KR20150053020A - Semiconductor device with air gap and method for fabricating the same - Google Patents
Semiconductor device with air gap and method for fabricating the same Download PDFInfo
- Publication number
- KR20150053020A KR20150053020A KR1020130134664A KR20130134664A KR20150053020A KR 20150053020 A KR20150053020 A KR 20150053020A KR 1020130134664 A KR1020130134664 A KR 1020130134664A KR 20130134664 A KR20130134664 A KR 20130134664A KR 20150053020 A KR20150053020 A KR 20150053020A
- Authority
- KR
- South Korea
- Prior art keywords
- spacer
- plug
- layer
- contact plug
- bit line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 55
- 239000004065 semiconductor Substances 0.000 title abstract description 18
- 125000006850 spacer group Chemical group 0.000 claims abstract description 316
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 238000002955 isolation Methods 0.000 claims abstract description 26
- 238000000926 separation method Methods 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 283
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 39
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 39
- 238000003860 storage Methods 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 238000005530 etching Methods 0.000 claims description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 17
- 239000011229 interlayer Substances 0.000 claims description 12
- 239000003990 capacitor Substances 0.000 claims description 5
- 230000003071 parasitic effect Effects 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 description 27
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 27
- 229910052721 tungsten Inorganic materials 0.000 description 27
- 239000010937 tungsten Substances 0.000 description 27
- 239000011810 insulating material Substances 0.000 description 12
- 229910021332 silicide Inorganic materials 0.000 description 12
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 229920005591 polysilicon Polymers 0.000 description 11
- 239000010941 cobalt Substances 0.000 description 10
- 229910017052 cobalt Inorganic materials 0.000 description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 10
- 206010010144 Completed suicide Diseases 0.000 description 9
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910019001 CoSi Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- 150000003658 tungsten compounds Chemical class 0.000 description 4
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- -1 silicon nitrides Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/7682—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/033—Making the capacitor or connections thereto the capacitor extending over the transistor
- H10B12/0335—Making a connection between the transistor and the capacitor, e.g. plug
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/48—Data lines or contacts therefor
- H10B12/482—Bit lines
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Memories (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 기술은 이웃한 도전구조물들간의 기생캐패시턴스를 감소시킬 수 있는 반도체장치 및 그 제조 방법을 제공하며, 본 기술에 따른 반도체장치 제조 방법은 기판 상에 제1콘택플러그와 상기 제1콘택플러그 상의 비트라인을 포함하는 비트라인구조물을 형성하는 단계; 상기 비트라인구조물의 상부 및 측벽에 제1스페이서, 희생스페이서 및 제2스페이서를 포함하는 다층 스페이서를 형성하는 단계; 상기 다층 스페이서 상에 상기 제1콘택플러그 및 비트라인의 측벽을 노출시키는 콘택홀을 포함하는 분리층을 형성하는 단계; 상기 콘택홀에 상기 제1콘택플러그에 인접하는 제1플러그, 상기 제1플러그 상에서 상기 비트라인에 인접하는 제2플러그, 상기 제2스페이서에 접하여 상기 제2플러그의 측벽을 에워싸는 제3스페이서를 포함하는 제2콘택플러그를 형성하는 단계; 상기 희생스페이서가 노출되도록 상기 다층 스페이서를 부분 제거하는 단계; 및 상기 희생스페이서를 제거하여 상기 제1콘택플러그와 제1플러그 사이로부터 상기 비트라인과 제2플러그 사이까지 확장된 에어갭을 형성하는 단계를 포함할 수 있다.The present invention provides a semiconductor device capable of reducing the parasitic capacitance between neighboring conductive structures and a method of manufacturing the same, and a method of manufacturing a semiconductor device according to the present invention includes a step of forming a first contact plug on a substrate and a bit on the first contact plug, Forming a bit line structure comprising a line; Forming a multi-layer spacer including a first spacer, a sacrificial spacer and a second spacer on top and sidewalls of the bit line structure; Forming a separation layer on the multi-layer spacer, the isolation layer including a contact hole exposing sidewalls of the first contact plug and the bit line; A first plug adjacent to the first contact plug in the contact hole, a second plug adjacent to the bit line on the first plug, and a third spacer surrounding the side wall of the second plug in contact with the second spacer, Forming a second contact plug to form a second contact plug; Partially removing the multi-layer spacer so that the sacrificial spacer is exposed; And removing the sacrificial spacers to form an extended air gap between the first contact plug and the first plug and between the bit line and the second plug.
Description
본 발명은 반도체장치에 관한 것으로서, 상세하게는 에어갭을 구비한 반도체장치 및 그 제조 방법에 관한 것이다.The present invention relates to a semiconductor device, and more particularly, to a semiconductor device having an air gap and a manufacturing method thereof.
일반적으로 반도체 장치는 이웃하는 도전구조물들 사이에 절연물질(Dielectric material)이 형성된다. 반도체 장치가 고집적화됨에 따라 도전구조물들간의 거리가 점점 가까워지고 있다. 이로 인해, 기생캐패시턴스(Parasitic capacitance)가 증가되고 있다. 기생캐패시턴스가 증가됨에 따라 반도체장치의 성능(Performance)이 저하된다.In general, a semiconductor device has a dielectric material formed between neighboring conductive structures. As the semiconductor device is highly integrated, the distance between the conductive structures is gradually getting closer. As a result, the parasitic capacitance is increasing. As the parasitic capacitance increases, the performance of the semiconductor device decreases.
기생캐패시턴스를 감소시키기 위해 절연물질의 유전율을 낮추는 방법이 있다. 그러나, 절연물질이 여전히 높은 유전율을 갖기 때문에 기생캐패시턴스를 감소시키는데 한계가 있다.To reduce the parasitic capacitance, there is a method of lowering the dielectric constant of the insulating material. However, since the insulating material still has a high permittivity, there is a limitation in reducing the parasitic capacitance.
본 발명의 실시예들은 이웃한 도전구조물들간의 기생캐패시턴스를 감소시킬 수 있는 반도체장치 및 그 제조 방법을 제공한다.Embodiments of the present invention provide a semiconductor device capable of reducing parasitic capacitance between neighboring conductive structures and a method of manufacturing the same.
본 발명의 실시예에 따른 반도체장치는 기판 상의 제1콘택플러그 및 상기 제1콘택플러그 상의 비트라인을 포함하는 복수의 비트라인구조물; 상기 제1콘택플러그 및 상기 비트라인의 측벽에 형성된 에어갭을 포함하는 스페이서구조물; 상기 비트라인구조물 사이에 형성되며 오픈부를 갖는 분리층; 상기 오픈부에 형성된 제2콘택플러그; 및 상기 제2콘택플러그 상의 메모리요소를 포함할 수 있다.A semiconductor device according to an embodiment of the present invention includes a plurality of bit line structures including a first contact plug on a substrate and a bit line on the first contact plug; A spacer structure including an air gap formed in the sidewalls of the first contact plug and the bit line; An isolation layer formed between the bit line structures and having an open portion; A second contact plug formed in the open portion; And a memory element on the second contact plug.
본 발명의 실시예에 따른 반도체장치 제조 방법은 기판 상에 제1콘택플러그와 상기 제1콘택플러그 상의 비트라인을 포함하는 비트라인구조물을 형성하는 단계; 상기 비트라인구조물의 상부 및 측벽에 제1스페이서, 희생스페이서 및 제2스페이서를 포함하는 다층 스페이서를 형성하는 단계; 상기 다층 스페이서 상에 상기 제1콘택플러그 및 비트라인의 측벽을 노출시키는 콘택홀을 포함하는 분리층을 형성하는 단계; 상기 콘택홀에 상기 제1콘택플러그에 인접하는 제1플러그, 상기 제1플러그 상에서 상기 비트라인에 인접하는 제2플러그, 상기 제2스페이서에 접하여 상기 제2플러그의 측벽을 에워싸는 제3스페이서를 포함하는 제2콘택플러그를 형성하는 단계; 상기 희생스페이서가 노출되도록 상기 다층 스페이서를 부분 제거하는 단계; 및 상기 희생스페이서를 제거하여 상기 제1콘택플러그와 제1플러그 사이로부터 상기 비트라인과 제2플러그 사이까지 확장된 에어갭을 형성하는 단계를 포함할 수 있다.A method for fabricating a semiconductor device according to an embodiment of the present invention includes: forming a bit line structure including a first contact plug and a bit line on the first contact plug on a substrate; Forming a multi-layer spacer including a first spacer, a sacrificial spacer and a second spacer on top and sidewalls of the bit line structure; Forming a separation layer on the multi-layer spacer, the isolation layer including a contact hole exposing sidewalls of the first contact plug and the bit line; A first plug adjacent to the first contact plug in the contact hole, a second plug adjacent to the bit line on the first plug, and a third spacer surrounding the side wall of the second plug in contact with the second spacer, Forming a second contact plug to form a second contact plug; Partially removing the multi-layer spacer so that the sacrificial spacer is exposed; And removing the sacrificial spacers to form an extended air gap between the first contact plug and the first plug and between the bit line and the second plug.
본 기술은 도전구조물들 사이에 에어갭을 형성하므로써 기생캐패시턴스를 감소시킬 수 있는 효과가 있다.This technique has the effect of reducing the parasitic capacitance by forming an air gap between the conductive structures.
본 기술은 오믹콘택층의 형성 면적을 넓게 형성하므로 콘택저항을 개선시킬 수 있다.The present technology can increase the ohmic contact layer formation area, thereby improving the contact resistance.
본 기술은 콘택플러그에서 차지하는 금속플러그의 체적을 증가시키므로써 콘택플러그의 저항을 개선시킬 수 있다.The technique can improve the resistance of the contact plug by increasing the volume of the metal plug occupying the contact plug.
본 기술은 비트라인과 스토리지노드콘택플러그 사이에 에어갭을 형성함과 동시에 비트라인콘택플러그와 스토리지노드콘택플러그 사이에 에어갭을 형성하므로써, 기생캐패시턴스를 감소시킨다. 이에 따라, 메모리셀의 동작속도를 향상시킬 수 있다.The technique reduces the parasitic capacitance by forming an air gap between the bit line and the storage node contact plug while at the same time forming an air gap between the bit line contact plug and the storage node contact plug. Thus, the operating speed of the memory cell can be improved.
도 1a는 실시예에 따른 반도체장치를 도시한 단면도이다.
도 1b는 도 1a의 A-A'선에 따른 평면도이다.
도 1c는 도 1a의 B-B'선에 따른 평면도이다.
도 2a 내지 도 2m은 실시예에 따른 반도체장치를 형성하는 방법의 일예를 나타낸 도면이다.
도 3은 본 실시예가 적용된 메모리셀을 도시한 도면이다.
도 4a는 도 3의 A-A'선에 따른 평면도이다.
도 4b는 도 3의 B-B'선에 따른 평면도이다.
도 5a 내지 도 5o는 메모리셀을 제조하는 방법의 일예를 도시한 도면이다.
도 6a 내지 도 6d는 메모리셀의 에어갭 형성 방법을 도시한 도면이다.
도 7은 메모리 카드를 보여주는 개략도이다.
도 8은 전자 시스템을 보여주는 블록도이다.1A is a cross-sectional view showing a semiconductor device according to an embodiment.
1B is a plan view taken along the line A-A 'in FIG. 1A.
1C is a plan view taken along the line B-B 'in FIG. 1A.
2A to 2M are views showing an example of a method of forming a semiconductor device according to an embodiment.
3 is a diagram showing a memory cell to which the present embodiment is applied.
4A is a plan view taken along the line A-A 'in FIG.
4B is a plan view taken along the line B-B 'in FIG.
5A to 5O are views showing an example of a method of manufacturing a memory cell.
6A to 6D are views showing a method of forming an air gap of a memory cell.
7 is a schematic view showing a memory card;
8 is a block diagram showing an electronic system.
이하에서는, 본 발명의 가장 바람직한 실시예가 설명된다. 도면에 있어서, 두께와 간격은 설명의 편의를 위하여 표현된 것이며, 실제 물리적 두께에 비해 과장되어 도시될 수 있다. 본 발명을 설명함에 있어서, 본 발명의 요지와 무관한 공지의 구성은 생략될 수 있다. 각 도면의 구성요소들에 참조 번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다.Hereinafter, the most preferred embodiment of the present invention will be described. In the drawings, the thickness and the spacing are expressed for convenience of explanation, and can be exaggerated relative to the actual physical thickness. In describing the present invention, known configurations irrespective of the gist of the present invention may be omitted. It should be noted that, in the case of adding the reference numerals to the constituent elements of the drawings, the same constituent elements have the same number as much as possible even if they are displayed on different drawings.
도 1a는 실시예에 따른 반도체장치를 도시한 단면도이다. 도 1b는 도 1a의 A-A'선에 따른 평면도이다. 도 1c는 도 1a의 B-B'선에 따른 평면도이다.1A is a cross-sectional view showing a semiconductor device according to an embodiment. 1B is a plan view taken along the line A-A 'in FIG. 1A. 1C is a plan view taken along the line B-B 'in FIG. 1A.
도 1a를 참조하면, 기판(101) 상에 복수의 도전구조물이 형성된다. 도전구조물은 제1도전구조물과 제2도전구조물을 포함한다. 제1도전구조물은 제1도전패턴(103), 제2도전패턴(104) 및 하드마스크패턴(105)을 포함한다. 제2도전구조물은 제3도전패턴(106), 제4도전패턴(107) 및 제5도전패턴(108)을 포함한다. 제1도전구조물과 제2도전구조물 사이에 에어갭(109, 110)을 갖는 절연구조물(Dielectric structure)이 형성된다. 절연구조물은 제1스페이서(115), 제2스페이서(116) 및 제3스페이서(117)를 포함한다. 에어갭(109, 110)은 제1스페이서(115)와 제2스페이서(116) 사이에 형성된다. 제2도전구조물은 제1절연층(102)과 제2절연층(114)을 포함하는 절연층 내에 형성된다. 절연층의 오픈부(118) 내에 제2도전구조물이 형성된다. 에어갭(109)은 캡핑구조물(Capping structure, 112)에 의해 캡핑된다. 아울러, 에어갭(110)은 제2스페이서(116)에 의해 캡핑된다. 캡핑구조물(112)은 리세스부(Recess part, 113)를 갭필하면서 제6도전패턴(111)을 덮는다.Referring to FIG. 1A, a plurality of conductive structures are formed on a
도 1b를 참조하면, 제1도전패턴(103)과 제3도전패턴(106) 사이에 제1스페이서(115)와 에어갭(109, 110)을 포함하는 절연구조물이 형성된다. Referring to FIG. 1B, an insulating structure including a
도 1c를 참조하면, 제2도전패턴(104)과 제5도전패턴(108) 사이에 제1스페이서(115), 제2스페이서(116), 에어갭(109, 110) 및 제3스페이서(117)를 포함하는 절연구조물이 형성된다. 제3스페이서(117)는 제5도전패턴(108)의 측벽을 에워싸는 형태(Surrounding type)가 될 수 있다.1C, a
도 1a를 참조하여 자세히 설명하면 다음과 같다.The details will be described with reference to FIG. 1A.
기판(101)은 실리콘 기판, 실리콘저마늄 기판 또는 SOI(Silicon On Insulator) 기판을 포함할 수 있다. The
제1도전구조물에서, 제1도전패턴(103)은 실리콘함유물질(Silicon containing material) 또는 금속함유물질(Metal containing material)을 포함할 수 있다. 제1도전패턴(103)은 폴리실리콘(Poly-silicon)을 포함할 수 있다. 제2도전패턴(104)은 텅스텐(Tungsten)을 포함할 수 있다.In the first conductive structure, the first
제2도전구조물에서 제3도전패턴(106)의 높이는 제1도전패턴(103)과 동일한 높이를 갖거나, 더 높은 높이를 갖는다. 제3도전패턴(106)은 실리콘함유물질을 포함한다. 제3도전패턴(106)은 폴리실리콘을 포함할 수 있다. 제5도전패턴(108)은 금속함유물질을 포함한다. 제5도전패턴(108)은 텅스텐을 포함할 수 있다. 제4도전패턴(107)은 실리사이드(Silicide)를 포함한다. 제4도전패턴(107)은 금속실리사이드(Metal silicide)를 포함할 수 있다. 예를 들어, 제4도전패턴(107)은 티타늄실리사이드, 코발트실리사이드, 니켈실리사이드 또는 텅스텐실리사이드를 포함할 수 있다. 본 실시예에서, 제4도전패턴(107)은 코발트실리사이드(Cobalt silicide)를 포함한다. 코발트실리사이드는 'CoSi2상(Phase)'의 코발트실리사이드를 포함한다.The height of the third
제6도전패턴(111)은 금속함유물질을 포함한다. 제6도전패턴(111)은 텅스텐을 포함할 수 있다. 제6도전패턴(111)은 제5도전패턴(108)과 하드마스크패턴(105)의 일부에 동시에 오버랩된다. 제6도전패턴(111)에 자기정렬되어 리세스부(113)가 형성된다.The sixth
에어갭(109, 110)은 제1도전구조물의 양측벽에 평행하게 형성된다. 즉, 에어갭(109, 110)은 라인형 에어갭(Line type air gap)이다. 에어갭(109, 110)은 제1도전패턴(103)의 양측벽에 형성되며, 제2도전패턴(104)의 양측벽까지 수직하게 확장된다. 에어갭(109, 110)과 제3도전패턴(106)의 일부 측벽 사이에는 스페이서가 없다. 다른 실시예에서, 에어갭(109, 110)은 제1도전패턴(103)의 양측벽에 형성되고, 제2도전패턴(104)의 측벽을 에워싸는 형태가 될 수 있다. 에어갭(109, 110)은 제6도전패턴(111) 및 리세스부(113)에 의해 높이가 서로 다른 비대칭 구조가 될 수 있다.
제1도전구조물은 제1콘택플러그(First contact plug)를 포함하는 비트라인구조물(Bitline structure)이 될 수 있다. 제1도전패턴(103)은 트랜지스터와 비트라인을 연결하기 위한 제1콘택플러그가 되고, 제2도전패턴(104)은 비트라인이 될 수 있다. 제2도전구조물은 트랜지스터(transistor)와 메모리요소(Memory element)를 연결하기 위한 제2콘택플러그(Second contact plug)가 될 수 있다. 예를 들어, 제3도전패턴(106)은 제1플러그가 되고, 제5도전패턴(108)은 제2플러그가 되며, 제6도전패턴(111)은 제3플러그가 된다. 제1플러그는 실리콘플러그(Silicon plug)를 포함하고, 제2플러그 및 제3플러그는 금속플러그(Metal plug)를 포함한다. 제4도전패턴(107)은 제1플러그와 제2플러그 사이의 오믹콘택층(Ohmic contact layer)이 된다. The first conductive structure may be a bitline structure including a first contact plug. The first
제1스페이서(115), 제2스페이서(116) 및 제3스페이서(117)는 질화물(Nitride)을 포함한다. 질화물은 실리콘질화물(Silicon nitride)를 포함한다. 따라서, 제1도전패턴(103)과 제3도전패턴(106) 사이에는 '질화물스페이서(nitride spacer)-에어(Air)'를 포함하는 스페이서구조물이 형성된다. 제2도전패턴(104)과 제3도전패턴(108) 사이에는 '제1질화물스페이서-에어-제2질화물스페이서-제3질화물스페이서'를 포함하는 스페이서구조물이 형성된다.The
도시하지 않았으나, 제6도전패턴(111) 상에 다른 도전구조물(Other conductive structure)이 더 형성될 수 있다. 다른 도전구조물은 제6도전패턴(111)에 전기적으로 연결되는 메모리요소의 일부가 될 수 있다. 메모리요소는 스토리지노드(Storage node), 유전층(Dielectric) 및 플레이트노드(Plate node)로 이루어진 캐패시터(Capacitor)를 포함할 수 있고, 다른 도전구조물은 스토리지노드를 포함할 수 있다. 메모리요소는 다양한 형태로 구현될 수 있다. 예를 들어, 메모리요소는 가변저항물질을 포함할 수 있다. 메모리요소는 제1전극, 가변저항물질 및 제2전극이 순차적으로 적층될 수 있고, 제6도전패턴(111)에 제1전극이 전기적으로 연결될 수 있다. 제1전극과 제2전극에 인가되는 전압에 따라 가변저항물질의 저항이 변화하는 것을 이용하여 정보를 저장할 수 있다. 가변저항물질은 상변화물질 또는 자기터널접합을 포함할 수 있다.Although not shown, another conductive structure may be further formed on the sixth
도시하지 않았으나, 게이트전극(Gate electrode), 소스영역(Source region) 및 드레인영역(Drain region)을 포함하는 트랜지스터가 더 형성될 수 있다. 제1도전패턴(103) 및 제3도전패턴(106)은 트랜지스터의 소스영역 또는 드레인영역에 연결될 수 있다. 트랜지스터는 플라나게이트형(Planar gate type) 트랜지스터, 트렌치게이트형(Trench gate type) 트랜지스터, 매립게이트형(Buried gate type) 트랜지스터, 리세스게이트형(Recess gate type) 트랜지스터, 수직채널트랜지스터(Vertical channel transistor)를 포함할 수 있다. 트렌치게이트형 트랜지스터, 매립게이트형 트랜지스터 및 리세스게이트형 트랜지스터는 기판(101) 내에 게이트전극의 일부가 확장되거나 또는 매립된 구조를 갖는다.Although not shown, a transistor including a gate electrode, a source region, and a drain region may be further formed. The first
도 2a 내지 도 2m은 실시예에 따른 반도체장치를 형성하는 방법의 일예를 나타낸 도면이다.2A to 2M are views showing an example of a method of forming a semiconductor device according to an embodiment.
도 2a에 도시된 바와 같이, 기판(11) 상에 제1절연층(12)이 형성된다. 기판은 반도체기판을 포함한다. 기판(11)은 실리콘 기판(Silicon substrate), 실리콘저마늄 기판(SiGe substrate) 또는 SOI(Silicon On Insulator) 기판을 포함할 수 있다. 제1절연층(First dielectric layer, 12)은 실리콘산화물(Silicon oxide), 실리콘질화물, 또는 실리콘산화물과 실리콘질화물의 적층구조물을 포함할 수 있다.As shown in FIG. 2A, a first insulating
제1절연층(12)에 제1오픈부(First opening, 13A)가 형성된다. 제1오픈부(13A)는 제1마스크패턴(14)을 이용한 제1절연층(12)의 식각에 의해 형성된다. 제1마스크패턴(14)은 감광막패턴 또는 감광막패턴에 의해 패터닝된 하드마스크패턴을 포함할 수 있다. 제1오픈부(13A)는 평면상으로 볼 때 홀 형상(Hole type)을 가질 수 있다. 제1오픈부(13A)에 의해 기판(11)의 표면이 노출된다. 제1오픈부(13A)는 일정 선폭으로 제어된 직경(D)을 갖는다.A
도 2b에 도시된 바와 같이, 제1마스크패턴(14)이 제거된다.As shown in FIG. 2B, the
제1오픈부(13A)에 예비 제1도전패턴(Pre-first conductive pattern, 15A)이 형성된다. 예비 제1도전패턴(15A)은 제1도전층(도시 생략)의 식각에 의해 형성된다. 예비 제1도전패턴(15A)은 제1도전층의 CMP(Chemical Mechanical Polishing)에 의해 형성된다. 예비 제1도전패턴(15A)은 제1오픈부(13A)를 매립하는 형태가 된다. 예비 제1도전패턴(15A)은 실리콘함유층 또는 금속함유층을 포함할 수 있다. 예비 제1도전패턴(15A)은 폴리실리콘층을 포함할 수 있다.A pre-first
예비 제1도전패턴(15A) 상에 제2도전층(16A)이 형성된다. 제2도전층(16A)은 금속함유층을 포함한다. 제2도전층(16A)은 금속, 금속질화물(Metal nitride), 금속실리사이드 또는 이들의 조합을 포함할 수 있다. 제2도전층(16A)은 텅스텐함유층을 포함할 수 있다. 제2도전층(16A)은 텅스텐층을 포함할 수 있다. 이때, 예비 제1도전패턴(15A)과 제2도전층(16A) 사이에 배리어층(Barrier layer)이 더 형성될 수 있다. 따라서, 예비 제1도전패턴(15B)과 제2도전층(16A)은 폴리실리콘층, 티타늄함유층 및 텅스텐층의 적층구조물을 포함할 수 있다. 티타늄함유층은 배리어층으로서, 티타늄층(Ti)과 티타늄질화물(TiN)이 적층될 수 있다.The second
제2도전층(16A) 상에 하드마스크층(17A)이 형성된다. 하드마스크층(17A)은 실리콘산화물 또는 실리콘질화물을 포함할 수 있다.A
도 2c에 도시된 바와 같이, 제2마스크패턴(18)이 형성된다. 제2마스크패턴(18)은 라인 형상(Line type)을 갖는다. 제2마스크패턴(18)은 감광막패턴 또는 감광막패턴에 의해 패터닝된 하드마스크패턴을 포함할 수 있다. 제2마스크패턴(18)은 일정 선폭(W)을 갖는다. 여기서, 제2마스크패턴(18)의 선폭은 제1오픈부(13A)의 직경(D)보다 작은 폭을 갖는다.As shown in FIG. 2C, a
제1도전구조물이 형성된다. 제2마스크패턴(18)을 이용하여 하드마스크층(17A), 제2도전층(16A) 및 예비 제1도전패턴(15A)을 순차적으로 식각한다. 이에 따라, 제1도전패턴(15), 제2도전패턴(16) 및 하드마스크패턴(17)을 포함하는 제1도전구조물이 형성된다. 제1도전패턴(15)은 제1오픈부(13A) 내에 형성된다. 제2도전패턴(16)과 하드마스크패턴(17)은 라인 형상을 갖는다. 제1도전패턴(15)은 플러그 형상(Plug type)을 갖는다. 제1도전패턴(15)의 주변에 제1오픈부(13A)의 일부가 노출된다. 이를 측벽오픈부(Side opening, 13)라 약칭하기로 한다. 이와 같은 측벽오픈부(13)가 형성되는 이유는 제2마스크패턴(18)의 선폭이 제1오픈부(13A)의 직경보다 작기 때문이다.A first conductive structure is formed. The
도 2d에 도시된 바와 같이, 제2마스크패턴(18)이 제거된다. 제1도전구조물을 포함한 전면에 제1스페이서층(19A)이 형성된다. 제1스페이서층(19A)은 절연물질을 포함한다. 제1스페이서층(19A)은 실리콘산화물 또는 실리콘질화물을 포함할 수 있다. 이하, 실시예에서, 제1스페이서층(19A)은 실리콘질화물을 포함한다. 제1스페이서층(19A)은 측벽오픈부(13)를 갭필하지 않고 측벽오픈부(13) 및 제1절연층(12) 상에 컨포멀하게 형성된다.As shown in Figure 2D, the
제1스페이서층(19A) 상에 희생스페이서층(20A)이 형성된다. 희생스페이서층(20A)은 절연물질을 포함한다. 희생스페이서층(20A)은 제1스페이서층(19A)에 대해 식각선택비를 갖는 물질을 포함한다. 희생스페이서층(20A)은 실리콘산화물 또는 실리콘질화물을 포함할 수 있다. 이하, 실시예에서, 희생스페이서층(20A)은 실리콘산화물을 포함한다. 희생스페이서층(20A)은 제1스페이서층(19A) 상에서 측벽오픈부(13)를 갭필한다.A
도 2e에 도시된 바와 같이, 희생스페이서(20)가 형성된다. 희생스페이서(20)는 희생스페이서층(20A)의 식각에 의해 형성된다. 에치백 공정에 의해 희생스페이서층(20A)이 식각될 수 있다. 이에 따라, 제1도전구조물의 측벽에 제1스페이서층(19A)을 사이에 두고 희생스페이서(20)가 형성된다. 희생스페이서(20)의 상부 높이는 제1도전구조물의 상부 표면보다 낮게 제어된다(도면부호 '20B' 참조). 제1절연층(12)의 표면에서 희생스페이서층(20A)이 제거된다.As shown in FIG. 2E, a
도 2f에 도시된 바와 같이, 희생스페이서(20) 상에 제2스페이서층(21A)이 형성된다. 제2스페이서층(21A)은 희생스페이서(20)를 포함한 전면에 형성된다. 제2스페이서층(21A)은 절연물질을 포함한다. 제2스페이서층(21A)은 실리콘산화물 또는 실리콘질화물을 포함할 수 있다. 이하, 실시예에서, 제2스페이서층(21A)은 실리콘질화물을 포함한다. 제2스페이서층(21A)에 의해 희생스페이서(20)가 외부로부터 밀폐된다. 즉, 제1스페이서층(19A)와 제2스페이서층(21A) 사이에 희생스페이서(20)가 위치하는 다중 스페이서층이 형성된다. 제1스페이서층(19A)과 제2스페이서층(21A)이 실리콘질화물을 포함하고, 희생스페이서(20)가 실리콘산화물을 포함하므로, 'Nitride-Oxide-Nitride' 구조의 다중 스페이서층(Multi-layered spacer)이 형성된다.As shown in FIG. 2F, a
도 2g에 도시된 바와 같이, 제2오픈부(23)를 포함하는 제2절연층(22)이 형성된다. 제2절연층(22)은 절연물질을 포함한다. 제2절연층(22)은 실리콘산화물 또는 실리콘질화물을 포함한다. 이하, 실시예에서, 제2절연층(22)은 실리콘질화물을 포함한다. As shown in FIG. 2G, a second insulating
제2오픈부(23)는 제2절연층(22)의 식각에 의해 형성된다. 다른 실시예에서, 제2오픈부(23)에 상응하는 희생패턴을 형성한 후, 제2절연층(22)을 형성한다. 이후, 제2절연층(22)을 평탄화한 후 희생패턴을 제거하여 제2오픈부(23)를 형성할 수도 있다. 제2오픈부(23)는 홀 형상을 가질 수 있다.The second
도 2h에 도시된 바와 같이, 제2오픈부(23) 아래의 기판(11)의 표면을 노출시킨다. 이를 위해 제2스페이서층(21A)과 제1스페이서층(19A)을 선택적으로 제거한다. 아울러, 희생스페이서(20) 및 제1절연층(12)을 일부 식각한다. 따라서, 제2오픈부(23)는 기판(11)의 표면을 노출시키도록 확장된다. 희생스페이서(20)는 제2스페이서층(21A)의 에지(Edge)에 정렬되어 식각될 수 있다.The surface of the
이와 같은 기판(11)의 노출에 의해, 제1도전패턴(15)의 측벽에는 제1스페이서(19)와 희생스페이서(20)를 포함하는 절연구조물이 형성된다. 제2도전패턴(16)의 측벽에는 제1스페이서(19), 희생스페이서(20) 및 제2스페이서(21)를 포함하는 절연구조물이 형성된다. 제1스페이서(19)와 제2스페이서(21) 사이의 희생스페이서(20)의 탑부(Top part)는 외부로부터 밀폐된다. 희생스페이서(20)의 바텀부(Bottom part)는 제2오픈부(23)에 의해 노출된다.By such exposure of the
도 2i에 도시된 바와 같이, 제3도전패턴(24)이 형성된다. 제3도전패턴(24)은 제2오픈부(23) 내부에 리세스되어 형성된다. 제2오픈부(23)를 채우면서 제2절연층(22) 상에 제3도전층(도시 생략)이 형성된다. 제3도전층을 선택적으로 제거하여 제2오픈부(23) 내에 제3도전패턴(24)을 형성한다. 제3도전패턴(24)을 형성하기 위해 제3도전층의 에치백 공정(Etch-back process)이 수행될 수 있다. 제3도전패턴(24)은 실리콘함유층을 포함할 수 있다. 제3도전패턴(24)은 폴리실리콘층을 포함할 수 있다. 폴리실리콘층은 불순물(impurity)이 도핑될 수 있다. 제3도전패턴(24)은 기판(11)의 표면과 접촉된다. 제3도전패턴(24)의 높이는 최대한 낮게 조절될 수 있다. 이는 제2도전구조물에서 제3도전패턴(24)이 차지하는 체적을 최소화하기 위함이다. 따라서, 제2도전구조물의 저항을 감소시킬 수 있다.2I, a third
도 2j에 도시된 바와 같이, 제3스페이서(27)가 형성된다. 제3스페이서(27)는 절연층(미도시)의 증착 및 식각에 의해 형성된다. 제3스페이서(27)는 제3도전패턴(24)을 포함한 전면에 컨포멀하게 형성된다. 제3스페이서(27)는 제1스페이서(19) 및 제2스페이서(21)와 동일 재료의 물질을 포함할 수 있다. 제3스페이서(27)는 실리콘질화물을 포함할 수 있다. 제3스페이서(27)는 제3도전패턴(24) 상부에서 제2오픈부(23)의 측벽에 형성된다. 제3스페이서(27)는 제2오픈부(23)의 측벽을 에워싸는 형태가 될 수 있다.As shown in Fig. 2J, a
제3스페이서(27)를 형성할 때 또는 제3스페이서(27)를 형성한 후에, 제3도전패턴(24)의 표면을 일정 깊이 리세스시킬 수 있다. 제3도전패턴(24)의 리세스된 표면은 'V' 자 모양을 가질 수 있다. 이는 후속 실리사이드층을 형성하기 위한 반응 면적(Reaction area)을 증가시키기 위함이다.The surface of the third
위와 같이, 제3스페이서(27)를 형성하므로써, 제1스페이서(19), 희생스페이서(20), 제2스페이서(21) 및 제3스페이서(27)를 포함하는 다중 스페이서 구조물이 형성된다. 제1스페이서(19), 희생스페이서(20) 및 제2스페이서(21)는 제1도전구조물의 양측벽에 평행하게 형성된 라인형 스페이서이다. 제3스페이서(27)는 제2오픈부(23)의 측벽을 에워싸는 서라운딩형 스페이서이다. As described above, by forming the
도 2k에 도시된 바와 같이, 제3도전패턴(24)의 표면 상에 제4도전패턴(28)이 형성된다. 제4도전패턴(28)은 실리사이드층을 포함한다. 제4도전패턴(28)을 형성하기 위해 제4도전층의 증착 및 어닐링(annealing)이 수행된다. 이에 따라, 제4도전층과 제3도전패턴(24)이 접하는 계면에서 실리사이드화반응(Silicidation)이 발생하여, 금속실리사이드층(Metal silicide layer)을 포함하는 제4도전패턴(28)이 형성된다. 제4도전패턴(28)은 코발트실리사이드를 포함할 수 있다. 본 실시예에서, 제2도전패턴(28)은 'CoSi2 상'의 코발트실리사이드를 포함할 수 있다. As shown in FIG. 2K, a fourth
상술한 바와 같이, 제4도전패턴(28)으로서 CoSi2상의 코발트실리사이드를 형성하면, 콘택저항을 개선시킴과 동시에 미세 선폭을 갖는 제2오픈부(23)의 작은 면적에서도 저저항의 코발트실리사이드를 형성할 수 있다. 제4도전패턴(28)은 제3도전패턴(24)과 제5도전패턴간의 오믹콘택층이 된다. 제4도전패턴(28) 형성후에 잔류하는 제4도전층이 제거될 수 있다.As described above, when the cobalt silicide of the CoSi 2 phase is formed as the fourth
제4도전패턴(28) 상에 제5도전패턴(29)이 형성된다. 제5도전패턴(29)을 형성하기 위해 제5도전층(미도시)의 갭필 및 평탄화가 수행될 수 있다. 제5도전패턴(29)은 제4도전패턴(28) 상에서 제2오픈부(23)의 나머지를 채우면서 형성된다. 제5도전패턴(29)은 금속함유층을 포함할 수 있다. 제5도전패턴(29)은 텅스텐을 함유하는 물질을 포함할 수 있다. 제5도전패턴(29)은 텅스텐층 또는 텅스텐화합물을 포함할 수 있다. 제5도전패턴(29)은 제2절연층(22)의 표면과 동일한 높이를 가질 수 있다. 제5도전패턴(29)의 높이는 제3도전패턴(24)보다 더 높다. 따라서, 제2오픈부(23)에 형성된 도전구조물에서 제5도전패턴(29)의 체적이 제3도전패턴(24)보다 더 크다. A fifth
위와 같이, 제2오픈부(23) 내에는 제3도전패턴(24), 제4도전패턴(28), 제5도전패턴(29)를 포함하는 제2도전구조물이 형성된다. 제3스페이서(27)는 제5도전패턴(29)의 측벽을 에워싸는 서라운딩 형태이다. 제2도전패턴(16)과 제5도전패턴(29) 사이에는 제1스페이서(19), 희생스페이서(20), 제2스페이서(21) 및 제3스페이서(27)가 형성된다. 제1도전패턴(15)과 제3도전패턴(24) 사이에는 제1스페이서(19)와 희생스페이서(20)가 형성된다.The second conductive structure including the third
도 2l에 도시된 바와 같이, 제6도전패턴(30)이 형성된다. 제6도전패턴(30)은 제6도전층(도시 생략)의 증착 및 식각에 의해 형성된다. 제6도전패턴(30)은 금속함유층을 포함한다. 제6도전패턴(30)은 텅스텐을 함유하는 물질을 포함할 수 있다. 제6도전패턴(30)은 텅스텐층 또는 텅스텐화합물을 포함할 수 있다. 제6도전패턴(30)은 금속함유층의 적층 구조를 포함할 수도 있다.As shown in FIG. 21, a sixth
제6도전패턴(30)은 부분적으로 제5도전패턴(29)과 오버랩된다. 따라서, 제6도전패턴(30)에 의해 제5도전패턴(29)의 일부 및 그 주변구조물이 노출된다. 즉, 다중스페이서의 일부가 노출된다. 제6도전패턴(30)에 의해 제1스페이서(19), 희생스페이서(20), 제2스페이서(21) 및 제3스페이서(27)의 일부가 노출된다.The sixth
제6도전패턴(30)의 에지에 자기정렬되도록(Self-aligned) 하여 제5도전패턴(29)을 일정 깊이 식각한다. 이때, 제6도전패턴(30)의 에지에 자기정렬되어 제1스페이서(19), 희생스페이서(20), 제2스페이서(21) 및 제3스페이서(27)가 식각된다. 또한, 제2절연층(22) 및 하드마스크패턴(17)의 일부도 일정 깊이 식각된다. 따라서, 리세스부(31)가 형성된다. 평면상으로 볼 때, 제5도전패턴(29)의 일부는 제6도전패턴(30)에 의해 커버링되고, 리세스부(31)에 의해 제5도전패턴(29)의 다른 일부가 노출된다.The fifth
희생스페이서(20)가 제거된다. 희생스페이서(20)를 제거하기 위해 스트립공정(Strip process)이 진행된다. 스트립공정은 세정 공정(Cleaning process)을 포함한다. 세정 공정은 희생스페이서(20)를 제거할 수 있는 습식케미컬(Wet chemical)을 이용한다. 습식케미컬에 의해 제6도전패턴(30) 아래의 희생스페이서(20)도 제거된다. 스트립공정은 제6도전패턴(30)의 식각후세정을 포함할 수 있고, 이로써 희생스페이서(20)를 제거하기 위한 추가 공정이 필요없다.The
스트립 공정에 의해 희생스페이서(20)가 제거되고, 희생스페이서(20)가 차지하고 있던 공간은 에어갭(32, 33)으로 잔존한다. 에어갭(32, 33)은 제2도전패턴(16)의 측벽을 따라 평행하게 연장된 라인 구조로 형성될 수 있다.The
이와 같이, 제1도전패턴(15)의 주변은 물론 제2도전패턴(16)의 주변에도 에어갭(32, 33)이 형성된다. 따라서, 제1도전패턴(15)과 제3도전패턴(24) 사이에는 '제1스페이서(19)-에어갭(32, 33)'으로 이루어진 절연구조가 형성된다. 제1스페이서(19)가 실리콘질화물을 포함하므로, 'Nitride-Air' 구조의 절연구조물이 형성된다. 제2도전패턴(16)과 제5도전패턴(29) 사이에는 제1스페이서(19), 에어갭(32, 33), 제2스페이서(21) 및 제3스페이서(27)로 이루어진 절연구조물이 형성된다. 제1스페이서(19), 제2스페이서(21) 및 제3스페이서(27)가 실리콘질화물을 포함하므로, 'Nitride-Air-Nitride-Nitride' 구조의 절연구조물이 형성된다.As described above, the
제1스페이서(19)와 제2스페이서(21)는 제1도전구조물의 측벽에서 비대칭 높이를 가질 수 있다. 예를 들어, 에어갭(32)의 탑부를 노출시키는 부분(도면부호 'A1')과 에어갭(33)의 탑부를 캡핑하는 부분(도면부호 'A2')의 높이가 서로 다르다. A2를 참조하면, 제2스페이서(21)는 에어갭(33)의 탑부(Top part)를 캡핑하도록 확장될 수 있다.The
도 2m에 도시된 바와 같이, 캡핑구조물(34)이 형성된다. 캡핑구조물(34)은 절연물질을 포함한다. 캡핑구조물(34)은 스텝커버리지가 좋지 않은 물질(Poor- step coverage material)을 포함할 수 있다. 예를 들어, 캡핑구조물(34)은 플라즈마화학기상증착법(Plasma Enhanced Chemical Vapor Deposition; PECVD)을 이용하여 형성될 수 있고, 이에 따라 에어갭(32)의 탑부가 막히도록 캡핑할 수 있다. 캡핑구조물(34)은 실리콘산화물 또는 실리콘질화물을 포함한다. 캡핑구조물(34)은 플라즈마화학기상증착법(PECVD)에 의한 실리콘질화물을 포함할 수 있다. 캡핑구조물(34)은 리세스부(31)를 갭필하면서 에어갭(32)을 캡핑한다. 아울러, 제6도전패턴(30)의 상부를 덮는다. 다른 실시예로서, 캡핑구조물(34) 형성시, 제1캡핑층을 컨포멀하게 라이닝한 후 제2캡핑층을 갭필하여 형성할 수도 있다. 제6도전패턴(30)이 플러그형태인 경우, 캡핑구조물(34)은 에어갭(33)을 캡핑할 수 있다. 예컨대, 제6도전패턴(30) 아래에서는 제2스페이서(21)에 의해 에어갭(33)의 일부가 캡핑되고, 제6도전패턴(30) 외측에서는 캡핑구조물(34)에 의해 에어갭(33)의 나머지가 캡핑된다.2M, a capping
위와 같이, 에어갭(33)의 탑부는 제2스페이서(21)에 의해 캡핑되고, 에어갭(32)은 캡핑구조물(34)에 의해 캡핑된다.As such, the top portion of the
제1도전구조물은 제1도전패턴(15)과 제2도전패턴(16)을 포함한다. 제2도전구조물은 제3도전패턴(24), 제4도전패턴(28) 및 제5도전패턴(29)을 포함한다. 제1도전구조물과 제2도전구조물 사이에는 에어갭(32, 33)이 형성된다. The first conductive structure includes a first
제1실시예에 따르면, 에어갭(32, 33)을 형성하므로써 제1도전구조물과 제2도전구조물의 전기적 절연특성을 향상시킨다. 예컨대, 제1도전패턴(15)과 제3도전패턴(24)간의 기생캐패시턴스를 감소시킨다. 또한, 제2도전패턴(16)과 제5도전패턴(29)간의 기생캐패시턴스를 감소시킨다.According to the first embodiment, the
또한, 제4도전패턴(28)을 먼저 형성한 후에 에어갭(32, 33)을 형성하므로, 제4도전패턴(28)이 형성되는 면적을 넓게 할 수 있다. 이에 따라, 계면저항을 개선시킬 수 있다.In addition, since the
또한, 실리콘함유물질인 제3도전패턴(24)보다 금속함유물질인 금속함유물질인 제5도전패턴(29)의 체적이 크므로 제1도전구조물의 저항을 개선시킬 수 있다.Further, since the volume of the fifth
도 3은 본 실시예가 적용된 반도체장치의 일부를 도시한 도면이다. 도 3은 메모리셀을 도시하고 있다.3 is a diagram showing a part of a semiconductor device to which the present embodiment is applied. Figure 3 shows a memory cell.
도 3을 참조하면, 기판(201)에 소자분리영역(Isolation region, 202)에 의해 복수의 활성영역(Active region, 203)이 정의된다. 활성영역(203)을 가로지르는 게이트트렌치(Gate trench, 204)가 형성된다. 게이트트렌치(204) 표면에 게이트절연층(Gate dielectric, 도시 생략)이 형성된다. 게이트절연층 상에 게이트트렌치(204)를 부분적으로 매립하는 매립게이트전극(Buried gate electrode, 205)이 형성된다. 도시하지 않았으나, 기판(201)에는 소스영역 및 드레인영역이 형성된다. 매립게이트전극(205) 상에 실링층(Sealing layer, 206)이 형성된다. 매립게이트전극(205)과 교차하는 방향으로 연장된 비트라인(208)을 포함하는 비트라인구조물이 형성된다.Referring to FIG. 3, a plurality of
비트라인구조물은 제1콘택플러그(207), 비트라인(208) 및 비트라인하드마스크(209)를 포함한다. 비트라인(208)은 제1콘택플러그(207)를 통해 활성영역(203)과 연결된다. 제1콘택플러그(207)는 층간절연층(Inter-Layer-Dielectric, 222)을 관통하여 활성영역(203)에 연결된다. 층간절연층(222)에 제1콘택홀(도 4a의 '207A' 참조)이 형성되고, 제1콘택홀(207A)에 제1콘택플러그(207)가 형성된다. 제1콘택플러그(207)는 비트라인콘택플러그(Bitline contact plug)라고 약칭된다.The bit line structure includes a
다른 활성영역(203)에 연결되는 제2콘택플러그 및 제3콘택플러그(219)가 형성된다. 제2콘택플러그와 제3콘택플러그(219)는 스토리지노드콘택플러그(Storage node contact plug)라고 약칭된다. 제2콘택플러그는 분리층(214)에 형성된 제2콘택홀 내에 형성된다. 제2콘택플러그는 제1플러그(210), 오믹콘택층(211) 및 제2플러그(212)를 포함한다. 제1플러그(210)는 폴리실리콘을 포함하는 실리콘플러그이다. 제2플러그(212)와 제3콘택플러그(219)는 텅스텐을 포함하는 금속플러그이다. 오믹콘택층(211)은 제1플러그(210)와 제2플러그(212) 사이에 형성된다. 오믹콘택층(211)은 금속실리사이드층을 포함한다. 제2콘택플러그에서 제1플러그(210)가 차지하는 체적은 제2플러그(212)보다 작다. 이에 따라, 금속플러그인 제2플러그(212)에 의해 제2콘택플러그의 저항이 감소한다. 제1플러그(210)와 제2플러그(212) 사이에 오믹콘택층(211)을 형성하므로써 콘택저항이 감소한다. 제3콘택플러그(219)를 형성하므로써 스토리지노드(221)의 오버랩마진을 확보할 수 있다.A second contact plug and a
비트라인구조물과 제2콘택플러그 사이에 에어갭(213)이 형성된다. 에어갭(213)은 제1콘택플러그(207)의 측벽에 형성되면서, 비트라인(208)의 측벽에 형성되도록 수직하게 확장된다. 비트라인(208)의 측벽에서는 비트라인(208)의 측벽을 따라 평행하게 확장될 수 있다.An
에어갭(213)은 캡핑층(220) 및 제2스페이서(216)에 의해 캡핑된다. 에어갭(213)의 일부는 제2스페이서(216)에 의해 캡핑되고, 에어갭(213)의 나머지는 캡핑층(220)에 의해 캡핑된다.The
제3콘택플러그(219) 상에 스토리지노드(221)를 포함하는 캐패시터가 연결된다. 스토리지노드(221)는 필라 형태(Pillar type)를 포함한다. 도시하지 않았으나, 스토리지노드(221) 상에 유전층 및 플레이트노드가 더 형성될 수 있다. 스토리지노드(221)는 필라형태 외에 실린더형태가 될 수도 있다. 다른 실시예에서, 제3콘택플러그(219) 상에 다양하게 구현된 메모리요소가 연결될 수 있다.A capacitor including the
위와 같이, 메모리셀은 매립게이트전극(205)을 포함하는 매립게이트형 트랜지스터, 비트라인(208) 및 캐패시터를 포함한다. 트랜지스터와 비트라인(208)은 제1콘택플러그(207)에 의해 전기적으로 연결된다. 트랜지스터와 캐패시터는 제2콘택플러그 및 제3콘택플러그(219)에 의해 전기적으로 연결된다. 제2콘택플러그는 제1플러그(210), 오믹콘택층(211) 및 제2플러그(212)가 적층된 구조이다.As described above, the memory cell includes a buried gate type transistor including a buried
제2콘택플러그의 제2플러그(212)와 비트라인(208) 사이에 에어갭(213)이 형성된다. 따라서, 비트라인(208)과 제2콘택플러그간의 기생캐패시턴스가 감소한다. 또한, 제2콘택플러그의 제1플러그(210)와 제1콘택플러그(207) 사이에 에어갭(213)이 형성된다. 따라서, 제1콘택플러그(207)와 제2콘택플러그간의 기생캐패시턴스가 감소한다.An
도 4a는 도 3의 A-A'선에 따른 평면도이다. 도 4a를 참조하면, 제1콘택홀(207A)의 직경은 제1콘택플러그(207)의 선폭보다 더 크다. 따라서, 제1콘택플러그(207)의 측벽에 갭(gap)이 형성되고, 갭에 에어갭(213) 및 제1스페이서(215)가 형성된다. 결국, 제1콘택플러그(207)와 제1플러그(210) 사이에 제1스페이서(215)와 에어갭(213)을 포함하는 절연구조물이 형성된다. 4A is a plan view taken along the line A-A 'in FIG. Referring to FIG. 4A, the diameter of the
도 4b는 도 3의 B-B'선에 따른 평면도이다. 도 4b를 참조하면, 비트라인(208)과 제2플러그(212) 사이에 제1스페이서(215), 에어갭(213), 제2스페이서(216) 및 제3스페이서(217)를 포함하는 절연구조물이 형성된다. 제3스페이서(217)는 제2플러그(212)의 측벽을 에워싸는 서라운딩 형태이다. 에어갭(213)은 비트라인(208)의 측벽에 평행하게 연장된 라인형태이다.4B is a plan view taken along the line B-B 'in FIG. Referring to FIG. 4B, isolation between the
상술한 바에 따르면, 제1콘택플러그(207)와 제1플러그(210) 사이에 에어갭(213)이 형성된다. 아울러, 에어갭(213)은 비트라인(208)과 제2플러그(212) 사이에도 형성된다. 제1콘택플러그(207)와 제1플러그(210) 사이에는 '제1스페이서(215)-에어갭(213)'으로 이루어진 제1스페이서구조물(218A)이 형성된다. 제1스페이서(215)가 실리콘질화물을 포함하는 경우, 'Nitride-Air' 구조의 제1스페이서구조물(218A)이 형성된다. 비트라인(208)과 제2플러그(212) 사이에는 제1스페이서(215), 에어갭(213), 제2스페이서(216) 및 제3스페이서(217)로 이루어진 제2스페이서구조물(218B)이 형성된다. 제1스페이서(215), 제2스페이서(216) 및 제3스페이서(217)가 실리콘질화물을 포함하는 경우, 'Nitride-Air-Nitride-Nitride' 구조의 제2스페이서구조물(218B)이 형성된다. According to the above description, an
비트라인(208)의 양측벽에서 에어갭(213)의 높이가 다를 수 있다. 에어갭(213)의 높이 비대칭성은 캡핑층(220)에 의해 구현된다. 에어갭(213)의 상부는 서로 다른 구조물에 의해 캡핑된다. 에어갭(213)의 일부는 제2스페이서(216)에 의해 캡핑된다. 에어갭(213)의 나머지는 캡핑층(220)에 의해 캡핑된다. 제1스페이서(215), 제2스페이서(216) 및 캡핑층(220)이 실리콘질화물을 포함하는 경우, 실리콘질화물들에 의해 에어갭(213)이 캡핑된다.The heights of the
본 실시예에 따르면, 비트라인(208)과 스토리지노드콘택플러그 사이에 에어갭(213)을 형성함과 동시에 비트라인콘택플러그(207)와 스토리지노드콘택플러그 사이에 에어갭(213)을 형성하므로써, 기생캐패시턴스를 감소시킨다. 이에 따라, 메모리셀의 동작속도를 향상시킨다.According to the present embodiment, an
한편, 본 실시예의 비교예로서, 비트라인과 스토리지노드콘택플러그 사이에만 에어갭이 형성될 수 있다. 또한, 다른 비교예로서, 비트라인콘택플러그와 스토리지노드콘택플러그 사이에만 에어갭이 형성될 수 있다. 그러나, 비교예들은 본 실시예보다 기생캐패시턴스 감소효과가 낮으므로 메모리셀의 동작속도를 향상시키는데 한계가 있다.On the other hand, as a comparative example of this embodiment, an air gap may be formed only between the bit line and the storage node contact plug. Further, as another comparative example, an air gap may be formed only between the bit line contact plug and the storage node contact plug. However, the comparative examples have a lower effect of reducing the parasitic capacitance than the present embodiment, so that there is a limit in improving the operation speed of the memory cell.
도 5a 내지 도 5o는 도 3에 도시된 메모리셀을 제조하는 방법의 일예를 도시한 도면이다. 5A to 5O are views showing an example of a method of manufacturing the memory cell shown in FIG.
도 5a에 도시된 바와 같이, 기판(41)에 소자분리영역(44)이 형성된다. 기판(41)은 실리콘 기판, 실리콘저마늄 기판 또는 SOI 기판을 포함할 수 있다. 기판(41)은 메모리셀영역(memory cell region)과 비메모리셀영역(Non-memory cell region)을 포함한다. 비메모리셀영역은 주변회로영역을 포함할 수 있다. 주변회로영역은 로직트랜지스터 등이 형성될 수 있다. 이하, 실시예는 메모리셀영역에서의 제조 방법에 대해 설명하기로 한다. 소자분리영역(44)은 STI(Shallow Trench Isolation) 공정을 통해 형성할 수 있다. 소자분리영역(44)은 소자분리트렌치(Isolation trench, 42)에 형성된다. 소자분리영역(44)에 의해 활성영역(43)이 정의된다. 활성영역(43)은 단축과 장축을 갖는 섬형태(Island type)가 될 수 있다. 복수의 활성영역(43)이 소자분리영역(44)에 의해 분리된다. 소자분리영역(44)은 측벽산화물(Wall oxide), 라이너(liner) 및 갭필물질(Gapfill material)을 순차적으로 형성할 수 있다. 라이너는 실리콘질화물(Silicon nitride), 실리콘산화물(Silicon oxide)을 포함할 수 있다. 실리콘질화물은 Si3N4를 포함할 수 있고, 실리콘산화물은 SiO2를 포함할 수 있다. 갭필물질은 스핀온절연물(Spin On Dielectric) 등의 실리콘산화물을 포함할 수 있다. 또한, 갭필물질은 실리콘질화물을 포함할 수 있으며, 이때, 실리콘질화물은 라이너(Liner)로 사용되는 실리콘질화물을 이용하여 갭필할 수 있다.As shown in Fig. 5A, an
매립게이트전극(46)을 포함한 트랜지스터가 형성된다. 기판(41)에 매립게이트전극(46)이 매립된다. 매립게이트전극(46)은 게이트트렌치(45) 내에 형성된다. 게이트트렌치(45)는 활성영역(43) 및 소자분리영역(44)을 식각하여 형성될 수 있다. 게이트트렌치(45)의 깊이는 소자분리영역(44)보다 더 얕다. 게이트트렌치(45)의 표면 상에 게이트절연층(미도시)이 형성될 수 있다. 게이트절연층은 열산화(Thermal oxidation)를 통해 형성될 수 있다. 게이트절연층 상에 매립게이트전극(46)이 리세스되어 형성된다. 매립게이트전극(46) 상에 실링층(47)이 형성된다. 매립게이트전극(46)은 게이트트렌치(45)를 갭필하도록 금속함유층을 형성한 후 에치백하여 형성할 수 있다. 금속함유층은 티타늄, 탄탈륨, 텅스텐 등의 금속을 주성분으로 하는 물질을 포함할 수 있다. 금속함유층은 탄탈륨질화물(TaN), 티타늄질화물(TiN), 텅스텐질화물(WN) 및 텅스텐(W)으로 이루어진 그룹 중에서 선택된 적어도 어느 하나를 포함할 수 있다. 예를 들어, 매립게이트전극(46)은 티타늄질화물, 탄탈륨질화물 또는 텅스텐을 단독으로 포함하거나, 티타늄질화물(TiN) 또는 탄탈륨질화물(TaN) 상에 텅스텐(W)을 적층하는 TiN/W 또는 TaN/W과 같은 2층 구조로 형성할 수 있다. 또한, 텅스텐질화물(WN) 상에 텅스텐(W)을 적층하는 WN/W의 2층 구조를 포함할 수 있다. 또한, 텅스텐층을 포함할 수 있으며, 이 외에 낮은 저항의 금속물질을 포함할 수 있다. 실링층(47)은 매립게이트전극(46) 상에서 게이트트렌치(45)를 갭필할 수 있다. 실링층(47)은 후속 공정으로부터 매립게이트전극(46)을 보호하는 역할을 수행할 수 있다. 실링층(47)은 절연물질을 포함할 수 있다. 실링층(47)은 실리콘질화물을 포함할 수 있다. 실링층(47) 형성후에 활성영역(43)에 소스영역 및 드레인영역(도시 생략)을 형성할 수 있다. 이로써, 매립게이트전극(46)을 포함하는 매립게이트형 트랜지스터가 형성된다.A transistor including a buried
다음으로, 층간절연층(48)이 형성된다. 층간절연층(48)을 식각하여 제1콘택홀(49)을 형성한다. 제1콘택홀(49)은 활성영역(43)의 일부분을 노출시킨다. 제1콘택홀(49)은 활성영역(43)의 중앙부분을 노출시키는 형태가 될 수 있다. 제1콘택홀(49)은 활성영역(43)의 단축의 폭보다 더 큰 직경을 갖는다. 따라서, 제1콘택홀(49)을 형성하기 위한 식각 공정에서 소자분리영역(44)의 일부도 식각될 수 있다. 제1콘택홀(49)에 의해 노출되는 활성영역(43)은 매립게이트형 트랜지스터의 소스영역 및 드레인영역 중 어느 하나의 영역을 포함한다. 제1콘택홀(49)은 비트라인콘택홀이라 약칭될 수 있다. Next, an
제1콘택홀(49) 아래의 노출된 활성영역(43)이 리세스된다(도면부호 R 참조). 이에 따라, 비트라인콘택플러그가 연결될 활성영역(43)의 표면은 스토리지노드콘택플러그가 연결될 활성영역(43)의 표면보다 높이가 낮아진다.The exposed
도 5b에 도시된 바와 같이, 예비 제1콘택플러그(50A)가 형성된다. 예비 제1콘택플러그(50A)의 형성 방법을 살펴보면 다음과 같다. 먼저, 제1콘택홀(49)을 채우는 폴리실리콘층을 형성한다. 다음으로, 층간절연층(48)이 표면이 노출되도록 폴리실리콘층이 평탄화된다.As shown in Fig. 5B, a preliminary
도 5c에 도시된 바와 같이, 예비 제1콘택플러그(50A) 상에 제1도전층(51A)과 하드마스크층(52A)을 적층한다. 제1도전층(51A)은 텅스텐 등의 금속함유층을 포함한다. 하드마스크층(52A)은 실리콘질화물을 포함한다.The first
도 5d에 도시된 바와 같이, 비트라인구조물을 형성한다. 예를 들어, 비트라인마스크(미도시)에 의해 하드마스크층(52A), 제1도전층(51A) 및 예비 제1콘택플러그(50A)가 식각된다. 이에 따라, 제1콘택플러그(50), 비트라인(51) 및 비트라인하드마스크층(52)이 형성된다.And forms a bit line structure, as shown in FIG. 5D. For example, the
제1콘택플러그(50)는 리세스된 활성영역(43) 상에 형성된다. 즉, 제1콘택홀(49) 내에 형성된다. 제1콘택플러그(50)는 제1콘택홀(49)의 직경보다 작은 선폭을 갖는다. 따라서, 제1콘택플러그(50) 주변에 측벽콘택홀(49A)이 형성된다. 측벽콘택홀(49A)은 제1콘택플러그(50)와 층간절연층(48) 사이에 갭(Gap)을 제공한다. 비트라인(51)은 텅스텐함유물질을 포함한다. 비트라인(51)은 텅스텐층을 포함할 수 있다. 비트라인하드마스크층(52)은 비트라인(51)을 보호하는 역할을 한다. 비트라인하드마스크층(52)은 절연물질을 포함한다. 비트라인하드마스크층(52)은 실리콘질화물을 포함할 수 있다. 제1콘택플러그(50)는 비트라인콘택플러그라고 약칭될 수 있다. 제1콘택홀(49)의 깊이를 최소화하여 예비 제1콘택플러그(50A) 식각시 잔류물을 제거한다.A
상술한 바와 같이, 제1콘택플러그(50)가 형성되므로써 제1콘택홀(49)의 일부, 즉 측벽콘택홀(49A)이 오픈된다. 이는 제1콘택플러그(50)가 제1콘택홀(49)의 직경보다 더 작게 식각되기 때문이다.As described above, since the
도시되지 않았으나, 비트라인구조물 형성시 비메모리셀영역의 기판(41) 상에 게이트구조물이 형성될 수 있다.Although not shown, a gate structure may be formed on the
도 5e에 도시된 바와 같이, 비트라인구조물 상에 제1스페이서층(53A)이 형성된다. 제1스페이서층(53A)은 비트라인구조물을 포함한 기판(41)의 전면에 형성된다. 제1스페이서층(53A)은 절연물질을 포함한다. 제1스페이서층(53A)은 실리콘질화물을 포함할 수 있다. 제1스페이서층(53A)은 측벽콘택홀(49A) 및 층간절연층(48) 상에 컨포멀하게 형성된다.As shown in FIG. 5E, a
제1스페이서층(53A) 상에 희생스페이서층(54A)이 형성된다. 희생스페이서층(54A)은 측벽콘택홀(49A)을 갭필하면서 형성될 수 있다. 희생스페이서층(54A)은 실리콘산화물을 포함한다.A
위와 같이, 제1콘택플러그(50)와 층간절연층(48) 사이의 측벽콘택홀(49A)에는 제1스페이서층(53A)과 희생스페이서층(54A)을 포함하는 이중 스페이서층(Double spacer layer)이 형성된다.As described above, in the side
도 5f에 도시된 바와 같이, 희생스페이서(54)가 형성된다. 희생스페이서(54)는 희생스페이서층(54A)의 식각에 의해 형성된다. 에치백 공정에 의해 희생스페이서층(54A)이 식각될 수 있다. 이에 따라, 비트라인구조물의 측벽에 제1스페이서층(53A)을 사이에 두고 희생스페이서(54)가 형성된다. 희생스페이서(54)의 상부 높이는 비트라인도전구조물의 상부 표면보다 낮게 제어된다(도면부호 '54B' 참조). 층간절연층(48)의 표면에서 희생스페이서층(54A)이 제거된다.As shown in Fig. 5F, a
도 5g에 도시된 바와 같이, 희생스페이서(54) 상에 제2스페이서층(55A)이 형성된다. 제2스페이서층(55A)은 희생스페이서(54)를 포함한 전면에 형성된다. 제2스페이서층(55A)은 절연물질을 포함한다. 제2스페이서층(55A)은 실리콘산화물 또는 실리콘질화물을 포함할 수 있다. 이하, 실시예에서, 제2스페이서층(55A)은 실리콘질화물을 포함한다. 제2스페이서층(55A)에 의해 희생스페이서(54)가 외부로부터 밀폐된다. 즉, 제1스페이서층(53A)와 제2스페이서층(55A) 사이에 희생스페이서(54)가 위치하는 다중 스페이서층이 형성된다. 제1스페이서층(53A)과 제2스페이서층(55A)이 실리콘질화물을 포함하고, 희생스페이서(54)가 실리콘산화물을 포함하므로, NON 구조의 다중 스페이서층이 형성된다.As shown in Figure 5G, a
제1스페이서층(53A), 희생스페이서층(54) 및 제2스페이서층(55A)의 두께를 최소화하여 후속 제2콘택홀의 오픈마진을 확보한다.The thicknesses of the
도 5h에 도시된 바와 같이, 희생층(56A)이 형성된다. 희생층(56A)은 비트라인구조물 사이에 갭필된다. 희생층(56A)은 실리콘산화물을 포함한다. 희생층(56A)은 스핀온절연층(SOD)을 포함할 수 있다. 희생층(56A)은 비트라인구조물 상부에서 제2스페이서층(55A)의 표면이 노출되도록 평탄화될 수 있다.As shown in Fig. 5H, a
도 5i에 도시된 바와 같이, 희생층(56A)에 예비 분리부(Pre-isolation part, 57)가 형성된다. 예비 분리부(57)는 비트라인구조물과 교차하는 방향의 마스크패턴(도시 생략)을 이용한 식각에 의해 형성된다.As shown in FIG. 5I, a
도 5j에 도시된 바와 같이, 예비 분리부(57)에 분리층(Isolation layer, 58)이 형성된다. 분리층(58)은 예비 분리부(57)를 갭필하도록 실리콘질화물을 형성한 후 평탄화하여 형성될 수 있다.As shown in FIG. 5J, an
도 5k에 도시된 바와 같이, 희생층(56A)이 제거된다. 이에 따라, 오픈부, 즉 제2콘택홀(59)이 형성된다. 제2콘택홀(59)은 분리층(58) 사이에 형성된다. 분리층(58)은 비트라인구조물 사이에 형성된다. 따라서, 비트라인구조물 사이에 제2콘택홀(59) 및 분리층(58)이 형성된다. 제2콘택홀(59)은 스토리지노드콘택홀이라 약칭될 수 있다.As shown in Fig. 5K, the
도 5l에 도시된 바와 같이, 제2콘택홀(59)의 바텀부를 확장시킨다. 이를 위해 제2스페이서층(55A)과 제1스페이서층(53A)을 선택적으로 제거한다. 아울러, 희생스페이서(54)의 바텀부 및 층간절연층(48)을 일부 식각한다. 따라서, 제2콘택홀(59) 아래의 기판(41)이 노출된다. 비트라인구조물의 상부에서 제2스페이서층(55A)과 제1스페이서층(53A)이 제거된다. 제2콘택홀(59)의 바텀부는 식각선택비 차이에 의해 V 자형의 프로파일(도면부호 '60' 참조)을 가질 수 있다.As shown in FIG. 51, the bottom portion of the
비트라인(51)의 측벽에는 제1스페이서(53), 희생스페이서(54) 및 제2스페이서(55)를 포함하는 절연구조물이 형성된다. 제1콘택플러그(50)의 측벽에는 제1스페이서(53)와 희생스페이서(54)를 포함하는 절연구조물이 형성된다. 희생스페이서(54)의 바텀부는 제2콘택홀(59)에 의해 노출된다. 희생스페이서(54)의 중간부 및 탑부는 제2스페이서(55)에 의해 커버링된다.On the side wall of the
후속하여, 제1플러그, 오믹콘택층 및 제2플러그를 포함하는 제2콘택플러그가 형성된다.Subsequently, a second contact plug including a first plug, an ohmic contact layer and a second plug is formed.
이를 살펴보면 다음과 같다.This is as follows.
도 5m에 도시된 바와 같이, 제1플러그(61)가 형성된다. 제1플러그(61)는 제2콘택홀(59) 내부에 리세스되어 형성된다. 제1플러그(61)는 실리콘함유층을 포함할 수 있다. 제1플러그(61)는 폴리실리콘층을 포함할 수 있다. 폴리실리콘층은 불순물이 도핑될 수 있다. 제1플러그(61)는 기판(41)의 표면과 접촉된다. 제1플러그(61)는 비트라인(51)의 저부 표면에 근접하게 낮게 리세스된 높이를 가질 수 있다. 제1플러그(61)의 높이는 최대한 낮게 조절될 수 있다. 이는 제2콘택플러그에서 제1플러그(61)가 차지하는 체적(volume)을 최소화하기 위함이다. 따라서, 제2콘택플러그의 저항을 감소시킬 수 있다. 제1플러그(61)를 형성하기 전에 제2콘택홀(59)의 바텀부를 추가로 확장시키기 위한 딥아웃 공정(Dip-out process)을 진행하지 않아도 된다. 이에 따라, 제1플러그(61)에 보이드(Void)가 발생되는 것을 방지할 수 있고, 제1플러그(61)의 체적을 최소화할 수 있다. 또한, 딥아웃공정을 생략하므로써, 제1플러그(61)와의 페일(fail)을 방지할 수 있다. 제1플러그(61)는 100∼500Å의 두께를 갖는다.As shown in Fig. 5M, a
도 5n에 도시된 바와 같이, 제3스페이서(62)가 형성된다. 제3스페이서(62)는 절연층(미도시)의 증착 및 식각에 의해 형성된다. 제3스페이서(62)로 사용되는 절연층은 제1플러그(61)를 포함한 전면에 컨포멀하게 형성된다. 제3스페이서(62)는 제1스페이서(53) 및 제2스페이서(55)와 동일 재료의 물질을 포함할 수 있다. 제3스페이서(62)는 실리콘질화물을 포함할 수 있다. 제3스페이서(62)를 형성하므로써 기생캐패시턴스를 더욱 감소시킨다. 즉, 제1스페이서층(53A), 희생스페이서층(54) 및 제2스페이서층(55A)의 두께를 감소시킴에 따라 기생캐패시턴스가 증가할 수 있으나, 제3스페이서(62)에 의해 기생캐패시턴스가 증가하는 것을 억제한다.As shown in FIG. 5N, a
제3스페이서(62)를 형성할 때 또는 제3스페이서(62)를 형성한 후에, 제1플러그(61)의 표면을 일정 깊이 리세스시킬 수 있다(도면부호 '62A' 참조). 제1플러그(61)의 리세스된 표면은 'V' 자 모양을 가질 수 있다. 이는 후속 실리사이드층을 형성하기 위한 반응 면적을 증가시키기 위함이다.The surface of the
위와 같이, 제3스페이서(62)를 형성하므로써, 제1스페이서(53), 희생스페이서(54), 제2스페이서(55) 및 제3스페이서(62)를 포함하는 다중 스페이서 구조물이 비트라인구조물의 측벽에 형성된다.As described above, by forming the
도 5o에 도시된 바와 같이, 제1플러그(61)의 표면 상에 오믹콘택층(63)이 형성된다. 오믹콘택층(63)은 실리사이드층을 포함한다. 오믹콘택층(63)은 'CoSi2 상'의 코발트실리사이드를 포함할 수 있다. 오믹콘택층(63)을 형성하기 위해 코발층을 증착한 후 적어도 2회의 어닐링을 실시할 수 있다. 이후, 미반응 코발트층(Un-reacted coblat layer)이 제거될 수 있다.An
오믹콘택층(63) 상에 제2플러그(64)가 형성된다. 제2플러그(64)는 오믹콘택층(63) 상에서 제2콘택홀(59)의 나머지를 채우면서 형성된다. 제2플러그(64)는 금속함유층을 포함할 수 있다. 제2플러그(64)는 텅스텐을 함유하는 물질을 포함할 수 있다. 제2플러그(64)는 텅스텐층 또는 텅스텐화합물을 포함할 수 있다. 제2플러그(64)는 분리층(58)의 표면과 동일한 높이를 가질 수 있다.A second plug (64) is formed on the ohmic contact layer (63). The
위와 같이, 제2콘택홀(59) 내에는 제1플러그(61), 오믹콘택층(63) 및 제2플러그(64)를 포함하는 제2콘택플러그가 형성된다. 제3스페이서(62)는 제2플러그(64)의 측벽을 에워싸는 서라운딩 형태이다. 비트라인(51)과 제2플러그(64) 사이에는 제1스페이서(53), 희생스페이서(54), 제2스페이서(55) 및 제3스페이서(52)가 형성된다. 제1콘택플러그(50)와 제1플러그(61) 사이에는 제1스페이서(53)와 희생스페이서(54)가 형성된다. 제3스페이서(52)는 제2콘택플러그의 상부 측벽, 즉 제2플러그(64)의 측벽을 에워싸는 형태가 된다. 제1플러그(61), 오믹콘택층(63) 및 제2플러그(64)를 포함하는 제2콘택플러그는 '제1스토리지노드콘택플러그(First SNC Plug)'라고 약칭한다.As described above, the second contact plug including the
후속하여 에어갭을 형성한다.And subsequently forms an air gap.
도 6a 내지 도 6d는 메모리셀의 에어갭 형성 방법을 도시한 도면이다.6A to 6D are views showing a method of forming an air gap of a memory cell.
도 6a에 도시된 바와 같이, 제3콘택플러그(65)가 형성된다. 제3콘택플러그(65)는 금속함유층을 포함한다. 제3콘택플러그(65)는 텅스텐을 함유하는 물질을 포함할 수 있다. 제3콘택플러그(65)는 텅스텐층 또는 텅스텐화합물을 포함할 수 있다. 제3콘택플러그(65)는 금속함유층의 적층 구조를 포함할 수도 있다. 제3콘택플러그(65)를 형성하기 위해 텅스텐층을 증착한 후 마스크패턴(65B)에 의해 텅스텐층을 식각할 수 있다.As shown in Fig. 6A, a
제3콘택플러그(65)는 '제2스토리지노드콘택플러그(Second SNC Plug)'라고 약칭한다. 따라서, 본 실시예에 따른 스토리지노드콘택플러그는 제2콘택플러그와 제3콘택플러그(65)의 적층구조가 된다.The
제3콘택플러그(65)는 부분적으로 제2플러그(64)와 오버랩된다. 따라서, 제3플러그(65)에 의해 제2플러그(64)의 일부 및 그 주변구조물이 노출된다. 즉, 다중스페이서의 탑부가 일부 노출된다. 제3플러그(65)에 의해 제1스페이서(53), 희생스페이서(54), 제2스페이서(55) 및 제3스페이서(52)의 일부가 노출된다.The
제3콘택플러그(65)의 에지에 자기정렬되도록 하여 제2플러그(64)를 일정 깊이 식각한다. 이때, 제3플러그(64)의 에지에 자기정렬되어 제1스페이서(53), 희생스페이서(54), 제2스페이서(55) 및 제3스페이서(62)가 식각된다. 또한, 분리층(58) 및 비트라인하드마스크층(52)의 일부도 일정 깊이 식각된다. 따라서, 리세스부(65A)가 형성된다. 평면상으로 볼 때, 제2플러그(64)의 일부는 제3플러그(65)에 의해 커버링되고, 리세스부(65A)에 의해 제2플러그(64)의 다른 일부가 노출된다. 리세스부(65A)를 형성하기 위한 식각 공정은 마스크패턴(65B)을 식각장벽으로 이용할 수 있다. 리세스부(65A)에 의해 희생스페이서(54)의 탑부가 노출된다.The
도 6b에 도시된 바와 같이, 리세스부(65A) 아래에 노출된 희생스페이서(54)가 제거된다. 희생스페이서(54)를 제거하기 위해 딥아웃공정이 진행된다. 딥아웃공정은 세정 공정을 포함한다. 세정 공정은 희생스페이서(54)를 제거할 수 있는 습식케미컬을 이용한다. 습식케미컬에 의해 제3콘택플러그(65) 아래의 희생스페이서(54)도 제거된다. 스트립공정은 제3콘택플러그(65)의 식각후세정을 포함할 수 있고, 이로써 희생스페이서(54)를 제거하기 위한 추가 공정이 필요없다.As shown in Fig. 6B, the
딥아웃 공정에 의해 희생스페이서(54)가 제거되고, 희생스페이서(54)가 차지하고 있던 공간은 에어갭(66)으로 잔존한다. 에어갭(66)은 제1콘택플러그(50)의 주변에 형성됨과 동시에 비트라인(51)의 측벽을 따라 평행하게 형성될 수 있다. The
이와 같이, 제1콘택플러그(50)의 주변은 물론 비트라인(51)의 주변에도 에어갭(66)이 형성된다. 따라서, 제1콘택플러그(50)와 제1플러그(61) 사이에는 '제1스페이서(53)-에어갭(66)'으로 이루어진 제1스페이서구조물(SP1)이 형성된다. 제1스페이서(53)가 실리콘질화물을 포함하므로, 'Nitride-Air' 구조의 제1스페이서구조물(SP1)이 형성된다. 비트라인(51)과 제2플러그(64) 사이에는 제1스페이서(53), 에어갭(66), 제2스페이서(55) 및 제3스페이서(62)로 이루어진 제2스페이서구조물(SP2)이 형성된다. 제1스페이서(53), 제2스페이서(55) 및 제3스페이서(62)가 실리콘질화물을 포함하므로, 'Nitride-Air-Nitride-Nitride' 구조의 제2스페이서구조물(SP2)이 형성된다. 제2스페이서구조물(SP2)에서 에어갭(66)의 일부분은 제1스페이서(53)와 제2스페이서(55)에 의해 캡핑된다.As described above, an
도 6c에 도시된 바와 같이, 마스크패턴(65B)이 제거된 후 캡핑층(67)이 형성된다. 캡핑층(67)은 절연물질을 포함한다. 캡핑층(67)은 스텝커버리지가 좋지 않은 물질을 포함할 수 있다. 예를 들어, 캡핑층(67)은 플라즈마화학기상증착법(PECVD)을 이용하여 형성될 수 있고, 이에 따라 에어갭(66)의 탑부가 막히도록 캡핑할 수 있다. 캡핑층(67)은 실리콘산화물 또는 실리콘질화물을 포함한다. 캡핑층(67)은 플라즈마화학기상증착법(PECVD)에 의한 실리콘질화물을 포함할 수 있다. 캡핑층(67)은 리세스부(65A)를 갭필하면서 에어갭(66)의 상부를 캡핑한다. 아울러, 제3콘택플러그(65)의 상부를 덮는다. 캡핑층(67)은 후속 식각 공정에서 식각정지층(Etch stop layer)으로 사용될 수 있다.As shown in Fig. 6C, the
위와 같이, 에어갭(66)의 일부분은 제2스페이서(55)에 의해 캡핑되고, 에어갭(66)의 나머지 부분은 캡핑층(67)에 의해 캡핑된다.A portion of the
도 6d에 도시된 바와 같이, 제3콘택플러그(65) 상에 메모리요소(Memory element)가 형성된다. 메모리요소는 스토리지노드(68)를 포함한다. 일예로서, 스토리지노드(68)를 형성하기 위해, 캡핑층(67) 상에 몰드층(Mold layer, 도시 생략)을 형성하고, 몰드층과 캡핑층(67)을 식각하여 제3콘택플러그(65)를 노출시키는 오픈부를 형성한다. 이후, 오픈부 내에 스토리지노드(68)를 형성한 후, 몰드층을 스트립한다. 도시하지 않았으나, 스토리지노드(68) 상에 유전층 및 플레이트노드를 형성할 수 있다. 스토리지노드(68)는 필라형태이며, 다른 실시예에서 실린더 형태를 가질 수 있다. 제3플러그(65) 상에 스토리지노드(68)를 형성하므로써, 오버랩마진을 확보할 수 있다.As shown in FIG. 6D, a memory element is formed on the
위와 같이, 기판(51)과 스토리지노드(68) 사이에 형성되는 스토리지노드콘택플러그는 제2콘택플러그와 제3콘택플러그(65)를 포함한다. 제2콘택플러그는 제1플러그(61)와 제2플러그(64)를 포함한다. 제1플러그(61)와 제2플러그(64) 사이에 오믹콘택층(63)이 형성된다.As described above, the storage node contact plug formed between the
상술한 실시예에 따르면, 스토리지노드콘택플러그와 비트라인(51) 사이 및 제1콘택플러그(50)와 스토리지노드콘택플러그 사이에 에어갭(66)을 형성하므로써 기생캐패시턴스를 감소시킨다. 기생캐패시턴스가 감소하므로 센싱마진(Sensing margin)을 개선시킬 수 있다. According to the embodiment described above, the parasitic capacitance is reduced by forming an
에어갭(66)이 비트라인(51)의 측벽에 평행하게 형성되므로, 스토리지노드콘택플러그의 면적을 증가시킬 수 있다. 즉, 스토리지노드콘택플러그의 측벽을 에워싸는 에어갭이 형성되이로써 콘택저항을 감소시킬 수 있다.Since the
오믹콘택층(63)에 의해 제1플러그(61)와 제2플러그(64)간의 접촉저항을 감소시킬 수 있고, 이에 따라 tWR(Write Recovery time)을 개선시켜 메모리셀의 동작속도를 향상시킬 수 있다.The contact resistance between the
상술한 실시예들에 따른 반도체장치는 DRAM(Dynamic Random Access Memory)에 적용될 수 있으며, 이에 한정되지 않고 SRAM(Static Random Access Memory), 플래시메모리(Flash Memory), FeRAM(Ferroelectric Random Access Memory), MRAM(Magnetic Random Access Memory), PRAM(Phase Change Random Access Memory) 등의 메모리에 적용될 수 있다.The semiconductor device according to the above-described embodiments may be applied to a dynamic random access memory (DRAM), and the present invention is not limited thereto. For example, a static random access memory (SRAM), a flash memory, a ferroelectric random access memory (FeRAM) (Magnetic Random Access Memory), and a PRAM (Phase Change Random Access Memory).
도 7은 메모리 카드를 보여주는 개략도이다.7 is a schematic view showing a memory card;
도 7을 참조하면, 메모리 카드(300)는 제어기(310) 및 메모리(320)를 포함할 수 있다. 제어기(310) 및 메모리(320)는 전기적인 신호를 교환할 수 있다. 예를 들면, 제어기(310)의 명령에 따라서 메모리(320) 및 제어기(310)는 데이터를 주고받을 수 있다. 이에 따라, 메모리 카드(300)는 메모리(320)에 데이터를 저장하거나 또는 메모리(320)로부터 데이터를 외부로 출력할 수 있다. 메모리(320)는 앞서 설명한 바와 같은 에어갭을 포함하는 메모리셀을 포함할 수 있다. 이러한 메모리 카드(300)는 다양한 휴대용 기기의 데이터 저장 매체로 이용될 수 있다. 예를 들면, 메모리 카드(300)는 메모리 스틱 카드(memory stick card), 스마트 미디어 카드(smart media card, SM), 씨큐어 디지털 카드(secure digital, SD), 미니 씨큐어 디지털 카드(mini secure digital card, mini SD), 또는 멀티 미디어 카드(multi media card, MMC) 등을 포함할 수 있다.Referring to FIG. 7, the
도 8은 전자 시스템을 보여주는 블록도이다. 8 is a block diagram showing an electronic system.
도 8을 참조하면, 전자 시스템(400)은 프로세서(410), 입/출력 장치(430) 및 칩(420)을 포함할 수 있고, 이들은 버스(440)를 이용하여 서로 데이터 통신을 할 수 있다. 프로세서(410)는 프로그램을 실행하고, 전자 시스템(400)을 제어하는 역할을 할 수 있다. 입/출력 장치(430)는 전자 시스템(400)의 데이터를 입력 또는 출력하는데 이용될 수 있다. 전자 시스템(400)은 입/출력 장치(430)를 이용하여 외부 장치, 예를 들면 개인용 컴퓨터 또는 네트워크에 연결되어, 외부 장치와 서로 데이터를 교환할 수 있다. 칩(420)은 프로세서(410)의 동작을 위한 코드 및 데이터를 저장할 수 있고, 프로세스(410)에서 주어지는 동작을 일부 처리할 수 있다. 예를 들면, 칩(420)은 앞서 설명한 에어갭을 포함하는 메모리셀을 포함할 수 있다. 전자 시스템(400)은 칩(420)을 필요로 하는 다양한 전자 제어 장치를 구성할 수 있으며, 예를 들면 모바일 폰(mobile phone), MP3 플레이어, 네비게이션(navigation), 고상 디스크 (solid state disk: SSD), 가전 제품(household appliances) 등에 이용될 수 있다.8, an
전술한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as defined by the appended claims. Will be clear to those who have knowledge of.
41 : 기판 43 : 활성영역
44 : 소자분리영역 46 : 매립게이트전극
47 : 실링층 49 : 제1콘택홀
50 : 제1콘택플러그 51 : 비트라인
53 : 제1스페이서 55 : 제2스페이서
62 : 제3스페이서 59 : 제2콘택홀
61 : 제1플러그 63 : 오믹콘택층
64 : 제2플러그 66 : 에어갭
65 : 제3콘택플러그 67 : 캡핑층
SP1 : 제1스페이서구조물
SP2 : 제2스페이서구조물41: substrate 43: active region
44: element isolation region 46: buried gate electrode
47: sealing layer 49: first contact hole
50: first contact plug 51: bit line
53: first spacer 55: second spacer
62: third spacer 59: second contact hole
61: first plug 63: ohmic contact layer
64: second plug 66: air gap
65: third contact plug 67: capping layer
SP1: first spacer structure
SP2: second spacer structure
Claims (20)
상기 제1콘택플러그 및 상기 비트라인의 측벽에 형성된 에어갭을 포함하는 스페이서구조물;
상기 비트라인구조물 사이에 형성되며 오픈부를 갖는 분리층;
상기 오픈부에 형성된 제2콘택플러그; 및
상기 제2콘택플러그 상의 메모리요소
를 포함하는 반도체장치.
A plurality of bit line structures including a first contact plug on the substrate and a bit line on the first contact plug;
A spacer structure including an air gap formed in the sidewalls of the first contact plug and the bit line;
An isolation layer formed between the bit line structures and having an open portion;
A second contact plug formed in the open portion; And
The memory element on the second contact plug
.
상기 스페이서구조물은,
상기 제1콘택플러그와 제2콘택플러그 사이에 형성된 제1스페이서구조물; 및
상기 비트라인과 제2콘택플러그 사이에 형성된 제2스페이서구조물
을 포함하는 반도체장치.
The method according to claim 1,
Wherein the spacer structure comprises:
A first spacer structure formed between the first contact plug and the second contact plug; And
A second spacer structure formed between the bit line and the second contact plug
≪ / RTI >
상기 제1스페이서구조물은 상기 제1콘택플러그의 양측벽에 형성된 제1질화물스페이서를 포함하고, 상기 에어갭은 상기 제1질화물스페이서와 제2콘택플러그 사이에 형성된 반도체장치.
3. The method of claim 2,
Wherein the first spacer structure includes a first nitride spacer formed on both sidewalls of the first contact plug and the air gap is formed between the first nitride spacer and the second contact plug.
상기 제2스페이서구조물은,
상기 비트라인의 양측벽에 형성된 제1질화물스페이서; 및
상기 제1질화물스페이서의 측벽에 형성된 제2질화물스페이서를 포함하고,
상기 에어갭은 상기 제1질화물스페이서와 제2질화물스페이서 사이에 형성된 반도체장치.
3. The method of claim 2,
The second spacer structure comprises:
A first nitride spacer formed on both sidewalls of the bit line; And
And a second nitride spacer formed on a sidewall of the first nitride spacer,
Wherein the air gap is formed between the first nitride spacer and the second nitride spacer.
상기 제1질화물스페이서와 제2질화물스페이서는 상기 비트라인의 양측벽에서 서로 다른 높이를 갖는 반도체장치.
5. The method of claim 4,
Wherein the first nitride spacer and the second nitride spacer have different heights at opposite sidewalls of the bit line.
상기 제1질화물스페이서와 제2질화물스페이서는 상기 비트라인의 일측벽에서 상기 에어갭의 탑부를 노출시키고, 상기 비트라인의 타측벽에서 상기 에어갭의 탑부를 캡핑하는 비대칭 구조인 반도체장치.
6. The method of claim 5,
Wherein the first nitride spacer and the second nitride spacer are asymmetric structures that expose a top portion of the air gap at one side wall of the bit line and cap a top portion of the air gap at another side wall of the bit line.
상기 제2질화물스페이서에 접하며 상기 제2콘택플러그의 상부 측벽을 에워싸는 제3질화물스페이서를 더 포함하는 반도체장치.
5. The method of claim 4,
And a third nitride spacer in contact with the second nitride spacer and surrounding an upper sidewall of the second contact plug.
상기 에어갭의 일부는 상기 비트라인의 양측벽을 따라 평행하게 연장된 라인형 구조인 반도체장치.
The method according to claim 1,
And a part of the air gap extends in parallel along both side walls of the bit line.
상기 제2콘택플러그는,
상기 제1콘택플러그에 인접하는 실리콘플러그;
상기 비트라인에 인접하여 상기 실리콘플러그 상에 형성된 제1금속플러그;
상기 실리콘플러그와 제1금속플러그 사이에 형성된 오믹콘택층
을 포함하는 반도체장치.The method according to claim 1,
And the second contact plug includes:
A silicon plug adjacent to the first contact plug;
A first metal plug formed on the silicon plug adjacent the bit line;
An ohmic contact layer formed between the silicon plug and the first metal plug;
≪ / RTI >
상기 제2콘택플러그와 메모리요소 사이의 제3콘택플러그를 더 포함하고,
상기 제3콘택플러그는 상기 제2콘택플러그, 에어갭 및 비트라인구조물의 일부에 오버랩된 반도체장치.
The method according to claim 1,
And a third contact plug between the second contact plug and the memory element,
And said third contact plug overlaps a portion of said second contact plug, air gap and bit line structure.
상기 비트라인구조물의 상부 및 측벽에 제1스페이서, 희생스페이서 및 제2스페이서를 포함하는 다층 스페이서를 형성하는 단계;
상기 다층 스페이서 상에 상기 제1콘택플러그 및 비트라인의 측벽을 노출시키는 콘택홀을 포함하는 분리층을 형성하는 단계;
상기 콘택홀에 상기 제1콘택플러그에 인접하는 제1플러그, 상기 제1플러그 상에서 상기 비트라인에 인접하는 제2플러그, 상기 제2스페이서에 접하여 상기 제2플러그의 측벽을 에워싸는 제3스페이서를 포함하는 제2콘택플러그를 형성하는 단계;
상기 희생스페이서가 노출되도록 상기 다층 스페이서를 부분 제거하는 단계; 및
상기 희생스페이서를 제거하여 상기 제1콘택플러그와 제1플러그 사이로부터 상기 비트라인과 제2플러그 사이까지 확장된 에어갭을 형성하는 단계
를 포함하는 반도체장치 제조 방법.
Forming a bit line structure on the substrate, the bit line structure including a first contact plug and a bit line on the first contact plug;
Forming a multi-layer spacer including a first spacer, a sacrificial spacer and a second spacer on top and sidewalls of the bit line structure;
Forming a separation layer on the multi-layer spacer, the isolation layer including a contact hole exposing sidewalls of the first contact plug and the bit line;
A first plug adjacent to the first contact plug in the contact hole, a second plug adjacent to the bit line on the first plug, and a third spacer surrounding the side wall of the second plug in contact with the second spacer, Forming a second contact plug to form a second contact plug;
Partially removing the multi-layer spacer so that the sacrificial spacer is exposed; And
Removing the sacrificial spacers to form an extended air gap between the first contact plug and the first plug and between the bit line and the second plug;
≪ / RTI >
상기 희생스페이서가 노출되도록 상기 다층 스페이서를 부분 제거하는 단계는,
상기 제2콘택플러그 상에 상기 제2콘택플러그, 다층 스페이서 및 비트라인구조물의 일부를 동시에 오버랩하는 제3콘택플러그를 형성하는 단계; 및
상기 제3콘택플러그에 정렬되도록 상기 다층 스페이서를 부분 식각하는 단계
를 포함하는 반도체장치 제조 방법.
12. The method of claim 11,
The step of partially removing the multi-layer spacer to expose the sacrificial spacer comprises:
Forming a third contact plug simultaneously overlying the second contact plug, the multi-layer spacer, and a portion of the bit line structure on the second contact plug; And
Partially etching the multi-layer spacer to be aligned with the third contact plug
≪ / RTI >
상기 에어갭을 형성하는 단계에서,
상기 에어갭의 일부는 상기 제3콘택플러그에 오버랩되면서 상기 제2스페이서에 의해 캡핑되도록 형성하고, 상기 에어갭의 나머지는 상기 제3콘택플러그에 비오버랩되어 노출되도록 형성하는 반도체장치 제조 방법.
13. The method of claim 12,
In the step of forming the air gap,
Wherein a part of the air gap is formed to be capped by the second spacer while being overlapped with the third contact plug, and the remainder of the air gap is formed to be non-overlappingly exposed to the third contact plug.
상기 에어갭을 형성하는 단계 이후에,
상기 에어갭의 나머지 및 상기 제3콘택플러그를 캡핑하는 캡핑층을 형성하는 단계를 더 포함하는 반도체장치 제조 방법.
14. The method of claim 13,
After forming the air gap,
And forming a capping layer to cap the remaining of the air gap and the third contact plug.
상기 캡핑층을 형성하는 단계 이후에,
상기 캡핑층을 관통하여 상기 제3콘택플러그에 연결되는 스토리지노드를 포함하는 캐패시터를 형성하는 단계
를 더 포함하는 반도체장치 제조 방법.
15. The method of claim 14,
After forming the capping layer,
Forming a capacitor including a storage node coupled to the third contact plug through the capping layer
≪ / RTI >
상기 제1스페이서, 제2스페이서 및 제3스페이서는 실리콘질화물을 포함하고, 상기 희생스페이서는 실리콘산화물을 포함하는 반도체장치 제조 방법.
12. The method of claim 11,
Wherein the first spacer, the second spacer, and the third spacer comprise silicon nitride, and the sacrificial spacer comprises silicon oxide.
상기 비트라인구조물을 형성하는 단계는,
상기 기판 상에 층간절연층을 형성하는 단계;
상기 층간절연층을 식각하여 제1콘택홀을 형성하는 단계;
상기 제1콘택홀에 예비 제1콘택플러그를 매립하는 단계;
상기 예비 제1콘택플러그 상에 도전층을 형성하는 단계; 및
상기 콘택홀의 직경보다 작은 선폭을 갖도록 상기 도전층과 예비 제1콘택플러그를 식각하는 단계
를 포함하는 반도체장치 제조 방법.
12. The method of claim 11,
Wherein forming the bit line structure comprises:
Forming an interlayer insulating layer on the substrate;
Etching the interlayer insulating layer to form a first contact hole;
Burying the preliminary first contact plug in the first contact hole;
Forming a conductive layer on the preliminary first contact plug; And
Etching the conductive layer and the preliminary first contact plug so as to have a line width smaller than the diameter of the contact hole
≪ / RTI >
상기 비트라인구조물을 형성하는 단계 이전에,
상기 기판에 매립된 게이트전극을 포함하는 매립게이트형 트랜지스터를 형성하는 단계를 더 포함하는 반도체장치 제조 방법.
12. The method of claim 11,
Prior to forming the bit line structure,
And forming a buried gate type transistor including a gate electrode buried in said substrate.
상기 제2콘택플러그를 형성하는 단계는,
상기 콘택홀 내에 리세스된 상기 제1플러그를 형성하는 단계;
상기 제1플러그 상에 상기 콘택홀의 측벽을 덮는 상기 제3스페이서를 형성하는 단계;
상기 제1플러그의 표면 상에 오믹콘택층을 형성하는 단계;
상기 오믹콘택층 상에 상기 콘택홀을 매립하는 상기 제2플러그를 형성하는 단계
를 포함하는 반도체장치 제조 방법.
12. The method of claim 11,
Wherein forming the second contact plug comprises:
Forming the first plug recessed in the contact hole;
Forming the third spacer on the first plug to cover a side wall of the contact hole;
Forming an ohmic contact layer on a surface of the first plug;
Forming the second plug to fill the contact hole on the ohmic contact layer
≪ / RTI >
상기 제2콘택플러그를 형성하는 단계에서,
상기 제1플러그는 실리콘플러그를 포함하고, 상기 제2플러그는 금속플러그를 포함하는 반도체장치 제조 방법.12. The method of claim 11,
In forming the second contact plug,
Wherein the first plug includes a silicon plug, and the second plug includes a metal plug.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130134664A KR102226159B1 (en) | 2013-11-07 | 2013-11-07 | Semiconductor device with air gap and method for fabricating the same |
US14/516,128 US9425200B2 (en) | 2013-11-07 | 2014-10-16 | Semiconductor device including air gaps and method for fabricating the same |
US15/211,938 US10411014B2 (en) | 2013-11-07 | 2016-07-15 | Semiconductor device including air gaps and method for fabricating the same |
US16/521,282 US11296088B2 (en) | 2013-11-07 | 2019-07-24 | Semiconductor device including air gaps and method for fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130134664A KR102226159B1 (en) | 2013-11-07 | 2013-11-07 | Semiconductor device with air gap and method for fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150053020A true KR20150053020A (en) | 2015-05-15 |
KR102226159B1 KR102226159B1 (en) | 2021-03-11 |
Family
ID=53389710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130134664A Active KR102226159B1 (en) | 2013-11-07 | 2013-11-07 | Semiconductor device with air gap and method for fabricating the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102226159B1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9337203B2 (en) | 2014-03-05 | 2016-05-10 | SK Hynix Inc. | Semiconductor device with line-type air gaps and method for fabricating the same |
KR20170003830A (en) * | 2015-06-30 | 2017-01-10 | 에스케이하이닉스 주식회사 | Semiconductor device with air gap and method for fabricating the same |
KR20170062098A (en) * | 2015-11-27 | 2017-06-07 | 삼성전자주식회사 | Semiconductor device having air spacers and method for manufacturing the same |
US9735246B1 (en) | 2016-05-11 | 2017-08-15 | International Business Machines Corporation | Air-gap top spacer and self-aligned metal gate for vertical fets |
US9786598B2 (en) | 2014-07-25 | 2017-10-10 | SK Hynix Inc. | Semiconductor device with air gaps and method for fabricating the same |
KR20180102887A (en) * | 2017-03-08 | 2018-09-18 | 삼성전자주식회사 | Integrated circuit device and method of manufacturing the same |
CN110364485A (en) * | 2018-04-11 | 2019-10-22 | 长鑫存储技术有限公司 | Memory and preparation method thereof, and semiconductor device |
US10535652B2 (en) | 2016-10-27 | 2020-01-14 | International Business Machines Corporation | Fabrication of vertical fin field effect transistors having top air spacers and a self-aligned top junction |
KR20200140645A (en) * | 2019-06-07 | 2020-12-16 | 삼성전자주식회사 | Semiconductor devices |
KR20210013799A (en) * | 2019-07-29 | 2021-02-08 | 삼성전자주식회사 | Semiconductor device |
KR20210086968A (en) * | 2019-12-31 | 2021-07-09 | 에트론 테크놀로지, 아이엔씨. | Semiconductor device structure |
CN115458475A (en) * | 2021-06-09 | 2022-12-09 | 华邦电子股份有限公司 | Semiconductor memory structure and forming method thereof |
KR20230118785A (en) * | 2016-03-15 | 2023-08-14 | 삼성전자주식회사 | A semiconductor device |
US11728410B2 (en) | 2020-09-29 | 2023-08-15 | Samsung Electronics Co., Ltd. | Semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020051108A (en) * | 2000-12-22 | 2002-06-28 | 박종섭 | A method for forming capacitor using polysilicon plug structure in semiconductor device |
CN103383935A (en) * | 2012-05-03 | 2013-11-06 | 三星电子株式会社 | Semiconductor devices and methods of manufacturing the same |
-
2013
- 2013-11-07 KR KR1020130134664A patent/KR102226159B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020051108A (en) * | 2000-12-22 | 2002-06-28 | 박종섭 | A method for forming capacitor using polysilicon plug structure in semiconductor device |
CN103383935A (en) * | 2012-05-03 | 2013-11-06 | 三星电子株式会社 | Semiconductor devices and methods of manufacturing the same |
US20130292847A1 (en) * | 2012-05-03 | 2013-11-07 | Byoungdeog Choi | Semiconductor Devices and Methods of Manufacturing the Same |
KR20130123687A (en) * | 2012-05-03 | 2013-11-13 | 삼성전자주식회사 | Semiconductor devices and methods of manufacturing the same |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9337203B2 (en) | 2014-03-05 | 2016-05-10 | SK Hynix Inc. | Semiconductor device with line-type air gaps and method for fabricating the same |
US9786598B2 (en) | 2014-07-25 | 2017-10-10 | SK Hynix Inc. | Semiconductor device with air gaps and method for fabricating the same |
KR20170003830A (en) * | 2015-06-30 | 2017-01-10 | 에스케이하이닉스 주식회사 | Semiconductor device with air gap and method for fabricating the same |
KR20170062098A (en) * | 2015-11-27 | 2017-06-07 | 삼성전자주식회사 | Semiconductor device having air spacers and method for manufacturing the same |
KR20230118785A (en) * | 2016-03-15 | 2023-08-14 | 삼성전자주식회사 | A semiconductor device |
US10541312B2 (en) | 2016-05-11 | 2020-01-21 | International Business Machines Corporation | Air-gap top spacer and self-aligned metal gate for vertical fets |
US9735246B1 (en) | 2016-05-11 | 2017-08-15 | International Business Machines Corporation | Air-gap top spacer and self-aligned metal gate for vertical fets |
US10090411B2 (en) | 2016-05-11 | 2018-10-02 | International Business Machines Corporation | Air-gap top spacer and self-aligned metal gate for vertical fets |
US9941378B2 (en) | 2016-05-11 | 2018-04-10 | International Business Machines Corporation | Air-gap top spacer and self-aligned metal gate for vertical FETs |
US11081482B2 (en) | 2016-10-27 | 2021-08-03 | International Business Machines Corporation | Fabrication of vertical fin field effect transistors having top air spacers and a self aligned top junction |
US10535652B2 (en) | 2016-10-27 | 2020-01-14 | International Business Machines Corporation | Fabrication of vertical fin field effect transistors having top air spacers and a self-aligned top junction |
KR20180102887A (en) * | 2017-03-08 | 2018-09-18 | 삼성전자주식회사 | Integrated circuit device and method of manufacturing the same |
US11049810B2 (en) | 2017-03-08 | 2021-06-29 | Samsung Electronics Co., Ltd. | Integrated circuit device and method of manufacturing the same |
US11600569B2 (en) | 2017-03-08 | 2023-03-07 | Samsung Electronics Co., Ltd. | Integrated circuit device and method of manufacturing the same |
CN110364485A (en) * | 2018-04-11 | 2019-10-22 | 长鑫存储技术有限公司 | Memory and preparation method thereof, and semiconductor device |
CN110364485B (en) * | 2018-04-11 | 2024-05-17 | 长鑫存储技术有限公司 | Memory, preparation method thereof and semiconductor device |
KR20200140645A (en) * | 2019-06-07 | 2020-12-16 | 삼성전자주식회사 | Semiconductor devices |
KR20210013799A (en) * | 2019-07-29 | 2021-02-08 | 삼성전자주식회사 | Semiconductor device |
KR20210086968A (en) * | 2019-12-31 | 2021-07-09 | 에트론 테크놀로지, 아이엔씨. | Semiconductor device structure |
US12148500B2 (en) | 2019-12-31 | 2024-11-19 | Etron Technology, Inc. | Method forming a semiconductor device structure having an underground interconnection embedded into a silicon substrate |
US11728410B2 (en) | 2020-09-29 | 2023-08-15 | Samsung Electronics Co., Ltd. | Semiconductor device |
CN115458475A (en) * | 2021-06-09 | 2022-12-09 | 华邦电子股份有限公司 | Semiconductor memory structure and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102226159B1 (en) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11296088B2 (en) | Semiconductor device including air gaps and method for fabricating the same | |
US9245849B2 (en) | Semiconductor device with air gap | |
US9337202B2 (en) | Semiconductor device with air gap and method for fabricating the same | |
US9514980B2 (en) | Semiconductor device with air gap and method for fabricating the same | |
KR102226159B1 (en) | Semiconductor device with air gap and method for fabricating the same | |
KR102044275B1 (en) | Semiconductor device with air gap and method for fabricating the same | |
KR102152798B1 (en) | Semiconductor device with line type air gap and method for fabricating the same | |
US9640426B2 (en) | Semiconductor device with self-aligned air gap and method for fabricating the same | |
KR102001511B1 (en) | Semiconductor device with air gap and method for fabricating the same | |
KR102001493B1 (en) | Semiconductor device with air gap and method for fabricating the same | |
US20160247760A1 (en) | Semiconductor device with air gap and method for fabricating the same | |
KR102242963B1 (en) | Semiconductor device with air gap and method for fabricating the same | |
KR20160089095A (en) | Semiconductor device with air gap and method for fabricating the same | |
KR20140083756A (en) | Semiconductor device with air gap and method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20131107 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20181023 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20131107 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20200128 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20200818 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20210222 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20210304 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20210305 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20240226 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20250225 Start annual number: 5 End annual number: 5 |