battery Comprising the Same
KR20150062084A (en) Lithium sulfur battery comprising electrode protective film, and method for preparing the same
JPWO2019194094A1 (en) Separator for power storage device, power storage device and manufacturing method thereof
US20190020014A1 (en) Method for making lithium ionic energy storage element
KR102160714B1 (en) Slurry composition for forming cathode, cathode manufactured thereby, and battery comprising the same
WO2018006024A1 (en) Electrolyte additives and electrode materials for high temperature and high voltage operation
CN115188945A (en) Coated positive electrode material and preparation method and application thereof
KR102587795B1 (en) Electrode for secondary battery and method for preparing the same
KR20080093243A (en) Anode active material for secondary battery, manufacturing method thereof and secondary battery comprising same as anode
KR102587972B1 (en) Method for Preparing Anode and Anode Prepared Therefrom
KR102657130B1 (en) Thermosetting electrolyte composition for lithium-sulfur battery, gel polymer electrolyte perpared therefrom, and lithium-sulfur battery comprising the same
KR20190012364A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
KR20150062083A (en) Electrode for lithium sulfur battery, method for preparing the same, and lithium sulfur battery comprising same
EP4325604A1 (en) Cobalt-free positive electrode material slurry, preparation method therefor and application technical field thereof
KR20150028739A (en) Secondary Battery Cell

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20131128

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid