KR20140137498A - Reductant injection volume control device of a vehicle and method of controlling the same - Google Patents
Reductant injection volume control device of a vehicle and method of controlling the same Download PDFInfo
- Publication number
- KR20140137498A KR20140137498A KR20130057820A KR20130057820A KR20140137498A KR 20140137498 A KR20140137498 A KR 20140137498A KR 20130057820 A KR20130057820 A KR 20130057820A KR 20130057820 A KR20130057820 A KR 20130057820A KR 20140137498 A KR20140137498 A KR 20140137498A
- Authority
- KR
- South Korea
- Prior art keywords
- nox
- scr catalyst
- reducing agent
- amount
- scr
- Prior art date
Links
- 239000003638 chemical reducing agent Substances 0.000 title claims abstract description 64
- 238000002347 injection Methods 0.000 title claims abstract description 29
- 239000007924 injection Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000003054 catalyst Substances 0.000 claims abstract description 70
- 239000007864 aqueous solution Substances 0.000 claims abstract description 30
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 238000000746 purification Methods 0.000 claims abstract description 18
- 238000001179 sorption measurement Methods 0.000 claims abstract description 15
- 238000006722 reduction reaction Methods 0.000 claims abstract description 9
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims abstract description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 238000005507 spraying Methods 0.000 abstract description 3
- 238000010531 catalytic reduction reaction Methods 0.000 abstract description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 80
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 36
- 239000007789 gas Substances 0.000 description 14
- 239000002253 acid Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 101100046636 Arabidopsis thaliana TOP6A gene Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
본 발명은 수치해석 및 반응속도론을 접목한 SCR(Selective Catalytic Reduction) 반응모델을 적용하여 환원제 수용액의 주입량을 결정하도록 제어함으로써 운전조건에 적합한 배기가스를 정화하기 위한 차량의 환원제 주입량 제어장치 및 방법에 관한 것이다.
본 발명에 따른 차량의 환원제 주입량 제어장치는, 엔진; 배기가스에 포함된 NOx와 NH3의 환원반응을 NOx를 정화하는 SCR촉매; 상기 SCR촉매의 양단간 NOx 농도를 검출하는 제1,2NOx센서; 상기 SCR촉매의 선단에 환원제 수용액을 분사하는 도징모듈; 상기 SCR촉매의 온도를 검출하는 온도센서를 포함하며, 공기량과 엔진 회전수 및 배기가스 온도의 분석으로 결정되고, SCR촉매의 NOx 정화효율은 제1,2NOx센서의 정보와 온도센서 정보의 분석으로 결정되는 운전조건과 SCR촉매의 NOx 정화효율에 따라 SCR 반응모델을 통해 SCR촉매의 필요 NH3 양을 산출하여 환원제 수용액의 주입량을 결정하는 제어부를 더 포함한다.
또한, 본 발명의 특징에 따른 차량의 환원제 주입량 제어방법은, 운전조건과 SCR촉매의 온도 및 NOx 정화효율을 검출하는 과정; SCR 반응모델을 적용하여 운전조건과 NOx 정화효율에 따른 NH3 흡착량을 산출하는 과정; NH3의 흡착량에 따른 환원제 수용액의 주입량을 결정하는 과정을 포함한다.The present invention relates to an apparatus and method for controlling a reducing agent injection amount of a vehicle for purifying an exhaust gas suited to operating conditions by controlling the injection amount of a reducing agent aqueous solution by applying a SCR (Selective Catalytic Reduction) reaction model combining numerical analysis and reaction kinetics .
An apparatus for controlling a reducing agent injection amount of a vehicle according to the present invention comprises: an engine; An SCR catalyst for purifying NOx by a reduction reaction of NOx and NH3 contained in the exhaust gas; A first and second NOx sensor for detecting NOx concentrations between both ends of the SCR catalyst; A dosing module for spraying a reducing agent aqueous solution on the tip of the SCR catalyst; And a temperature sensor for detecting the temperature of the SCR catalyst, wherein the NOx purification efficiency of the SCR catalyst is determined by analyzing the information of the first and second NOx sensors and the temperature sensor information And a control unit for calculating an amount of NH 3 necessary for the SCR catalyst through the SCR reaction model according to the determined operating conditions and the NO x purification efficiency of the SCR catalyst to determine the amount of reducing agent aqueous solution injected.
Also, a method of controlling a reducing agent injection amount of a vehicle according to an aspect of the present invention includes the steps of: detecting an operating condition, a temperature of an SCR catalyst, and a NOx purification efficiency; Calculating a NH3 adsorption amount according to the operating condition and the NOx purification efficiency by applying the SCR reaction model; And determining the amount of the reducing agent solution injected according to the adsorption amount of NH3.
Description
본 발명은 차량의 환원제 주입량 제어장치 및 방법에 관한 것으로, 더욱 상세하게는 수치해석 및 반응속도론을 접목한 SCR(Selective Catalytic Reduction) 반응모델을 적용하여 환원제 수용액의 주입량을 결정하도록 제어함으로써 운전조건에 적합한 배기가스를 정화하기 위한 차량의 환원제 주입량 제어장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for controlling the injection amount of a reducing agent in a vehicle, and more particularly, to an apparatus and method for controlling the injection amount of a reducing agent by controlling an SCR (Selective Catalytic Reduction) reaction model combining numerical analysis and reaction kinetics, And an apparatus and method for controlling a reducing agent injection amount of a vehicle for purifying an appropriate exhaust gas.
일반적으로 디젤 엔진이 적용되는 차량은 북미디젤 Tier2 BIN5 규제나 유로 6의 배기가스 규제에 따라 배기가스에 포함된 NOx, CO, THC, 그을음(soot), 입자상 물질(Particulate Matters) 등의 유해물질을 제거시키는 후처리 장치가 장착된다.Generally, diesel engine vehicles are classified into hazardous substances such as NOx, CO, THC, soot, Particulate Matters, etc. contained in the exhaust gas according to North American diesel Tier 2 BIN5 regulation or Euro 6 exhaust gas regulations. And a post-treatment apparatus for removing the post-treatment apparatus.
디젤 차량에 장착되는 후처리 장치는 배기 파이프에서 엔진과 가장 근접하게 배치되어 NMHC 변환기능을 실행하는 DOC(Diesel Oxidation Catalyst), DOC의 하류측에 배치되어 입자상 물질(Particulate Matters :PM)을 포집하는 CPF(Catalyzed Particulate Filter), CPF의 하류측에 배치되며 V2O5/TiO2나 Pt/Al2O3 또는 Zeolite로 이루어지며, 환원작용을 통해 NOx를 정화하는 SCR촉매가 포함된다.A post-treatment device mounted on a diesel vehicle is a DOC (Diesel Oxidation Catalyst) which is disposed in the exhaust pipe in the closest proximity to the engine and performs the NMHC conversion function, a particulate filter (PM) disposed downstream of the DOC and collecting particulate matters CPF (Catalyzed Particulate Filter), an SCR catalyst disposed downstream of the CPF, consisting of V2O5 / TiO2, Pt / Al2O3 or Zeolite, and purifying NOx through a reduction action.
상기의 SCR촉매는 NOx를 정화하기 위한 환원제로 NH3(암모니아)를 사용하며, NOx에 대한 선택도가 매우 우수할 뿐만 아니라 산소가 존재하는 경우에도 NOx와 NH3 사이의 반응이 촉진되는 장점이 있다.The SCR catalyst uses NH3 (ammonia) as a reducing agent for purifying NOx, and has an excellent selectivity to NOx, and also promotes the reaction between NOx and NH3 even in the presence of oxygen.
NOx와 NH3의 환원반응은 다음과 같다.The reduction reaction of NOx and NH3 is as follows.
NOx + NH3 → N2 + H2ONOx + NH3? N2 + H2O
SCR촉매의 NOx 정화성능을 일정수준으로 이상으로 유지하기 위해 도징모듈(Dosing Module)로 환원제 수용액을 분사하고, 환원제 수용액의 증발 및 분해에 따라 생성되는 NH3를 취득하여 SCR촉매의 내부에 NH3의 흡착량을 유지시킨다.In order to maintain the NOx purifying performance of the SCR catalyst at a certain level or more, a reducing agent aqueous solution is injected into the dosing module, and NH3 generated by the evaporation and decomposition of the reducing agent aqueous solution is obtained, .
통상적으로 환원제 수용액의 주입량을 증가시키면 NOx 정화율이 증가하나, 일정량 이상의 환원제 수용액을 주입하는 경우 NH3의 과도한 생성으로 심각한 환경오염 및 악취를 유발하게 되는 문제점이 발생한다.Generally, increasing the injection amount of the reducing agent aqueous solution increases the NOx purification rate. However, when the reducing agent aqueous solution is injected at a certain amount or more, excessive formation of NH3 causes severe environmental pollution and odor.
발명의 배경기술로는 미국 특허 제6,427,439호에 개시되어 있으며, 여기에서 배기가스의 정화는 질소 산화물, NOx를 촉매작용으로 환원함으로써 수행된다. 환원제의 첨가는 전자적 엔진 제어기, EEC에 의해 제어되고, 제어기는 NOx 농도가 예정값을 넘어설 때, NOx 농도에 비례하여 첨가되도록 환원제의 양을 결정한다. NOx 농도가 낮고 흡수된 암모니아의 양이 촉매의 암모니아 수용량보다 더 적을 때, 첨가되는 환원제의 양이 예정 값이다. EEC는 촉매 표면상의 흡수된 NH3 및 계산하는 기간에 환원제 첨가의 양을 계산하기 위하여, NOx 농도, NH3 농도, 온도, 엔진 속도 및 엔진 부하의 측정으로부터의 신호를 사용한다. 그러나, 이것은 서로 다른 측정 및 계산이 엔진의 부하가 주기적 및 신속하게 증가하고 감소하는 차량에서 수반된다는 것을 의미한다.The background of the invention is disclosed in U.S. Patent No. 6,427,439, wherein the purification of the exhaust gas is carried out by catalytically reducing nitrogen oxides, NOx. The addition of the reducing agent is controlled by an electronic engine controller, EEC, and the controller determines the amount of reducing agent to be added proportionally to the NOx concentration when the NOx concentration exceeds the predetermined value. When the NOx concentration is low and the amount of ammonia absorbed is less than the ammonia capacity of the catalyst, the amount of reducing agent added is a predetermined value. EEC uses signals from measurements of NOx concentration, NH3 concentration, temperature, engine speed and engine load to calculate the amount of NH3 adsorbed on the catalyst surface and the amount of reducing agent addition during the calculation period. However, this means that different measurements and calculations are involved in the vehicle in which the load of the engine increases and decreases periodically and rapidly.
또한, 배기가스로 환원제의 주입을 제어하는 매우 많은 방법이 기술분야에 공지되어 있지만, 주위환경으로의 환원제의 해로운 누출을 방지하기 위하여, 환원제의 제어된 주입에 의한 NOx 변환을 개선하는 것이 여전히 필요하다.Also, although many methods are known in the art for controlling the injection of reducing agent into the exhaust gas, it is still necessary to improve the NOx conversion by controlled injection of the reducing agent to prevent detrimental leaks of the reducing agent to the surrounding environment Do.
본 발명은 상기와 같은 문제점을 해소하기 위해 창안된 것으로, SCR촉매에서 NOx의 정화에 필요한 NH3를 생성하는데 요구되는 환원제 수용액의 주입량을 수치해석 및 반응속도론이 접목된 SCR 반응모델을 적용하여 환원제 수용액의 주입량을 결정하도록 제어함으로써 운전조건에 적합한 배기가스를 정화하도록 하는 차량의 환원제 주입량 제어장치 및 방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems and it is an object of the present invention to provide a reducing agent aqueous solution which is required to generate NH3 required for purifying NOx in an SCR catalyst by applying a numerical analysis and a reaction kinetics- The amount of the reducing agent to be injected is controlled so as to purify the exhaust gas suited to the operating conditions.
상기와 같은 과제를 해결하기 위한 본 발명에 따른 차량의 환원제 주입량 제어장치는, 엔진; 배기가스에 포함된 NOx와 NH3의 환원반응을 NOx를 정화하는 SCR촉매; 상기 SCR촉매의 양단간 NOx 농도를 검출하는 제1,2NOx센서; 상기 SCR촉매의 선단에 환원제 수용액을 분사하는 도징모듈; 상기 SCR촉매의 온도를 검출하는 온도센서를 포함하며, 공기량과 엔진 회전수 및 배기가스 온도의 분석으로 결정되고, SCR촉매의 NOx 정화효율은 제1,2NOx센서의 정보와 온도센서 정보의 분석으로 결정되는 운전조건과 SCR촉매의 NOx 정화효율에 따라 SCR 반응모델을 통해 SCR촉매의 필요 NH3 양을 산출하여 환원제 수용액의 주입량을 결정하는 제어부를 더 포함한다.According to an aspect of the present invention, there is provided an apparatus for controlling a reducing agent injection amount of a vehicle, the apparatus comprising: an engine; An SCR catalyst for purifying NOx by a reduction reaction of NOx and NH3 contained in the exhaust gas; A first and second NOx sensor for detecting NOx concentrations between both ends of the SCR catalyst; A dosing module for spraying a reducing agent aqueous solution on the tip of the SCR catalyst; And a temperature sensor for detecting the temperature of the SCR catalyst, wherein the NOx purification efficiency of the SCR catalyst is determined by analyzing the information of the first and second NOx sensors and the temperature sensor information And a control unit for calculating an amount of NH 3 necessary for the SCR catalyst through the SCR reaction model according to the determined operating conditions and the NO x purification efficiency of the SCR catalyst to determine the amount of reducing agent aqueous solution injected.
상기 SCR 반응모델은 수치해석과 반응속도론이 접목되어 SCR촉매의 온도조건, 배기 유량, NOx 농도, NH3 농도에 따라 테이블로 설정되는 것을 특징으로 한다.The SCR reaction model is characterized in that numerical analysis and reaction kinetics are combined and set in a table according to the temperature condition of the SCR catalyst, the exhaust flow rate, the NOx concentration, and the NH3 concentration.
또한, 본 발명의 특징에 따른 차량의 환원제 주입량 제어방법은, 운전조건과 SCR촉매의 온도 및 NOx 정화효율을 검출하는 과정; SCR 반응모델을 적용하여 운전조건과 NOx 정화효율에 따른 NH3 흡착량을 산출하는 과정; NH3의 흡착량에 따른 환원제 수용액의 주입량을 결정하는 과정을 포함한다.Also, a method of controlling a reducing agent injection amount of a vehicle according to an aspect of the present invention includes the steps of: detecting an operating condition, a temperature of an SCR catalyst, and a NOx purification efficiency; Calculating a NH3 adsorption amount according to the operating condition and the NOx purification efficiency by applying the SCR reaction model; And determining the amount of the reducing agent solution injected according to the adsorption amount of NH3.
상기 환원제 수용액은 NH3, Urea 중 어느 하나로 된 것을 특징으로 한다.And the reducing agent aqueous solution is any one of NH3 and Urea.
상기 NH3 흡착량은 SCR촉매의 온도, 배기유량, NOx 농도, NH3 농도별 NOx의 환원특성이 적용되어 산출되는 것을 특징으로 한다.The NH3 adsorption amount is calculated by applying the NOx reduction characteristics according to the temperature of the SCR catalyst, the exhaust flow rate, the NOx concentration, and the NH3 concentration.
본 발명에 따른 차량의 환원제 주입량 제어장치 및 방법에 의하면, SCR촉매에서 NH3의 생성에 필요한 양의 환원제 수용액을 결정하여 주입함으로써, 환원제 수용액의 소모를 최소화하면서도 NOx의 정화효율이 최대화되는 효과가 있다.According to the apparatus and method for controlling the amount of reducing agent injected into a vehicle according to the present invention, an amount of the reducing agent aqueous solution required for generating NH 3 is determined and injected in the SCR catalyst, thereby maximizing the purification efficiency of NOx while minimizing the consumption of the reducing agent aqueous solution .
또한, 환원제 수용액이 엔진 조건에 맞는 현실적인 주입량으로 제어됨으로써, NH3의 과다 혹은 과소 생성으로 인한 배기가스 불안정이 발생하지 않게 되는 효과가 있다.In addition, since the reducing agent aqueous solution is controlled at a realistic injection amount suitable for the engine conditions, there is an effect that the exhaust gas instability due to excessive or under-production of NH 3 is not generated.
도 1은 본 발명의 실시예에 따른 차량의 환원제 주입량 제어장치를 개략적으로 나타낸 도면,
도 2는 본 발명의 실시예에 따른 차량에서 환원제 주입량 제어를 실행하는 흐름도,
도 3은 본 발명의 실시예에 따른 차량의 SCR촉매에서 NH3의 흡착 및 탈착 관계를 나타낸 도면,
도 4는 본 발명의 실시예에 따른 차량에서 SCR촉매 온도별 NOx의 정화성능을 나타낸 도면.1 is a schematic view of a reducing agent injection amount control apparatus for a vehicle according to an embodiment of the present invention,
FIG. 2 is a flowchart of a method for controlling a reducing agent injection amount in a vehicle according to an embodiment of the present invention;
FIG. 3 is a graph showing adsorption and desorption relations of NH 3 in an SCR catalyst of a vehicle according to an embodiment of the present invention;
4 is a graph showing the purifying performance of NOx by SCR catalyst temperature in a vehicle according to an embodiment of the present invention.
이하, 본 발명에 따른 차량의 환원제 주입량 제어장치 및 방법에 대한 바람직한 실시예를 첨부 도면을 참조하여 상세하게 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of an apparatus and method for controlling a reducing agent injection amount of a vehicle according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세하게 설명하는 실시예로 한정되는 것으로 해석되어서는 아니 된다.The embodiments of the present invention can be modified into various forms and the scope of the present invention should not be construed as being limited to the embodiments described in detail below.
또한, 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있고, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략한다.In addition, the shape and the like of the elements in the drawings may be exaggerated in order to emphasize a clearer description, and detailed description of known functions and configurations that are considered to be unnecessarily obscured by the gist of the present invention will be omitted.
도 1은 본 발명의 실시예에 따른 차량의 환원제 주입량 제어장치를 개략적으로 나타낸 도면이고, 도 2는 본 발명의 실시예에 따른 차량에서 환원제 주입량 제어를 실행하는 흐름도이며, 도 3은 본 발명의 실시예에 따른 차량의 SCR촉매에서 NH3의 흡착 및 탈착 관계를 나타낸 도면이고, 도 4는 본 발명의 실시예에 따른 차량에서 SCR촉매 온도별 NOx의 정화성능을 나타낸 도면이다.FIG. 1 is a schematic view of a reducing agent injection amount control apparatus for a vehicle according to an embodiment of the present invention, FIG. 2 is a flowchart for executing a reducing agent injection amount control in a vehicle according to an embodiment of the present invention, FIG. 4 is a graph showing the purifying performance of NOx by SCR catalyst temperature in a vehicle according to an embodiment of the present invention. FIG. 4 is a graph showing adsorption and desorption relations of NH3 in an SCR catalyst of a vehicle according to an embodiment.
본 발명에 따른 차량의 환원제 주입량 제어장치는, 도 1에 도시된 바와 같이 동력원인 엔진(100), 연소된 배기가스를 배출시키는 배기 파이프(110), SCR촉매(120), 제1NOx센서(130), 제2NOx센서(140), 온도센서(150), 제어부(160), 도징모듈(200), 환원제 탱크(300) 및 펌프(310)를 포함한다.1, the reducing agent injection amount control apparatus for a vehicle according to the present invention includes an
상기 SCR촉매(120)는 엔진(100)과 연결되는 배기 파이프(110)의 소정 위치에 배치되어 V2O5/TiO2 또는 Pt/Al2O3 또는 Zeolite로 이루어지며, NH3(암모니아), Urea(우레아, CO(NH2)2) 중 어느 하나로 된 환원제 수용액의 분해로 산출되는 NH3와 NOx의 환원반응에 의해 NOx를 정화한다.The
상기 제1NOx센서(130)는 SCR촉매(120)의 입구측에 배치되어 SCR촉매(120)에 유입되는 배기가스에 포함된 NOx 양을 검출하여 그에 대한 정보를 제어부(160)에 제공한다.The
상기 제2NOx센서(140)는 SCR촉매(120)의 출구측에 배치되어 SCR촉매(120)의 환원반응에 의해 정화된 배기가스에 포함된 NOx 양을 검출하여 그에 대한 정보를 제어부(160)에 제공한다.The
상기 온도센서(150)는 배기가스의 온도에 의해 활성화되는 SCR촉매(120)의 온도를 검출하여 그에 대한 정보를 제어부(160)에 제공한다.The
상기 제어부(160)는 공기량과 엔진 회전수의 정보, 배기가스 온도를 분석하여 엔진의 운전조건을 분석하고, 제1,2NOx센서(130)(140)의 정보와 온도센서(150)의 정보를 분석하여 온도에 따른 SCR촉매(120)의 NOx 정화효율을 분석하며, 운전조건과 NOx 정화효율에 따라 수치해석과 반응속도론을 접목한 SCR 반응모델을 적용하여 SCR촉매(120)의 필요 NH3 양을 산출한다.The
그리고, 필요 NH3의 양에 따라 요구되는 환원제 수용액의 주입량을 결정하여 도징모듈(200)을 통해 환원제 수용액의 분사를 제어한다.Then, the injection amount of the reducing agent aqueous solution required is determined according to the amount of NH 3 necessary, and the injection of the reducing agent aqueous solution is controlled through the
상기 제어부(160)는 PWM(Pulse Width Modulation) 신호의 출력으로 도징모듈(200)을 작동시켜 환원제 수용액의 분사를 제어한다.The
상기 환원제 탱크(300)는 운전조건에 따라 SCR촉매(120)의 선단에 분사하기 위한 환원제 수용액이 수용되고, 펌프(310)는 환원제 탱크(300)로부터 도징모듈(200)에 공급되는 환원제 수용액을 설정된 압력으로 형성시켜 PWM신호에 따라 도징모듈(200)이 작동되는 경우 고압의 분사가 제공되도록 한다.The reducing
전술한 기능을 포함하는 본 발명에 따른 차량에서 환원제 수용액의 주입량을 제어하는 동작에 대하여 설명한다.The operation of controlling the injection amount of the reducing agent aqueous solution in the vehicle according to the present invention including the above-described functions will be described.
차량의 엔진(100)이 시동 '온' 되면 제어부(160)는 공기량, 엔진 회전수, 부하 등의 정보를 종합하여 엔진(100)의 동작을 제어하며(S10), 온도센서(150)를 통해 SCR촉매(120)의 온도를 검출하여 SCR촉매(120)의 활성화가 이루어졌는지를 판단한다(S20).When the
상기 SCR촉매(120)의 활성화가 이루어진 상태이면 SCR촉매(120) 전후단의 NOx 농도를 검출한다(S30).When the
즉, SCR촉매(120)의 입구측에 배치되는 제1NOx센서(130)와 출구측에 배치되는 제2NOx센서(140)의 정보를 분석하여 SCR촉매(120)의 NOx 정화효율을 판단한다.That is, the NOx purification efficiency of the
상기 SCR촉매(120)의 반응 모델링은 다음과 같다.The reaction modeling of the
환원제 수용액의 분해에 따른 NH3의 흡착은 화학식 1과 같이 반응된다.Adsorption of NH3 due to decomposition of the aqueous solution of the reducing agent is carried out as shown in Chemical Formula (1).
[화학식 1][Chemical Formula 1]
NH3 + SACID → SACIDNH3NH3 + S ACID ? S ACID NH3
그리고, NH3와 NOx의 반응은 화학식 2와 같다.The reaction between NH3 and NOx is represented by the general formula (2).
[화학식 2](2)
NO + NO2 + 2SACIDNH3 → 2N2 + 3H2ONO + NO 2 + 2S ACID NH 3 → 2N 2 + 3H 2 O
4NO + O2 + 4SACIDNH3 → 4N2 + 6H2O4NO + O 2 + 4S ACID NH 3 → 4N 2 + 6H 2 O
6NO2 + 8SACIDNH3 → 7N2 + 12H2O6NO 2 + 8S ACID NH 3 → 7N 2 +12 H 2 O
또한, SCR촉매(120)내에서 NH3의 탈착은 화학식 3과 같이 반응된다.Also, desorption of NH3 in the
[화학식 3](3)
SACIDNH3 → NH3 + SACID S ACID NH3? NH3 + S ACID
이후, 수치해석과 반응속도론을 접목한 SCR 반응모델을 적용한 다음(S40) 상기 현재의 운전조건에서 판단되는 SCR촉매(120)의 NOx 정화효율에 따라 NH3의 흡착량을 예측한다(S50).Then, the SCR reaction model combining the numerical analysis and the reaction kinetics is applied (S40), and the adsorption amount of NH3 is predicted according to the NOx purification efficiency of the
상기에서 NH3의 흡착량 예측은 SCR촉매(120)의 온도별, 배기유량별, NOx 농도별, NH3 농도별 조건에 따라 결정되며, SCR촉매(120)의 NH3 흡착과 탈착 관계는 도 3에 도시된 바와 같다.The NH3 adsorption amount prediction is determined according to the temperatures of the
상기 S50에서 현재의 운전조건에 따른 SCR촉매(120)의 실질적인 NH3 흡착량이 예측되면 이에 따라 요구되는 환원제 수용액의 주입량을 결정한다(S60).If the actual NH3 adsorption amount of the
상기 SCR촉매(120)의 선단에 분사하기 위한 환원제 수용액의 주입량은 환원제 수용액이 NH3로 변환될 수 있는 상수를 적용하여 상기 S50에서 예측된 NH3의 흡착량을 추종하도록 한다.The amount of the reducing agent aqueous solution injected to the tip of the
상기와 같이 SCR촉매(120)에서 흡착에 필요한 NH3에 따른 환원제 수용액의 주입량이 결정되면 상기 제어부(160)는 도징모듈(200)을 PWM신호로 작동시켜 SCR촉매(120)의 선단에 환원제 수용액을 분사하여 운전조건에 적합한 배기가스를 정화한다.The
따라서, SCR촉매(120)는 NH3의 슬립이나 부족이 없는 조건으로 NOx와 환원반응하여 NOx의 정화효율을 높여주고, NH3의 슬립으로 인한 2차 오염이 발생되는 현상을 배제하여 차량의 상품성을 향상시킨다.Therefore, the
도 3은 SCR촉매(120)의 온도별, 배기유량별, NOx 농도별, NH3 농도별 조건을 하기의 테이블과 같이 설정될 때 NOx의 정화성능 예측값과 실험값의 비교 결과 그래프이다.FIG. 3 is a graph showing a comparison result of NOx purification performance predicted values and experimental values when the conditions of the
도 4에 도시된 바와 같이, 상기한 절차를 통해 결정한 환원제 수용액의 분사에 따른 SCR촉매(120)에 NOx 정화효율은 예측치와 실험치가 동일 내지 유사한 특성을 나타내고 있음을 확인할 수 있다.As shown in FIG. 4, it can be confirmed that the NOx purifying efficiency of the
이상과 같이 본 발명의 바람직한 실시예에 대해 첨부된 도면을 참조로 하여 설명하였으나, 본 발명은 상술한 특정의 실시예에 의해 한정되는 것이 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술적 사상과 이하에서 기재되는 특허청구범위의 균등범위 내에서 다양한 형태의 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be construed as limited to the particular details of the embodiments set forth herein. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
100 : 엔진 110 : 배기 파이프
120 : SCR촉매 130 : 제1NOx센서
140 : 제2NOx센서 150 : 온도센서
160 : 제어부 200 : 도징모듈
300 : 환원제 탱크 310 : 펌프100: engine 110: exhaust pipe
120: SCR catalyst 130: first NOx sensor
140: second NOx sensor 150: temperature sensor
160: control unit 200: dosing module
300: reducing agent tank 310: pump
Claims (5)
배기가스에 포함된 NOx와 NH3의 환원반응을 NOx를 정화하는 SCR촉매(120);
상기 SCR촉매(120)의 양단간 NOx 농도를 검출하는 제1,2NOx센서(130)(140);
상기 SCR촉매(120)의 선단에 환원제 수용액을 분사하는 도징모듈(200);
상기 SCR촉매(120)의 온도를 검출하는 온도센서(150);를 포함하며,
공기량과 엔진 회전수 및 배기가스 온도의 분석으로 결정되고, SCR촉매(120)의 NOx 정화효율은 제1,2NOx센서(130)(140)의 정보와 온도센서(150) 정보의 분석으로 결정되는 운전조건과 SCR 반응모델을 통해 SCR촉매(120)의 필요 NH3 양을 산출하여 환원제 수용액의 주입량을 결정하는 제어부(160)를 더 포함하는 차량의 환원제 주입량 제어장치.An engine 100;
An SCR catalyst 120 for purifying NOx by the reduction reaction of NOx and NH3 contained in the exhaust gas;
A first and second NOx sensor (130) (140) for detecting the concentration of NOx between both ends of the SCR catalyst (120);
An injection module (200) for injecting a reducing agent aqueous solution at the tip of the SCR catalyst (120);
And a temperature sensor (150) for detecting the temperature of the SCR catalyst (120)
The NOx purifying efficiency of the SCR catalyst 120 is determined by analyzing the information of the first and second NOx sensors 130 and 140 and the information of the temperature sensor 150 Further comprising a controller (160) for calculating an amount of NH3 necessary for the SCR catalyst (120) through the operating conditions and the SCR reaction model to determine the amount of the reducing agent solution injected.
상기 SCR 반응모델은 SCR촉매(120)의 NOx 정화효율에 따라 수치해석과 반응속도론이 접목되어 SCR촉매(120)의 온도조건, 배기 유량, NOx 농도, NH3 농도에 따라 테이블로 설정되는 것을 특징으로 하는 차량의 환원제 주입량 제어장치.The method according to claim 1,
The SCR reaction model is set in a table according to the temperature condition, the exhaust flow rate, the NOx concentration, and the NH3 concentration of the SCR catalyst 120 by combining the numerical analysis and the reaction kinetics according to the NOx purification efficiency of the SCR catalyst 120 The amount of reducing agent injected into the vehicle.
SCR 반응모델을 적용하여 운전조건과 NOx 정화효율에 따른 NH3 흡착량을 산출하는 단계;
NH3의 흡착량에 따른 환원제 수용액의 주입량을 결정하는 단계;
를 포함하는 차량의 환원제 주입량 제어방법.The NOx purifying efficiency of the SCR catalyst 120 is determined by analyzing the information of the first and second NOx sensors 130 and 140 and the information of the temperature sensor 150 Detecting the operating conditions, the temperature of the SCR catalyst 120, and the NOx purifying efficiency;
Calculating an NH3 adsorption amount according to an operating condition and an NOx purification efficiency by applying an SCR reaction model;
Determining an injection amount of the reducing agent aqueous solution according to the adsorption amount of NH3;
Wherein the reducing agent injection amount control method comprises the steps of:
상기 환원제 수용액은 NH3, Urea 중 어느 하나로 된 것을 특징으로 하는 차량의 환원제 주입량 제어방법.The method of claim 3,
Wherein the reducing agent aqueous solution is one of NH3 and Urea.
상기 NH3 흡착량은 SCR촉매(120)의 온도, 배기유량, NOx 농도, NH3 농도별 NOx의 환원특성이 적용되어 산출되는 것을 특징으로 하는 차량의 환원제 주입량 제어방법.The method of claim 3,
Wherein the NH3 adsorption amount is calculated by applying a NOx reduction characteristic according to a temperature, an exhaust flow rate, an NOx concentration, and an NH3 concentration of the SCR catalyst (120).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130057820A KR20140137498A (en) | 2013-05-22 | 2013-05-22 | Reductant injection volume control device of a vehicle and method of controlling the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130057820A KR20140137498A (en) | 2013-05-22 | 2013-05-22 | Reductant injection volume control device of a vehicle and method of controlling the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20140137498A true KR20140137498A (en) | 2014-12-03 |
Family
ID=52457248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20130057820A KR20140137498A (en) | 2013-05-22 | 2013-05-22 | Reductant injection volume control device of a vehicle and method of controlling the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20140137498A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9506390B1 (en) * | 2015-06-18 | 2016-11-29 | Ford Global Technologies, Llc | Distributed control of selective catalytic reduction systems |
KR20180065373A (en) * | 2016-12-07 | 2018-06-18 | 현대오트론 주식회사 | Slippage prevention system and method for nh3 |
US10612444B2 (en) | 2015-12-10 | 2020-04-07 | General Electric Company | System and method for fault diagnosis in emission control system |
KR20240009548A (en) * | 2022-07-12 | 2024-01-23 | (주) 세라컴 | System for after-treatment of exhaust gas for diesel engine |
-
2013
- 2013-05-22 KR KR20130057820A patent/KR20140137498A/en not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9506390B1 (en) * | 2015-06-18 | 2016-11-29 | Ford Global Technologies, Llc | Distributed control of selective catalytic reduction systems |
RU2713236C2 (en) * | 2015-06-18 | 2020-02-04 | Форд Глобал Текнолоджиз, Ллк | Distributed control of selective catalytic reduction system |
US10612444B2 (en) | 2015-12-10 | 2020-04-07 | General Electric Company | System and method for fault diagnosis in emission control system |
KR20180065373A (en) * | 2016-12-07 | 2018-06-18 | 현대오트론 주식회사 | Slippage prevention system and method for nh3 |
KR20240009548A (en) * | 2022-07-12 | 2024-01-23 | (주) 세라컴 | System for after-treatment of exhaust gas for diesel engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100999622B1 (en) | Urea injection control device and method of vehicle | |
KR101416409B1 (en) | System for control urea injection quantity of vehicle and method thereof | |
JP6257941B2 (en) | Method for reducing nitrogen oxides in diesel engine exhaust gas | |
KR101040347B1 (en) | Device and method for calculating conversion efficiency of SCR in diesel vehicles | |
US9238984B2 (en) | Exhaust emission prediction system and method | |
EP2865859B1 (en) | Gaseous reductant injection control system | |
US20100122520A1 (en) | System for Controlling Urea Injection Quantity of Vehicle and Method Thereof | |
JP6130619B2 (en) | Control device for NOx purification device | |
KR101316856B1 (en) | System for control urea injection quantity of vehicle and method thereof | |
US10344654B2 (en) | Selective catalytic reduction steady state ammonia slip detection with positive perturbation | |
JP2011058485A (en) | Apparatus and method for controlling ammonia occlusion amount of scr catalyst | |
US20190136732A1 (en) | Underflow selective catalytic reduction steady state ammonia slip detection with positive perturbation | |
KR100993364B1 (en) | Urea injection quantity control device and method of vehicle | |
US10071344B2 (en) | Reductant dosing control using prediction of exhaust species in selective catalytic reduction | |
KR20140137498A (en) | Reductant injection volume control device of a vehicle and method of controlling the same | |
KR101180941B1 (en) | System for control urea injection quantity of vehicle and method thereof | |
US20150165377A1 (en) | Nox sensor with amox catalyst | |
WO2017191813A1 (en) | Exhaust gas purification system for internal combustion engine, and exhaust gas purification method for internal combustion engine | |
KR20090064006A (en) | Nitrogen oxide reduction device in exhaust gas | |
KR100999611B1 (en) | Calculation method of occlusion amount of ammonia in selective catalytic reduction device | |
KR101055838B1 (en) | Temperature Prediction Device and Method of SCR Catalyst | |
US20160108786A1 (en) | System and method to calculate concentration of diesel exhaust fluid (def) | |
KR100587807B1 (en) | Control Method of Selective Catalytic Device of Vehicle Exhaust System | |
KR100820395B1 (en) | Nitrogen oxide reduction method and apparatus for exhaust gas | |
KR20160051359A (en) | Exhaust gas purification system for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20130522 |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination | ||
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |