KR20130019459A - Process for expanding amniotic fluid-derived mesenchymal stem cells and process for preparing grafting constructs comprising the same - Google Patents
Process for expanding amniotic fluid-derived mesenchymal stem cells and process for preparing grafting constructs comprising the same Download PDFInfo
- Publication number
- KR20130019459A KR20130019459A KR1020110081170A KR20110081170A KR20130019459A KR 20130019459 A KR20130019459 A KR 20130019459A KR 1020110081170 A KR1020110081170 A KR 1020110081170A KR 20110081170 A KR20110081170 A KR 20110081170A KR 20130019459 A KR20130019459 A KR 20130019459A
- Authority
- KR
- South Korea
- Prior art keywords
- growth factor
- stem cells
- mesenchymal stem
- amniotic fluid
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0605—Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/3612—Cartilage, synovial fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3641—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
- A61L27/3645—Connective tissue
- A61L27/3654—Cartilage, e.g. meniscus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3834—Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3839—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
- A61L27/3843—Connective tissue
- A61L27/3852—Cartilage, e.g. meniscus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0697—Artificial constructs associating cells of different lineages, e.g. tissue equivalents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/06—Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/11—Epidermal growth factor [EGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Botany (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Urology & Nephrology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Vascular Medicine (AREA)
- Gynecology & Obstetrics (AREA)
- Reproductive Health (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Pregnancy & Childbirth (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
본 발명은 양수-유래 중간엽 줄기세포의 증식방법 및 이를 포함하는 이식용 구조체의 제조방법에 관한 것으로, 더욱 상세하게는 섬유아세포성장인자-2(fibroblast growth factor-2, FGF-2) 및/또는 표피성장인자(epidermal growth factor, EGF)를 포함하는 증식 배지 중에서 양수-유래의 중간엽 줄기세포를 배양하는 것을 포함하는, 양수-유래 중간엽 줄기세포의 증식방법; 및 상기 증식된 양수-유래 중간엽 줄기세포를 포함하는 생체내 연골생성을 위한 이식용 구조체의 제조방법에 관한 것이다.The present invention relates to a method of proliferating amniotic fluid-derived mesenchymal stem cells and a method for producing a transplant construct comprising the same, more specifically fibroblast growth factor-2 (FGF-2) and / Or a method of proliferating amniotic fluid-derived mesenchymal stem cells, comprising culturing amniotic fluid-derived mesenchymal stem cells in a growth medium containing epidermal growth factor (EGF); And it relates to a method for producing a transplant structure for cartilage production in vivo comprising the proliferated amniotic fluid-derived mesenchymal stem cells.
최근 10년간, 줄기세포는, 조직 재생을 위한 세포 치료(cell therapies)에 근거하여, 잠재적인 세포 원료로서 떠오르고 있다. 그러나, 시험관내 및 생체내에서 원하는 세포 형태로의 분화를 달성하도록 줄기세포를 조절하기는 용이하지 않다. 따라서 많은 연구들이 특정 형태의 약물 및 성장인자를 사용하여 줄기세포를 특정 세포로 분화시키는데 초점을 두고 있다.In recent decades, stem cells have emerged as potential cell sources based on cell therapies for tissue regeneration. However, it is not easy to regulate stem cells to achieve differentiation into the desired cell morphology in vitro and in vivo. Many studies therefore focus on differentiating stem cells into specific cells using specific types of drugs and growth factors.
골수, 지방조직, 및 태반으로부터 유래된 성체 줄기세포는, 연골 분화 및 손상된 골 조직의 형성을 통하여, 조직 재생의 중요한 세포 원료로서 연구되어 왔다. 몇가지 종류의 조직으로부터 유래된 중간엽 줄기세포(mesenchymal stem cells, MSCs)는 중배엽 세포 계열로 분화하는 능력을 갖는 것으로 밝혀진 바 있다. 그러므로, MSCs는 골관절염 및 골다공증과 관련된 손상 분위에서 조직 재생을 위한 보충적인 원료로서 제안된 바 있다.Adult stem cells derived from bone marrow, adipose tissue, and placenta have been studied as an important cell source of tissue regeneration through cartilage differentiation and formation of damaged bone tissue. Mesenchymal stem cells (MSCs) derived from several types of tissues have been shown to have the ability to differentiate into mesodermal cell lines. Therefore, MSCs have been proposed as complementary raw materials for tissue regeneration in the damage area associated with osteoarthritis and osteoporosis.
다양한 유래의 중간엽 줄기세포를 세포치료에 적용하기 위하여는, 각각의 중간엽 줄기세포를 줄기세포성(stemness)을 유지하면서, 염색체의 변화 없이, 장기간 동안 효과적으로 증식시키는 것이 요구된다. 또한, 중간엽 줄기세포는 유래(예를 들어, 골수, 지방조직, 태반 등)에 따라 상이한 특성을 나타내므로, 세포치료에 적용되는 각각의 중간엽 줄기세포는 각각의 특성에 적합한 증식방법을 확립할 것이 요구되고 있다. 현재까지 성체-유래 줄기세포 즉, 골수-유래 중간엽 줄기세포, 지방-유래 중간엽 줄기세포, 태반-유래 중간엽 줄기세포 등은 다양한 연구자에 의해 증식 및 분화 특성이 연구되어 왔다. In order to apply mesenchymal stem cells of various origin to cell therapy, it is required to proliferate each mesenchymal stem cell effectively for a long time without changing the chromosome while maintaining stem cellity. In addition, since mesenchymal stem cells exhibit different characteristics according to their origin (for example, bone marrow, adipose tissue, placenta, etc.), each mesenchymal stem cell applied to cell therapy establishes a proliferation method suitable for each characteristic. It is required to do. To date, adult-derived stem cells, ie, bone marrow-derived mesenchymal stem cells, adipose-derived mesenchymal stem cells, placental-derived mesenchymal stem cells, and the like have been studied for proliferation and differentiation by various researchers.
최근, De Coppi 등은 양수(amniotic fluid)로부터 중간엽 줄기세포를 분리하고, 얻어진 양수-유래 중간엽 줄기세포의 세포치료제로서의 활용가능성을 평가한 결과를 보고한 바 있다(De Coppi, P., Bartsch, G., Jr. , Siddiqui, M.M., Xu, T., Santos, C.C. and Perin, L., et al., Isolation of amniotic stem cell lines with potential for therapy, Nat Biotechnol 25 (1), 2007, 100-106). 이러한 양수-유래 중간엽 줄기세포는, 태아의 유전병의 조기진단 등을 위해 산전 임산부에 대하여 시행되는 양수검사(amniocentesis)를 통하여 얻어진 양수로부터 분리될 수 있으므로, 별도의 침습적인 수술 없이도 분리할 수 있는 장점이 있다. 그러나, 양수-유래 중간엽 줄기세포는 다른 중간엽 줄기세포와 달리 안정적인 증식방법이 아직 개발되어 있지 않다. De Coppi 등은 우태아혈청, 글루타민, Chang B(Irvine Scientific), Chang C(Irvine Scientific), 및 항생제가 첨가된 α-MEM 배지를 사용하여 양수-유래 중간엽 줄기세포를 배양하여 증식이 가능하다고 하고 있으나, 이는 타연구자들에 의해 재현되지 않고 있다.Recently, De Coppi et al. Have reported the results of isolating mesenchymal stem cells from amniotic fluid and evaluating the applicability of the amniotic fluid-derived mesenchymal stem cells as cell therapeutics (De Coppi, P., Bartsch, G., Jr., Siddiqui, MM, Xu, T., Santos, CC and Perin, L., et al., Isolation of amniotic stem cell lines with potential for therapy, Nat Biotechnol 25 (1), 2007, 100-106). These amniotic fluid-derived mesenchymal stem cells can be isolated from amniotic fluid obtained through amniocentesis, which is performed on prenatal pregnant women for early diagnosis of hereditary genetic diseases. There is an advantage. However, amniotic fluid-derived mesenchymal stem cells, unlike other mesenchymal stem cells, have not yet developed a stable proliferation method. De Coppi et al. Reported that they can grow by culturing amniotic fluid-derived mesenchymal stem cells using α-MEM medium supplemented with fetal bovine serum, glutamine, Chang B (Irvine Scientific), Chang C (Irvine Scientific), and antibiotics. However, this has not been reproduced by other researchers.
본 발명자들은 양수-유래 중간엽 줄기세포를 안정적으로 장기간 동안 증식시킬 수 있는 방법을 개발하고자 다양한 연구를 수행하였다. 특히, 본 발명자들은 다양한 성장인자들을 대상으로 증식 효율을 분석하였으며, 그 결과 특정 성장인자 즉, 섬유아세포성장인자-2(fibroblast growth factor-2, FGF-2) 및/또는 표피성장인자(epidermal growth factor, EGF)의 존재하에서 양수-유래 중간엽 줄기세포를 배양할 경우, 염색체의 이상 없이 장기간 동안 안정적으로 양수-유래 중간엽 줄기세포를 증식시킬 수 있다는 것을 발견하였다. 또한, 이와 같이 증식된 양수-유래 중간엽 줄기세포를 생체내에서 연골세포로 효과적으로 분화될 수 있음을 확인하였다. The present inventors conducted various studies to develop a method for stably proliferating amniotic fluid-derived mesenchymal stem cells for a long time. In particular, the inventors analyzed the growth efficiency of various growth factors, and as a result, specific growth factors, ie, fibroblast growth factor-2 (FGF-2) and / or epidermal growth factor (epidermal growth factor). It has been found that culturing amniotic fluid-derived mesenchymal stem cells in the presence of a factor (EGF) can stably propagate amniotic fluid-derived mesenchymal stem cells for a long time without chromosomal abnormalities. In addition, it was confirmed that the amniotic fluid-derived mesenchymal stem cells thus proliferated can be effectively differentiated into chondrocytes in vivo.
따라서, 본 발명은 섬유아세포성장인자-2(FGF-2) 및/또는 표피성장인자(EGF)의 존재하에서 양수-유래 중간엽 줄기세포를 배양하는 것을 포함하는, 양수-유래 중간엽 줄기세포의 증식방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention comprises culturing amniotic fluid-derived mesenchymal stem cells in the presence of fibroblast growth factor-2 (FGF-2) and / or epidermal growth factor (EGF). It is an object to provide a proliferation method.
또한, 본 발명은 상기와 같이 증식된 양수-유래 중간엽 줄기세포를 포함하는 생체내 연골생성을 위한 이식용 구조체의 제조방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for producing a transplant construct for cartilage generation in vivo, including the amniotic fluid-derived mesenchymal stem cells proliferated as described above.
본 발명의 일 태양에 따라, 기본 배지 내에 (i) 섬유아세포성장인자-2(FGF-2) 또는 (ii) 표피성장인자(EGF) 또는 (iii) 섬유아세포성장인자-2(FGF-2) 및 표피성장인자(EGF)를 포함하는 증식 배지 중에서 양수-유래의 중간엽 줄기세포를 배양하는 것을 포함하는, 양수-유래 중간엽 줄기세포의 증식방법이 제공된다.According to one aspect of the invention, there is provided either (i) fibroblast growth factor-2 (FGF-2) or (ii) epidermal growth factor (EGF) or (iii) fibroblast growth factor-2 (FGF-2) in basal medium. And culturing amniotic fluid-derived mesenchymal stem cells in a growth medium comprising epidermal growth factor (EGF).
본 발명에 따른 증식방법에 있어서, 상기 증식 배지는 기본 배지에 (i) 섬유아세포성장인자-2 또는 (ii) 표피성장인자 또는 (iii) 섬유아세포성장인자-2 및 표피성장인자가 첨가되고; 또한 섬유아세포성장인자-2, 우태아 혈청, 2-머캅토에탄올, MEM 비필수 아미노산, 및 항생제가 첨가된 배지일 수 있다. In the growth method according to the present invention, the growth medium is added to (i) fibroblast growth factor-2 or (ii) epidermal growth factor or (iii) fibroblast growth factor-2 and epidermal growth factor to the basal medium; It may also be a medium to which fibroblast growth factor-2, fetal bovine serum, 2-mercaptoethanol, MEM non-essential amino acids, and antibiotics are added.
일 구현예에서, 상기 증식 배지는 기본 배지에 (i) 1~10 ng/ml의 섬유아세포성장인자-2 또는 (ii) 1~20 ng/ml의 표피성장인자 또는 (iii) 1~10 ng/ml의 섬유아세포성장인자-2 및 1~20 ng/ml의 표피성장인자(EGF)가 첨가되고; 또한 10 중량%의 우태아 혈청, 0.1 mM의 2-머캅토에탄올, 1 중량%의 MEM 비필수 아미노산, 100 U/ml 페니실린 및 100 ㎍/ml 스트렙토마이신이 첨가된 배지일 수 있다. 더욱 바람직하게는 상기 증식 배지는 기본 배지에 (i) 4 ng/ml의 섬유아세포성장인자-2 또는 (ii) 10 ng/ml의 표피성장인자 또는 (iii) 4 ng/ml의 섬유아세포성장인자-2 및 10 ng/ml의 표피성장인자(EGF)가 첨가되고; 10 중량%의 우태아 혈청, 0.1 mM의 2-머캅토에탄올, 1 중량%의 MEM 비필수 아미노산, 100 U/ml 페니실린 및 100 ㎍/ml 스트렙토마이신이 첨가된 배지일 수 있다.In one embodiment, the proliferation medium is (i) 1-10 ng / ml fibroblast growth factor-2 or (ii) 1-20 ng / ml epidermal growth factor or (iii) 1-10 ng in basal medium. / ml fibroblast growth factor-2 and 1-20 ng / ml epidermal growth factor (EGF) were added; It may also be a medium in which 10 wt% fetal calf serum, 0.1 mM 2-mercaptoethanol, 1 wt% MEM non-essential amino acids, 100 U / ml penicillin and 100 μg / ml streptomycin are added. More preferably the proliferation medium is (i) 4 ng / ml fibroblast growth factor-2 or (ii) 10 ng / ml epidermal growth factor or (iii) 4 ng / ml fibroblast growth factor in the basal medium. -2 and 10 ng / ml epidermal growth factor (EGF) are added; Medium with 10 wt% fetal calf serum, 0.1 mM 2-mercaptoethanol, 1 wt% MEM non-essential amino acid, 100 U / ml penicillin and 100 μg / ml streptomycin.
본 발명의 다른 태양에 따라, 상기 방법에 따라 양수-유래 중간엽 줄기세포를 증식시키는 단계; 및 (b) 형질전환성장인자-β3(transforming growth factor-β3, TGF-β3)를 포함하는 피브린 하이드로겔(fibrin hydrogel) 중에, 단계(a)로부터 얻어진 양수-유래 중간엽 줄기세포를 캡슐화(encapsulation)하여 이식용 구조체를 형성시키는 단계를 포함하는, 생체내 연골생성을 위한 이식용 구조체의 제조방법이 제공된다.According to another aspect of the invention, the step of propagating amniotic fluid-derived mesenchymal stem cells according to the method; And (b) encapsulation of the amniotic fluid-derived mesenchymal stem cells obtained from step (a) in a fibrin hydrogel comprising transforming growth factor-β3 (TGF-β3). There is provided a method for producing a transplant structure for cartilage generation in vivo, comprising the step of forming a transplant structure).
본 발명에 의해, 섬유아세포성장인자-2(fibroblast growth factor-2, FGF-2) 및/또는 표피성장인자(epidermal growth factor, EGF)의 존재하에서 양수-유래 중간엽 줄기세포를 배양할 경우, 염색체의 이상 없이 장기간 동안 안정적으로 양수-유래 중간엽 줄기세포를 증식시킬 수 있다는 것이 밝혀졌다. 또한, 이와 같이 증식된 양수-유래 중간엽 줄기세포를 생체내에서 연골세포로 효과적으로 분화될 수 있다는 것이 확인되었으며, 따라서 상기 증식 방법에 의해 증식된 양수-유래 중간엽 줄기세포는 생체내 연골생성을 위한 이식용 구조체를 제조하는데 유용하게 사용될 수 있다.According to the present invention, when culturing amniotic fluid-derived mesenchymal stem cells in the presence of fibroblast growth factor-2 (FGF-2) and / or epidermal growth factor (EGF), It has been found that amniotic-derived mesenchymal stem cells can be proliferated stably for long periods of time without chromosomal abnormalities. In addition, it has been confirmed that the amniotic fluid-derived mesenchymal stem cells thus proliferated can be effectively differentiated into chondrocytes in vivo. It can be usefully used to prepare implantable constructs.
도 1은 FGF2, EGF, 또는 FGF2+EGF 존재하에서 hAF-MSCs를 계대배양하면서, 각 계대에서 소요되는 시간을 평가한 결과를 나타낸다. 도 1에서 증식-A는 FGF2 존재하에서, 증식-B는 FGF2+EGF 존재하에서, 증식-C는 EGF 존재하에서 계대배양한 것을 나타내며, 증식-D는 종래의 배양방법으로 계대배양한 것을 나타낸다.
도 2는 제6 계대에서 동량의 hAF-MSCs를 각각의 조건에서 24시간 배양한 상태의 세포수와 염색체를 분석한 결과를 나타낸다.
도 3은 제6 계대에서의 MSC 특성을 FACS 분석한 결과이다. 중간엽 양성 마커로서 CD166, CD29, 및 CD44를 측정하였으며, 음성 마커로서 CD45 및 CD34를 측정하였다.
도 4는 RT-PCR 및 실시간--QPCR에 의해 측정된, 시험관내에서 배양된 AF-MSC, AD-MSC, 및 BM-MSC의 연골 분화를 나타낸다. A: COLII, SOX 9, Aggrecan, COMP, 및 COL I 유전자 발현의 RT-PCR 분석. 총 RNA는 TGF-β3(100 ng/ml)가 존재 또는 비존재하는 피브린 하이드로겔로 21일 동안 배양한 MSC로부터 얻었다. B: 연골 유전자 발현 수준의 실시간--qPCR 분석. a: COL II, b: SOX 9, c: aggrecan, d: COMP, 및 e: COL I 유전자 발현. 데이터는 평균±SD를 나타낸다 (n=3). *, p<0.05.
도 5는 TGF-β3가 로딩된 피브린 하이드로겔과 혼합된 hMSCs의 분화에 의해 형성된 연골(neo-cartilage) 중 총 콜라겐 함량을 측정한 결과이다. 3주의 시험관내 배양물을 Masson's trichrome (A), GAG/DNA 함량 (B), 및 웨스턴 블롯팅 (C)에 의해 분석하였다. A: a, c, & e: TGF-β3가 함유된 피브린 하이드로겔, b, d, & f: TGF-β3가 없는 피브린 하이드로겔. a & b: AF-MSCs, c & d: AD-MSCs, e & f: BM-MSCs.
도 6은 TGF-β3가 로딩된 피브린 하이드로겔과 혼합된 hMSCs를 3주 동안 배양한 후, hMSCs에 의해 형성된 연골(neocartilage)의 조직학적 분석결과를 나타낸다. 3주 동안 시험관내로 배양된 배양물을 H&E (a-f), 알시안 블루(g-l), 및 사프라닌-O (m-r) 염색으로 분석하였다. (a, c, e, g, i, k, m, o, & q) hMSCs 단독; (b, d, f, h, j, l, n, p & r) hMSCs + TGF-β3. (a, b, g, h, m, & n) AF-MSCs; (c, d, I, j, o, & p) AD-MSCs; (e, f, k, l, q, & r) BM-MSCs. 바(bar)는 100 mm를 나타낸다.
도 7은 피브린 하이드로겔 중에서 TGF-β3 존재 또는 비존재하에서 혼합된 hMSCs에 의해 형성된 연골(neocartilage)의 면역조직학적 분석결과를 나타낸다. 3주 동안 시험관내로 배양한 배양물을 DAB 염색에 의해 분석하였다. (a, b, e, f, i, & j) COL I; (c, d, g, h, k, & l) COL II. (a, c, e, g, i, & k) hMSCs 단독; (b, d, f, h, j, & l) hMSCs + TGF-β3. (a-d) AF-MSCs, (e-h) AD-MSCs, & (i-l) BM-MSCs. 바(bar)는 100 mm를 나타낸다.
도 8은 RT-PCR 및 실시간-QPCR을 사용하여, 시험관내에서 배양된 AF-MSC, AD-MSC, 및 BM-MSC의 연골분화를 분석한 결과이다. A: COL II, SOX 9, Aggrecan, COMP, 및 COL I 유전자 발현의 RT-PCR 분석. TGF-β3 (100 ng/ml)의 존재 또는 비존재하에서 피브린 하이드로겔 상에서 21일 동안 자란 MSCs로부터 총 RNA를 얻었다. GAPDH를 내부 콘트롤로서 사용하였다. B: 연골 발현 수준의 실시간-qPCR 분석. a: COL II, b: SOX 9, c: aggrecan, d: COMP, & e: COL I 유전자 발현. 데이터는 평균±SD를 나타낸다(n=3). *, p<0.05.FIG. 1 shows the results of evaluating time spent in each passage while subcultured hAF-MSCs in the presence of FGF2, EGF, or FGF2 + EGF. In FIG. 1, growth-A indicates passage in the presence of FGF2, growth-B in the presence of FGF2 + EGF, growth-C in the presence of EGF, and growth-D indicates passage in the conventional culture method.
Figure 2 shows the results of analyzing the cell number and the chromosome in the state incubated the same amount of hAF-MSCs in the sixth passage for 24 hours under each condition.
3 shows the results of FACS analysis of MSC characteristics at the sixth passage. CD166, CD29, and CD44 were measured as mesenchymal positive markers and CD45 and CD34 as negative markers.
4 shows cartilage differentiation of AF-MSCs, AD-MSCs, and BM-MSCs cultured in vitro as measured by RT-PCR and real time--QPCR. A: RT-PCR analysis of COLII,
5 is a result of measuring the total collagen content in the cartilage (neo-cartilage) formed by the differentiation of hMSCs mixed with fibrin hydrogel loaded with TGF-β3. Three weeks of in vitro culture were analyzed by Masson's trichrome (A), GAG / DNA content (B), and western blotting (C). A: a, c, & e: fibrin hydrogel with TGF-β3, b, d, & f: fibrin hydrogel without TGF-β3. a & b: AF-MSCs, c & d: AD-MSCs, e & f: BM-MSCs.
Figure 6 shows the results of histological analysis of the cartilage (neocartilage) formed by hMSCs after culturing hMSCs mixed with fibrin hydrogel loaded with TGF-β3 for 3 weeks. Cultures incubated in vitro for 3 weeks were replaced with H & E (af), alcian Analysis was by blue (gl) and safranin-O (mr) staining. (a, c, e, g, i, k, m, o, & q) hMSCs alone; (b, d, f, h, j, l, n, p & r) hMSCs + TGF-β3. (a, b, g, h, m, & n) AF-MSCs; (c, d, I, j, o, & p) AD-MSCs; (e, f, k, l, q, & r) BM-MSCs. Bars represent 100 mm.
Figure 7 shows the immunohistochemical analysis of the cartilage (neocartilage) formed by hMSCs mixed in the presence or absence of TGF-β3 in the fibrin hydrogel. Cultures cultured in vitro for 3 weeks were analyzed by DAB staining. (a, b, e, f, i, & j) COL I; (c, d, g, h, k, & l) COL II. (a, c, e, g, i, & k) hMSCs alone; (b, d, f, h, j, & l) hMSCs + TGF-β3. (ad) AF-MSCs, (eh) AD-MSCs, & (il) BM-MSCs. Bars represent 100 mm.
8 shows the results of analysis of cartilage differentiation of AF-MSC, AD-MSC, and BM-MSC cultured in vitro using RT-PCR and real-time-QPCR. A: RT-PCR analysis of COL II,
본 발명은 기본 배지 내에 (i) 섬유아세포성장인자-2(fibroblast growth factor-2, FGF-2) 또는 (ii) 표피성장인자(epidermal growth factor, EGF) 또는 (iii) 섬유아세포성장인자-2(FGF-2) 및 표피성장인자(EGF)를 포함하는 증식 배지 중에서 양수-유래의 중간엽 줄기세포를 배양하는 것을 포함하는, 양수-유래 중간엽 줄기세포의 증식방법을 제공한다.The present invention relates to (i) fibroblast growth factor-2 (FGF-2) or (ii) epidermal growth factor (EGF) or (iii) fibroblast growth factor-2 in basal medium. Provided is a method of proliferating amniotic fluid-derived mesenchymal stem cells, comprising culturing amniotic fluid-derived mesenchymal stem cells in a growth medium comprising (FGF-2) and epidermal growth factor (EGF).
상기 양수-유래의 중간엽 줄기세포는 공지의 방법, 예를 들어 De Coppi 등이 확립한 분리방법(De Coppi, P., Bartsch, G., Jr. , Siddiqui, M.M., Xu, T., Santos, C.C. and Perin, L., et al., Isolation of amniotic stem cell lines with potential for therapy, Nat Biotechnol 25 (1), 2007, 100-106)에 의해 제조할 수 있다. 양수-유래의 중간엽 줄기세포는 체외로 분리된 인간 유래의 양수(amniotic fluid)로부터 얻을 수 있으며, 전형적으로는 태아의 유전병의 조기진단 등을 위해 산전 임산부에 대하여 시행되는 양수검사(amniocentesis)를 통하여 체외로 분리된 양수로부터 상기 공지의 방법에 따라 분리할 수 있다.The amniotic fluid-derived mesenchymal stem cells are known methods, for example, separation methods established by De Coppi et al. (De Coppi, P., Bartsch, G., Jr., Siddiqui, MM, Xu, T., Santos , CC and Perin, L., et al., Isolation of amniotic stem cell lines with potential for therapy, Nat Biotechnol 25 (1), 2007, 100-106). Amniotic-derived mesenchymal stem cells can be obtained from amniotic fluids derived from humans in vitro, and amniocentesis, which is typically performed on prenatal pregnant women, for early diagnosis of hereditary genetic diseases. It can be separated from the amniotic fluid separated in vitro through the known method.
본 발명의 증식 배지의 기본 배지(basal medium)로는 세포배양용으로 통상적으로 사용되는 공지의 배지를 사용할 수 있으며, 예를 들어 상업적으로 판매되는 DMEM/F12 배지(Gibco BRL), α-MEM 배지(Gibco, Invitrogen) 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 일 구현예에서, DMEM/F12 배지(Gibco BRL)를 기본 배지로 사용할 수 있다.As a basal medium of the growth medium of the present invention, a known medium commonly used for cell culture may be used. For example, a commercially available DMEM / F12 medium (Gibco BRL), α-MEM medium ( Gibco, Invitrogen) and the like can be used, but is not limited thereto. In one embodiment, DMEM / F12 medium (Gibco BRL) can be used as the basal medium.
본 발명에 따른 증식방법에 사용되는 증식 배지(expansion medium)는 상기한 기본 배지에 섬유아세포성장인자-2(FGF-2) 및/또는 표피성장인자(EGF)를 포함하며, 더욱 바람직하게는 섬유아세포성장인자-2(FGF-2)를 포함한다.The growth medium used in the growth method according to the present invention comprises fibroblast growth factor-2 (FGF-2) and / or epidermal growth factor (EGF) in the basic medium, more preferably fiber Blast growth factor-2 (FGF-2).
본 발명에 따른 증식방법에 있어서, 상기 증식 배지는 기본 배지에 (i) 섬유아세포성장인자-2 또는 (ii) 표피성장인자 또는 (iii) 섬유아세포성장인자-2 및 표피성장인자가 첨가되고; 또한 섬유아세포성장인자-2, 우태아 혈청, 2-머캅토에탄올, MEM 비필수 아미노산, 및 항생제가 첨가된 배지일 수 있다. In the growth method according to the present invention, the growth medium is added to (i) fibroblast growth factor-2 or (ii) epidermal growth factor or (iii) fibroblast growth factor-2 and epidermal growth factor to the basal medium; It may also be a medium to which fibroblast growth factor-2, fetal bovine serum, 2-mercaptoethanol, MEM non-essential amino acids, and antibiotics are added.
일 구현예에서, 상기 증식 배지는 기본 배지에 (i) 1~10 ng/ml의 섬유아세포성장인자-2 또는 (ii) 1~20 ng/ml의 표피성장인자 또는 (iii) 1~10 ng/ml의 섬유아세포성장인자-2 및 1~20 ng/ml의 표피성장인자(EGF)가 첨가되고; 또한 10 중량%의 우태아 혈청, 0.1 mM의 2-머캅토에탄올, 1 중량%의 MEM 비필수 아미노산, 100 U/ml 페니실린 및 100 ㎍/ml 스트렙토마이신이 첨가된 배지일 수 있다. 더욱 바람직하게는 상기 증식 배지는 기본 배지에 (i) 4 ng/ml의 섬유아세포성장인자-2 또는 (ii) 10 ng/ml의 표피성장인자 또는 (iii) 4 ng/ml의 섬유아세포성장인자-2 및 10 ng/ml의 표피성장인자(EGF)가 첨가되고; 10 중량%의 우태아 혈청, 0.1 mM의 2-머캅토에탄올, 1 중량%의 MEM 비필수 아미노산, 100 U/ml 페니실린 및 100 ㎍/ml 스트렙토마이신이 첨가된 배지일 수 있다.In one embodiment, the proliferation medium is (i) 1-10 ng / ml fibroblast growth factor-2 or (ii) 1-20 ng / ml epidermal growth factor or (iii) 1-10 ng in basal medium. / ml fibroblast growth factor-2 and 1-20 ng / ml epidermal growth factor (EGF) were added; It may also be a medium in which 10 wt% fetal calf serum, 0.1 mM 2-mercaptoethanol, 1 wt% MEM non-essential amino acids, 100 U / ml penicillin and 100 μg / ml streptomycin are added. More preferably the proliferation medium is (i) 4 ng / ml fibroblast growth factor-2 or (ii) 10 ng / ml epidermal growth factor or (iii) 4 ng / ml fibroblast growth factor in the basal medium. -2 and 10 ng / ml epidermal growth factor (EGF) are added; Medium with 10 wt% fetal calf serum, 0.1 mM 2-mercaptoethanol, 1 wt% MEM non-essential amino acid, 100 U / ml penicillin and 100 μg / ml streptomycin.
본 발명은 또한 상기 방법에 따라 양수-유래 중간엽 줄기세포를 증식시키는 단계; 및 (b) 형질전환성장인자-β3(transforming growth factor-β3, TGF-β3)를 포함하는 피브린 하이드로겔(fibrin hydrogel) 중에, 단계(a)로부터 얻어진 양수-유래 중간엽 줄기세포를 캡슐화(encapsulation 혹은 embeding)하여 이식용 구조체를 형성시키는 단계를 포함하는, 생체내 연골생성을 위한 이식용 구조체의 제조방법을 제공한다.The present invention also comprises the steps of propagating amniotic fluid-derived mesenchymal stem cells according to the above method; And (b) encapsulation of the amniotic fluid-derived mesenchymal stem cells obtained from step (a) in a fibrin hydrogel comprising transforming growth factor-β3 (TGF-β3). Or embedding) to provide a method for producing a transplant structure for cartilage generation in vivo, comprising the step of forming a transplant structure.
상기 이식용 구조체를 형성시키는 단계[즉, 단계(b)]는 본 발명자들의 선행 문헌(예를 들어 Park, J.S., Yang, H.N., Woo, D.G., Jeon, S.Y. and Park, K.H., Chondrogenesis of human mesenchymal stem cells in fibrin constructs evaluated in vitro and in nude mouse and rabbit defects models, Biomaterials 32 (6), 2011, 1495-4507)에 개시된 방법에 따라 제조할 수 있다. 예를 들어, 상기와 같이 증식 단계를 수행하여 얻어진 양수-유래 중간엽 줄기세포를 피브리노오겐 용액에 현탁시킨 후, 아프로티닌, 트롬빈, 피브린-안정화 인자 XIII, 및 50 mM CaCl2와 함께 균질화한 다음, 얻어진 혼합물을 점적하여 겔을 형성시킴으로써, 피브린 하이드로겔(fibrin hydrogel)을 형성시킬 수 있다. 하기 시험예에서 밝힌 바와 같이, 상기와 같이 얻어진 이식용 구조체를 생체내에 이식할 경우, 생체내에서 피브린 하이드로겔 내에 캡슐화된 양수-유래 중간엽 줄기세포가 연골로 분화된다. 따라서 본 발명에 따라 얻어진 이식용 구조체는 생체내 연골생성을 위한 세포치료제로서 유용하게 사용될 수 있다.Forming the implantable construct (ie, step (b)) is the prior art of the inventors (e.g. Park, JS, Yang, HN, Woo, DG, Jeon, SY and Park, KH, Chondrogenesis of human mesenchymal stem cells in fibrin constructs evaluated in vitro and in nude mouse and rabbit defects models, Biomaterials 32 (6), 2011, 1495-4507). For example, the amniotic fluid-derived mesenchymal stem cells obtained by performing the proliferation step as described above are suspended in fibrinogen solution and then homogenized with aprotinin, thrombin, fibrin-stabilizing factor XIII, and 50 mM CaCl 2. The resulting mixture can then be dropped to form a gel, thereby forming a fibrin hydrogel. As is clear from the following test examples, when transplanting the transplant construct obtained as described above in vivo, amniotic fluid-derived mesenchymal stem cells encapsulated in fibrin hydrogel in vivo differentiate into cartilage. Therefore, the implant for construct according to the present invention can be usefully used as a cell therapy for in vivo cartilage production.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrating the present invention, and the scope of the present invention is not limited to these examples.
실시예Example
1. 양수-유래 1. Amniotic-derived
중간엽Intermediate lobe
줄기세포의 증식 및 평가 Stem Cell Proliferation and Evaluation
(1) 인간 양수-유래 (1) human amniotic fluid-derived 중간엽Intermediate lobe 줄기세포( Stem Cells( hAFhAF -- MSCsMSCs )의 분리)
인간 양수-유래 중간엽 줄기세포(hAF-MSCs)는 De Coppi 등의 방법(De Coppi, P., Bartsch, G., Jr., Siddiqui, M.M., Xu, T., Santos, C.C. and Perin, L., et al., Isolation of amniotic stem cell lines with potential for therapy, Nat Biotechnol 25 (1), 2007, 100-106)에 따라 양수로부터 분리하였다. 상기 양수는 염색체 검사를 위하여 양수검사를 받은 임산부의 동의를 받고, 강남차병원 유전학 실험실로부터 검사 후 남아있는 여분의 세포를 기증받아 사용하였다.
Human amniotic fluid-derived mesenchymal stem cells (hAF-MSCs) are described by De Coppi et al. (De Coppi, P., Bartsch, G., Jr., Siddiqui, MM, Xu, T., Santos, CC and Perin, L). , et al., Isolation of amniotic stem cell lines with potential for therapy, Nat Biotechnol 25 (1), 2007, 100-106). The amniotic fluid was used by a pregnant woman who had undergone amniotic fluid testing for chromosome test, and received extra cells remaining after the test from the genetic laboratory of Gangnam Tea Hospital.
(2) 인간 양수-유래 (2) human amniotic fluid-derived 중간엽Intermediate lobe 줄기세포( Stem Cells( hAFhAF -- MSCsMSCs )의 증식Proliferation of
트립신 처리((trypsinization)에 의하여 수확한 hAF-MSCs를 10% FBS, 2-머캅토에탄올(Gibco BRL), 1% MEM 비필수 아미노산 용액(Gibco BRL), 100 U/ml 페니실린(Gibco BRL), 100 ㎍/ml 스트렙토마이신(Gibco BRL), 및 4 ng/ml FGF2 (Invitrogen)를 함유한 DMEM/F12 배지(Gibco BRL) 중에서 37℃에서 5% CO2의 조건 하에서 증식시켰다. hAF-MSCs는 1:4 내지 1:6로 희석하면서 3일 또는 4일 한번 배지를 교체하였으며, 세포가 배양용기 표면의 70% 내지 90% 정도로 채워졌을 때(즉, 약 70% 내지 90% 콘플루언스)마다, 계대배양을 실시하였다 (이하, '증식-A" 라 한다).HAF-MSCs harvested by trypsinization (10% FBS, 2-mercaptoethanol (Gibco BRL), 1% MEM non-essential amino acid solution (Gibco BRL), 100 U / ml penicillin (Gibco BRL), In DMEM / F12 medium (Gibco BRL) containing 100 μg / ml streptomycin (Gibco BRL), and 4 ng / ml FGF2 (Invitrogen), were grown under conditions of 5% CO 2 at 37 ° C. hAF-MSCs were 1 The medium was changed once every 3 or 4 days with dilution of 4 to 1: 6, and every time the cells were filled to about 70% to 90% of the culture vessel surface (ie about 70% to 90% confluence), Subculture was performed (hereinafter, referred to as 'proliferation-A').
또한, 상기 증식 배지에 10 ng/ml의 EGF를 추가로 함유하는 배지(이하, '증식-B'라 한다); 혹은 FGF2 대신 10 ng/ml의 EGF를 함유하는 배지(이하, '증식-C'라 한다) 중에서 상기와 동일한 방법으로 hAF-MSCs를 증식시켰다.In addition, a medium further containing 10 ng / ml of EGF in the growth medium (hereinafter referred to as 'proliferation-B'); Alternatively, hAF-MSCs were grown in the same manner as above in a medium containing 10 ng / ml EGF instead of FGF2 (hereinafter, referred to as 'proliferation-C').
또한, 증식율 평가를 위하여, De Coppi 등의 방법(De Coppi, P., Bartsch, G., Jr., Siddiqui, M.M., Xu, T., Santos, C.C. and Perin, L., et al., Isolation of amniotic stem cell lines with potential for therapy, Nat Biotechnol 25 (1), 2007, 100-106)에 따른 배지 즉, 15% ES-FBS, 1% 글루타민, 18% Chang B(Irvine Scientific), 2% Chang C(Irvine Scientific), 및 1% 페니실린/스트렙토마이신이 첨가된 α-MEM 배지(Gibco, Invitrogen)를 사용하여 양수-유래 중간엽 줄기세포를 배양하여 증식시켰다(이하, '증식-D'라 한다).
In addition, for evaluation of proliferation rate, De Coppi et al. (De Coppi, P., Bartsch, G., Jr., Siddiqui, MM, Xu, T., Santos, CC and Perin, L., et al., Isolation of amniotic stem cell lines with potential for therapy, medium according to Nat Biotechnol 25 (1), 2007, 100-106, i.e. 15% ES-FBS, 1% glutamine, 18% Chang B (Irvine Scientific), 2% Chang Amniotic-derived mesenchymal stem cells were cultured using C (Irvine Scientific) and α-MEM medium (Gibco, Invitrogen) added with 1% penicillin / streptomycin (hereinafter referred to as 'proliferation-D'). ).
(3) 인간 양수-유래 (3) human amniotic fluid-derived 중간엽Intermediate lobe 줄기세포( Stem Cells( hAFhAF -- MSCsMSCs )의 증식 평가Proliferation evaluation of
상기 (2)에서 각각의 조건(즉, 증식-A 내지 증식-D)에서 계대배양을 지속하면서, 각 계대에서 소요되는 시간을 평가한 결과는 도 1과 같다. 또한, 상기 (2)에서 증식-A, 증식-B, 및 증식-D의 조건에서 조건에서 제6-24 계대까지 계대배양하면서 hAF-MSCs가 70-90% 의 콘플루언시(confluency)를 차지해 계대하는데 걸리는 시간과 증식이 지속되는 계대수를 측정한 결과는 도 1과 같고, 또한 6계대에서 24시간 동안 배양하였을때 증식되는 수를 관찰하고 염색체를 분석한 결과는 도 2와 같다.In (2), while continuing passage in each condition (that is, growth-A to growth-D), the results of evaluating the time required for each passage are as shown in FIG. 1. Furthermore, in (2), hAF-MSCs exhibited a confluency of 70-90% while subcultured under the conditions of proliferation-A, proliferation-B, and proliferation-D under conditions 6-24. As a result of measuring the time taken for passage and the number of passages continued to grow, the results are as shown in FIG. 1, and the results of observing the number of proliferation when culturing for 24 hours in 6 passages and analyzing the chromosomes are shown in FIG. 2.
도 1의 결과로부터, 본 발명에 따라 FGF2 및/또는 EGF 존재하에서 hAF-MSCs를 배양하였을 때, 계대가 더 진행되었으며, 계대에 이르는 시간이 단축됨을 알 수 있다. 특히, 증식-A [FGF 단독, 보라색] 및 증식-B [FGF + EGF, 녹색]이 더욱 효과적임을 알 수 있다. 또한, 도 2의 결과로부터, 본 발명에 따라 FGF2 혹은 FGF2 및 EGF 존재하에서 hAF-MSCs를 증식시켰을 때, 세포의 성장이 빠르고, 형태적으로도 우수하며, 염색체 상태가 안정적임을 알 수 있다.
From the results of FIG. 1, it can be seen that when the hAF-MSCs were cultured in the presence of FGF2 and / or EGF according to the present invention, passage was further progressed and the time to passage was shortened. In particular, it can be seen that proliferation-A [FGF alone, purple] and proliferation-B [FGF + EGF, green] are more effective. In addition, it can be seen from the results of FIG. 2 that when the hAF-MSCs are propagated in the presence of FGF2 or FGF2 and EGF according to the present invention, the growth of cells is fast, the shape is excellent, and the chromosome state is stable.
실시예Example 2. 증식된 인간 양수-유래 2. Proliferated Human Amniotic Fluid-Derived 중간엽Intermediate lobe 줄기세포( Stem Cells( hAFhAF -- MSCsMSCs )의 특성 및 ) And 분화능Eruption 평가 evaluation
실시예 1에 따라 증식시킨(증식-A 조건으로 증식시킨) 인간 양수-유래 중간엽 줄기세포(hAF-MSCs)의 특성 및 분화능을, 다음과 같이 인간 골수-유래 중간엽 줄기세포(hBM-MSCs) 및 인간 지방-유래 중간엽 줄기세포(hAD-MSCs)와 비교·평가하였다.
Characterization and differentiation of human amniotic fluid-derived mesenchymal stem cells (hAF-MSCs) propagated according to Example 1 (proliferated under the proliferation-A condition) are as follows: Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) ) And human adipose derived mesenchymal stem cells (hAD-MSCs).
(1) 재료 및 시험방법(1) Materials and test methods
<1> 세포 수확 및 배양<1> cell harvest and culture
인간 골수 중간엽 줄기세포(hBM-MSCs)는 Cambrex 사(Cambrex, East Rutherford, NJ, USA)로부터 구입하였고, 10% 우태아혈청(FBS), 100 U/ml 페니실린 G, 100 mg/ml 스트렙토마이신, 및 0.25 mg/ml 암포테리신 B가 첨가된 α-MEM 배지(Gibco BRL, Grand Island, NY, USA) 중에서 배양하였다(로트 번호: 7F3674, 7F3675, 및 7F3677). 인큐베이션 동안, 비-부착성 세포는 배지를 교체함으로써 제거하였고, 배지는 3일마다 교체하였다. 1차 배양의 1주일 후, 세포가 80% 콘플루언스(confluence)에 도달되었으며, 세포를 0.25% 트립신/EDTA(Gibco BRL) 용액을 사용하여 떼어내어 계대배양하였다. 인간 지방-유래 중간엽 줄기세포(hAD-MSCs)는 아산병원으로부터 제공받았다.
Human bone marrow mesenchymal stem cells (hBM-MSCs) were purchased from Cambrex (Cambrex, East Rutherford, NJ, USA), 10% fetal calf serum (FBS), 100 U / ml penicillin G, 100 mg / ml streptomycin , And cultured in α-MEM medium (Gibco BRL, Grand Island, NY, USA) to which 0.25 mg / ml amphotericin B was added (lot no .: 7F3674, 7F3675, and 7F3677). During incubation, non-adherent cells were removed by changing medium and the medium was changed every 3 days. After one week of primary culture, cells reached 80% confluence and cells were detached and passaged using 0.25% trypsin / EDTA (Gibco BRL) solution. Human adipose derived mesenchymal stem cells (hAD-MSCs) were provided by Asan Hospital.
<2> <2> 유세포Flow cell 분석에 의한 세포 특성 분석 Cell characterization by analysis
세포를 트립신화에 의해 수확하고, 세척한 다음, 300g로 5 분 동안 원심분리하였다. 세포를 계수하고, 5 x 105의 세포를 FACS(fluorescence-activated cell sorting) 폴리프로필렌 튜브에 넣었다. 유세포 분석은 다음 단일클론항체를 사용하여 수행하였다: 항-인간 CD29, CD34, CD44, CD45, 및 CD166 (Santa Cruz Biotechnology, Santa Cruz, CA). 세포를 1 x 106 cells/200 ㎕의 농도로 인산완충식염수(phosphate-buffered saline, PBS)에 재현탁시키고, 20 ㎕의 항체와 함께 4 ℃에서 1시간 이상 인큐베이션하였다. 항체들을 형광 이소티오시아테이트(FITC)에 컨쥬게이션시켰으며, 중간엽 계열과 연관된 인간 마커에 특이적이었다. 2차 항체의 사용이 필요할 시점에서, 상기 세포를 2차 항체 중에 30분 동안 4 ℃에서 암소에서 인큐베이션하여 1차 항체에 결합되도록 하였다. 유세포 분석은 Cell Quest 소프트웨어 및 FACSCalibur 장치(BD Biosciences)를 사용하여 수행하였다. 데이터는 Cell Quest 소프트웨어(BD Biosciences)를 사용하여 분석하였다. 결과는 평균 ± 표준편차로 나타내었다. 차이는 P<0.05에서 통계학적으로 유의성 있는 것으로 간주하였다.
Cells were harvested by trypsinization, washed and centrifuged at 300 g for 5 minutes. The cells were counted and 5 × 10 5 cells were placed in a fluorescence-activated cell sorting (FACS) polypropylene tube. Flow cytometry was performed using the following monoclonal antibodies: anti-human CD29, CD34, CD44, CD45, and CD166 (Santa Cruz Biotechnology, Santa Cruz, CA). Cells were resuspended in phosphate-buffered saline (PBS) at a concentration of 1 × 10 6 cells / 200 μl and incubated with 20 μl of antibody at 4 ° C. for at least 1 hour. Antibodies were conjugated to fluorescent isothiocytate (FITC) and specific for human markers associated with the mesenchymal lineage. At the point where the use of the secondary antibody was needed, the cells were incubated in the dark for 30 minutes at 4 ° C. in the secondary antibody to allow binding to the primary antibody. Flow cytometry was performed using Cell Quest software and FACSCalibur instrument (BD Biosciences). Data was analyzed using Cell Quest software (BD Biosciences). The results are expressed as mean ± standard deviation. Differences were considered statistically significant at P <0.05.
<3> 성장인자를 함유하는 피브린 겔 구조체의 제조 <3> Preparation of Fibrin Gel Structure Containing Growth Factor
대조군 겔 또는 TGF-β3(최종 농도 100 ng/ml)를 함유하는 피브리노오겐 겔의 제조를 위하여(n=5), hMSCs를 원심분리를 통하여 모은 다음, 피브리노오겐 용액(18 mg/ml (10 중량%), 목암 연구소, 수원, 대한민국)에 재현탁시켰다. 각각의 1×106 cells/ml의 현탁액을 아프로티닌(목암연구소), 60 U/ml 트롬빈(1000 U/mg 단백질: Sigma, St. Louis, MO, USA), 피브린-안정화 인자 XIII, 및 50 mM CaCl2와 함께 균질화하였다. 이어서, 250 ㎕의 피브린 혼합물을 5 ml 폴리프로필렌 둥근바닥 튜브에 떨어뜨려 겔을 형성시켰다. 각각의 겔을 새로운 5 ml 폴리프로필렌 둥근바닥 튜브로 옮기고, 1% 항생제(100 mg/ml 스트렙토마이신, 100 IU/ml 페니실린)이 함유된 α-MEM에서 배양하였다. 대조군은 동일한 방법을 사용하여 제조하였다.
For preparation of fibrinogen gels containing control gels or TGF-β3 (
<4> 총 콜라겐 및 글리코스아미노글리칸(<4> total collagen and glycosaminoglycans ( GAGGAG ) 분석) analysis
DNA 및 GAG 분석은 각각의 시점에서 각 시험군 및 대조군에 대하여 3회 수행하였다. PicoGreen assay (Molecular Probes, Eugene, OR)를 사용하여 제조사 지침서에 따라 이중가닥 DNA 함량을 측정함으로써 세포수를 측정하였다. 음성, 무-세포 대조군의 형광을 시험군의 형광값으로부터 차감하였다. PicoGreen assay는 또한 총 DNA 함량의 측정에도 사용되었다. 유사하게, GAG 함량은 디메틸메틸렌 블루 염료 분석(dimethylmethylene blue dye (DMMB) assay)을 사용하여 측정하였다. 즉, 파파인(papain)으로 소화시킨 샘플 50 ml을 DMMB 염료 2 ml와 함께 인큐베이션하고, 520 nm에서의 흡광도를 분광광도계로 측정하였다. 샤크 콘드로이틴 설페이트 C(Shark chondroitin sulfate C)(Sigma)를 표준물질로 사용하였다. 총 GAG는 DNA 총량에 대하여 보정(normalize)하였다.DNA and GAG analyzes were performed three times for each test group and control group at each time point. Cell counts were determined using PicoGreen assay (Molecular Probes, Eugene, OR) by measuring the double-stranded DNA content according to the manufacturer's instructions. The fluorescence of the negative, cell-free control group was subtracted from the fluorescence value of the test group. PicoGreen assay was also used to determine total DNA content. Similarly, GAG content was measured using a dimethylmethylene blue dye (DMMB) assay. That is, 50 ml of the sample digested with papain was incubated with 2 ml of DMMB dye, and the absorbance at 520 nm was measured with a spectrophotometer. Shark chondroitin sulfate C (Sigma) was used as a standard. Total GAGs were normalized to total DNA.
누드 마우스로부터 얻어진 샘플은 파파인 소화 용액(125 ㎍/mL 파파인, 5 mM L-시스테인, 100 mM Na2HPO4, 5 mM EDTA, pH 6.8)으로 60 ℃에서 16시간 동안 소화시킨 다음, 각 샘플의 총 콜라겐을 측정하였다. 시리우스 레드(Sirius red)를 피그릭산(picric acid) 포화용액(1.3%, Sigma)에 1 mg/mL의 농도로 용해시켜 염료 용액(pH 3.5)을 제조하였다. 소화시킨 샘플을 96-웰 플레이트에서 24시간 동안 37℃에서 건조시키고, 상기 염료 용액과 1시간 동안 교반기 상에서 반응시켰다. 상기 샘플을 0.01 N HCl로 5회 세척하고, 0.1 N NaOH 중에 재현탁시켰다. ELISA Reader (BIO-TEK Instruments Inc., Winooski, VT)를 사용하여 550 nm에서 흡광도를 측정하였다. 최종적으로, 0-10 ㎍/ml 소 콜라겐(bovine collagen) (Sigma)의 표준 곡선과 비교하여, 각 샘플의 총 콜라겐 양을 계산하였다.
Samples obtained from nude mice were digested with papain digestion solution (125 μg / mL papain, 5 mM L-cysteine, 100 mM Na 2 HPO 4 , 5 mM EDTA, pH 6.8) for 16 hours at 60 ° C., followed by Total collagen was measured. Sirius red was dissolved in a saturated solution of picric acid (1.3%, Sigma) at a concentration of 1 mg / mL to prepare a dye solution (pH 3.5). The digested samples were dried at 37 ° C. for 24 h in 96-well plates and reacted with the dye solution on a stirrer for 1 h. The sample was washed 5 times with 0.01 N HCl and resuspended in 0.1 N NaOH. Absorbance was measured at 550 nm using an ELISA Reader (BIO-TEK Instruments Inc., Winooski, VT). Finally, the total collagen amount of each sample was calculated by comparison with the standard curve of 0-10 μg / ml bovine collagen (Sigma).
<5> <5> RNARNA 추출 및 Extraction and 역전사Reverse transcription -- PCRPCR ( ( RTRT -- PCRPCR ) )
Trizol (Invitrogen, Carlsbad, CA, USA) 사용하여 제조사 지침서에 따라 RNA 추출을 수행하였다. RNA 펠렛을 20 ㎕의 무-RNase 및 무-DNase 정제수에 용해시키고, 260 nm에서 광학 밀도를 측정하여 RNA 수율을 측정하였다. NanoDrop 분광광도계(ND-1000, Nanodrop Technologies, Wilmington, DE)를 사용하여 총 RNA를 측정하였다. 제조사(Invitrogen) 지침서에 따라, Moloney Murine Leukemia Virus (MMLV) 역전사효소 및 랜덤 헥사머(random hexamers)를 사용하여 20 ㎕의 반응 용적으로 총 RNA(0.5 ㎍)을 역전사시켰다. 각각의 RT-PCR 반응은 1 ㎕의 cDNA를 사용하였다. PCR 반응은 2X SeeAmp™ ACP™ Master Mix II (Seegene, Seoul, Korea)을 사용하여 다음 조건으로 수행하였다: 94℃에서 10분 동안 1 사이클, 이후 94℃에서 30초, 58℃에서 45초, 72℃에서 45초의 35 사이클, 및 최종 72℃에서 7분 동안 연장. 상기 PCR 산물을 1.5% 아가로오즈 겔 상에서 전기영동한 후, 에티디움 브로마이드 염색에 의해 시각화하였다. ExiCycler (Bioneer, Daejeon, Korea, http://www.bioneer.com)으로 하기 유전자의 발현을 실시간 QPCR에 의해 측정하였다: 콜라겐 형태 II (COL II), SOX9, aggrecan 및 연골 올리고머 단백질(cartilage oligomeric protein, COMP). 각각의 RT 반응(1 ㎕)은 2.0 mM MgCl2, 0.5 μM의 각 프라이머, 및 2x SYBR? Green PCR Master Mix를 포함하는 20 ㎕ PCR 분석 용적에서 증폭시켰다. ExiCycler 중의 샘플은 94℃에서 10 분의 초기 변성, 이후 94℃에서 10초, 58℃에서 30초 및 72℃에서 30초의 45 사이클을 수행하였다. 특정 유전자의 상대적인 양은 제조자의 추천에 따라 2-ΔΔCT 방법을 통하여 측정하였다. 특정 전사물의 증폭을 확인하기 위하여, 지속적으로 형광을 모니터하면서, 샘플을 40℃로 냉각한 다음 천천히 95℃로 가열함으로써, 각 PCR의 마지막에 융해 곡선 프로파일(melting curve profiles)을 생성시켰다. 본 연구에 사용된 프라이머는 다음 표 1과 같다.RNA extraction was performed using Trizol (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions. RNA pellets were dissolved in 20 μl of RNase-free and DN-free purified water and RNA yield was determined by measuring optical density at 260 nm. Total RNA was measured using a NanoDrop spectrophotometer (ND-1000, Nanodrop Technologies, Wilmington, DE). Total RNA (0.5 μg) was reverse transcribed with 20 μl of reaction volume using Moloney Murine Leukemia Virus (MMLV) reverse transcriptase and random hexamers according to the manufacturer's (Invitrogen) instructions. Each RT-PCR reaction used 1 μl of cDNA. PCR reactions were performed using 2X SeeAmp ™ ACP ™ Master Mix II (Seegene, Seoul, Korea) under the following conditions: 1 cycle for 10 minutes at 94 ° C, then 30 seconds at 94 ° C, 45 seconds at 58 ° C, 72 35 cycles of 45 seconds at < RTI ID = 0.0 > The PCR product was electrophoresed on a 1.5% agarose gel and then visualized by ethidium bromide staining. The expression of the following genes was measured by real time QPCR with ExiCycler (Bioneer, Daejeon, Korea, http://www.bioneer.com): collagen form II (COL II), SOX9, aggrecan and cartilage oligomeric protein , COMP). Each RT reaction (1 μl) was followed by 2.0 mM MgCl 2 , 0.5 μM of each primer, and 2 × SYBR? Amplified in 20 μl PCR assay volume containing Green PCR Master Mix. Samples in ExiCycler were subjected to 45 cycles of initial denaturation at 94 ° C. for 10 minutes, then 10 seconds at 94 ° C., 30 seconds at 58 ° C. and 30 seconds at 72 ° C. Relative amounts of specific genes were determined via the 2-ΔΔCT method according to the manufacturer's recommendations. To confirm the amplification of specific transcripts, melting curve profiles were created at the end of each PCR by cooling the sample to 40 ° C. and then slowly heating to 95 ° C. while continuously monitoring the fluorescence. Primers used in this study are shown in Table 1 below.
<6> 누드 마우스 이식<6> nude mouse transplant
동물시험은 차의과학대학교의 동물 윤리 위원회(Animal Care Committee)의 승인을 받았다. BALB/c 암컷 마우스(6주령)을 3개의 그룹으로 나누었다. 그룹 I(n=16)은, TGF-β3가 존재 또는 비존재하는 피브린 하이드로겔을 AF-MSCs와 혼합하여 각각의 마우스의 등에 피하주사하였다. 그룹 II (n=16)는, TGF-β3가 존재 또는 비존재하는 피브린 하이드로겔을 AD-MSCs와 혼합하여 각각의 마우스의 등에 피하주사하였다. 그룹 III (n=16)는, TGF-β3가 존재 또는 비존재하는 피브린 하이드로겔을 BM-MSCs와 혼합하여 각각의 마우스의 등에 피하주사하였다. 처리후 1 내지 4주에, 마취제를 과량 주사하여 마우스를 치사시켰으며(각 시점에서 n=4), 주입 부위의 피부(2×2 cm2)를 조심스럽게 잘라내어, 이어지는 생물학적 시험에 사용하였다. 처리된 부위 주변의 조직의 성상을 기록하기 위하여 피부 플랩(flaps)의 사진을 촬영하였다.
Animal testing was approved by the Animal Care Committee of CHA University. BALB / c female mice (6 weeks old) were divided into three groups. Group I (n = 16) was injected subcutaneously in the back of each mouse with a fibrin hydrogel with or without TGF-β3 mixed with AF-MSCs. Group II (n = 16) was injected subcutaneously in the back of each mouse with a fibrin hydrogel with or without TGF-β3 mixed with AD-MSCs. Group III (n = 16) was injected subcutaneously in the back of each mouse by mixing fibrin hydrogels with or without TGF-β3 with BM-MSCs. One to four weeks after treatment, mice were lethal by injection of an anesthetic in excess (n = 4 at each time point), and the skin at the site of injection (2 × 2 cm 2 ) was carefully cut and used for subsequent biological tests. Photographs of skin flaps were taken to record the appearance of tissue around the treated area.
<7> <7> 웨스턴Western 블롯Blot 분석 analysis
완전 프로테아제 저해제 칵테일(Roche Applied Science, Indianapolis, IN, USA)이 첨가된 RIPA 완충액(radioimmunoprecipitation assay buffer) (Pierce, Rockford, IL)에서 세포를 용해(lysis)하였다. 이어서, 약 30 내지 50 mg의 단백질을 10 내지 15% SDS 폴리아크릴아마이드 겔(SDS-PAGE) 상에 로딩하고, Immobilon-P (Millipore Corp., Bedford, MA)로 전사하였다. 상기 멤브레인을 트리스-완충 식염수(TBS)-트윈 20 (0.02%) 중의 5% 스킴 밀크(skim milk) 중에서 블록킹하고, 하기 1차 항체와 함께 인큐베이션하였다: 항-aggrecan (Abcam, Cambridge, UK), 항-제2형 콜라겐, 항-SOX-9 (Chemicon, Temecula, CA) 및 항-β-액틴(Sigma). 최종적으로, Amersham ECL 시약(GE Healthcare, Little Chalfont, UK)을 사용한 화학발광(chemiluminescence)에 의해 블롯을 전개시켰다.
Cells were lysed in RIPA buffer (Pierce, Rockford, IL) to which a complete protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN, USA) was added. About 30-50 mg of protein was then loaded onto a 10-15% SDS polyacrylamide gel (SDS-PAGE) and transferred to Immobilon-P (Millipore Corp., Bedford, Mass.). The membrane was blocked in 5% skim milk in Tris-buffered saline (TBS) -Tween 20 (0.02%) and incubated with the following primary antibody: anti-aggrecan (Abcam, Cambridge, UK), Anti-type 2 collagen, anti-SOX-9 (Chemicon, Temecula, Calif.) And anti-β-actin (Sigma). Finally, the blots were developed by chemiluminescence using Amersham ECL reagent (GE Healthcare, Little Chalfont, UK).
<8> 면역조직화학<8> Immunohistochemistry
주입 부위를 완전히 잘라낸 다음, 조직학 분석을 위해 처리하였다. 즉, 각 시점에서 채취한 샘플을 O.C.T. 화합물(TISSUE-TEKs 4583, Sakura Finetek USA, Inc.)에 박아 넣고 냉동시켰다. 이어서, 세포가 시딩된 피브린 구조체를 접종된 4% 파라포름알데히드 용액 중에 30분 동안 담가 상기 구조체를 슬라이드에 고정하였다. 각 샘플을 10 mm 두께로 -20℃에서 얇게 자르고, 헤마톡실린 및 에오신(H&E)으로 염색하였다. 수화시킨 냉동조각(cryosections)을 사프라닌-O 및 알시안 블루로 염색하여 조직학적 분석을 수행하였다. 콜라겐 섬유의 검출을 위하여는 Masson's 트리크롬 염색을 사용하였다. 이 방법에서, 콜라겐 섬유는 청색으로 염색되며, 핵은 짙은 적갈색으로 염색되고, 세포질은 적분홍색으로 염색된다.The injection site was completely cut out and then processed for histological analysis. In other words, samples taken at each time point were collected from O.C.T. It was embedded in a compound (TISSUE-TEKs 4583, Sakura Finetek USA, Inc.) and frozen. The fibrin construct seeded with cells was then soaked in 4% paraformaldehyde solution inoculated for 30 minutes to fix the construct to the slide. Each sample was cut thin at −20 ° C. to 10 mm thickness and stained with hematoxylin and eosin (H & E). Hydrated cryosections were stained with safranin-O and alcian blue to perform histological analysis. Masson's trichrome staining was used for the detection of collagen fibers. In this method, the collagen fibers are dyed blue, the nuclei are dark reddish brown, and the cytoplasm is reddish pink.
면역조직학 분석은 다음 1차 항체를 사용하여 수행하였다: 항-SOX9 (Chemicon, Temecula, CA. Dilution factor 1:500), 항-제1형 콜라겐 및 항-제2형 콜라겐(Chemicon, Temecula, CA. Dilution factor 1:500). 모든 인큐베이션은 습한 챔버 중에서 수행하였다. 시험관내(In vitro) 샘플: 포르말린-고정화된 파라핀 박아넣은 조각(formalin-fixed paraffin embedded sections)을 탈파라핀화시키고, 재수화시킨 후, 3% H2O2 (Fisher, Ottawa, ON, Canada)에서 15분 동안 인큐베이션한 다음, 상기한 바와 같이 산성 구연산 완충액과 함께 인큐베이션하여 항원 복구(antigen retrieval)를 수행하였다. 상기 조각은 항-제1형 콜라겐 또는 항-제2형 콜라겐 중에서 30분 동안 인큐베이션한 후, 5% 정상 고우트 혈청(normal goat serum)(Invitrogen, Carlsbad, CA) 중에서 45분 동안 인큐베이션하였다. 상기 슬라이드를 세척하고, 바이오티닐화된 2차 항체(1:500; Invitrogen)와 함께 30분 동안 인큐베이션한 다음, AEC chromogen (Invitrogen)과 함께 15분 동안 인큐베이션하였다. 이후 상기 조각들을 Mayer's 헤마톡실린(Sigma-Aldrich)으로 카운터염색(counterstain)하였다. 시험관내(In vivo) 샘플을 O.C.T. 화합물(TISSUE-TEKs 4583, Sakura Finetek USA, Inc)에 박아 넣고, 냉동시킨 후, 조각화하였다. 상기 조각들을 PBS로 세척하고, 상기한 1차 항체와 함께 인큐베이션하였다. FITC 또는 RITC-컨쥬게이션된 2차 항체(Molecular Probes, USA)를 가한 후, PBS로 3회 세척하고, 4',6-디아미디노-2-페닐인돌(DAPI, Molecular Probes) 염색제와 함께 5분 동안 인큐베이션하였다. 최종적으로, 상기 조각을 공초점 레이저 주사 현미경을 사용하여 분석하였다.
Immunohistologic analysis was performed using the following primary antibodies: anti-SOX9 (Chemicon, Temecula, CA. Dilution factor 1: 500), anti-type 1 collagen and anti-type 2 collagen (Chemicon, Temecula, CA) Dilution factor 1: 500). All incubations were performed in a humid chamber. In vitro In vitro ): formalin-fixed paraffin embedded sections were deparaffinized and rehydrated, followed by 15 minutes in 3% H 2 O 2 (Fisher, Ottawa, ON, Canada). Antigen retrieval was performed by incubation followed by incubation with acidic citric acid buffer as described above. The pieces were incubated for 30 minutes in anti-type 1 collagen or anti-type 2 collagen, followed by 45 minutes in 5% normal goat serum (Invitrogen, Carlsbad, Calif.). The slides were washed, incubated with biotinylated secondary antibody (1: 500; Invitrogen) for 30 minutes and then incubated with AEC chromogen (Invitrogen) for 15 minutes. The pieces were then counterstained with Mayer's hematoxylin (Sigma-Aldrich). In vitro vivo ) Samples were embedded in OCT compounds (TISSUE-TEKs 4583, Sakura Finetek USA, Inc), frozen and fragmented. The pieces were washed with PBS and incubated with the primary antibody described above. FITC or RITC-conjugated secondary antibody (Molecular Probes, USA) was added followed by three washes with PBS and 5 with 4 ', 6-diimidino-2-phenylindole (DAPI, Molecular Probes) stain. Incubate for minutes. Finally, the pieces were analyzed using confocal laser scanning microscope.
<9> 통계 분석<9> Statistical Analysis
통계 분석은 students t-test를 사용하여 수행하였다. p<0.05의 값을 통계적으로 유의성 있는 것으로 간주하였다.
Statistical analysis was performed using the students t- test. A value of p <0.05 was considered statistically significant.
(2) 결과(2) results
<1> 다른 종류의 <1> different kinds hMSCshMSCs 의 of 면역표현형적Immunophenotypic (( ImmunophenotypicImmunophenotypic ) 특성 Characteristics
줄기세포 표현형이 계대배양에서 유지되는지 확인하기 위하여, 중간엽 줄기세포들의 형태를 유세포 분석에 의해 평가하였다. 중간엽 특성은 양성 MSC 마커로서 CD166, CD29 및 CD44를 사용하고, 음성 MSC 머커로서 CD45 및 CD34를 사용하여 평가하였다. MSC 마커인 CD166, CD29 및 CD44는 90% 이상의 세포에서 관찰된 반면, MSC 음성 머커인 CD45 및 CD34는 10% 미만의 세포에서 관찰되었다 (도 3).
To confirm that the stem cell phenotype is maintained in subculture, the morphology of the mesenchymal stem cells was evaluated by flow cytometry. Mesenchymal properties were assessed using CD166, CD29 and CD44 as positive MSC markers and CD45 and CD34 as negative MSC markers. MSC markers CD166, CD29 and CD44 were observed in at least 90% of cells, whereas MSC negative markers CD45 and CD34 were observed in less than 10% of cells (FIG. 3).
<2> <2> 시험관내로In vitro 배양된 Cultured hMSCshMSCs 의 of RTRT -- PCRPCR 분석 analysis
Chondrogenic differentiation of hMSCs의 연골 분화를 COL II, aggrecan, COMP, 및 SOX9를 포함하는 연골분화 마커 mRNA의 발현에 근거하여 RT-PCR로 분석하였다 (도 4A). BM-MSCs, AD-MSCs, 및 AF-MSCs는 연골 분화 마커에 대하여 상이한 발현 패턴을 나타내었다. 상기 PCR 분석 결과, COL II, SOX9, aggrecan, 및 COMP는, AD-MSCs 및 AF-MSCs에 비하여 BM-MSCs에서 높게 발현되었다. 그러나, aggrecan 및 COMP와 같은 몇가지 연골-특이적 유전자는 3종의 hMSCs 모두에서 유사한 수준으로 발현되었다. 이에 반하여, 골분화 마커인 COL I은 TGF-β3에 의해 자극한 hMSCs 모두에서 낮은 수준으로 발현되었다.Cartilage differentiation of chondrogenic differentiation of hMSCs was analyzed by RT-PCR based on the expression of cartilage differentiation marker mRNA including COL II, aggrecan, COMP, and SOX9 (FIG. 4A). BM-MSCs, AD-MSCs, and AF-MSCs showed different expression patterns for cartilage differentiation markers. As a result of the PCR analysis, COL II, SOX9, aggrecan, and COMP were expressed higher in BM-MSCs than in AD-MSCs and AF-MSCs. However, several cartilage-specific genes such as aggrecan and COMP were expressed at similar levels in all three hMSCs. In contrast, the bone differentiation marker COL I was expressed at low levels in all hMSCs stimulated by TGF-β3.
연골분화에 관련된 특정 mRNAs를 실시간-qPCR(real time-qPCR)로 정량하였을 때, TGF-β3에 의한 자극여부와 관계없이, COL II, aggrecan, SOX9, 및 COMP가 모든 hMSCs에 의해 생성되는 것으로 밝혀졌다. 또한, 골분화 마커인 COL I는 발현되지 않았다 (도 4B). 대조군(TGF-β3 비처리)에서, 비처리된 피브린 하이드로겔 중에서 줄기세포 모두가 연골세포-관련 마커를 거의 발현하지 않은 반면, TGF-β3를 함유한 피브린 하이드로겔 중에서 hMSCs 모두가 연골세포-관련 마커의 발현 증가를 나타내었다. COL II 및 SOX9의 발현 수준은 대조군에 비하여 20~30 배 이상이었다. aggrecan 및 COMP 유전자의 발현 수준은 TGF-β3로 처리하였을 때, 대조군에 비하여 AF-MSCs는 4 배, AS-MSCs는 8 배, BM-MSCs는 8 배 증가하였다. 그러나, 골 분화 마커인 COL I은 TGF-β3로 자극한 3종의 상이한 hMSCs에서 전혀 발현되지 않았다.
When specific mRNAs involved in cartilage differentiation were quantified by real time-qPCR, COL II, aggrecan, SOX9, and COMP were produced by all hMSCs, irrespective of whether they were stimulated by TGF-β3. lost. In addition, the bone differentiation marker COL I was not expressed (FIG. 4B). In the control group (TGF-β3 untreated), all of the stem cells in the untreated fibrin hydrogel showed little chondrocyte-related markers, whereas all hMSCs in the fibrin hydrogel containing TGF-β3 were chondrocyte-associated. Increased expression of the marker was shown. The expression levels of COL II and SOX9 were 20-30 fold higher than the control. The expression levels of aggrecan and COMP genes were increased by 4 times in AF-MSCs, 8 times in AS-MSCs, and 8 times in BM-MSCs when treated with TGF-β3. However, bone differentiation marker COL I was not expressed at all in three different hMSCs stimulated with TGF-β3.
<3> <3> 시험관내In vitro 콜라겐, Collagen, GAGGAG , 및 연골 특이적 단백질의 측정, And measurement of cartilage specific proteins
TGF-β3 존재 또는 비존재하에서, 하이드로겔 구조체에 캡슐화시킨 hMSCs의 총 콜라겐 생성량을 Masson's Trichrome 염색에 의해 측정하였다 (도 5A). TGF-β3를 함유한 피브린 하이드로겔 구조체에 캡슐화시킨 BM-MSCs, AD-MSCs, 및 AF-MSCs는 TGF-β3를 함유하지 않은 하이드로겔에 캡슐화시킨 BM-MSCs, , AD-MSCs, 및 AF-MSCs에 비하여 더욱 많은 콜라겐을 생성하였다.Total collagen production of hMSCs encapsulated in hydrogel constructs, with or without TGF-β3, was measured by Masson's Trichrome staining (FIG. 5A). BM-MSCs, AD-MSCs, and AF-MSCs encapsulated in fibrin hydrogel constructs containing TGF-β3 are BM-MSCs,, AD-MSCs, and AF- encapsulated in hydrogels containing no TGF-β3. More collagen was produced compared to MSCs.
TGF-β3 존재 또는 비존재하에서, 하이드로겔 구조체에 캡슐화시킨 hMSCs에 의한 GAG 생성량을 DNA 함량의 함수로서 측정하였다 (도 5B). 캡슐화시킨 hMSCs는 TGF-β3의 첨가에 반응하여 현저하게 증가한 GAG 생성을 나타내었다. 또한, TGF-β3로 처리된 BM-MSC, AD-MSC, 및 AF-MSC에 있어서 GAG/DNA 수준은, TGF-β3로 처리되지 않은 M-MSC, AD-MSC, 및 AF-MSC에 비하여, 각각 6.4, 5.8, 및 5.2 배 높았다. 그러나, TGF-β3로 처리된 BM-MSCs, AD-MSCs, 및 AF-MSC의 GAG 함량에 있어서의 유의성 있는 차이는 없었다.In the presence or absence of TGF-β3, GAG production by hMSCs encapsulated in hydrogel constructs was measured as a function of DNA content (FIG. 5B). Encapsulated hMSCs showed significantly increased GAG production in response to the addition of TGF-β3. In addition, GAG / DNA levels in BM-MSCs, AD-MSCs, and AF-MSCs treated with TGF-β3 were higher than M-MSCs, AD-MSCs, and AF-MSCs not treated with TGF-β3. 6.4, 5.8, and 5.2 times higher, respectively. However, there was no significant difference in the GAG content of BM-MSCs, AD-MSCs, and AF-MSCs treated with TGF-β3.
웨스턴 블롯 분석을 사용하여, 피브린 하이드로겔 구조체에 캡슐화시킨 hMSCs에서 TGF-β3가 연골 특이적인 단백질 발현을 자극하는지 여부를 측정하였다. 연골 특이적 단백질들이 피브린 하이드로겔 구조체에 캡슐화된 hMSCs에 의해 분비되었으며(도 5C), 이는 캡슐화된 hMSCs가 연골 세포로 분화되었음을 의미한다. aggrecan, COL II, 및 SOX9과 같은, 연골 특이적 단백질들은 TGF-β3의 첨가에 의해 자극된 hMSCs에서만 발견되었다.
Western blot analysis was used to determine whether TGF-β3 stimulates cartilage specific protein expression in hMSCs encapsulated in fibrin hydrogel constructs. Cartilage specific proteins were secreted by hMSCs encapsulated in fibrin hydrogel constructs (FIG. 5C), which meant that encapsulated hMSCs differentiated into chondrocytes. Cartilage specific proteins, such as aggrecan, COL II, and SOX9, were found only in hMSCs stimulated by the addition of TGF-β3.
<4> <4> hMSCshMSCs 의 조직학적 검사Histological examination
캡슐화시킨 hMSCs가 피브린 하이드로겔에 존재하는지 확인하기 위하여, 조직학적 방법을 사용하여 줄기세포 형태, 캡슐화된 세포의 분포, 및 캡슐화된 hMSCs의 연골 세포로의 분화를 평가하였다 (도 6). TGF-β3가 없는 피브린 하이드로겔 중의 세포들은, 소량의 분화된 세포가 검출되었지만, 대부분 미분화된 hMSCs 이었다. TGF-β3가 함유된 피브린 하이드로겔 중의 hMSCs는 주로 분화된 세포 형태를 나타내었다 (도 6. b, d, & f).To confirm that encapsulated hMSCs are present in the fibrin hydrogel, histological methods were used to assess stem cell morphology, distribution of encapsulated cells, and differentiation of encapsulated hMSCs into chondrocytes (FIG. 6). Cells in fibrin hydrogels without TGF-β3 were mostly undifferentiated hMSCs, although small amounts of differentiated cells were detected. HMSCs in fibrin hydrogels containing TGF-β3 showed predominantly differentiated cell morphology (Figure 6. b, d, & f).
천연 조직에서 연골의 생성 과정에서, 연골 조직 형태의 표지인 흡수공 형성(lacunae formation)은 발견된다. TGF-β3의 첨가에 의해 hMSCs가 연골 세포 형태로 분화하는지 확인하기 위하여, 샘플들을 사프라닌-O 및 알시안 블루 염색을 사용하여 평가하였다 (도 6. g-r). TGF-β3 존재하에서 시험관내로 배양된 hMSCs는 연골세포로 분화되었으며, 이들 연골세포는 각각 폴리사카라이드 및 프로테오글리칸을 나타내는 청색 및 오렌지색 염색을 명확하고 깊게 나타내었고, 이들 특성은 평가된 모든 hMSCs에서 명백하게 관찰되었다 (도 6. h, j, l, n, p, & r).
In the production of cartilage in natural tissues, lacunae formation, a marker of the form of cartilage tissue, is found. To confirm that hMSCs differentiate into chondrocyte form by the addition of TGF-β3, samples were evaluated using safranin-O and alcian blue staining (FIG. 6. gr). HMSCs cultured in vitro in the presence of TGF-β3 differentiated into chondrocytes, and these chondrocytes clearly and deeply showed blue and orange staining indicating polysaccharides and proteoglycans, respectively, and these properties were evident in all hMSCs evaluated (FIG. 6 h, j, l, n, p, & r).
<5> <5> COLCOL I 및 I and IIII 의 면역조직학적 분석Immunohistochemical analysis
TGF-β3 존재 또는 비존재하에서 피브린 하이드로겔에 캡슐화시킨 hMSCs에서, COL II와 같은 특정 단백질의 검출에 근거하여, hMSCs의 연골분화를 면역조직학적으로 확인하였다. COL II 항체를 사용한 면역 염색을 사용하여 캡슐화된 hMSCs로부터 분비되는 COL II를 검출하였다 (도 7. c, d, g, h, k & l). 도 7. d, h, & l에 나타낸 바와 같이, TGF-β3로 처리된 hMSCs는 COL II에 대하여 강하게 염색되었다. 골분화 마커인 COL I은 TGF-β3를 갖는 피브린 하이드로겔 중의 hMSCs에서 거의 검출되지 않았다 (도 7. b, f, & j). 또한, TGF-β3 비존재하에서 배양된 hMSCs 모두는 COL II에 대하여 잘 염색되지 않았으나, 일부의 COL I 염색이 관찰되었다 (도 7. c, g & k).
In hMSCs encapsulated in fibrin hydrogels with or without TGF-β3, cartilage differentiation of hMSCs was confirmed immunohistochemically based on the detection of specific proteins such as COL II. Immunostaining with COL II antibodies was used to detect COL II secreted from encapsulated hMSCs (FIG. 7. c, d, g, h, k & l). As shown in Figures d, h, & l, hMSCs treated with TGF-β3 were strongly stained for COL II. COL I, a bone differentiation marker, was hardly detected in hMSCs in fibrin hydrogels with TGF-β3 (Fig. 7. b, f, & j). In addition, all hMSCs cultured in the absence of TGF-β3 did not stain well for COL II, but some COL I staining was observed (Fig. 7. c, g & k).
<6> 이식된 <6> implanted hMSCshMSCs 의 연골분화를 위한 누드 마우스 모델 시험Nude mouse model for cartilage differentiation
상이한 종류의 hMSCs의 시험관내 연골분화를 확인하기 위하여, 연골 세포-과련 특정 유전자를 RT-PCR 및 실시간--qPCR로 검출하였다 (도 8 A & B). 도 8 A 및 B에 나타낸 바와 같이, TGF-β3가 함유된 피브린 하이드로겔 중의 hMSCs 모두에서, 대조군(TGF-β3 비함유)에 비하여, COL II, SOX9, aggrecan, 및 COMP의 특정 유전자가 높게 발현되었다. AF-MSCs은 대조군에 비하여 40배의 유전자 발현을 나타내었다(AF-MSCs: 4 ± 0.6 / 대조군: 0.1 ± 0.02). AS-MSCs은 대조군에 비하여 높은 aggrecans 발현을 나타내었다(AS-MSCs: 3.7 ± 0.4 / 대조군: 0.2 ± 0.02). BM-MSCs에서는 높은 aggrecan 발현이 관찰되었으나(5.4 ± 0.7)(도 8. B c), 대조군과의 차이는 발견되지 않았다(대조군: 1.8 ± 0.05). 또한, COMP 유전자 검출에 있어서, hMSCs 모두는 대조군에 비하여 50배 이상을 나타내었다 (도 7. B d). TGF-β3로 처리된 hMSCs로부터의 COL II 및 SOX9 유전자 발현은 유사한 결과를 나타내었다 (도 8. B a & b). 그러나, TGF-β3를 함유한 피브린 하이드로겔 중의 hMSCs로부터 유리된 골분화 마커인 COL I은 거의 검출되지 않았다.
To confirm in vitro cartilage differentiation of different types of hMSCs, chondrocyte-associated specific genes were detected by RT-PCR and real time--qPCR (FIGS. 8A & B). As shown in FIGS. 8A and 8B, in all hMSCs in fibrin hydrogels containing TGF-β3, high expression of specific genes of COL II, SOX9, aggrecan, and COMP compared to the control group (without TGF-β3). It became. AF-MSCs showed 40-fold gene expression compared to control (AF-MSCs: 4 ± 0.6 / control: 0.1 ± 0.02). AS-MSCs showed higher aggrecans expression compared to the control (AS-MSCs: 3.7 ± 0.4 / control: 0.2 ± 0.02). High aggrecan expression was observed in BM-MSCs (5.4 ± 0.7) (FIG. 8. Bc), but no difference was found in the control (control: 1.8 ± 0.05). In addition, in the detection of COMP genes, all hMSCs showed more than 50-fold compared to the control (Fig. 7. B d). COL II and SOX9 gene expression from hMSCs treated with TGF-β3 showed similar results (FIG. 8. B a & b). However, COL I, a bone differentiation marker liberated from hMSCs in fibrin hydrogels containing TGF-β3, was hardly detected.
(3) 고찰 및 결론(3) Discussion and conclusion
본 연구에서, 상이한 기원을 갖는 hMSCs에 대하여 양성 및 음성 마커등을 사용하여 이들의 표현을 측정하여, 임상 적용을 위한 세포 원료로서의 유용성을 평가하였다. hMSCs의 표현형 측정을 위하여, 증식시킨 세포를 유세포 분석을 통하여 평가하였다. 90% 이상의 BM-MSC, AD-MSC, 및 AF-MSC 세포들이 중간엽 마커인 CD166, CD29, 및 CD44에 양성인 반면, 10% 미만의 세포가 비-중간엽 마커인 CD45 및 CD34에 양성이었다 (도 3). 이러한 결과는 상기 세포들이 계대배양 후에도 중간엽 표현형을 유지하였음을 나타낸다.In this study, hMSCs with different origins were measured using positive and negative markers and the like to evaluate their usefulness as a cell stock for clinical application. For phenotypic determination of hMSCs, proliferated cells were evaluated by flow cytometry. More than 90% of BM-MSC, AD-MSC, and AF-MSC cells were positive for the mesenchymal markers CD166, CD29, and CD44, while less than 10% were positive for the non-mesenchymal markers CD45 and CD34 ( 3). These results indicate that the cells retained the mesenchymal phenotype even after passage.
또한, TGF-β3를 함유하는 하이드로겔에 캡슐화시킨 상이한 기원의 hMSCs에 대하여 시험관내 및 생체네에서 연골분화능력을 시험하였다. TGF-β3를 연골분화 자극제로서, 주사가능한 하이드로겔에 함유시켰을 때 hMSCs의 증식 및 분화를 유도하였다. TGF-β3 및 hMSCs의 동시 캡슐화에 의해, BM-MSC, AD-MSC, 및 AF-MSC의 분화능력이 대조군(TGF-β3 비존재)에 비하여 현저하게 증가되었으나(도 4. A & B), 줄기세포들 간에 약간의 차이가 있었다. AF-MSCs에서는 SOX9 및 COMP 유전자가 높게 발현되었으나, COL II 및 aggrecan은 높게 발현되지 않았다. 골분화 마커인 COL I은 상기 hMSCs에서 유의성 있게 발현되지 않았다. 이들을 결과들은 상이한 기원을 갖는 hMSCs 사이의 연골분화능력은 상이한 것임을 나타낸다.In addition, cartilage differentiation capacity was tested in vitro and in vivo for hMSCs of different origin encapsulated in a hydrogel containing TGF-β3. TGF-β3, as a cartilage differentiation stimulant, was induced in injectable hydrogels to induce proliferation and differentiation of hMSCs. By co-encapsulation of TGF-β3 and hMSCs, the differentiation capacity of BM-MSC, AD-MSC, and AF-MSC was markedly increased compared to the control (TGF-β3 not present) (Fig. 4. A & B), There was a slight difference between the stem cells. SOX9 and COMP genes were highly expressed in AF-MSCs, but COL II and aggrecan were not highly expressed. COL I, a bone differentiation marker, was not significantly expressed in the hMSCs. These results indicate that the cartilage differentiation capacity between hMSCs with different origins is different.
TGF-β3 존재 또는 비존재하에서 배양된 BM-MSCs, AD-MSCs, 및 AF-MSCs 간의 유전자 발현을 비교하였을 때, 전형적인 연골-특이적 마커 단백질인 COL II, aggrecan, SOX9, 및 COMP는 TGF-β3를 함유하는 피브린 하이드로겔에서, 세포에 의해 높게 발현되었다. 또한, RT-PCR 및 웨스턴 블롯팅 분석 결과는 BM-MSCs 및 AD-MSCs는AF-MSCs에 비하여 더 높은 수준의 마커를 발현하는 것을 나타내었다. 이들 결과는 연골-특이적 단백질의 발현이 TGF-β3에 의해 자극되며, 또한 TGF-β3를 함유하는 피브린 하이드로겔은 hMSCs 이식 후 특정 연골분화 마커의 발현을 자극하는데 필수적임을 시사한다. 또한, AF-MSCs의 연골분화능력은 BM-MSCs 및 AD-MSCs에 비해 상대적으로 낮았다.When comparing gene expression between BM-MSCs, AD-MSCs, and AF-MSCs cultured with or without TGF-β3, the typical cartilage-specific marker proteins COL II, aggrecan, SOX9, and COMP are TGF- In fibrin hydrogels containing β3, they were highly expressed by cells. In addition, RT-PCR and Western blotting analysis showed that BM-MSCs and AD-MSCs express higher levels of markers as compared to AF-MSCs. These results suggest that expression of cartilage-specific proteins is stimulated by TGF-β3 and that fibrin hydrogels containing TGF-β3 are essential for stimulating the expression of certain cartilage differentiation markers after hMSCs transplantation. In addition, the cartilage differentiation capacity of AF-MSCs was lower than that of BM-MSCs and AD-MSCs.
이식된 hMSCs의 생체내에서의 연골-유사 세포로 분화하는 능력을 평가하기 위하여, 이식된 hMSCs에서 연골-특이적 분화마커인 COL II, aggrecan, SOX9 및 COMP에 대한 RT-PCR 분석을 수행하였다. 도 7의 A 및 B에 나타낸 바와 같이, 이들 유전자들은 TGF-β3를 함유한 피브린 하이드로겔에 캡슐화시킨 hMSCs에서, TGF-β3가 없는 피브린 하이드로겔 중의 hMSCs에 비하여, 더욱 높게 발현되었다.To assess the ability of transplanted hMSCs to differentiate into cartilage-like cells in vivo, RT-PCR analysis was performed on cartilage-specific differentiation markers COL II, aggrecan, SOX9 and COMP in transplanted hMSCs. As shown in FIGS. 7A and 7, these genes were expressed higher in hMSCs encapsulated in fibrin hydrogels containing TGF-β3 as compared to hMSCs in fibrin hydrogels without TGF-β3.
연골분화에 대한 조직학적 평가결과는, 연골-유사 세포로 분화한 이식된 hMSCs 유래의 손상 조직 재생량이 피브린 하이드로겔에서 TGF-β3와 혼합되었을 때 증가함을 나타내었다. 섬유아세포-유사 세포로부터 흡수공(lacunae)을 형성하는 세포로의 전형적인 형태학적 변화가 나타났다. 동시에 TGF-β3를 함유한 하이드로겔로부터 샘플 중에 프로테오글리칸 및 폴리사카라이드의 축적이 검출되었다. TGF-β3를 함유하지 않은 하이드로겔에 캡슐화된 hMSCs 는 약간의 세포외 기질(extracellular matrix)만이 생성되었다. 이들 결과는 연구된 hMSCs가 세포 치료를 위한 세포의 원료로서 적합하다는 것을 나타낸다.Histological evaluation of cartilage differentiation showed that the amount of damaged tissue regeneration from transplanted hMSCs differentiated into cartilage-like cells increased when mixed with TGF-β3 in fibrin hydrogels. Typical morphological changes from fibroblast-like cells to cells forming lacunae have been shown. At the same time accumulation of proteoglycans and polysaccharides was detected in samples from hydrogels containing TGF-β3. HMSCs encapsulated in a hydrogel containing no TGF-β3 produced only a few extracellular matrices. These results indicate that the hMSCs studied are suitable as a source of cells for cell therapy.
결론적으로, 피브린 하이드로겔에 캡슐화된, TGF-β3와 혼합된 hMSCs는 분화된 연골세포를 생성하였다. RT-PCR, 실시간-QPCR, 조직학 분석 및 면역-조직학적 분석을 사용한, 상이한 기원으로부터 유래된 hMSCs의 평가결과는, TGF-β3의 존재하에서 시험관내에서 배양되거나 및 생체내에 이식되었을 때, 이들이 연골-특이적인 유전자 및 단백질을 높은 수준으로 발현한다는 것을 보여주었다. 이들 결과들은 본 연구에서 평가된 hMSCs 모두가 TGF-β3의 존재하에서 특정 세포 형태로 분화하는 능력을 갖기 때문에, 줄기세포 치료(stem cell therapy)에 사용될 수 있음을 나타낸다.In conclusion, hMSCs mixed with TGF-β3, encapsulated in fibrin hydrogel, produced differentiated chondrocytes. Evaluation of hMSCs derived from different origins, using RT-PCR, real-time-QPCR, histological analysis and immunohistochemical analysis, showed that when they were cultured in vitro and implanted in vivo in the presence of TGF-β3, It has been shown to express high levels of specific genes and proteins. These results indicate that all of the hMSCs evaluated in this study can be used for stem cell therapy because they have the ability to differentiate into specific cell types in the presence of TGF-β3.
<110> SUNGKWANG MEDICAL FOUNDATION <120> Process for expanding amniotic fluid-derived mesenchymal stem cells and process for preparing grafting constructs comprising the same <130> PN0517 <160> 12 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1 ttcatgaact tgaccgacga 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 2 cacaccatgt tcgcgttcat 20 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 3 gcacccatgg acattggagg g 21 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 4 gacacggagt agcaccatcg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 5 caggacgact ttgatgcaga 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 6 aagctggagc tgtcctggta 20 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 7 ccttggaggt cgtggtgaaa gg 22 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 8 aggtgaactt ctctggcgac gt 22 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 9 agaacatcac ctaccactgc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 10 atgtccaaag gtgcaatatc 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 11 tcacaatctt ccaggagcga 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 12 cacaatgccg aagtggtcgt 20 <110> SUNGKWANG MEDICAL FOUNDATION <120> Process for expanding amniotic fluid-derived mesenchymal stem cells and process for preparing grafting constructs configuring the same <130> PN0517 <160> 12 <170> Kopatentin 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 1 ttcatgaact tgaccgacga 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 2 cacaccatgt tcgcgttcat 20 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 3 gcacccatgg acattggagg g 21 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 4 gacacggagt agcaccatcg 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 5 caggacgact ttgatgcaga 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 6 aagctggagc tgtcctggta 20 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 7 ccttggaggt cgtggtgaaa gg 22 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 8 aggtgaactt ctctggcgac gt 22 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 9 agaacatcac ctaccactgc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 10 atgtccaaag gtgcaatatc 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 11 tcacaatctt ccaggagcga 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 12 cacaatgccg aagtggtcgt 20
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110081170A KR20130019459A (en) | 2011-08-16 | 2011-08-16 | Process for expanding amniotic fluid-derived mesenchymal stem cells and process for preparing grafting constructs comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110081170A KR20130019459A (en) | 2011-08-16 | 2011-08-16 | Process for expanding amniotic fluid-derived mesenchymal stem cells and process for preparing grafting constructs comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130019459A true KR20130019459A (en) | 2013-02-27 |
Family
ID=47897545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110081170A Ceased KR20130019459A (en) | 2011-08-16 | 2011-08-16 | Process for expanding amniotic fluid-derived mesenchymal stem cells and process for preparing grafting constructs comprising the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20130019459A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170071450A (en) * | 2017-04-24 | 2017-06-23 | 서울대학교산학협력단 | 3D cell culture scaffold and co-culture method using the same |
KR20190048560A (en) * | 2017-10-31 | 2019-05-09 | 가톨릭관동대학교산학협력단 | Use of ellipticine for inducing differentiation of stem cells into chondrocytes |
-
2011
- 2011-08-16 KR KR1020110081170A patent/KR20130019459A/en not_active Ceased
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170071450A (en) * | 2017-04-24 | 2017-06-23 | 서울대학교산학협력단 | 3D cell culture scaffold and co-culture method using the same |
KR20190048560A (en) * | 2017-10-31 | 2019-05-09 | 가톨릭관동대학교산학협력단 | Use of ellipticine for inducing differentiation of stem cells into chondrocytes |
WO2019088547A3 (en) * | 2017-10-31 | 2019-06-27 | 가톨릭관동대학교산학협력단 | Use of ellipticine for inducing differentiation of stem cell into chondrocyte |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Chondrogenic potential of stem cells derived from amniotic fluid, adipose tissue, or bone marrow encapsulated in fibrin gels containing TGF-β3 | |
JP5863639B2 (en) | Method for obtaining an index relating to the state of an intervertebral disc, a method for treating or preventing an intervertebral disc disorder, and a method for evaluating potential or quality of nucleus pulposus cell population | |
US20090297579A1 (en) | Control of Cells and Cell Multipotentiality in Three Dimensional Matrices | |
KR20120003470A (en) | Isolation of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood | |
KR102155623B1 (en) | Adult cardiac stem cell population | |
US20140271616A1 (en) | Compositions And Methods For Mesenchymal And/Or Chondrogenic Differentiation Of Stem Cells | |
WO2008091830A2 (en) | Maintenance and propagation of mesenchymal stem cells | |
CN105331579A (en) | Separation and culture method and application of human testis mesenchymal stem cells | |
CN114787340B (en) | Induced pluripotent stem cell-derived mesenchymal stem cell precursor cells and preparation method thereof | |
US9422522B2 (en) | Method of producing adipocytes from fibroblast cells | |
KR101389852B1 (en) | Method for Culture of Skeletal Muscle Stem Cells and Uses Therefor | |
US20140162366A1 (en) | Generation of vascular progenitor cells | |
EP2845898B1 (en) | Method for culturing neural crest stem cells, and use thereof | |
López et al. | Evaluating the impact of oxygen concentration and plating density on human wharton’s jelly-derived mesenchymal stromal cells | |
Li et al. | Cell‐to‐cell culture inhibits dedifferentiation of chondrocytes and induces differentiation of human umbilical cord‐derived mesenchymal stem cells | |
KR20110095218A (en) | CD4, which promotes proliferation, pluripotency, and reprogramming of adult stem cells through the PI3 / APT / KS3 pathway | |
Vakhrushev et al. | Cartilage-Specific Gene Expression and Extracellular Matrix Deposition in the Course of Mesenchymal Stromal Cell Chondrogenic Differentiation in 3D Spheroid Culture | |
KR20130019459A (en) | Process for expanding amniotic fluid-derived mesenchymal stem cells and process for preparing grafting constructs comprising the same | |
US20140106448A1 (en) | Methods of isolating cells | |
CN105797154B (en) | Isolation of cells of the soft shaft and uses thereof | |
CN114555783A (en) | Method for producing hyaline cartilage tissue in vitro | |
KR101555768B1 (en) | Method for evaluation of regenerated cartilage | |
CN113462765B (en) | Method and kit for identifying stem cells | |
WO2021227573A1 (en) | Xeno-free culture medium and method for expansion of mesenchymal stem cells by means of using same | |
Mahboudi et al. | Comparison between high cell-density culture systems for chondrogenic differentiation and articular cartilage reconstruction of human mesenchymal stem cells: a literature review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20110816 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20160812 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20110816 Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20171031 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20180227 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20171031 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |