KR20120012176A - Nodular cast iron - Google Patents
Nodular cast iron Download PDFInfo
- Publication number
- KR20120012176A KR20120012176A KR1020100074171A KR20100074171A KR20120012176A KR 20120012176 A KR20120012176 A KR 20120012176A KR 1020100074171 A KR1020100074171 A KR 1020100074171A KR 20100074171 A KR20100074171 A KR 20100074171A KR 20120012176 A KR20120012176 A KR 20120012176A
- Authority
- KR
- South Korea
- Prior art keywords
- cast iron
- present
- less
- high temperature
- oxidation resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910001141 Ductile iron Inorganic materials 0.000 title claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011777 magnesium Substances 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 239000011733 molybdenum Substances 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 239000011574 phosphorus Substances 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 239000011593 sulfur Substances 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 9
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract description 22
- 238000007254 oxidation reaction Methods 0.000 abstract description 22
- 229910001018 Cast iron Inorganic materials 0.000 abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 9
- 239000011572 manganese Substances 0.000 abstract description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 10
- 239000010439 graphite Substances 0.000 description 9
- 229910002804 graphite Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 5
- 241001168730 Simo Species 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Exhaust Silencers (AREA)
Abstract
본 발명은 고온 강도 및 내산화성이 우수한 배기계용 내열 주철에 관한 것으로, 더욱 상세하게는 철을 주성분으로 하고, 여기에 탄소 2.7~4.0 wt%, 알루미늄 1.5~4.0 wt%, 규소 1.5~4.0 wt%, 몰리브덴 0.3~0.8 wt% 마그네슘 0.025~0.050 wt%, 망간 0.40 wt% 이하, 인 0.05 wt% 이하, 및 황 0.05 wt% 이하의 조성을 갖는 것을 특징으로 하는 구상흑연주철에 관한 것이다. 본 발명에 따른 구상흑연주철은 고온 인장강도 및 내산화성이 매우 우수하여, 가혹한 조건에서 내산화성 등이 요구되는 엔진의 배기 매니폴드 등에 적합하게 사용할 수 있다.The present invention relates to a heat-resistant cast iron for exhaust systems excellent in high temperature strength and oxidation resistance, more specifically iron as a main component, carbon 2.7 ~ 4.0 wt%, aluminum 1.5 ~ 4.0 wt%, silicon 1.5 ~ 4.0 wt% , Molybdenum 0.3-0.8 wt% magnesium 0.025-0.050 wt%, manganese 0.40 wt% or less, phosphorus 0.05 wt% or less, and sulfur 0.05 wt% or less. Spheroidal graphite cast iron according to the present invention is excellent in high temperature tensile strength and oxidation resistance, it can be used suitably for the exhaust manifold and the like of the engine which requires oxidation resistance and the like in harsh conditions.
Description
본 발명은 내열 특성을 갖는 페라이트-펄라이트계 구상흑연주철에 관한 것으로, 더욱 자세하게는, 고온에서의 강도 및 내산화성이 우수한 알루미늄-규소계 구상흑연주철에 관한 것이다.The present invention relates to a ferrite-perlite-based nodular cast iron having heat resistance, and more particularly, to an aluminum-silicon-based nodular cast iron having excellent strength and oxidation resistance at high temperature.
배기 매니폴드(exhaust manifold)는 각 기통에서 배출되는 배출가스를 하나의 흐름으로 모아 촉매 측으로 전달하는 배기관을 일컫는다. 배기 매니폴드는 헤드에서 나온 배기가스를 가장 먼저 받는 곳에 놓여져 있고, 헤드와 달리 냉각수 등의 쿨러가 없기 때문에 배기가스 온도의 영향을 가장 직접적으로 받게 된다. 일반적인 엔진의 배기가스 온도는 가속 시에 최대로 올라가서 가솔린 엔진의 경우 최대 약 800~900℃, 승용 디젤 엔진의 경우 최대 약 700~850℃ 이다. 때문에 이에 영향을 받는 배기 매니폴드는 엔진의 가속 시에는 약 600~750℃까지 올라가고, 엔진 off 시에는 주위의 공기 온도까지 냉각된다. 이러한 과정으로 배기 매니폴드는 고온에서의 가혹한 열 충격 및 산화환경에 놓이게 되므로, 높은 내구성이 요구된다. 현재 배기 매니폴드에 주로 사용되는 재질은 고온 내산화 주철소재 및 스테인리스 소재로 SiMo계 주철, 400계 SUS 소재 등이 있다. 이중 SiMo계 주철 소재는 고온에서의 물성 향상과 내산화성을 위하여 기존 구상흑연주철재에 규소(Si) 성분, 몰리브덴(Mo) 성분 등을 첨가하여 사용되고 있다. 이러한 내열주철을 사용하는 배기계의 일반적인 온도범위는 약 630~730℃정도이며, 이를 배기가스 온도로 보면 약 700~850℃ 정도이다. Exhaust manifold refers to an exhaust pipe that collects the exhaust gas discharged from each cylinder into a single flow and delivers it to the catalyst side. The exhaust manifold is placed first in the exhaust gas from the head, and unlike the head, the exhaust manifold is most directly affected by the exhaust gas temperature because there is no cooler such as cooling water. The exhaust gas temperature of a typical engine is raised to the maximum at acceleration, so it is about 800 ~ 900 ℃ for gasoline engine and about 700 ~ 850 ℃ for passenger diesel engine. Therefore, the affected exhaust manifold rises to about 600 ~ 750 ℃ when the engine is accelerated, and cools down to ambient air temperature when the engine is off. This process puts the exhaust manifold into harsh thermal shock and oxidizing environments at high temperatures, requiring high durability. At present, the materials mainly used for exhaust manifolds are high temperature oxidation-resistant cast iron and stainless steel, and include SiMo-based cast iron and 400-based SUS. Among these, SiMo-based cast iron materials are used by adding silicon (Si) components and molybdenum (Mo) components to existing spherical graphite cast iron materials to improve physical properties and oxidation resistance at high temperatures. The general temperature range of the exhaust system using such a heat-resistant cast iron is about 630 ~ 730 ℃, it is about 700 ~ 850 ℃ about the exhaust gas temperature.
그러나, 최근 자동차 출력 증대 및 배기규제 강화에 따라 이를 만족시키기 위해 배기가스 온도가 지속적으로 상승되고 있으며, 내구성 및 품질에 대한 측면도 강화되면서 배기계가 받게 되는 부하는 점점 더 커지고 있다. 따라서, 더욱 높은 온도 범위에서 강도 및 내산화성 향상이 요구된다. However, the exhaust gas temperature is continuously increasing to satisfy the demand as the vehicle power is increased and the exhaust regulations are recently increased. As the aspect of durability and quality is enhanced, the load received by the exhaust system is increasing. Therefore, improvements in strength and oxidation resistance are required in the higher temperature range.
이에 본 발명자는 상기한 문제점을 해결하고자 노력한 결과, 철(Fe)에 탄소(C), 규소(Si), 알루미늄(Al) 및 몰리브덴(Mo)의 한계 값을 규정하고 상기 조성으로 이루어진 구상흑연주철을 제조하였고 상기 재질의 고온에서의 인장강도 및 내산화성이 우수함을 알아내어 본 발명을 완성하였다.Accordingly, the present inventors have tried to solve the above problems, and as a result of defining the limit values of carbon (C), silicon (Si), aluminum (Al) and molybdenum (Mo) in iron (Fe) and spheroidal graphite cast iron made of the above composition The present invention was completed to find out the excellent tensile strength and oxidation resistance of the material at high temperature.
따라서 본 발명은 전술한 바와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 고온에서의 인장강도 및 내산화성을 개선하여 우수한 내구성을 갖는 새로운 구상흑연주철 재질을 제공하는 것이다.Accordingly, the present invention has been made to solve the problems described above, an object of the present invention is to provide a new spherical graphite cast iron material having excellent durability by improving the tensile strength and oxidation resistance at high temperature.
상기한 목적을 달성하기 위하여, 본 발명에 따른 구상흑연주철은 철을 주성분으로 하고, 탄소 2.7~4.0 wt%, 알루미늄 1.5~4.0 wt%, 규소 1.5~4.0 wt%, 몰리브덴 0.3~0.8 wt%, 마그네슘 0.025~0.050 wt%, 망간 0.40 wt% 이하, 인 0.05 wt% 이하, 및 황 0.05 wt% 이하의 조성을 갖는다.In order to achieve the above object, the spheroidal graphite iron according to the present invention has iron as a main component, carbon 2.7 ~ 4.0 wt%, aluminum 1.5 ~ 4.0 wt%, silicon 1.5 ~ 4.0 wt%, molybdenum 0.3 ~ 0.8 wt%, Magnesium has a composition of 0.025-0.050 wt%, manganese 0.40 wt% or less, phosphorus 0.05 wt% or less, and sulfur 0.05 wt% or less.
본 발명에 따른 구상흑연주철은 기존 SiMo계 구상흑연주철 대비 알루미늄 원소의 첨가 및 기타 합금성분의 최적화로 인해 고온에서의 인장강도 및 내산화성이 기존 SiMo계 주철 대비 우수하여, 가혹한 조건에서의 물성이 요구되는 고출력 엔진의 배기 매니폴드에 적합하게 사용할 수 있다.Spheroidal graphite cast iron according to the present invention has excellent tensile strength and oxidation resistance at high temperature compared to conventional SiMo cast iron due to the addition of aluminum elements and optimization of other alloying components compared to the existing SiMo based nodular cast iron, It can be used suitably for the exhaust manifold of a high power engine required.
도 1은 본 발명에 따른 실시예 1, 2 와 비교예 1, 2의 고온 인장시험 결과를 나타낸 그래프
도 2는 본 발명에 따른 실시예 1, 2 와 비교예 1, 2의 고온 산화시험 결과를 나타낸 그래프1 is a graph showing the high temperature tensile test results of Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention.
Figure 2 is a graph showing the results of the high temperature oxidation test of Examples 1, 2 and Comparative Examples 1, 2 according to the present invention
이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited or limited by the embodiments.
본 발명에 따른 구상흑연주철은 철을 주성분으로 하고, 화학성분 중 탄소, 알루미늄, 규소, 몰리브덴 및 마그네슘을 포함하여 고온물성을 향상시킨다.Spheroidal graphite cast iron according to the present invention has iron as a main component, including carbon, aluminum, silicon, molybdenum and magnesium among the chemical components to improve the high temperature properties.
본 발명에 따른 구상흑연주철에 함유되는 성분들 중 성능향상에 가장 큰 영향을 주는 알루미늄(Al)의 기능 및 함량 한정 이유를 살펴보겠다. 본 실시예에서 알루미늄(Al)은 1.5~4.0 wt% 포함된다. 알루미늄은 펄라이트 양을 증가시키고 내산화 환경에서 Al2O3 산화 피막을 형성해서 내산화성을 향상시킨다. 치밀한 산화피막의 형성을 위해 첨가량은 1.5 wt% 이상으로 하며, 주조 시 용탕의 침식 등을 고려해 최대 첨가량은 4.0 wt% 미만으로 제한한다.Among the components contained in the nodular cast iron according to the present invention, the reason for limiting the function and content of aluminum (Al) which has the greatest effect on performance will be discussed. In this embodiment, aluminum (Al) is included 1.5 ~ 4.0 wt%. Aluminum improves the oxidation resistance by increasing the amount of pearlite and forming an Al 2 O 3 oxide film in an oxidation resistant environment. In order to form a dense oxide film, the addition amount is 1.5 wt% or more, and the maximum addition amount is limited to less than 4.0 wt% in consideration of erosion of the molten metal during casting.
본 발명에 따른 구상흑연주철에 함유되는 알루미늄 이외의 주요 성분들의 기능 및 함량 한정 이유를 살펴보면, 탄소(C)는 탄화물을 석출시켜 경도와 강도를 증가시키는데 필수적인 원소로서, 유동성 저하 및 초정 흑연정출을 고려하여 2.7~4.0 wt%로 포함한다.Looking at the functions and the reason for the content limitation of the main components other than aluminum contained in the nodular cast iron according to the present invention, carbon (C) is an essential element to increase the hardness and strength by precipitation of carbides, the fluidity decrease and primary graphite crystallization It is included in consideration of 2.7 ~ 4.0 wt%.
규소(Si)는 1.5~4.0 wt% 포함된다. 규소는 흑연 정출에 기여하며, 산화 환경에서 Fe2SiO4 산화 피막을 형성하여 내산화성을 향상시킨다. 주조 시 용탕 흐름 및 절삭성을 고려하여 4.5 wt% 미만으로 제한되는 것이 통상적이나, 본 발명에서는 페라이트-펄라이트 분율의 제어를 위해 4.0 wt% 미만으로 제한한다. 또한 소량이 첨가될 경우에는 치밀한 산화피막 형성이 제한되므로 최저 함량은 1.5 wt% 이상으로 제한한다.Silicon (Si) is contained 1.5 to 4.0 wt%. Silicon contributes to the crystallization of graphite and improves oxidation resistance by forming an Fe 2 SiO 4 oxide film in an oxidizing environment. It is conventionally limited to less than 4.5 wt% in consideration of melt flow and machinability during casting, but in the present invention it is limited to less than 4.0 wt% for the control of the ferrite-pearlite fraction. In addition, when a small amount is added, the formation of dense oxide film is limited, so the minimum content is limited to 1.5 wt% or more.
몰리브덴(Mo)은 고온 강도를 향상시키며, 열팽창 계수를 감소시켜 고온에서의 열피로 수명을 향상시킨다. 그 함유량은 0.3 wt% 이상으로 관리되는데, 유가금속인 관계로 원가절감을 위해 0.8 wt% 이하로 관리한다. Molybdenum (Mo) improves the high temperature strength and reduces the coefficient of thermal expansion to improve the thermal fatigue life at high temperatures. The content is managed at 0.3 wt% or more, but because it is a valuable metal, it is controlled at 0.8 wt% or less for cost reduction.
마그네슘(Mg)은 응고과정에서 흑연 구상화를 촉진하기 위해 첨가하는 것으로, 용탕량 기준 약 0.1% 이하로 첨가하도록 하며, 흑연 구상화 처리 후 함량은 약 0.025~0.050 wt% 정도이다.Magnesium (Mg) is added to promote graphite spheroidization during the solidification process, and is added to about 0.1% or less based on the amount of molten metal. The content after graphite spheroidization is about 0.025 to 0.050 wt%.
선택적으로 본 발명에 따른 구상흑연주철은 추가적인 성분을 포함할 수 있다. 망간(Mn)은 페라이트->오스테나이트 변태 온도를 낮춘다. 배기 매니폴드와 같은 고온 부품의 경우 오스테나이트 변태 온도가 높을수록 유리하며, 망간 함량은 0.40 wt% 이하가 바람직하다. 인(P)은 스테다이트(Steadite)를 형성시키고 취성에 영향을 미치므로 0.05 wt% 이하로 제한한다. 황(S)은 흑연 구상화를 저해하므로 0.05 wt% 이하로 제한한다. Optionally, the nodular cast iron according to the present invention may comprise additional components. Manganese (Mn) lowers the ferrite-> austenite transformation temperature. For high temperature components such as exhaust manifolds, the higher the austenite transformation temperature, the better, and the manganese content is preferably 0.40 wt% or less. Phosphorus (P) is limited to 0.05 wt% or less because it forms steadite and affects brittleness. Sulfur (S) inhibits graphite spheroidization and is therefore limited to 0.05 wt% or less.
망간(Mn), 인(P), 황(S)의 성분 관리치는 주철 제조의 일반적인 수준으로서, 하한 치를 제한하지 않더라도 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 상기 원소의 하한 치는 자명하다.Manganese (Mn), phosphorus (P), sulfur (S) component management value is a general level of cast iron manufacturing, the lower limit of the above element to those of ordinary skill in the technical field to which the present invention belongs without limiting the lower limit is self-evident Do.
상기된 바와 같은 조성을 같은 구상흑연주철은 산화 환경에서 규소와 알루미늄의 복합 산화물을 형성하여 재료의 내산화성이 크게 향상되는 것이다. 따라서, 본 발명에 따른 구상흑연주철은 우수한 인장강도 및 내산화성이 요구되는 고출력 엔진의 배기 매니폴드에 적합하게 사용할 수 있다.Spheroidal graphite cast iron having the same composition as described above is to form a complex oxide of silicon and aluminum in an oxidizing environment to greatly improve the oxidation resistance of the material. Therefore, the nodular cast iron according to the present invention can be suitably used for exhaust manifolds of high power engines requiring excellent tensile strength and oxidation resistance.
본 발명에 따른 구상흑연주철의 성능 확인을 위한 일례로서, 아래의 표 1에 기재된 조성을 갖는 실시예에 의하여 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.As an example for confirming the performance of the nodular cast iron according to the present invention, it will be described in detail by the embodiment having the composition shown in Table 1 below. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.
division
여기서 실시예 1과 2의 조성은 본 발명이 제시하는 신규 구상흑연주철이며, 비교예 1과 2의 조성은 배기 매니폴드 재질로 사용되고 있는 고 실리콘계 구상흑연 주철품에 해당한다. Here, the composition of Examples 1 and 2 is a novel nodular graphite cast iron proposed by the present invention, and the compositions of Comparative Examples 1 and 2 correspond to the high silicon-based nodular graphite cast iron used as the exhaust manifold material.
고온인장 시험의 경우, KS D 0026의 ‘철강재료 및 내열 합금의 고온 인장시험 방법’에 따라 700℃, 800℃에서 시험한 후, 인장강도를 측정하였다. 그 결과, 도 1에서 보듯이 실시예 1과 2가 가장 높은 고온 인장강도를 나타내었으며, 이는 알루미늄 첨가에 의한 펄라이트 형성의 영향으로 판단된다. In the case of high temperature tensile test, the tensile strength was measured after testing at 700 ° C. and 800 ° C. according to KS D 0026, “High Temperature Tensile Test Method of Steel Material and Heat-resistant Alloy”. As a result, as shown in Figure 1, Examples 1 and 2 showed the highest high temperature tensile strength, which is determined by the effect of the pearlite formation by the addition of aluminum.
한편, 고온 산화 시험은 실시예 1, 2와 비교예 1, 2에 따른 조성의 가로 20mm, 세로 20mm, 높이 2mm의 시험편들을 제작하여 각 시험편을 분위기 온도 800℃의 가열 보온로에서 300시간 동안 대기 중에 유지하고, 가열 보온로에서 꺼내 공냉시킨 다음, 질량 변화를 측정하여 단위 면적당 질량 변화를 구하는 방식으로 진행하였다. 이러한 실험결과, 도 2에서 보듯이, 실시예 2가 가장 낮은 산화량을 보였다. 이는 특히, 알루미늄의 적정 첨가에 의해 내산화성 향상됨에 기인한 것으로, 기지와의 계면에 조밀한 Al2O3를 많이 생성시키기 때문인 것으로 판단된다. 실시예 1은 실시예 2에 비해 산화량은 많지만 기존재인 비교예 1, 2에 비해 매우 낮은 산화량을 보여 고온 내산화재질로 적합함을 알 수 있다. On the other hand, the high temperature oxidation test was prepared for test specimens of 20 mm, 20 mm, and 2 mm in height having the composition according to Examples 1 and 2 and Comparative Examples 1 and 2, and each test piece was waited for 300 hours in a heating thermostat with an ambient temperature of 800 ° C. It was carried out in such a way that it was kept in the air, taken out of the heating thermostat and air cooled, and then the mass change was measured to determine the mass change per unit area. As a result of this experiment, as shown in Figure 2, Example 2 showed the lowest amount of oxidation. In particular, this is due to the improved oxidation resistance by appropriate addition of aluminum, which is believed to be due to the generation of a large amount of dense Al 2 O 3 at the interface with the matrix. Example 1 has a higher oxidation amount than that of Example 2, but shows a very low oxidation amount compared to Comparative Examples 1 and 2, which are existing materials, and thus, it can be seen that it is suitable as a high temperature oxidation resistant material.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 본 발명을 설명하였지만 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서 본 발명 사상은 아래에 기재된 특허청구범위에 의해서 파악되어야 하고, 이의 균등 또는 등가적 변형 모두가 본 발명 사상의 범주에 속한다고 할 것이다.As described above, the present invention has been described with reference to preferred embodiments of the present invention, but a person of ordinary skill in the art does not depart from the spirit and scope of the present invention as set forth in the claims below. It will be understood that various modifications and variations can be made in the present invention. Therefore, the spirit of the present invention should be understood by the claims described below, and all equivalent or equivalent modifications thereof will belong to the scope of the present invention.
Claims (1)
탄소 2.7~4.0 wt%, 알루미늄 1.5~4.0 wt%, 규소 1.5~4.0 wt%, 몰리브덴 0.3~0.8 wt%, 마그네슘 0.025~0.050 wt%, 망간 0.40 wt% 이하, 인 0.05 wt% 이하, 및 황 0.05 wt% 이하의 조성을 갖는 것을 특징으로 하는 구상흑연주철.Based on iron
2.7-4.0 wt% carbon, 1.5-4.0 wt% aluminum, 1.5-4.0 wt% silicon, 0.3-0.8 wt% molybdenum, 0.025-00.050 wt% magnesium, 0.40 wt% or less manganese, 0.05 wt% or less phosphorus, and sulfur 0.05 Spheroidal graphite cast iron, characterized in that having a composition of wt% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100074171A KR20120012176A (en) | 2010-07-30 | 2010-07-30 | Nodular cast iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100074171A KR20120012176A (en) | 2010-07-30 | 2010-07-30 | Nodular cast iron |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20120012176A true KR20120012176A (en) | 2012-02-09 |
Family
ID=45836177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100074171A Withdrawn KR20120012176A (en) | 2010-07-30 | 2010-07-30 | Nodular cast iron |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20120012176A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016084021A1 (en) * | 2014-11-26 | 2016-06-02 | Honeywell International Inc. | Cast silicon molybdenum aluminium ferritic ductile iron |
CN117604371A (en) * | 2023-12-12 | 2024-02-27 | 河北京东管业有限公司 | Spheroidal graphite cast iron and preparation method thereof |
-
2010
- 2010-07-30 KR KR1020100074171A patent/KR20120012176A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016084021A1 (en) * | 2014-11-26 | 2016-06-02 | Honeywell International Inc. | Cast silicon molybdenum aluminium ferritic ductile iron |
CN117604371A (en) * | 2023-12-12 | 2024-02-27 | 河北京东管业有限公司 | Spheroidal graphite cast iron and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102127674B (en) | Austenite ductile cast iron | |
US20080206584A1 (en) | High strength gray cast iron | |
US20100178193A1 (en) | Cast iron alloy with good oxidation resistance at high temperatures | |
JPWO2005007914A1 (en) | Austenitic heat-resistant spheroidal graphite cast iron | |
US8540932B2 (en) | Ferritic spheroidal graphite cast iron | |
KR101013843B1 (en) | High silicon ferritic CB graphite cast iron with high temperature strength and oxidation resistance | |
EP3202939B1 (en) | Austenitic heat-resistant cast steel having excellent thermal fatigue characteristics, and exhaust system component comprising same | |
KR20150106624A (en) | Heat-resistant spherical graphite cast iron, methods of preparing spherical graphite cast iron and exhaust system part including spherical graphite cast iron | |
KR20140010448A (en) | Cast iron alloy and exhaust component manufactured thereby | |
KR102148758B1 (en) | Spherical graphite cast iron for an engine exhaust system | |
KR101845761B1 (en) | Ferritic spheroidal cast iron for exhaust system | |
KR100435324B1 (en) | Cast iron with improved oxidation resistance at high temperature | |
JP3821310B2 (en) | Heat resistant spheroidal graphite cast iron | |
KR20120012176A (en) | Nodular cast iron | |
JP4233056B1 (en) | Spheroidal graphite cast iron and method for producing the same | |
KR101438825B1 (en) | Ferritic spheroidal graphite cast iron | |
KR101054771B1 (en) | Ferritic Spheroidal Graphite Cast Iron Castings | |
JP2002129276A (en) | Cast iron material having excellent machinability and thermal fatigue resistance | |
JPH0686642B2 (en) | Heat resistant spheroidal graphite cast iron | |
JP6670779B2 (en) | Spheroidal graphite cast iron and exhaust system parts | |
KR20160066574A (en) | Heat resistant cast steel having superior high temperature strength and oxidation resistant | |
KR20120000420A (en) | Austenitic heat-resistant cast steel with excellent high temperature fatigue life and elongation and exhaust manifold manufactured using the same | |
JPH0524977B2 (en) | ||
KR20150066759A (en) | High Strength Silicon-Cupper-Tungsten Ductile Cast Iron | |
KR20110057835A (en) | Ferrite Heat Resistant Cast Steel for Exhaust Manifold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20100730 |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination | ||
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |