[go: up one dir, main page]

KR20110072284A - Carbon electrode manufacturing method through electrochemical activation and carbon electrode and redox flow cell manufactured therefrom - Google Patents

Carbon electrode manufacturing method through electrochemical activation and carbon electrode and redox flow cell manufactured therefrom Download PDF

Info

Publication number
KR20110072284A
KR20110072284A KR1020090129144A KR20090129144A KR20110072284A KR 20110072284 A KR20110072284 A KR 20110072284A KR 1020090129144 A KR1020090129144 A KR 1020090129144A KR 20090129144 A KR20090129144 A KR 20090129144A KR 20110072284 A KR20110072284 A KR 20110072284A
Authority
KR
South Korea
Prior art keywords
carbon electrode
carbon
electrode
redox flow
electrochemical activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020090129144A
Other languages
Korean (ko)
Inventor
진창수
김훈욱
신경희
이범석
전명석
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090129144A priority Critical patent/KR20110072284A/en
Publication of KR20110072284A publication Critical patent/KR20110072284A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 전기화학적으로 활성화를 통한 탄소전극 제조방법에 관한 것으로, 더 상세하게는 단셀 또는 스택이 조립된 상태에서 전기화학적으로 처리하여 쉽고 빠르게 탄소전극을 활성화 할 수 있고, 탄소전극의 산소관능기를 증대시켜 레독스 흐름전지의 용량과 효율을 향상 시킬 뿐 아니라 전극의 저항을 감소시키고 전지내 전압강하(IR drop)를 작게 하는 등 레독스 흐름전지의 전극특성을 향상시킨 전기화학적 활성화를 통한 탄소전극 제조방법 및 그 탄소전극과 그것으로 제조된 레독스 흐름전지에 관한 것이다.The present invention relates to a method for producing a carbon electrode through electrochemical activation, and more particularly, it is possible to easily and quickly activate the carbon electrode by electrochemical treatment in a single cell or stack assembled state, the oxygen functional group of the carbon electrode By increasing the capacity and efficiency of the redox flow cell, the carbon electrode through electrochemical activation that improves the electrode characteristics of the redox flow cell, such as reducing the electrode resistance and reducing the IR drop in the cell. A manufacturing method and a carbon electrode thereof, and a redox flow battery produced therefrom.

레독스 흐름전지, 탄소전극, 전기화학적 활성화 Redox flow cell, carbon electrode, electrochemical activation

Description

전기화학적 활성화를 통한 탄소전극 제조방법 및 그 탄소전극과 그것으로 제조된 레독스 흐름전지{MANUFACTURING METHOD OF CARBON ELECTRODE THROUGH ELECTROCHEMICALLY ACTIVATED AND CARBON ELECTRODE THEREOF AND REDOX FLOW BATTERY MANUFACTURED THEREBY}Method for manufacturing carbon electrode through electrochemical activation and carbon electrode and redox flow battery manufactured therefrom

본 발명은 전기화학적으로 활성화를 통한 탄소전극 제조방법에 관한 것으로, 더 상세하게는 단셀 또는 스택이 조립된 상태에서 전기화학적으로 처리하여 쉽고 빠르게 탄소전극을 활성화 할 수 있고, 탄소전극의 산소관능기를 증대시켜 레독스 흐름전지의 용량과 효율을 향상 시킬 뿐 아니라 전극의 저항을 감소시키고 전지내 전압강하(IR drop)를 작게 하는 등 레독스 흐름전지의 전극특성을 향상시킨 전기화학적 활성화를 통한 탄소전극 제조방법 및 그 탄소전극과 그것으로 제조된 레독스 흐름전지에 관한 것이다.The present invention relates to a method for producing a carbon electrode through electrochemical activation, and more particularly, it is possible to easily and quickly activate the carbon electrode by electrochemical treatment in a single cell or stack assembled state, the oxygen functional group of the carbon electrode By increasing the capacity and efficiency of the redox flow cell, the carbon electrode through electrochemical activation that improves the electrode characteristics of the redox flow cell, such as reducing the electrode resistance and reducing the IR drop in the cell. A manufacturing method and a carbon electrode thereof, and a redox flow battery produced therefrom.

최근 기후변화협약 발효에 따라 화석연료에 의한 지구 온난화의 주요 원인인 온실가스 배출 억제를 위해 태양광, 풍력, 연료전지 등 신재생에너지가 각광을 받 으면서 실용화 보급이 진행되고 있다. Recently, with the entry into force of the Climate Change Convention, new and renewable energy sources such as solar, wind, and fuel cells have been in the spotlight in order to suppress greenhouse gas emissions, a major cause of global warming caused by fossil fuels.

그러나 재생에너지는 입지환경이나 자연조건에 크게 영향을 받으므로 출력 변동이 심하여 연속적 공급이 불가능하고 에너지 생산시점과 수요시점의 시간차가 발생하게 되어 에너지저장 시스템이 중요하게 대두된다. However, since renewable energy is greatly influenced by the location environment and natural conditions, the output fluctuates so that continuous supply is impossible, and the time difference between the time of energy production and demand occurs, and the energy storage system is important.

현재 대규모 태양광발전 및 풍력발전 단지에는 대용량 2차전지 저장시스템이 각광을 받고 있으며 대용량의 전력저장을 위한 2차전지로는 납축전지, NaS 전지 그리고 레독스 흐름 전지 (RFB, redox flow battery) 등이 있다.Currently, large-scale photovoltaic and wind farms are attracting attention for large-capacity secondary battery storage systems. Secondary batteries for large-capacity power storage include lead acid batteries, NaS batteries, and redox flow batteries (RFBs). have.

상기 납축전지는 다른 전지에 비해 상당히 안정된 기술로써 산업용으로 널리 사용되고 있으나 낮은 효율 및 주기적인 교체로 인한 유지 보수의 비용과 전지 교체시 발생하는 산업폐기물의 처리문제 등의 단점이 있다. 또한, NaS 전지의 경우 에너지 효율이 높은 것이 장점이나 300℃이상의 고온에서 작동하는 단점이 있다.The lead acid battery has been widely used in the industry as a technology that is considerably more stable than other batteries, but has disadvantages such as low efficiency and maintenance costs due to periodic replacement and disposal of industrial waste generated during battery replacement. In addition, NaS battery has the advantage of high energy efficiency, but has the disadvantage of operating at a high temperature of more than 300 ℃.

그러나, 레독스 흐름전지는 용량과 출력을 각기 독립적으로 설계할 수 있는 장점이 있어 주목받는 대용량 2차전지로 많은 연구가 수행되고 있다.However, the redox flow battery has a merit that the capacity and output can be designed independently of each other, a lot of research has been carried out as a high-capacity secondary battery.

특히 레독스 흐름전지의 구성 요소 중 전극에 대한 연구가 활발하게 진행되고 있으며, 대량생산 및 집적화를 목적으로 전극 제조 분야와 전극과 전해액의 반응성을 높이기 위한 전극 활성화에 대한 연구로 집약된다.In particular, research on electrodes among the components of a redox flow battery is being actively conducted, and it is concentrated on the electrode manufacturing field and the electrode activation to increase the reactivity of the electrode and the electrolyte for the purpose of mass production and integration.

일반적으로 레독스 흐름 전지용 전극은 전기전도도와 기계적 강도가 우수하며 전지에 적용시 높은 효율을 보일 수 있어야 한다. 더욱이 가격이 저렴하고 활물질과의 산화-환원 반응성이 우수하면서 전극반응이 가역적이어야 한다.In general, an electrode for a redox flow battery has excellent electrical conductivity and mechanical strength and should be able to exhibit high efficiency when applied to a battery. In addition, the electrode reaction should be reversible while being inexpensive and having excellent redox reactivity with the active material.

상기 레독스 흐름전지의 전극으로 사용되는 탄소는 대개 소수성을 띠고 있기 때문에 다양한 방법을 이용하여 친수성을 향상시키기 위한 연구가 진행되고 있다.Since carbon used as an electrode of the redox flow battery is generally hydrophobic, studies are being conducted to improve hydrophilicity using various methods.

또한 전극표면을 활성화 처리하면 탄소전극 표면에 다양한 관능기가 생성되는데, 레독스 전지에서 탄소표면과 바나듐 이온의 반응 메카니즘은 탄소와 바나듐과의 화학적 또는 전기화학적 반응이 아닌 탄소표면에 존재하는 관능기의 반응자리를 통해 바나듐 이온에서 탄소전극으로 전자가 이동하는 것을 보고되었다. 따라서 탄소전극의 전기화학적 특성을 개선할려면 탄소전극의 표면에 많은 반응자리를 만드는 것이 유리하다.In addition, when the electrode surface is activated, various functional groups are generated on the surface of the carbon electrode. In the redox battery, the reaction mechanism of the carbon surface and vanadium ions is not the chemical or electrochemical reaction between carbon and vanadium, but the reaction of the functional group on the carbon surface. It has been reported that electrons move from vanadium ions to carbon electrodes through the site. Therefore, in order to improve the electrochemical properties of the carbon electrode, it is advantageous to make many reaction sites on the surface of the carbon electrode.

이러한 전극의 친수성을 개선할 뿐 아니라 전극의 반응성 향상시키기 위해 기존에는 열 및 가스를 이용하는 물리적 활성화, 산 및 염기를 이용하는 화학적 활성화 그리고 플라즈마 처리법 등이 보고되었다. 그러나 물리적 또는 화학적 처리를 통한 활성화 방법 등은 비용이 많이 들고 시간이 오래 걸린다는 단점이 있다. In order to improve the hydrophilicity of the electrode as well as to improve the reactivity of the electrode, conventionally, physical activation using heat and gas, chemical activation using acid and base, and plasma treatment have been reported. However, activation methods through physical or chemical treatments are disadvantageous in that they are expensive and take a long time.

따라서 저가의 비용으로 단시간동안 활성화할 수 있는 방법이 요구되고 있다.Therefore, there is a need for a method that can be activated for a short time at low cost.

이에 본 발명에 따른 전기화학적 활성화를 통한 탄소전극 제조방법 및 그 탄소전극과 그것으로 제조된 레독스 흐름전지는, The carbon electrode manufacturing method through the electrochemical activation according to the present invention and the carbon electrode and a redox flow battery manufactured therewith,

단셀 또는 스택이 조립된 상태에서 탄소전극을 전기화학적 처리하여 단시간동안 저비용으로 활성화가 이루어지는 탄소전극의 제공을 목적으로 한다.An object of the present invention is to provide a carbon electrode which is activated at low cost for a short time by electrochemical treatment of the carbon electrode in a state where the unit cell or stack is assembled.

또한 전기화학적 처리된 탄소전극의 산소 관능기를 증가시켜 레독스 흐름전지의 용량과 전압효율(voltage efficiency)을 향상 시킬 뿐 아니라 전극의 저항을 감소시키고 전지내 전압강하(IR drop)를 작게하여 레독스 흐름전지의 특성을 향상시키는 방법을 제공하는 것에 목적이 있다.In addition, by increasing the oxygen function of the electrochemically treated carbon electrode, not only does it improve the capacity and voltage efficiency of the redox flow battery, but also decreases the resistance of the electrode and decreases the IR drop in the battery, thereby reducing the redox. It is an object to provide a method for improving the characteristics of a flow cell.

아울러 본 발명은 위와 같이 제조된 전극을 사용하여 레독스 흐름전지에 제공하는 것에 그 목적이 있다. In addition, the present invention has an object to provide a redox flow battery using the electrode prepared as described above.

상기 과제를 해소하기 위한 본 발명의 전기화학적 활성화를 통한 탄소전극 제조방법은,Carbon electrode manufacturing method through the electrochemical activation of the present invention for solving the above problems,

활성화된 탄소전극 제조방법에 있어서, 단셀 또는 스택이 조립된 형태의 셀 전극부분에 증류수와 산의 혼합용액을 가득 채우는 단계와, 상기 전극 부분을 전기화학적으로 활성화하는 단계를 포함하여 이루어진다.In the method of manufacturing an activated carbon electrode, the method comprises a step of filling a mixed solution of distilled water and an acid in a cell electrode part assembled with a single cell or a stack, and electrochemically activating the electrode part.

또한, 본 발명의 전기화학적 활성화를 통한 탄소전극 제조방법에 의해 제조된 탄소전극은,In addition, the carbon electrode prepared by the carbon electrode manufacturing method through the electrochemical activation of the present invention,

셀의 전극부분에 혼합용액을 채우는 단계와, 전기화학적으로 활성화하는 단계를 통해 제조되어 XPS측정시 탄소-산소 단일결합 대 탄소-산소 이중결합의 비가 0.2~3를 갖는다.It is prepared through the step of filling a mixed solution in the electrode part of the cell, and the step of electrochemically activated has a ratio of carbon-oxygen single bond to carbon-oxygen double bond in the XPS measurement is 0.2 ~ 3.

또한, 본 발명의 레독스 흐름전지는, 본 발명의 전기화학적 활성화를 통한 탄소전극 제조방법에 의해 제조된 탄소전극을 사용하여 제조된다. In addition, the redox flow battery of the present invention is manufactured using a carbon electrode manufactured by the carbon electrode manufacturing method through the electrochemical activation of the present invention.

이상에서 상세히 기술한 바와 같이 본 발명의 전기화학적 활성화를 통한 탄소전극 제조방법 및 그 탄소전극과 그것으로 제조된 레독스 흐름전지는, As described in detail above, the carbon electrode manufacturing method through the electrochemical activation of the present invention and the carbon electrode and a redox flow battery manufactured therewith,

레독스 흐름전지용 탄소전극을 전기화학적 처리하여 단시간동안 저비용으로 탄소전극을 활성화하여 전극 저항을 감소시킨다. Electrochemical treatment of the redox flow battery carbon electrode reduces the electrode resistance by activating the carbon electrode at low cost for a short time.

또한 전기화학적 처리된 탄소전극의 산소 관능기를 증가시켜 레독스 흐름전지의 용량과 전압효율(voltage efficiency)을 향상 시킬 뿐 아니라 전지내 전압강하(IR drop)를 작게하는 등, 레독스 흐름전지의 특성을 향상시키는 효과가 있다. In addition, by increasing the oxygen functional group of the electrochemically treated carbon electrode to improve the capacity and voltage efficiency of the redox flow battery, the characteristics of the redox flow battery, such as reducing the voltage drop (IR drop) in the battery Has the effect of improving.

본 발명에 따른 전기화학적 활성화를 통한 탄소전극 제조방법은,Carbon electrode manufacturing method through the electrochemical activation according to the present invention,

활성화된 탄소전극 제조방법은 먼저 혼합용액을 제조하게 된다. 상기 혼합용액은 증류수에 황산, 질산, 인산으로 이루어진 군으로부터 일종 또는 이종이상 혼합된 산을 0.1~20M 첨가하여 상온에서 약 1~3시간정도 교반해 제조한다.Activated carbon electrode manufacturing method is to prepare a mixed solution first. The mixed solution is prepared by adding about 0.1 to 20 M of distilled water in a group consisting of sulfuric acid, nitric acid, and phosphoric acid, mixed with one or more kinds of acids, at about room temperature for about 1 to 3 hours.

다음으로는 레독스 전지용 탄소전극을 전기화학적 활성화하기 위해 셀을 조립한다. 셀은 단셀 또는 스택으로 조립된 셀을 선택 사용한다. Next, a cell is assembled to electrochemically activate the carbon electrode for the redox battery. The cell selects a cell assembled into a single cell or a stack.

상기 조립된 셀을 욕조에 넣은 후 증류수와 산의 혼합물 채우거나 셀의 전극 부분에 증류수와 산의 혼합물을 가득채우는 단계가 수행된다. After the assembled cell is placed in a bath, a step of filling the mixture of distilled water and acid or filling the electrode portion of the cell with the mixture of distilled water and acid is performed.

상기 셀내의 전극부분에 혼합용액이 가득 채운 다음으로는 전류를 가해 탄소전극을 활성화하는 단계가 수행된다. 이 때 활성화는 0.1~50V 전압에서 0.01~10V/s의 정전압을 주사하는 것을 1회~5000회 동안 반복하여 활성화시킨다. After the mixed solution is filled in the electrode part of the cell, a step of applying a current to activate the carbon electrode is performed. In this case, the activation is repeated 1 to 5000 times by scanning a constant voltage of 0.01 ~ 10V / s at a voltage of 0.1 ~ 50V.

상기 전압은 0.1V 미만의 범위에서는 전기화학적 활성화시 전극의 활성이 잘되지 않으며, 50V보다 높은 전압범위에서는 전기화학적 활성화시 전극에 손상이 가해진다. 또한, 상기 정전압 주사 속도보다 낮은 경우 전극의 활성이 잘되지 않으며, 높은 경우 전극에 손상이 가해짐으로 상기 범위내로 설정되는 것이 바람직하다. 아울러 상기 반복 주사횟수는 제시된 범위보다 더 많은 횟수로 반복하여도 전극의 활성은 이루어지나 레독스 흐름전지에 적용시 효율이 나빠지는 경향이 있으므로, 상기 범위로 가해지는 것이 바람직하다. In the voltage range of less than 0.1V, the electrode is not activated well during electrochemical activation, and in the voltage range higher than 50V, the electrode is damaged during electrochemical activation. In addition, when the lower than the constant voltage scan rate, the activity of the electrode is not good, and when it is high, it is preferable to set within the above range because damage is applied to the electrode. In addition, since the repeated scan frequency is repeated even more times than the suggested range, the activity of the electrode is achieved, but when applied to a redox flow battery, the efficiency tends to be deteriorated.

또한, 본 발명의 전기화학적 활성화를 통한 탄소전극 제조방법에 의해 제조된 탄소전극은,In addition, the carbon electrode prepared by the carbon electrode manufacturing method through the electrochemical activation of the present invention,

셀의 전극부분에 혼합용액을 채우는 단계와, 전기화학적으로 활성화하는 단계를 통해 제조되어 XPS측정시 탄소-산소 단일결합 대 탄소-산소 이중결합의 비가 0.2~3를 갖는다.It is prepared through the step of filling a mixed solution in the electrode part of the cell, and the step of electrochemically activated has a ratio of carbon-oxygen single bond to carbon-oxygen double bond in the XPS measurement is 0.2 ~ 3.

또한, 본 발명의 레독스 흐름전지는, 본 발명의 전기화학적 활성화를 통한 탄소전극 제조방법에 의해 제조된 탄소전극을 사용하여 제조된다.In addition, the redox flow battery of the present invention is manufactured using a carbon electrode manufactured by the carbon electrode manufacturing method through the electrochemical activation of the present invention.

상기 레독스 흐름전지는 전해액으로 0.1~7M의 바나듐이 포함된 1~10M의 황산용액을 사용하여 1~60mAh/ml의 용량을 가지거나, 60~99%의 전압효율(voltage efficiency)을 갖도록 한다.The redox flow battery has a capacity of 1 to 60 mAh / ml or a voltage efficiency of 60 to 99% using 1 to 10 M sulfuric acid solution containing 0.1 to 7 M of vanadium as electrolyte. .

이하, 실시예를 통해 본 발명을 보다 상세하게 설명하며, 이는 본 발명의 이해를 돕기 위해 제시된 예일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples, which are only examples presented to aid the understanding of the present invention, and the present invention is not limited thereto.

실시예 1Example 1

- 탄소전극의 전기화학적 활성화-Electrochemical activation of carbon electrodes

먼저 탄소전극을 3×4cm로 2개를 재단한 후 도 1과 같이 셀을 조립하였다. First, two carbon electrodes were cut to 3 × 4 cm, and then cells were assembled as shown in FIG. 1.

도시된 셀(100)은 중앙에 멤브레인(10)을 위치시키고, 그 양측으로 각각 플로우프레임(20)과 탄소전극(30)과 집전체(40)를 배치하여 조립하였다.In the illustrated cell 100, the membrane 10 is positioned at the center, and the flow frame 20, the carbon electrode 30, and the current collector 40 are disposed on both sides thereof.

이렇게 조립한 셀에 2M의 황산용액을 전극부에 2ml주입하였다.2 ml of 2 M sulfuric acid solution was injected into the electrode unit in the cell thus assembled.

그 후, 집전체(current collector)를 통해 ±2V의 전압범위에서 1V/s의 정전압으로 전류를 주사하여 100, 200, 300, 400 그리고 500 싸이클동안 반복하였다.Then, a current was scanned at a constant voltage of 1 V / s in a voltage range of ± 2 V through a current collector and repeated for 100, 200, 300, 400 and 500 cycles.

이렇게 제조된 탄소전극의 저항 변화를 도 2에 도시하였다. 이 경우 200싸이클 동안 활성화한 탄소전극이 가장 저항이 작은 것을 확인할 수 있었다.The change in resistance of the carbon electrode thus produced is shown in FIG. 2. In this case, it was confirmed that the carbon electrode activated for 200 cycles had the least resistance.

또한 각각의 싸이클에 따라 XPS를 측정하여 산소(O1s)피크를 탄소-산소 단일겹합과, 탄소-산소 이중결합의 비율 변화를 도 3에 도시하였다.In addition, the XPS was measured according to each cycle, and oxygen (O1s) peaks were shown in FIG. 3 in the ratio change of the carbon-oxygen single bond and the carbon-oxygen double bond.

그 결과, 200싸이클 동안 활성화한 탄소전극이 탄소-산소 단일겹합대 탄소- 산소 이중결합의 비가 가장 높은 것을 확인할 수 있었다.As a result, it was confirmed that the carbon electrode activated for 200 cycles had the highest ratio of carbon-oxygen single bond to carbon-oxygen double bond.

실시예 2Example 2

- 전기화학적 활성화된 탄소전극을 레독스 흐름전지에 적용하였을때 전기화학적 특성-Electrochemical Properties of Electrochemically Activated Carbon Electrodes for Redox Flow Cells

상기 실시예 1을 통해 전극저항이 가장 작고 탄소-산소 단일겹합대 탄소-산소 이중결합의 비가 가장 높은 200 싸이클 탄소전극을 이용하여 도 1과 같은 셀을 조립하였다.In Example 1, a cell as shown in FIG. 1 was assembled using a 200-cycle carbon electrode having the smallest electrode resistance and having the highest ratio of carbon-oxygen single bond to carbon-oxygen double bond.

조립된 셀에 1M의 바나듐(4가와 3가)이 포함된 2M의 황산용액을 각각 양극과 음극부에 2ml넣어 레독스 전지를 완성하였다.A redox battery was completed by putting 2 ml of 2M sulfuric acid solution containing 1M vanadium (tetravalent and trivalent) into the positive and negative electrodes, respectively, in the assembled cell.

제조된 레독스 전지에 대해 5mA/cm2의 전류밀도로 충방전 특성을 조사하였으며, 동일한 방법으로 전기화학적 처리를 하지 않은 탄소전극을 레독스 셀을 조립하여 비교해 보았다.The charge and discharge characteristics of the prepared redox batteries were investigated at a current density of 5 mA / cm 2 , and the carbon electrodes, which were not electrochemically treated, were assembled and compared with the redox cells.

도 4는 싸이클에 따른 전기화학적 처리를 하지 않은 탄소전극과 200 싸이클동안 전기화학적 처리한 탄소전극의 전압효율(voltage efficiency)변화를 나타내었다. 전기화학적 처리를 하지 않은 탄소전극보다 처리한 탄소전극의 전압효율이 더 좋은 것을 관찰할 수 있었으며, 또한 싸이클이 진행됨에 따라 효율감소는 관찰되지 않는 것을 관찰할 수 있었다.FIG. 4 shows changes in voltage efficiency of the carbon electrode without electrochemical treatment and the carbon electrode electrochemically treated for 200 cycles according to the cycle. It was observed that the voltage efficiency of the treated carbon electrode was better than that of the non-electrochemically treated carbon electrode, and the efficiency decrease was not observed as the cycle progressed.

도 5a와 도 5b는 전기화학적 처리를 하지 않은 탄소전극(도5a)과 200싸이클 동안 전기화학적 처리한 탄소전극(도5b)의 시간에 따른 전압의 변화를 나타낸 그래프이다.5A and 5B are graphs showing changes in voltage over time of a carbon electrode (FIG. 5A) not electrochemically treated and a carbon electrode (FIG. 5B) electrochemically treated for 200 cycles.

전기화학적 처리를 하지 않은 탄소전극보다 처리한 탄소전극이 전압강화(IR drop)가 더 작은 것을 관찰할 수 있었다. It was observed that the treated carbon electrode had a smaller IR drop than the electrochemically treated carbon electrode.

따라서 전기화학적 처리를 하지 않은 탄소전극보다 처리한 탄소전극이 레독스 전지용 전극으로 더 적합한 것을 알 수 있었다.Therefore, it can be seen that the treated carbon electrode is more suitable as an electrode for redox battery than the carbon electrode without electrochemical treatment.

도 1은 본 발명의 실시예에 의한 셀구조를 도시한 단면도.1 is a cross-sectional view showing a cell structure according to an embodiment of the present invention.

도 2는 본 발명에 의해 제조된 탄소전극의 저항 변화를 나타낸 그래프.Figure 2 is a graph showing the change in resistance of the carbon electrode produced by the present invention.

도 3은 본 발명의 전류 주사 싸이클에 따른 XPS를 측정하여 산소(O1s)피크를 탄소-산소 단일겹합과, 탄소-산소 이중결합의 비율 변화를 나타낸 그래프.Figure 3 is a graph showing the change in the ratio of carbon-oxygen double bonds and carbon-oxygen double bonds in oxygen (O1s) peak by measuring XPS according to the current scanning cycle of the present invention.

도 4는 본 발명에 의해 전기화학적 처리한 탄소전극과 처리하지 않은 탄소전극의 전압효율변화를 비교한 그래프.Figure 4 is a graph comparing the change in voltage efficiency of the electrochemically treated carbon electrode and the untreated carbon electrode according to the present invention.

도 5a와 도 5b는 전기화학적 처리를 하지 않은 탄소전극과 200싸이클동안 처리한 탄소전극의 시간에 따른 전압의 변화를 나타낸 그래프.5A and 5B are graphs showing changes in voltage over time of a carbon electrode not subjected to electrochemical treatment and a carbon electrode treated for 200 cycles.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100 : 셀100: cell

10 : 멤브레인10: membrane

20 : 플로우 프레임20: flow frame

30 : 탄소전극30: carbon electrode

40 : 집전체40: current collector

Claims (5)

활성화된 탄소전극 제조방법에 있어서,In the activated carbon electrode manufacturing method, 단셀 또는 스택이 조립된 형태의 셀 전극부분에 증류수와 산의 혼합용액을 가득 채우는 단계와,Filling a cell electrode portion of a unit cell or stack assembled form with a mixed solution of distilled water and an acid, 상기 전극 부분을 전기화학적으로 활성화하는 단계를 포함하여 이루어짐을 특징으로 하는 전기화학적 활성화를 통한 탄소전극 제조방법.Method of producing a carbon electrode through electrochemical activation, characterized in that comprises the step of electrochemically activating the electrode portion. 제1항에 있어서,The method of claim 1, 상기 혼합용액은 황산, 질산, 인산으로 이루어진 군으로부터 일종 또는 이종이상 혼합된 0.1~10M의 몰농도인 용액인 것을 특징으로 하는 전기화학적 활성화를 통한 탄소전극 제조방법.The mixed solution is a carbon electrode manufacturing method through the electrochemical activation, characterized in that the solution of a molar concentration of 0.1 ~ 10M mixed in one or more species from the group consisting of sulfuric acid, nitric acid, phosphoric acid. 제1항에 있어서,The method of claim 1, 상기 활성화는 혼합용액에 0.1~50V의 전압범위로 0.01~10V/s의 전압을 주사하여 1~5000 싸이클 동안 반복하여 이루어지는 것을 특징으로 하는 전기화학적 활성화를 통한 탄소전극 제조방법.The activation is a carbon electrode manufacturing method through the electrochemical activation, characterized in that repeated for 1 to 5000 cycles by scanning a voltage of 0.01 ~ 10V / s in a voltage range of 0.1 ~ 50V to the mixed solution. 청구항 1항 내지 3항의 제조방법에 의해 제조되어 XPS측정시 탄소-산소 단일결합 대 탄소-산소 이중결합의 비가 0.2~3인 것을 특징으로 하는 전기화학적 활성 화를 통한 탄소전극.Claims 1 to 3 of the carbon electrode through the electrochemical activation, characterized in that the ratio of carbon-oxygen single bond to carbon-oxygen double bond in the XPS measurement is 0.2 to 3. 청구항 1항 내지 3항의 전기화학적 활성화를 통한 탄소전극 제조방법에 의해 제조된 제4항의 탄소전극으로 제조된 레독스 흐름전지.Redox flow battery manufactured by the carbon electrode of claim 4 prepared by the carbon electrode manufacturing method through the electrochemical activation of claim 1 to claim 3.
KR1020090129144A 2009-12-22 2009-12-22 Carbon electrode manufacturing method through electrochemical activation and carbon electrode and redox flow cell manufactured therefrom Ceased KR20110072284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090129144A KR20110072284A (en) 2009-12-22 2009-12-22 Carbon electrode manufacturing method through electrochemical activation and carbon electrode and redox flow cell manufactured therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090129144A KR20110072284A (en) 2009-12-22 2009-12-22 Carbon electrode manufacturing method through electrochemical activation and carbon electrode and redox flow cell manufactured therefrom

Publications (1)

Publication Number Publication Date
KR20110072284A true KR20110072284A (en) 2011-06-29

Family

ID=44403221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090129144A Ceased KR20110072284A (en) 2009-12-22 2009-12-22 Carbon electrode manufacturing method through electrochemical activation and carbon electrode and redox flow cell manufactured therefrom

Country Status (1)

Country Link
KR (1) KR20110072284A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494188B1 (en) * 2013-11-21 2015-02-23 한국에너지기술연구원 Measuring cell, measuring apparatus and redox flow battery using the same
KR101495842B1 (en) * 2013-07-04 2015-02-26 한국과학기술원 Carbon fiber electrode surface treatment method for redox flow battery
KR20160082621A (en) 2014-12-26 2016-07-08 전자부품연구원 Carbon felt with the differened in the active site and redox flow secondary battery comprises a the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495842B1 (en) * 2013-07-04 2015-02-26 한국과학기술원 Carbon fiber electrode surface treatment method for redox flow battery
KR101494188B1 (en) * 2013-11-21 2015-02-23 한국에너지기술연구원 Measuring cell, measuring apparatus and redox flow battery using the same
KR20160082621A (en) 2014-12-26 2016-07-08 전자부품연구원 Carbon felt with the differened in the active site and redox flow secondary battery comprises a the same

Similar Documents

Publication Publication Date Title
CN105529473B (en) The electrode material that energy storage flow battery is modified with graphene oxide
US9413025B2 (en) Hybrid flow battery and Mn/Mn electrolyte system
Lv et al. Enhanced electrochemical activity of carbon felt for V2+/V3+ redox reaction via combining KOH-etched pretreatment with uniform deposition of Bi nanoparticles
Dong et al. A novel titanium/manganese redox flow battery
KR101415538B1 (en) MANUFACTURING DEVICE OF ELECTROLYTE SOLUTION FOR VANADIUM REDOX FlOW BATTERY USING ELECTROLYSIS AND MANUFACTURING METHOD OF THE SAME
CN103515641B (en) A kind of trivalent vanadium ion electrolyte and preparation method thereof and a kind of vanadium cell
Hossain et al. Evolution of vanadium redox flow battery in electrode
CN108539203B (en) Super-hydrophilic material modified electrode material for energy storage flow battery
KR101341088B1 (en) Laminated electrolyte membrane and produce method, and Redox flow battery including electrolyte membrane
Dong et al. Improved performance of Ti/Mn redox flow battery by thermally treated carbon paper electrodes
CN102522569B (en) Method for modifying carbon porous material
Li et al. Oxygen vacancy and size controlling endow tin dioxide with remarked electrocatalytic performances towards vanadium redox reactions
CN104716349B (en) A kind of preparation method of high activity electrode material used for all-vanadium redox flow battery
CN106450405B (en) Flow battery stack structure
KR20110072284A (en) Carbon electrode manufacturing method through electrochemical activation and carbon electrode and redox flow cell manufactured therefrom
Choi et al. Operational characteristics of high-performance kW class alkaline electrolyzer stack for green hydrogen production
CN112897581B (en) Preparation method of all-vanadium redox battery electrode material
Noack et al. A comparison of materials and treatment of materials for vanadium redox flow battery
Ayers et al. Fueling vehicles with sun and water
CN111740127A (en) Electrochemical modification method of graphite felt electrode material of vanadium battery
KR101327741B1 (en) Nanoparticles as a support for redox couple and redox flow battery including the same
Zaffou et al. Vanadium redox flow batteries for electrical energy storage: Challenges and opportunities
CN105322194A (en) Multifunctional negative material and application thereof in all-vanadium redox flow battery
CN109904468B (en) Preparation method of bacteria modified carbon electrode
CN103922336A (en) Treatment method of active carbon

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20091222

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110805

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20120221

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20110805

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I