KR20110036385A - 사용자 의도 분석 장치 및 방법 - Google Patents
사용자 의도 분석 장치 및 방법 Download PDFInfo
- Publication number
- KR20110036385A KR20110036385A KR1020090094019A KR20090094019A KR20110036385A KR 20110036385 A KR20110036385 A KR 20110036385A KR 1020090094019 A KR1020090094019 A KR 1020090094019A KR 20090094019 A KR20090094019 A KR 20090094019A KR 20110036385 A KR20110036385 A KR 20110036385A
- Authority
- KR
- South Korea
- Prior art keywords
- sentence
- intention
- semantic role
- determined
- frame
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims description 24
- 230000001419 dependent effect Effects 0.000 claims abstract description 8
- 238000001914 filtration Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 23
- 230000008569 process Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/205—Parsing
- G06F40/211—Syntactic parsing, e.g. based on context-free grammar [CFG] or unification grammars
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
- G06F40/35—Discourse or dialogue representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/26—Speech to text systems
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/18—Speech classification or search using natural language modelling
- G10L15/1815—Semantic context, e.g. disambiguation of the recognition hypotheses based on word meaning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Machine Translation (AREA)
Abstract
OOG(Out-of-Grammar)가 포함된 문장에 대해서도 의도 분석이 가능한 의도 분석 시스템이 개시된다. 의도 분석 장치는 적어도 하나의 문장에 대하여 각각 적어도 하나의 구문들 단위로 문맥 자유 문법을 적용하여 적어도 하나의 문장 각각에 대한 구문 스포팅을 수행하여 OOG에 대한 인식 범위를 확장한다. 한편, 의도 분석 장치는 구문 스포팅이 수행된 문장에 의존 문법을 이용하여 적어도 하나의 문장이 각각 문법적으로 유효한 문장인지 판별하여 유효하지 않은 문장을 필터링하고, 유효한 문장에 대해서 의도 분석 결과를 생성함으로써 음성 인식 범위를 확장하면서도 음성 인식된 문장을 문법적으로 또는 의미적으로 검증한다.
음성 인식, 의도 분석, Out-of-Grammar, 문맥 자유 문법, 의존 문법, 구문 스포팅
Description
하나 이상의 양상은 사용자의 의도를 분석하는 시스템에 관한 것으로, 더욱 상세하게는 사용자에 의해 생성된 문장의 의도 분석 장치 및 방법에 관한 것이다.
사람과 컴퓨터 시스템 간의 인터랙션에서도 음성을 통한 인터랙션 기술이 필수적 요소가 되고 있다. 현재의 음성 인식 기술은 기술적으로 상당한 진보를 이루어 미리 정의된 발화들에 대해서는 높은 성능을 보여주고 있다.
현재 사용자 발화를 모델링하기 위하여 사용되는 언어 모델은 크게 문맥 자유 문법(Context Free Grammar)과 같은 문법 기반 모델(grammar-based model)과 n-그램(n-gram)과 같은 통계적 언어 모델(statistical language model)로 나누어질 수 있다. 문법 기반 모델은 구조적 의미적으로 옳은 문장만을 인식 결과로 허용하는 장점이 있으나 사전에 문법으로 정의되지 않은 문장에 대해서는 인식이 불가능한 단점이 있다. 통계적 언어 모델은 이와 반대로 미리 정의되지 않은 문장도 일부 인식이 가능하고 수동으로 문법을 작성해야 할 필요가 없다는 장점이 있다. 그러나, 전체 문장 구조를 보지 못하기 때문에 비문과 같은 문장도 인식 결과로 나올 수 있고, 언어 모델을 만들기 위해 대량의 학습 데이터가 필요한 문제점도 있다. 이러한 단점들로 인해 현재의 음성 대화 시스템은 실세계의 애플리케이션에서 사용되기 어려운 면이 있다.
사용자의 발화 등에 의해 생성된 문장에 대한 정확한 의도 분석을 위해서 미리 정의되지 않은 문장 즉, OOG(Out-of-Grammar)가 포함된 문장에 대해서도 의도 분석을 할 수 있는 의도 분석 장치 및 방법이 제공된다.
일 양상에 따른 의도 분석 장치는 구문 스포팅부, 유효 문장 결정부 및 의도 분석부를 포함한다. 구문 스포팅부는 적어도 하나의 문장에 대하여 각각 단어 또는 구문 단위로 문맥 자유 문법을 적용하여 적어도 하나의 문장 각각에 대한 구문 스포팅을 수행한다. 유효 문장 결정부는 구문 스포팅이 수행된 문장에 의존 문법을 이용하여 적어도 하나의 문장이 각각 문법적으로 유효한 문장인지 판별하여 유효하지 않은 문장을 필터링한다. 의도 분석부는 유효한 문장으로 판별된 문장에 대해서 의도 분석 결과를 생성한다.
의도 분석부는 의미 역할 값을 할당할 때, 구문 스포팅이 수행된 문장의 적어도 하나의 의미 역할 요소와 선정된 의도 프레임 내의 적어도 하나의 의미 역할 요소가 서로 일치하는 경우, 구문 청킹을 통하여 구문 스포팅이 수행된 문장으로부터 의미 역할 값들을 결정하고, 결정된 의미 역할 값들을 선정된 의도 프레임내의 의미 역할 요소에 할당할 수 있다.
의도 분석부는 구문 스포팅이 수행된 문장 내에 의도 프레임 내의 적어도 하나의 의미 역할 요소에 존재하지 않는 의미 역할 요소가 있으면, 역할 네트워크를 이용하여 존재하지 않는 의미 역할 요소를 의도 프레임에서 존재하는 의미 역할 요소로 대체할 수 있는지 결정하고, 대체할 수 있는 것으로 결정되는 경우, 결정된 의미 역할 요소들에 대한 의미 역할 값들을 구문 청킹을 통하여 구문 스포팅이 수행된 문장으로부터 결정하고, 결정된 의미 역할 값들을 선정된 의도 프레임내의 의미 역할 요소에 할당할 수 있다.
의도 분석부는 온톨로지를 이용하여 의도 프레임 내의 적어도 하나의 의미 역할 요소에 대한 의미 역할 값을 구문 스포팅이 수행된 문장으로부터 추정할 수 있다.
의도 분석부는 선정된 의도 프레임에 포함된 의미 역할 요소의 의미 역할 역할 값이 할당된 적어도 하나의 의도 분석 결과 후보들에 대하여 의도 분석이 맞게 되었을 확률을 계산하여 점수를 부여할 수 있다.
의도 분석 장치는 의도 분석 결과를 애플리케이션에 적용하여 의도 분석 적용 결과를 생성하는 분석 적용부를 더 포함할 수 있다.
의도 분석 장치는 오디오 입력을 적어도 하나의 문장으로 변환하는 음성 인식부를 더 포함하고, 상기 적어도 하나의 문장은 상기 음성 인식부를 통해 변환된 n-best 문장일 수 있다.
다른 양상에 따른 의도 분석 방법은 적어도 하나의 문장에 대하여 각각 단어 또는 구문 단위로 문맥 자유 문법을 적용하여 적어도 하나의 문장 각각에 대한 구문 스포팅을 수행하는 동작과, 구문 스포팅이 수행된 문장에 의존 문법을 이용하여 적어도 하나의 문장이 각각 문법적으로 유효한 문장인지 판별하여 유효하지 않은 문장을 필터링하는 동작과, 유효한 문장으로 판별된 문장에 대해서 의도 분석 결과를 생성하는 동작을 포함한다.
일 실시예에 따르면, 사용자에 의해 생성된 문장에 OOG가 포함된 경우에도 문장의 의도 분석을 할 수 있다. 또한, 문법적으로 유효한 문장에 대해서 의도 분석 결과를 생성함으로써 음성 인식 범위를 확장하면서도 음성 인식된 문장을 문법적으로 또는 의미적으로 검증하여 음성 인식 오류 문장이 음성 인식 결과를 출력되는 것을 방지할 수 있다. 이와 같이, 의도 분석에서 OOG를 처리할 수 있도록 함으로써 사용자가 이용하는 문장의 자유도를 높여 미리 정의된 범위내에서만 의도 분석이 가능한 기존의 의도 분석 시스템에 비하여 의도 분석 성공률을 높이고 전체 성능을 높일 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러 므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 의도 분석 장치의 구성의 일 예를 나타내는 도면이다.
도 1은 의도 분석 장치(100)가 사용자의 발화가 입력되면 이에 대한 음성인식을 수행하고 음성인식 결과 후보들에 대한 의도분석을 수행하는 음성 대화 시스템으로 구현된 일 예를 나타낸다.
의도 분석 장치(100)는 전처리부(110), 음성 인식부(120), 음향 모델(130), 언어 모델(140), 의도 분석부(150), 의도 분석 DB(160) 및 분석 적용부(170)를 포함할 수 있다.
전처리부(110)는 입력되는 음향 신호로부터 음성 구간을 검출하고, 검출된 음성 구간으로부터 음성 특징 정보를 생성하여 음성 인식부(120)에 전달한다.
음성 인식부(120)는 음향 모델(130) 및 언어 모델(140) 중 적어도 하나를 이용하여 입력된 음성 특징 정보를 적어도 하나의 문장 즉, 음성 인식 후보 문장으로 변환한다. 즉, 음성 인식부(120)는 음향 특성(acoustic feature)만을 이용하여 또는 음향 특성(acoustic feature)과 언어 모델(language model)을 모두 이용하여 음성 인식을 수행할 수 있다. 언어 모델(140)로는 n-그램 모델과 같은 통계 기반 언어 모델 또는 문맥 자유 문법과 같은 문법 기반 언어 모델이 이용될 수 있다. 음성 인식부(120)는 음성 인식의 결과로서 n-best 문장으로 표현될 수 있는 음성 인식 후보 문장의 집합을 의도 분석부(150)에 전달한다. 음성 인식부(120)에서 출력되는 적어도 하나의 문장은 각 문장의 형태소별로 형태소의 속성을 나타내는 태그 정보를 포함할 수 있다.
음성 인식부(120)에서는 음향 특성 정보를 포함하는 음향 모델(130) 또는 언어 모델(140) 중 통계 기반 언어 모델을 이용하여 음성 인식을 수행하는 경우, 문장 전체의 구조 및 의미에 대한 고려는 전혀 이루어지지 않는다. 음성 인식에서 흔히 사용되는 n-그램 모델을 적용할 경우 문법에 맞지 않는 비문이 음성 인식 결과로 나올 수 있다. 의도 분석부(150)는 이러한 한계를 극복하면서 사전에 정의되지 않은 발화 패턴 즉, OOG에 대해서도 의도 분석을 수행할 수 있다.
의도 분석부(150)는 음성 인식부(120)에서 산출한 음성 인식 후보 문장들에 대해서 의도분석을 수행하여 문장의 의도가 부착된 음성 인식 결과 후보들을 생성하여 출력한다. 또한, 의도 분석부(150)는 음성 인식 결과 후보들에 대하여 검증을 하고, 검증된 음성 인식 결과 후보들에 대하여 스코어링(scoring)을 수행하여 점수가 높은 순서대로 재정렬을 수행할 수 있다.
의도 분석부(150)는 문맥 자유 문법(context-free grammar) 및 의존 문법(dependency grammar) 등을 이용하여 인식된 음성에 대한 의도를 분석할 수 있다. 문장에 문맥 자유 문법이 적용되면 문장의 단어 또는 구문에 의미 역할(semantic role)이 부착되고, 문장 전체에 대해 분석된 의도가 결정될 수 있다. 의도 분석 DB(160)는 일 실시예에 따른 의도 분석에 이용되는 다양한 정보를 저장한다. 의도 분석부(150)의 상세한 구성에 대해서는 도 2를 참조하여 후술한다.
분석 적용부(170)는 분석된 의도에 따라 소정의 행위를 생성할 수 있다. 분석 적용부(170)는 분석된 의도에 따라 소정의 애플리케이션을 실행하고, 애플리케이션 실행 결과를 생성하여 사용자에게 제공할 수 있다. 분석된 의도는 승차권 예 매, 공연 예매, 방송 녹화 등 음성 인식이 적용되는 분야에 따라 다양할 수 있다.
도 2는 도 1의 의도 분석 장치의 의도 분석부(150)의 구성의 일 예를 나타내는 도면이다.
의도 분석부(150)는 문장 분석부(210), 구문 스포팅부(220), 유효 문장 결정부(230), 의도 추론부(240), 스코어링부(250), 문맥 자유 문법 DB(151), 의존 문법 DB(152), 구문 청킹(phrase chunking) DB(153), 온톨로지 DB(154), 역할 네트워크 DB(155)를 포함할 수 있다. 문맥 자유 문법 DB(151), 의존 문법 DB(152), 구문 청킹 DB(153), 온톨로지 DB(154), 역할 네트워크 DB(155)는 도 1의 의도 분석 DB(160)에 포함될 수 있다.
문장 분석부(210)는 사용자 발화 등에 의해 생성된 문장의 인식 결과 후보가 되는 적어도 하나의 문장에 대하여 문맥 자유 문법 DB(151)의 정보를 적용하여 각 문장의 의도를 분석할 수 있다. 입력되는 모든 문장에 대하여 후술할 구문 스포팅이 수행되는 경우에는 문장 분석부(210)는 의도 분석부(150)에 포함되지 않을 수 있다. 문맥 자유 문법을 이용한 의도 분석이 성공하면 의도 분석이 성공한 의도 분석 결과를 저장해두고 다음 인식 후보 문장에 대하여 문맥 자유 문법을 적용하여 의도 분석을 수행할 수 있다. 의도 분석이 성공한 음성 인식 후보 문장 및 의도 분석 결과는 스코어링부(250)로 전달될 수 있다.
도 5는 문맥 자유 문법의 일 예를 나타내는 도면이다.
문맥 자유 문법 DB(151)에 저장된 문맥 자유 문법 정보는 각 단어 또는 구문에 대한 의미 역할 및 각 단어나 구문 사이의 문법적 연관 관계에 대한 정보를 포 함할 수 있다. 소정의 문장에 문맥 자유 문법을 적용하여 문맥 자유 문법에 정의될 수 있는 의도 프레임(intention frame)에 속하는지를 결정할 수 있다. 문맥 자유 문법 DB(151)는 도 6에 도시된 바와 같은 문맥 자유 문법 네트워크(620)로 나타낼 수 있다.
의도 프레임은 문장에 문맥 자유 문법을 적용해서 얻을 수 있는 사용자 의도를 나타내는 포맷을 의미한다. 의도 프레임은 의도 이름 및 의도 프레임에 속하는 적어도 하나의 의미 역할 요소로 구성될 수 있다. 의도 프레임은 사용자 의도의 적용 분야 예를 들어, 신문 기사 검색, 티켓 예약, 날씨 검색 등 여러 분야마다 적어도 하나의 의도 프레임이 미리 정의될 수 있다.
도 5는 뉴스 검색 분야에 대한 문맥 자유 문법 DB(151)의 정보의 일 예를 나타낸다. 예를 들어, 사용자 발화 등에 의해 생성된 문장에 대하여 신문 기사 검색의 의도 프레임으로 "search(@object, @day, @section)" 이 결정된 경우, 사용자가 발화한 문장은 의도 이름이 search이고, 객체(@object)에 대한, 무슨 요일(@day)의 무슨 섹션(@section)의 기사를 검색하라는 의도를 나타내는 것으로 결정된다.
음성 인식 후보 문장이 문맥 자유 문법에서 정의된 의도 프레임에 속하여, 음성 인식 후보 문장이 문맥 자유 문법으로 분석될 때에는 문장 분석부(210)는 분석 결과를 의도 분석 결과로 산출할 수 있다.
한편, 문맥 자유 문법으로 문장 전체에 대한 의도가 분석되지 않은 음성 인식 후보 문장은 구문 스포팅부(220)로 전달되어 의미 구문 스포팅(semantic phrase spotting)을 수행한다. 본 명세서에서 구문 스포팅은 의미 구문 스포팅을 의미한 다. 예를 들어, 사용자 발화에 OOG가 포함되었거나 음성인식 오류가 발생하여 문맥 자유 문법으로 분석이 되지 않을 경우에는 구문 스포팅부(220)가 동작할 수 있다. 구문 스포팅부(220)는 문장 전체가 아니라 단어 또는 단어의 조합 즉, 구문 단위로 문맥 자유 문법을 적용한다. 따라서, 구문 스포팅이 수행된 문장에 대해서는 문장의 구문 단위로 문장이 문맥 자유 문법에 의해 허용되는지 여부와 부분적인 구문 스포팅 결과 즉, 각 단어 또는 구문의 의미 역할 및 각 단어 또는 구문의 의미 역할들이 속하는 적어도 하나의 의도 프레임이 결정될 수 있다.
구문 스포팅을 수행하는 목적은 의도 분석에서 OOG를 포함하고 있는 문장을 처리하고자 하는 것이다. 기존의 의도 분석 알고리즘들과 같이 문맥 자유 문법으로만 의도 분석을 수행할 경우, 문맥 자유 문법에 적합한 문장들에 대해서만 의도 분석이 가능하므로, 문법과 무관하게 자유롭게 발화하는 일반적인 사용자 발화에 대하여 의도를 분석하기 어려웠다.
도 6는 구문 스포팅의 개념을 나타내는 도면이다.
구문 스포팅은 문장 전체 중 해석이 가능한 단어 또는 구문에 대해서만 해석 결과를 얻는다. 구문 스포팅부(220)는 문맥 자유 문법에서 작성된 문법을 이용하여 음성 인식 후보 문장과 문맥 자유 문법 네트워크의 노드 간의 매칭을 수행한다.
이때 동적 프로그래밍(dynamic programming) 기법을 사용할 수 있다. 여기에서 문장과 문법 네트워크의 노드 간의 일치성 판단 단위는 필요에 따라 몇 단어, 몇 어절 등과 같이 정할 수 있다. 하나의 문장에 나타나는 각 구문들은 다양한 의미 역할(semantic role)로 해석될 수 있고 하나의 구문이 여러 개의 의도 프레임으 로 나타날 수 있기 때문에 하나의 문장에 대한 구문 스포팅 결과는 여러 개일 수 있다.
도 6을 참조하면, ⓐ-ⓑ-ⓒ-ⓓ-ⓧ-ⓨ-ⓩ로 이루어진 문장(610)에 대하여 문맥 자유 문법 네트워크(620)를 참조하여 구문 스포팅이 수행되는 것을 나타낸다. 여기에서, 문맥 자유 문법 네트워크(620)의 노드 ⓐ, ⓑ, ⓒ, ⓓ, ⓧ, ⓨ, ⓩ는 각각 문장의 단어 및 단어의 의미 역할을 의미한다. 문맥 자유 문법 네트워크(620)는 문맥 자유 문법을 의미 역할 간 네트워크로 표현한 것이다.
의미 역할은 예를 들어, 요일(@day), 객체(@object), 섹션(@section), 시간(@time) 등 단어가 문장내에서의 의미론적 역할을 나타낸다. 문맥 자유 문법 네트워크(620)에서 화살표는 화살표의 시작에 있는 노드가 화살표의 종료점에 있는 노드보다 문장에서 먼저 나타나는 것을 나타낸다. 문맥 자유 문법 네트워크(620)에서 화살표로 연결된 노드들의 세트는 의도 프레임으로 정의될 수 있다. 도 5에서 의미 역할 @time에 대한 단어가 "오늘", "내일"이라는 예시 단어와 매핑된 바와 같이, 문맥 자유 문법 네트워크(620)에서 하나의 의미 역할에는 여러 개의 예시적인 단어가 매핑될 수 있다.
도 6에 도시된 바와 같이, 문장(610)은 문맥 자유 문법으로 의도 분석되지 않는다. 문장(610)에 대하여 구문 스포팅을 수행하면, ⓐ-ⓑ-ⓒ-ⓓ는 문맥 자유 문법 네트워크(620)에서 노드 경로(621), 노드 경로(622) 및 노드 경로(623)에 대응되는 것으로 결정될 수 있다. 이 경우, 문장(610)에 대한 후보 의도 프레임은 의도 프레임 1 및 의도 프레임 k로 결정될 수 있다.
도 7은 구문 스포팅 동작의 일 예를 나타내는 도면이다.
사용자 발화에 대한 음성 인식부(120)의 음성 인식 결과 출력되는 음성 인식 후보 문장이 "3시에 밀양 가는 기차 예약해줘"인 경우, 문맥 자유 문법 네트워크(620)로부터 문맥 자유 문법을 수행한 결과로 "3시에(@startTime) 밀양(@region) 가는 기차(@object) 예약해줘"가 출력되었다고 가정한다. 이와 같이, 구문 스포팅 결과, 하나 이상의 후보 의도 분석 결과가 결정될 수 있다.
도 7을 참조하면, 음성 인식 후보 문장에 대하여 의미 역할의 일치도가 높은 2개의 의도 프레임 즉, 의도 프레임 MakeReservation(@object, @startTime, @destination)(720) 및 의도 프레임 Getweather(@region)(730)이 매칭되었다고 가정한다. 도 7에서 "MakeReservation(@object=기차, @startTime=3시, @destination=부산)", "3시에 부산 가는 기차 예약 해줘" "GetWeather(@region=밀양) 및 "오늘 밀양 날씨는 어때?"는 문맥 자유 문법 네트워크(620)에서의 각 의도 프레임에 대한 예시적 단어 정보 및 예시 문장을 나타낸다.
다시 도 2를 참조하면, 구문 스포팅부(220)에서 구문 스포팅을 거친 문장들은 유효 문장 결정부(230)에 입력된다. 유효 문장 결정부(230)는 의존 문법(dependency grammar)를 이용하여 문장의 문법성 또는 의미적 유효성을 검사한다. 의존 문법은 도 8과 같은 형태로 구성된다. 의존 문법은 각 형태소 및 형태소의 품사 태그 정보 예를 들어 "로마/nr"로 구성되는 문장의 각 성분 사이의 문법적 의존 관계를 나타낸다.
유효 문장 결정부(230)는 문장의 각 성분들이 어떤 의존 관계를 가지고 성립 될 수 있는지 검사할 수 있다. 또한, 유효 문장 결정부(230)는 의미 역할을 부여받은 각 구문들과 의미 역할을 부여 받지 못한 각 구문들이 서로 의존성 관계에 있을 수 있는지를 검사할 수 있다. 여기에서, 의존 문법의 특성으로는 품사, 어휘, 의미 등이 사용될 수 있으며 이 중 어느 한가지만을 사용하거나 조합하여 같이 사용될 수 있다.
구문 스포팅이 수행되고, 의존 문법에 따라 유효하다고 결정된 문장은 의도 추론부(240)에서 의도 추론 과정을 거치기 위해 소정의 저장 공간에 임시 저장될 수 있다. 의존 문법에 의해 유효하지 않다고 결정된 문장은 문법에 맞지 않거나 의미적으로 옳지 않은 문장이므로 이 문장들을 필터링한다. 즉, 구문 스포팅이 수행된 음성 인식 후보 문장 중 문법에 맞지 않거나 의미적으로 옳지 않은 문장은 무시된다.
의도 추론부(240)는 음성 인식 후보 문장에 대하여 구문 스포팅이 수행되고 유효한 문장으로 판별된 문장에 대해 선택될 수 있는 적어도 하나의 의도 프레임 중 하나의 최종적인 의도 프레임이 어떤 것인지를 결정하고, 구문 스포팅 결과를 의도 프레임의 구성요소인 의미 역할 값에 할당하여 의도 분석 결과를 생성한다. 의도 추론부(240)는 의도 프레임상에 존재하지 않는 단어들에 대해 워드넷(wordnet)과 같은 온톨로지(ontology)를 이용하여 의미 역할 값을 추정할 수 있다. 또한, 의도 추론부(240)는 역할 네트워크(role network)를 이용하여 의도 프레임상에 존재하지 않는 단어가 해당 의도 프레임의 의미 역할에 해당한다고 볼 수 있는 단어인지, 해당하는 경우에 어떤 의미 역할인지를 추론할 수 있다. 온톨로지 는 워드넷과 같이 단어들 간의 의미적 관계를 나타내며, 역할 네트워크는 의미 역할 간의 관계를 나타낸다.
도 9는 역할 네트워크의 일 예를 나타내는 도면이다.
도 9에 도시된 바와 같이, @region은 지역이라는 의미 역할을 나타내고, @destination은 목적지라는 의미 역할을 나타내고, @origin은 출발지라는 의미 역할을 나타내고, 각각 서로 다른 의미 역할을 가진다. 그러나, @destination 및 @origin는 의미 역할 네트워크에서 @region의 하위 노드에 위치하여 서로 의미적 관계가 있는 것으로 볼 수 있다. 의도 추론부(240)의 상세한 구성 및 동작에 대해서는 도 3 및 도 4를 참조하여 후술한다.
다시 도 2를 참조하면, 스코어링부(250)는 문맥 자유 문법을 이용한 문장 분석부(210)에서 나온 의도 분석 결과와 문장 분석부(210)에서 의도 프레임이 결정되지 못하여 구문 스포팅부(220), 유효 문장 결정부(230) 및 의도 추론부(240)를 거처 처리된 의도 분석 결과에 대하여 음성 인식 결과일 확률 및 의도 분석이 맞게 되었을 확률 중 적어도 하나를 계산하고 이용하여 스코어링을 수행할 수 있다. 스코어링에 사용되는 특징으로는 아래의 같은 것들이 있다.
-음성 인식부(120)에서 음향 특성들을 이용하여 계산된 신뢰도(confidence score)
-구문 스포팅과 관련된 요소: 문맥 자유 문법 네트워크와 매칭된 단어들이 몇 개의 네트워크 경로로부터 왔는지에 대한 정보
- 의도 프레임 선정에서 사용된 요소들 : 단어 일치 정도, 단어 카테고리 일 치 정도, 의미 역할 요소의 일치 정도, 헤드워드의 일치 정도
- 문맥 자유 문법으로 해석된 문장과 구문 스포팅을 거쳐 나온 문장 중 어느 것이 정답인지를 판단할 수 있는 요소들: 각종 컨텍스트들(현재 대화의 영역, 사용자의 관심 영역, 이전 발화, 이전 시스템 응답 등)
스코어링부(250)는 이렇게 스코어링을 수행한 후에는 각각 점수가 부여된 각 음성 인식 후보 문장에 대한 적어도 하나의 의도 프레임을 분석 적용부(170)에 전달한다.
이상에서는 문장 분석부(210)를 통하여 문장 전체에 대해 의도가 분석되지 않은 인식 후보 문장를 구문 스포팅부(230), 유효 문장 결정부(230) 및 의도 추론부(240)가 처리하는 것으로 설명하였으나, 음성 인식부(120)에서 출력된 n-best 문장들에 대하여 문장 분석부(210)를 이용하지 않고 바로 구문 스포팅부(220)가 의도 분석을 시작할 수 있다.
문장 분석부(210)가 문장 의도 분석을 성공하지 못하는 인식 후보 문장에 대하여 구문 분석부(220)를 이용하여 문장의 의도를 분석하는 방법은 OOG가 발생할 확률이 낮고 자원을 적게 사용할 필요가 있을 때 유용할 수 있다. 이러한 방법에서는 문맥 자유 문법으로 의도 분석이 가능한 경우에는 의미 구문 스포팅을 수행할 필요가 없으므로 프로그램 수행 시간 또는 필요한 리소스를 줄일 수 있기 때문이다.
문장 분석부(210)를 이용하지 않고, 처음부터 음성 인식 후보 문장들 모두에 대하여 각각 의도 분석에서 구문 스포팅부(220)를 이용하여 구문 스포팅을 수행하 여 문장의 의도를 분석하는 방법은, OOG가 발생할 확률이 높고 하나의 통일된 의도 분석 구조가 필요할 때 유용할 수 있다. 이 경우에는 문장 분석부(210)를 이용하는 경우에 비하여 문맥 자유 문법 DB(152)를 한 번 이용하여 의도 분석을 수행할 수 있으나, 문장에 OOG가 포함되지 않은 경우 시간 또는 자원의 낭비가 생길 수 있다.
도 3은 도 2의 의도 추론부(240)의 구성의 일 예를 나타내는 도면이다.
의도 추론부(240)는 의도 프레임 선정부(310) 및 의미 역할 값 할당부(320)를 포함할 수 있다.
의도 프레임 선정부(310)는 각 음성 인식 후보 문장에 대해 의도 분석 결과가 될 의도 프레임을 선정한다. 의도 프레임 선정부(310)는 문맥 자유 문법의 의도 프레임과 구문 스포팅이 수행된 문장 중 유효한 문장으로 결정된 문장의 구문 스포팅 수행 결과를 비교하여 의도 프레임을 선정할 수 있다.
비교 요소들의 비교의 기준은 문장의 헤드 워드(head word)의 일치 여부, 의미 역할 요소의 일치 여부, 단어의 일치 여부 등이 있을 수 있다. 여기에서 문장의 헤드 워드는 의존 문법을 적용한 결과 다른 단어와 의존 관계가 가장 많은 단어일 수 있다.
의미 역할 값 할당부(320)는 의도 프레임이 선정되면 선정된 의도 프레임을 구성하는 적어도 하나의 의미 역할 요소에 대한 의미 역할 값을 할당한다.
도 4는 도 3의 의도 추론부의 의미 역할 값 할당부(320)의 동작을 나타낸다.
의미 역할 값 할당부(320)는 의도 프레임 선정부(310)에서 선정된 의도 프레 임 내 적어도 하나의 의미 역할 요소와 구문 스포팅이 수행된 음성 인식 후보 문장의 적어도 하나의 의미 역할 요소가 일치하는지 결정한다(410). 여기에서, 구문 스포팅이 수행된 음성 인식 후보 문장은 전술한 바와 같이, 문법적으로 유효하다고 판별된 문장을 나타낸다.
의미 역할 값 할당부(320)는 선정된 의도 프레임 내 적어도 하나의 의미 역할 요소와 구문 스포팅이 수행된 음성 인식 후보 문장의 적어도 하나의 의미 역할 요소가 일치하는 경우에는 구문 스포팅이 수행된 음성 인식 후보 문장의 각 의미 역할에 해당하는 구문을 의도 프레임내의 의미 역할 요소에 대한 의미 역할 값으로 할당한다(450). 이때, 구문 스포팅이 수행된 음성 인식 후보 문장에서 의미 역할에 해당하는 단어의 좌우에, 의도 프레임의 의미 역할 요소들과 매칭되지 않는 단어들이 있으면, 구문 청킹을 위한 정보를 저장하는 구문 청킹 DB(153)를 이용하여 좌우의 단어들과 구문 청킹을 수행하여 의미 역할 값의 범위를 결정할 수 있다. 구문 청킹은 문장을 명사, 동작 및 전치사 구와 같은 하부 구성요소로 나누는 자연어 처리 방법을 의미한다. 의미 역할 값이 할당됨으로써 적어도 하나의 의도 분석 결과 후보가 생성된다. 이의 예는 도 10를 참조하여 설명한다.
도 10은 의미 역할 요소들이 일치하는 경우의 의미 역할 값 할당의 일 예를 나타내는 도면이다.
구문 스포팅이 수행된 음성 인식 후보 문장이 "서울(@destination) 가는 기차표(@object) 예매하고 싶어하고 싶어"이고, 선정된 의도 프레임이 "MakeReservation(@destination, @object)"인 경우에, 구문 스포팅이 수행된 음성 인식 후보 문장의 의미 역할 요소들과, 선정된 의도 프레임내의 의미 역할 요소들 즉, @destination, @object가 일치하므로, 의도 프레임의 의미 역할 요소에 음성 인식 후보 문장에서의 해당 의미 역할 요소의 의미 역할 값을 할당하면 "MakeReservation(@destination=서울, @object=기차표)"로 의도 분석 결과가 생성될 수 있다.
다시 도 4를 참조하면, 선정된 의도 프레임 내 적어도 하나의 의미 역할 요소와 구문 스포팅이 수행된 음성 인식 후보 문장의 적어도 하나의 의미 역할 요소가 일치하지 않으면(410), 의미 역할 값 할당부(320)는 구문 스포팅이 수행된 문장 내에 의도 프레임에 존재하지 않는 의미 역할 요소가 있는지 결정한다(420).
구문 스포팅이 수행된 문장 내에 의도 프레임에 존재하지 않는 의미 역할 요소가 있으면 의미 역할 값 할당부(320)는 역할 네트워크 DB(156)로부터 역할 네트워크를 참조하여 의미론적 역할 간의 관계를 결정한다(430). 역할 네트워크내에서 의미 역할들이 부모 자식 관계에 있으면, 대체 가능한 것으로 결정될 수 있다. 대체 가능하다고 결정되면, 의미 역할 값 할당부(320)는 구문 청킹을 통하여 의미 역할 값의 범위를 결정하여 선정된 의도 프레임에 속한 의미 역할 값을 할당할 수 있다(450).
이에 대한 예는 도 11을 참조하여 설명한다. 이와 같이 역할 네트워크를 이용하여 구문 스포팅이 수행된 음성 인식 후보 문장의 의미 역할 요소가 의도 프레임 내의 의미 역할 요소를 대체할 수 있는 경우는 구문 스포팅이 수행된 음성 인식 후보 문장의 의미 역할 요소의 개수 및 의도 프레임 내의 의미 역할 요소의 개수가 동일한 경우 유용하게 이용될 수 있다.
도 11은 의미 역할 요소들이 일치하지 않는 경우의 의미 역할 값 할당의 일 예를 나타내는 도면이다.
구문 스포팅 결과가 "[3시](@startTime)에 [밀양](@region) 가는 [기차](@object) 예약해줘"이고, 의도 프레임이 "MakeReservation(@object, @startTime, @destination)"인 경우, 구문 스포팅 결과에서 의도 프레임에 없는 @region이 있다. 이 경우, 도 9에 도시된 역할 네트워크를 참조하면, @region과 @destination은 부모 자식 관계에 있으므로 대체가능하고, 의도 프레임의 의미 역할 요소에 구문 스포팅 결과의 해당 역할 값을 할당하면 "MakeReservation(@object=기차, @startTime=3시, @destination=밀양)"으로 의도 분석 결과가 생성될 수 있다.
다시 도 4를 참조하여 설명한다. 구문 스포팅이 수행된 음성 인식 후보 문장 내에 의도 프레임에 존재하지 않는 의미 역할 값이 없으면(420), 의미 역할 값 할당부(320)는 온톨로지를 이용하여 구문 청킹을 통한 의미 역할 값을 추정하여 할당할 수 있다(440). 의미 역할 값의 추정은 의도 프레임에 있는 적어도 하나의 의미 역할 요소 중 구문 스포팅이 수행된 적어도 하나의 의미 역할 요소에 없는 의미 역할 요소가 있는지 결정하고, 의도 프레임 내의 적어도 하나의 의미 역할 요소에는 있으나 구문 스포팅 결과에 없는 의미 역할 요소가 있는 경우에 수행될 수 있다.
상세하게는, 의미 역할 값 할당부(320)는 구문 스포팅 결과에서 의도 프레임 에 매칭되지 않는 단어들에 대해 단어의 위치를 검사하고, 단어의 위치가 문장 내에서 의미 역할 값이 될 수 있는 위치에 있다고 판단되면, 이 단어들에 대해 구문 청킹을 통하여 의미 역할 값의 범위를 결정하여 의미 역할 값을 할당할 수 있다(440).
예를 들어, 구문 스포팅이 수행된 음성 인식 후보 문장에 속한 단어들과 의도 프레임의 의미 역할 요소에 대응하는 단어의 카테고리를 비교하여, 같은 카테고리에 속하거나 부모 자식 관계에 해당하면 의미 역할 값이 될 수 있는 것으로 결정될 수 있다. 단어 카테고리의 비교는 온톨로지를 이용하여 수행될 수 있다. 또한, 구문이 고유명사일 가능성이 있을 때에는 카테고리 비교 과정을 거치지 않고 의미 역할 값이 할당될 수 있다. 이에 대한 예는 도 12를 참조하여 설명한다.
도 12는 구문 청킹을 통한 의미 역할 값의 추정의 일 예를 나타내는 도면이다. 구문 스포팅 결과가 "화요일(@time)에 파리의 연인 녹화해"이고, 선정된 의도 프레임이 "GetEstablishTime(@time, @object)"인 경우, 구문 스포팅 결과에서 "파리의 연인"이 온톨로지를 참조하더라도 의미 역할이 결정되지 않을 수 있다. 이 경우, 의미 역할 값 할당부(320)는 "파리의 연인"을 고유 명사로 결정하여, 의도 프레임의 @object에 의미 역할 값으로 할당할 수 있다. 이에 따라, 의도 분석 결과는 "GetEstablishTime(@time=화요일, @object=파리의 연인)"으로 생성될 수 있다.
도 13은 의도 분석 방법의 일 예를 나타내는 도면이다.
구문 스포팅부(220)는 적어도 하나의 문장에 대하여 각각 문맥 자유 문법을 적용하여 적어도 하나의 문장 각각에 대한 구문 스포팅을 수행한다(1310).
유효 문장 결정부(230)는 구문 스포팅이 수행된 문장에 의존 문법을 이용하여 적어도 하나의 문장이 각각 문법적으로 유효한 문장인지 판별하여 유효하지 않은 문장을 필터링한다(1320).
의도 추론부(240)는 유효하다고 판별된 문장에 대해서 의도 분석 결과를 생성한다(1330). 의도 추론부(240)는 의도 분석 결과를 생성하기 위하여 구문 스포팅이 수행된 문장에 대해 의도 분석 결과가 될 의도 프레임을 선정하고, 의도 프레임을 구성하는 의미 역할 요소에 대한 의미 역할 값을 구문 스포팅이 수행된 문장으로부터 결정하고, 결정된 의미 역할 값을 선정된 의도 프레임내의 의미 역할 요소에 할당할 수 있다.
이상에서, 의도 분석 장치(100)가 음성 대화 시스템에 이용되는 경우에 대하여 주로 설명하였으나, 의도 분석 장치(100)는 음성 인식에 의해 인식된 문장들에 대해 적용되는 것에 제한되는 것은 아니며, 음성 인식이 적용되지 않은 일반적인 텍스트 형태의 문장에 대해서도 적용되어 다양한 목적 및 형태의 시스템에 이용 및 응용될 수 있다.
일 실시예에 따르면, 사용자 발화 등으로 생성된 문장에 OOG가 포함된 경우에도 사용자 발화의 의도 분석을 할 수 있다. 또한, 문법적으로 유효한 문장에 대해서 의도 분석 결과를 생성함으로써 음성 인식 범위를 확장하면서도 음성 인식된 문장을 문법적으로 또는 의미적으로 검증하여 음성 인식 오류 문장이 음성 인식 결과를 출력되는 것을 방지할 수 있다. 의도 분석에서 OOG를 처리할 수 있도록 함으 로써 사용자의 발화 자유도를 높여 미리 정의된 발화 범위내에서만 음성 인식을 수행하는 기존의 음성 대화 시스템에 비하여 의도 분석 성공률을 높이고 음성 대화 시스템의 전체 성능을 높일 수 있다.
본 발명의 일 양상은 컴퓨터로 읽을 수 있는 기록 매체에 컴퓨터가 읽을 수 있는 코드로서 구현될 수 있다. 상기의 프로그램을 구현하는 코드들 및 코드 세그먼트들은 당해 분야의 컴퓨터 프로그래머에 의하여 용이하게 추론될 수 있다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 디스크 등을 포함한다. 또한, 컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산 방식으로 컴퓨터가 읽을 수 있는 코드로 저장되고 실행될 수 있다.
이상의 설명은 본 발명의 일 실시예에 불과할 뿐, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현할 수 있을 것이다. 따라서, 본 발명의 범위는 전술한 실시예에 한정되지 않고 특허 청구범위에 기재된 내용과 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다.
도 1은 의도 분석 장치의 구성의 일 예를 나타내는 도면이다.
도 2는 도 1의 의도 분석 장치의 의도 분석부(150)의 구성의 일 예를 나타내는 도면이다.
도 3은 도 2의 의도 추론부(240)의 구성의 일 예를 나타내는 도면이다.
도 4는 도 3의 의미 역할 값 할당부(320)의 동작을 나타낸다.
도 5는 문맥 자유 문법의 일 예를 나타내는 도면이다.
도 6은 구문 스포팅의 개념을 나타내는 도면이다.
도 7은 구문 스포팅 동작의 일 예를 나타내는 도면이다.
도 8은 의존 문법의 일 예를 나타내는 도면이다.
도 9는 역할 네트워크의 일 예를 나타내는 도면이다.
도 10은 의미 역할 요소들이 일치하는 경우의 의미 역할 값 할당의 일 예를 나타내는 도면이다.
도 11은 의미 역할 요소들이 일치하지 않는 경우의 의미 역할 값 할당의 일 예를 나타내는 도면이다.
도 12는 구문 청킹을 통한 의미 역할 값의 추정의 일 예를 나타내는 도면이다.
도 13은 의도 분석 방법의 일 예를 나타내는 도면이다.
Claims (16)
- 적어도 하나의 문장에 대하여 각각 단어 또는 구문 단위로 문맥 자유 문법을 적용하여 상기 적어도 하나의 문장 각각에 대한 구문 스포팅을 수행하는 구문 스포팅부;상기 구문 스포팅이 수행된 문장에 의존 문법을 이용하여 상기 적어도 하나의 문장이 각각 문법적으로 유효한 문장인지 판별하여 유효하지 않은 문장을 필터링하는 유효 문장 결정부; 및상기 유효한 문장으로 판별된 문장에 대해서 의도 분석 결과를 생성하는 의도 추론부를 포함하는 의도 분석 장치.
- 제1항에 있어서,상기 의도 추론부는 상기 유효한 문장으로 판별된 문장에 대해 의도 분석 결과가 될 의도 프레임을 선정하고, 상기 유효한 문장으로 판별된 문장으로부터 상기 선택된 의도 프레임을 구성하는 적어도 하나의 의미 역할 요소에 대한 의미 역할 값을 결정하고, 상기 결정된 의미 역할 값을 상기 선정된 의도 프레임내의 의미 역할 요소에 할당하는 의도 분석 장치.
- 제2항에 있어서,상기 의도 추론부는 상기 의미 역할 값을 할당할 때, 상기 유효한 문장으로 판별된 문장의 적어도 하나의 의미 역할 요소와 상기 선정된 의도 프레임 내의 적어도 하나의 의미 역할 요소가 서로 일치하는 경우, 구문 청킹을 통하여 상기 유효한 문장으로 판별된 문장으로부터 상기 의미 역할 값들을 결정하고, 결정된 의미 역할 값들을 상기 선정된 의도 프레임내의 의미 역할 요소에 할당하는 의도 분석 장치.
- 제3항에 있어서,상기 의도 추론부는 상기 유효한 문장으로 판별된 문장 내에 상기 의도 프레임 내의 적어도 하나의 의미 역할 요소에 존재하지 않는 의미 역할 요소가 있으면, 역할 네트워크를 이용하여 상기 존재하지 않는 의미 역할 요소를 상기 의도 프레임에서 존재하는 의미 역할 요소로 대체할 수 있는지 결정하고, 대체할 수 있는 것으로 결정되는 경우, 상기 결정된 의미 역할 요소들에 대한 의미 역할 값들을 구문 청킹을 통하여 상기 유효한 문장으로 판별된 문장으로부터 결정하고, 결정된 의미 역할 값들을 상기 선정된 의도 프레임내의 의미 역할 요소에 할당하는 의도 분석 장치.
- 제3항에 있어서,상기 의도 추론부는 온톨로지를 이용하여 상기 의도 프레임내의 적어도 하나의 의미 역할 요소에 대한 의미 역할 값을 상기 유효한 문장으로 판별된 문장으로부터 추정하는 의도 분석 장치.
- 제2항에 있어서,상기 선정된 의도 프레임에 포함된 의미 역할 요소의 의미 역할 역할 값이 할당된 적어도 하나의 의도 분석 결과 후보들에 대하여 의도 분석이 맞게 되었을 확률을 계산하여 점수를 부여하는 스코어링부를 더 포함하는 의도 분석 장치.
- 제1항에 있어서,상기 의도 분석 결과를 애플리케이션에 적용하여 의도 분석 적용 결과를 생성하는 분석 적용부를 더 포함하는 의도 분석 장치.
- 제1항에 있어서,오디오 입력을 적어도 하나의 문장으로 변환하는 음성 인식부를 더 포함하고,상기 적어도 하나의 문장은 상기 음성 인식부를 통해 변환된 n-best 문장인 의도 분석 장치.
- 적어도 하나의 문장에 대하여 각각 단어 또는 구문 단위로 문맥 자유 문법을 적용하여 상기 적어도 하나의 문장 각각에 대한 구문 스포팅을 수행하는 단계;상기 구문 스포팅이 수행된 문장에 의존 문법을 이용하여 상기 적어도 하나의 문장이 각각 문법적으로 유효한 문장인지 판별하여 유효하지 않은 문장을 필터 링하는 단계; 및상기 유효한 문장으로 판별된 문장에 대해서 의도 분석 결과를 생성하는 단계를 포함하는 의도 분석 방법.
- 제9항에 있어서,상기 유효한 문장으로 판별된 문장에 대해서 의도 분석 결과를 생성하는 단계는,상기 유효한 문장으로 판별된 문장에 대해 의도 분석 결과가 될 의도 프레임을 선정하는 단계; 및상기 의도 프레임을 구성하는 의미 역할 요소에 대한 의미 역할 값을 상기 유효한 문장으로 판별된 문장으로부터 결정하고, 상기 결정된 의미 역할 값을 상기 선정된 의도 프레임내의 의미 역할 요소에 할당하는 단계를 포함하는 의도 분석 방법.
- 제10항에 있어서,상기 의미 역할 값을 할당하는 단계는,상기 유효한 문장으로 판별된 문장의 적어도 하나의 의미 역할 요소와 상기 선정된 의도 프레임 내의 적어도 하나의 의미 역할 요소가 일치하는지 결정하는 단계; 및일치한다고 결정되는 경우, 구문 청킹을 통하여 상기 유효한 문장으로 판별 된 문장으로부터 상기 의미 역할 값들을 결정하고 할당하는 단계를 포함하는 의도 분석 방법.
- 제11항에 있어서,상기 의미 역할 값을 할당하는 단계는,상기 유효한 문장으로 판별된 문장의 의미 역할 요소들과 상기 선정된 의도 프레임 내의 의미 역할 요소들이 일치하지 않는 경우,상기 유효한 문장으로 판별된 문장 내에 상기 의도 프레임 내의 의미 역할 요소들에 존재하지 않는 의미 역할 요소가 있는지 결정하는 단계;상기 의도 프레임 내에 존재하지 않는 의미 역할 요소가 있으면, 역할 네트워크를 이용하여 상기 존재하지 않는 의미 역할 요소를 상기 의도 프레임에서의 의미 역할 요소로 대체할 수 있는지 결정하는 단계; 및대체될 수 있는 것으로 결정되는 경우, 상기 대체할 수 있는 것으로 결정된 의미 역할 요소들에 대한 의미 역할 값들을 구문 청킹을 통하여 상기 유효한 문장으로 판별된 문장으로부터 결정하고, 결정된 의미 역할 값들을 상기 선정된 의도 프레임내의 의미 역할 요소에 할당하는 단계를 더 포함하는 의도 분석 방법.
- 제11항에 있어서,상기 의도 프레임내의 적어도 하나의 의미 역할 요소에 대한 의미 역할 값을 온톨로지를 이용하여 상기 유효한 문장으로 판별된 문장으로부터 추정하는 단계를 더 포함하는 의도 분석 방법.
- 제10항에 있어서,상기 선정된 의도 프레임에 포함된 의미 역할 요소의 의미 역할 역할 값이 할당된 적어도 하나의 의도 분석 결과 후보들에 대하여 의도 분석이 맞게 되었을 확률을 계산하여 점수를 부여하는 단계를 더 포함하는 의도 분석 방법.
- 제9항에 있어서,상기 의도 분석 결과를 애플리케이션에 적용하여 의도 분석 적용 결과를 생성하는 단계를 더 포함하는 의도 분석 방법.
- 제9항에 있어서,오디오 입력을 음성 인식하여 적어도 하나의 문장으로 변환하는 단계를 더 포함하고,상기 적어도 하나의 문장은 상기 음성 인식을 통해 변환된 n-best 문장인 의도 분석 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090094019A KR20110036385A (ko) | 2009-10-01 | 2009-10-01 | 사용자 의도 분석 장치 및 방법 |
US12/894,846 US20110082688A1 (en) | 2009-10-01 | 2010-09-30 | Apparatus and Method for Analyzing Intention |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090094019A KR20110036385A (ko) | 2009-10-01 | 2009-10-01 | 사용자 의도 분석 장치 및 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20110036385A true KR20110036385A (ko) | 2011-04-07 |
Family
ID=43823870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090094019A KR20110036385A (ko) | 2009-10-01 | 2009-10-01 | 사용자 의도 분석 장치 및 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20110082688A1 (ko) |
KR (1) | KR20110036385A (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180124716A (ko) * | 2017-05-11 | 2018-11-21 | 경희대학교 산학협력단 | 효과적인 대화 관리를 위한 의료 시스템에서의 의도-컨텍스트 융합 방법 |
KR20190082900A (ko) * | 2017-02-15 | 2019-07-10 | 텐센트 테크놀로지(센젠) 컴퍼니 리미티드 | 음성 인식 방법, 전자 디바이스, 및 컴퓨터 저장 매체 |
Families Citing this family (263)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU6630800A (en) * | 1999-08-13 | 2001-03-13 | Pixo, Inc. | Methods and apparatuses for display and traversing of links in page character array |
US8645137B2 (en) | 2000-03-16 | 2014-02-04 | Apple Inc. | Fast, language-independent method for user authentication by voice |
ITFI20010199A1 (it) | 2001-10-22 | 2003-04-22 | Riccardo Vieri | Sistema e metodo per trasformare in voce comunicazioni testuali ed inviarle con una connessione internet a qualsiasi apparato telefonico |
US7669134B1 (en) | 2003-05-02 | 2010-02-23 | Apple Inc. | Method and apparatus for displaying information during an instant messaging session |
US8677377B2 (en) | 2005-09-08 | 2014-03-18 | Apple Inc. | Method and apparatus for building an intelligent automated assistant |
US7633076B2 (en) | 2005-09-30 | 2009-12-15 | Apple Inc. | Automated response to and sensing of user activity in portable devices |
US9318108B2 (en) | 2010-01-18 | 2016-04-19 | Apple Inc. | Intelligent automated assistant |
US8977255B2 (en) * | 2007-04-03 | 2015-03-10 | Apple Inc. | Method and system for operating a multi-function portable electronic device using voice-activation |
ITFI20070177A1 (it) | 2007-07-26 | 2009-01-27 | Riccardo Vieri | Sistema per la creazione e impostazione di una campagna pubblicitaria derivante dall'inserimento di messaggi pubblicitari all'interno di uno scambio di messaggi e metodo per il suo funzionamento. |
US9053089B2 (en) | 2007-10-02 | 2015-06-09 | Apple Inc. | Part-of-speech tagging using latent analogy |
US8595642B1 (en) | 2007-10-04 | 2013-11-26 | Great Northern Research, LLC | Multiple shell multi faceted graphical user interface |
US8165886B1 (en) | 2007-10-04 | 2012-04-24 | Great Northern Research LLC | Speech interface system and method for control and interaction with applications on a computing system |
US8364694B2 (en) | 2007-10-26 | 2013-01-29 | Apple Inc. | Search assistant for digital media assets |
US8620662B2 (en) | 2007-11-20 | 2013-12-31 | Apple Inc. | Context-aware unit selection |
US10002189B2 (en) | 2007-12-20 | 2018-06-19 | Apple Inc. | Method and apparatus for searching using an active ontology |
US9330720B2 (en) | 2008-01-03 | 2016-05-03 | Apple Inc. | Methods and apparatus for altering audio output signals |
US8327272B2 (en) | 2008-01-06 | 2012-12-04 | Apple Inc. | Portable multifunction device, method, and graphical user interface for viewing and managing electronic calendars |
US8065143B2 (en) | 2008-02-22 | 2011-11-22 | Apple Inc. | Providing text input using speech data and non-speech data |
US8289283B2 (en) | 2008-03-04 | 2012-10-16 | Apple Inc. | Language input interface on a device |
US8996376B2 (en) | 2008-04-05 | 2015-03-31 | Apple Inc. | Intelligent text-to-speech conversion |
US10496753B2 (en) | 2010-01-18 | 2019-12-03 | Apple Inc. | Automatically adapting user interfaces for hands-free interaction |
US8464150B2 (en) | 2008-06-07 | 2013-06-11 | Apple Inc. | Automatic language identification for dynamic text processing |
US20100030549A1 (en) | 2008-07-31 | 2010-02-04 | Lee Michael M | Mobile device having human language translation capability with positional feedback |
US8768702B2 (en) | 2008-09-05 | 2014-07-01 | Apple Inc. | Multi-tiered voice feedback in an electronic device |
US8898568B2 (en) | 2008-09-09 | 2014-11-25 | Apple Inc. | Audio user interface |
US8396714B2 (en) * | 2008-09-29 | 2013-03-12 | Apple Inc. | Systems and methods for concatenation of words in text to speech synthesis |
US8355919B2 (en) * | 2008-09-29 | 2013-01-15 | Apple Inc. | Systems and methods for text normalization for text to speech synthesis |
US8712776B2 (en) | 2008-09-29 | 2014-04-29 | Apple Inc. | Systems and methods for selective text to speech synthesis |
US8583418B2 (en) | 2008-09-29 | 2013-11-12 | Apple Inc. | Systems and methods of detecting language and natural language strings for text to speech synthesis |
US20100082328A1 (en) * | 2008-09-29 | 2010-04-01 | Apple Inc. | Systems and methods for speech preprocessing in text to speech synthesis |
US8352268B2 (en) | 2008-09-29 | 2013-01-08 | Apple Inc. | Systems and methods for selective rate of speech and speech preferences for text to speech synthesis |
US8352272B2 (en) | 2008-09-29 | 2013-01-08 | Apple Inc. | Systems and methods for text to speech synthesis |
US8676904B2 (en) | 2008-10-02 | 2014-03-18 | Apple Inc. | Electronic devices with voice command and contextual data processing capabilities |
US9390167B2 (en) | 2010-07-29 | 2016-07-12 | Soundhound, Inc. | System and methods for continuous audio matching |
WO2010067118A1 (en) | 2008-12-11 | 2010-06-17 | Novauris Technologies Limited | Speech recognition involving a mobile device |
US8862252B2 (en) | 2009-01-30 | 2014-10-14 | Apple Inc. | Audio user interface for displayless electronic device |
US8380507B2 (en) | 2009-03-09 | 2013-02-19 | Apple Inc. | Systems and methods for determining the language to use for speech generated by a text to speech engine |
KR101577607B1 (ko) * | 2009-05-22 | 2015-12-15 | 삼성전자주식회사 | 상황 및 의도인지 기반의 언어 표현 장치 및 그 방법 |
US10255566B2 (en) | 2011-06-03 | 2019-04-09 | Apple Inc. | Generating and processing task items that represent tasks to perform |
US10241752B2 (en) | 2011-09-30 | 2019-03-26 | Apple Inc. | Interface for a virtual digital assistant |
US9858925B2 (en) | 2009-06-05 | 2018-01-02 | Apple Inc. | Using context information to facilitate processing of commands in a virtual assistant |
US10241644B2 (en) | 2011-06-03 | 2019-03-26 | Apple Inc. | Actionable reminder entries |
US10540976B2 (en) | 2009-06-05 | 2020-01-21 | Apple Inc. | Contextual voice commands |
US9431006B2 (en) | 2009-07-02 | 2016-08-30 | Apple Inc. | Methods and apparatuses for automatic speech recognition |
US20110010179A1 (en) * | 2009-07-13 | 2011-01-13 | Naik Devang K | Voice synthesis and processing |
US8682649B2 (en) | 2009-11-12 | 2014-03-25 | Apple Inc. | Sentiment prediction from textual data |
US8600743B2 (en) | 2010-01-06 | 2013-12-03 | Apple Inc. | Noise profile determination for voice-related feature |
US8311838B2 (en) * | 2010-01-13 | 2012-11-13 | Apple Inc. | Devices and methods for identifying a prompt corresponding to a voice input in a sequence of prompts |
US8381107B2 (en) | 2010-01-13 | 2013-02-19 | Apple Inc. | Adaptive audio feedback system and method |
US10705794B2 (en) | 2010-01-18 | 2020-07-07 | Apple Inc. | Automatically adapting user interfaces for hands-free interaction |
US10679605B2 (en) | 2010-01-18 | 2020-06-09 | Apple Inc. | Hands-free list-reading by intelligent automated assistant |
US10276170B2 (en) | 2010-01-18 | 2019-04-30 | Apple Inc. | Intelligent automated assistant |
US10553209B2 (en) | 2010-01-18 | 2020-02-04 | Apple Inc. | Systems and methods for hands-free notification summaries |
US8682667B2 (en) | 2010-02-25 | 2014-03-25 | Apple Inc. | User profiling for selecting user specific voice input processing information |
US8639516B2 (en) | 2010-06-04 | 2014-01-28 | Apple Inc. | User-specific noise suppression for voice quality improvements |
US8713021B2 (en) | 2010-07-07 | 2014-04-29 | Apple Inc. | Unsupervised document clustering using latent semantic density analysis |
US9104670B2 (en) | 2010-07-21 | 2015-08-11 | Apple Inc. | Customized search or acquisition of digital media assets |
US8719006B2 (en) | 2010-08-27 | 2014-05-06 | Apple Inc. | Combined statistical and rule-based part-of-speech tagging for text-to-speech synthesis |
US8719014B2 (en) | 2010-09-27 | 2014-05-06 | Apple Inc. | Electronic device with text error correction based on voice recognition data |
US10762293B2 (en) | 2010-12-22 | 2020-09-01 | Apple Inc. | Using parts-of-speech tagging and named entity recognition for spelling correction |
US10515147B2 (en) | 2010-12-22 | 2019-12-24 | Apple Inc. | Using statistical language models for contextual lookup |
KR101828273B1 (ko) * | 2011-01-04 | 2018-02-14 | 삼성전자주식회사 | 결합기반의 음성명령 인식 장치 및 그 방법 |
US8781836B2 (en) | 2011-02-22 | 2014-07-15 | Apple Inc. | Hearing assistance system for providing consistent human speech |
JP5710317B2 (ja) * | 2011-03-03 | 2015-04-30 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | 情報処理装置、自然言語解析方法、プログラムおよび記録媒体 |
US9262612B2 (en) | 2011-03-21 | 2016-02-16 | Apple Inc. | Device access using voice authentication |
US9035163B1 (en) | 2011-05-10 | 2015-05-19 | Soundbound, Inc. | System and method for targeting content based on identified audio and multimedia |
US20120310642A1 (en) | 2011-06-03 | 2012-12-06 | Apple Inc. | Automatically creating a mapping between text data and audio data |
US10057736B2 (en) | 2011-06-03 | 2018-08-21 | Apple Inc. | Active transport based notifications |
US8812294B2 (en) | 2011-06-21 | 2014-08-19 | Apple Inc. | Translating phrases from one language into another using an order-based set of declarative rules |
US8706472B2 (en) | 2011-08-11 | 2014-04-22 | Apple Inc. | Method for disambiguating multiple readings in language conversion |
US8994660B2 (en) | 2011-08-29 | 2015-03-31 | Apple Inc. | Text correction processing |
US8762156B2 (en) | 2011-09-28 | 2014-06-24 | Apple Inc. | Speech recognition repair using contextual information |
US9100291B2 (en) | 2012-01-31 | 2015-08-04 | Db Networks, Inc. | Systems and methods for extracting structured application data from a communications link |
US9525642B2 (en) | 2012-01-31 | 2016-12-20 | Db Networks, Inc. | Ordering traffic captured on a data connection |
US10134385B2 (en) | 2012-03-02 | 2018-11-20 | Apple Inc. | Systems and methods for name pronunciation |
US9483461B2 (en) | 2012-03-06 | 2016-11-01 | Apple Inc. | Handling speech synthesis of content for multiple languages |
US9280610B2 (en) | 2012-05-14 | 2016-03-08 | Apple Inc. | Crowd sourcing information to fulfill user requests |
US8775442B2 (en) | 2012-05-15 | 2014-07-08 | Apple Inc. | Semantic search using a single-source semantic model |
US10417037B2 (en) | 2012-05-15 | 2019-09-17 | Apple Inc. | Systems and methods for integrating third party services with a digital assistant |
US9069798B2 (en) | 2012-05-24 | 2015-06-30 | Mitsubishi Electric Research Laboratories, Inc. | Method of text classification using discriminative topic transformation |
WO2013185109A2 (en) | 2012-06-08 | 2013-12-12 | Apple Inc. | Systems and methods for recognizing textual identifiers within a plurality of words |
US9721563B2 (en) | 2012-06-08 | 2017-08-01 | Apple Inc. | Name recognition system |
US9495129B2 (en) | 2012-06-29 | 2016-11-15 | Apple Inc. | Device, method, and user interface for voice-activated navigation and browsing of a document |
US10957310B1 (en) * | 2012-07-23 | 2021-03-23 | Soundhound, Inc. | Integrated programming framework for speech and text understanding with meaning parsing |
US9576574B2 (en) | 2012-09-10 | 2017-02-21 | Apple Inc. | Context-sensitive handling of interruptions by intelligent digital assistant |
US9547647B2 (en) | 2012-09-19 | 2017-01-17 | Apple Inc. | Voice-based media searching |
US8935167B2 (en) | 2012-09-25 | 2015-01-13 | Apple Inc. | Exemplar-based latent perceptual modeling for automatic speech recognition |
EP2944055A4 (en) | 2013-01-11 | 2016-08-17 | Db Networks Inc | SYSTEMS AND METHOD FOR DETECTING AND WEAKING DOWN THREATS FOR A STRUCTURED DATA STORAGE SYSTEM |
KR102516577B1 (ko) | 2013-02-07 | 2023-04-03 | 애플 인크. | 디지털 어시스턴트를 위한 음성 트리거 |
US10572476B2 (en) | 2013-03-14 | 2020-02-25 | Apple Inc. | Refining a search based on schedule items |
US9977779B2 (en) | 2013-03-14 | 2018-05-22 | Apple Inc. | Automatic supplementation of word correction dictionaries |
US9733821B2 (en) | 2013-03-14 | 2017-08-15 | Apple Inc. | Voice control to diagnose inadvertent activation of accessibility features |
US10642574B2 (en) | 2013-03-14 | 2020-05-05 | Apple Inc. | Device, method, and graphical user interface for outputting captions |
US9368114B2 (en) | 2013-03-14 | 2016-06-14 | Apple Inc. | Context-sensitive handling of interruptions |
US10652394B2 (en) | 2013-03-14 | 2020-05-12 | Apple Inc. | System and method for processing voicemail |
AU2014233517B2 (en) | 2013-03-15 | 2017-05-25 | Apple Inc. | Training an at least partial voice command system |
US10078487B2 (en) | 2013-03-15 | 2018-09-18 | Apple Inc. | Context-sensitive handling of interruptions |
WO2014144579A1 (en) | 2013-03-15 | 2014-09-18 | Apple Inc. | System and method for updating an adaptive speech recognition model |
US10748529B1 (en) | 2013-03-15 | 2020-08-18 | Apple Inc. | Voice activated device for use with a voice-based digital assistant |
US11151899B2 (en) | 2013-03-15 | 2021-10-19 | Apple Inc. | User training by intelligent digital assistant |
WO2014197334A2 (en) | 2013-06-07 | 2014-12-11 | Apple Inc. | System and method for user-specified pronunciation of words for speech synthesis and recognition |
WO2014197336A1 (en) | 2013-06-07 | 2014-12-11 | Apple Inc. | System and method for detecting errors in interactions with a voice-based digital assistant |
US9582608B2 (en) | 2013-06-07 | 2017-02-28 | Apple Inc. | Unified ranking with entropy-weighted information for phrase-based semantic auto-completion |
WO2014197335A1 (en) | 2013-06-08 | 2014-12-11 | Apple Inc. | Interpreting and acting upon commands that involve sharing information with remote devices |
US10176167B2 (en) * | 2013-06-09 | 2019-01-08 | Apple Inc. | System and method for inferring user intent from speech inputs |
KR101959188B1 (ko) | 2013-06-09 | 2019-07-02 | 애플 인크. | 디지털 어시스턴트의 둘 이상의 인스턴스들에 걸친 대화 지속성을 가능하게 하기 위한 디바이스, 방법 및 그래픽 사용자 인터페이스 |
KR101809808B1 (ko) | 2013-06-13 | 2017-12-15 | 애플 인크. | 음성 명령에 의해 개시되는 긴급 전화를 걸기 위한 시스템 및 방법 |
US9519461B2 (en) | 2013-06-20 | 2016-12-13 | Viv Labs, Inc. | Dynamically evolving cognitive architecture system based on third-party developers |
US9633317B2 (en) | 2013-06-20 | 2017-04-25 | Viv Labs, Inc. | Dynamically evolving cognitive architecture system based on a natural language intent interpreter |
US9594542B2 (en) | 2013-06-20 | 2017-03-14 | Viv Labs, Inc. | Dynamically evolving cognitive architecture system based on training by third-party developers |
US10474961B2 (en) | 2013-06-20 | 2019-11-12 | Viv Labs, Inc. | Dynamically evolving cognitive architecture system based on prompting for additional user input |
US10229106B2 (en) * | 2013-07-26 | 2019-03-12 | Nuance Communications, Inc. | Initializing a workspace for building a natural language understanding system |
CN105453026A (zh) | 2013-08-06 | 2016-03-30 | 苹果公司 | 基于来自远程设备的活动自动激活智能响应 |
US9507849B2 (en) | 2013-11-28 | 2016-11-29 | Soundhound, Inc. | Method for combining a query and a communication command in a natural language computer system |
US10296160B2 (en) | 2013-12-06 | 2019-05-21 | Apple Inc. | Method for extracting salient dialog usage from live data |
US9292488B2 (en) | 2014-02-01 | 2016-03-22 | Soundhound, Inc. | Method for embedding voice mail in a spoken utterance using a natural language processing computer system |
US11295730B1 (en) | 2014-02-27 | 2022-04-05 | Soundhound, Inc. | Using phonetic variants in a local context to improve natural language understanding |
US9564123B1 (en) | 2014-05-12 | 2017-02-07 | Soundhound, Inc. | Method and system for building an integrated user profile |
US9620105B2 (en) | 2014-05-15 | 2017-04-11 | Apple Inc. | Analyzing audio input for efficient speech and music recognition |
US10592095B2 (en) | 2014-05-23 | 2020-03-17 | Apple Inc. | Instantaneous speaking of content on touch devices |
US9502031B2 (en) | 2014-05-27 | 2016-11-22 | Apple Inc. | Method for supporting dynamic grammars in WFST-based ASR |
US10170123B2 (en) | 2014-05-30 | 2019-01-01 | Apple Inc. | Intelligent assistant for home automation |
US9760559B2 (en) | 2014-05-30 | 2017-09-12 | Apple Inc. | Predictive text input |
US9715875B2 (en) | 2014-05-30 | 2017-07-25 | Apple Inc. | Reducing the need for manual start/end-pointing and trigger phrases |
US9734193B2 (en) | 2014-05-30 | 2017-08-15 | Apple Inc. | Determining domain salience ranking from ambiguous words in natural speech |
US10289433B2 (en) | 2014-05-30 | 2019-05-14 | Apple Inc. | Domain specific language for encoding assistant dialog |
US9842101B2 (en) | 2014-05-30 | 2017-12-12 | Apple Inc. | Predictive conversion of language input |
US10078631B2 (en) | 2014-05-30 | 2018-09-18 | Apple Inc. | Entropy-guided text prediction using combined word and character n-gram language models |
US9430463B2 (en) | 2014-05-30 | 2016-08-30 | Apple Inc. | Exemplar-based natural language processing |
US9633004B2 (en) | 2014-05-30 | 2017-04-25 | Apple Inc. | Better resolution when referencing to concepts |
US9785630B2 (en) | 2014-05-30 | 2017-10-10 | Apple Inc. | Text prediction using combined word N-gram and unigram language models |
TWI566107B (zh) | 2014-05-30 | 2017-01-11 | 蘋果公司 | 用於處理多部分語音命令之方法、非暫時性電腦可讀儲存媒體及電子裝置 |
US9338493B2 (en) | 2014-06-30 | 2016-05-10 | Apple Inc. | Intelligent automated assistant for TV user interactions |
US10659851B2 (en) | 2014-06-30 | 2020-05-19 | Apple Inc. | Real-time digital assistant knowledge updates |
US10446141B2 (en) | 2014-08-28 | 2019-10-15 | Apple Inc. | Automatic speech recognition based on user feedback |
US9818400B2 (en) | 2014-09-11 | 2017-11-14 | Apple Inc. | Method and apparatus for discovering trending terms in speech requests |
US10789041B2 (en) | 2014-09-12 | 2020-09-29 | Apple Inc. | Dynamic thresholds for always listening speech trigger |
US9886432B2 (en) | 2014-09-30 | 2018-02-06 | Apple Inc. | Parsimonious handling of word inflection via categorical stem + suffix N-gram language models |
US10127911B2 (en) | 2014-09-30 | 2018-11-13 | Apple Inc. | Speaker identification and unsupervised speaker adaptation techniques |
US9646609B2 (en) | 2014-09-30 | 2017-05-09 | Apple Inc. | Caching apparatus for serving phonetic pronunciations |
US10074360B2 (en) | 2014-09-30 | 2018-09-11 | Apple Inc. | Providing an indication of the suitability of speech recognition |
US9668121B2 (en) | 2014-09-30 | 2017-05-30 | Apple Inc. | Social reminders |
US10552013B2 (en) | 2014-12-02 | 2020-02-04 | Apple Inc. | Data detection |
US9711141B2 (en) | 2014-12-09 | 2017-07-18 | Apple Inc. | Disambiguating heteronyms in speech synthesis |
JP6514503B2 (ja) * | 2014-12-25 | 2019-05-15 | クラリオン株式会社 | 意図推定装置、および意図推定システム |
US10152299B2 (en) | 2015-03-06 | 2018-12-11 | Apple Inc. | Reducing response latency of intelligent automated assistants |
US9865280B2 (en) | 2015-03-06 | 2018-01-09 | Apple Inc. | Structured dictation using intelligent automated assistants |
US9886953B2 (en) | 2015-03-08 | 2018-02-06 | Apple Inc. | Virtual assistant activation |
US10567477B2 (en) | 2015-03-08 | 2020-02-18 | Apple Inc. | Virtual assistant continuity |
US9721566B2 (en) | 2015-03-08 | 2017-08-01 | Apple Inc. | Competing devices responding to voice triggers |
US9899019B2 (en) | 2015-03-18 | 2018-02-20 | Apple Inc. | Systems and methods for structured stem and suffix language models |
US9842105B2 (en) | 2015-04-16 | 2017-12-12 | Apple Inc. | Parsimonious continuous-space phrase representations for natural language processing |
US10460227B2 (en) | 2015-05-15 | 2019-10-29 | Apple Inc. | Virtual assistant in a communication session |
US10200824B2 (en) | 2015-05-27 | 2019-02-05 | Apple Inc. | Systems and methods for proactively identifying and surfacing relevant content on a touch-sensitive device |
US10083688B2 (en) | 2015-05-27 | 2018-09-25 | Apple Inc. | Device voice control for selecting a displayed affordance |
US10127220B2 (en) | 2015-06-04 | 2018-11-13 | Apple Inc. | Language identification from short strings |
US10101822B2 (en) | 2015-06-05 | 2018-10-16 | Apple Inc. | Language input correction |
US9578173B2 (en) | 2015-06-05 | 2017-02-21 | Apple Inc. | Virtual assistant aided communication with 3rd party service in a communication session |
US11025565B2 (en) | 2015-06-07 | 2021-06-01 | Apple Inc. | Personalized prediction of responses for instant messaging |
US10186254B2 (en) | 2015-06-07 | 2019-01-22 | Apple Inc. | Context-based endpoint detection |
US10255907B2 (en) | 2015-06-07 | 2019-04-09 | Apple Inc. | Automatic accent detection using acoustic models |
US20160378747A1 (en) | 2015-06-29 | 2016-12-29 | Apple Inc. | Virtual assistant for media playback |
US10740384B2 (en) | 2015-09-08 | 2020-08-11 | Apple Inc. | Intelligent automated assistant for media search and playback |
US10747498B2 (en) | 2015-09-08 | 2020-08-18 | Apple Inc. | Zero latency digital assistant |
US10331312B2 (en) | 2015-09-08 | 2019-06-25 | Apple Inc. | Intelligent automated assistant in a media environment |
US10671428B2 (en) | 2015-09-08 | 2020-06-02 | Apple Inc. | Distributed personal assistant |
US9697820B2 (en) | 2015-09-24 | 2017-07-04 | Apple Inc. | Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks |
US10366158B2 (en) | 2015-09-29 | 2019-07-30 | Apple Inc. | Efficient word encoding for recurrent neural network language models |
US11010550B2 (en) | 2015-09-29 | 2021-05-18 | Apple Inc. | Unified language modeling framework for word prediction, auto-completion and auto-correction |
US11587559B2 (en) | 2015-09-30 | 2023-02-21 | Apple Inc. | Intelligent device identification |
US10691473B2 (en) | 2015-11-06 | 2020-06-23 | Apple Inc. | Intelligent automated assistant in a messaging environment |
US10956666B2 (en) | 2015-11-09 | 2021-03-23 | Apple Inc. | Unconventional virtual assistant interactions |
US10049668B2 (en) | 2015-12-02 | 2018-08-14 | Apple Inc. | Applying neural network language models to weighted finite state transducers for automatic speech recognition |
US10223066B2 (en) | 2015-12-23 | 2019-03-05 | Apple Inc. | Proactive assistance based on dialog communication between devices |
US10446143B2 (en) | 2016-03-14 | 2019-10-15 | Apple Inc. | Identification of voice inputs providing credentials |
US9934775B2 (en) | 2016-05-26 | 2018-04-03 | Apple Inc. | Unit-selection text-to-speech synthesis based on predicted concatenation parameters |
US9972304B2 (en) | 2016-06-03 | 2018-05-15 | Apple Inc. | Privacy preserving distributed evaluation framework for embedded personalized systems |
US10249300B2 (en) | 2016-06-06 | 2019-04-02 | Apple Inc. | Intelligent list reading |
US11227589B2 (en) | 2016-06-06 | 2022-01-18 | Apple Inc. | Intelligent list reading |
US10049663B2 (en) | 2016-06-08 | 2018-08-14 | Apple, Inc. | Intelligent automated assistant for media exploration |
DK179309B1 (en) | 2016-06-09 | 2018-04-23 | Apple Inc | Intelligent automated assistant in a home environment |
US12223282B2 (en) | 2016-06-09 | 2025-02-11 | Apple Inc. | Intelligent automated assistant in a home environment |
US10509862B2 (en) | 2016-06-10 | 2019-12-17 | Apple Inc. | Dynamic phrase expansion of language input |
US10586535B2 (en) | 2016-06-10 | 2020-03-10 | Apple Inc. | Intelligent digital assistant in a multi-tasking environment |
US10490187B2 (en) | 2016-06-10 | 2019-11-26 | Apple Inc. | Digital assistant providing automated status report |
US10192552B2 (en) | 2016-06-10 | 2019-01-29 | Apple Inc. | Digital assistant providing whispered speech |
US10067938B2 (en) | 2016-06-10 | 2018-09-04 | Apple Inc. | Multilingual word prediction |
DK179343B1 (en) | 2016-06-11 | 2018-05-14 | Apple Inc | Intelligent task discovery |
DK179415B1 (en) | 2016-06-11 | 2018-06-14 | Apple Inc | Intelligent device arbitration and control |
DK201670540A1 (en) | 2016-06-11 | 2018-01-08 | Apple Inc | Application integration with a digital assistant |
DK179049B1 (en) | 2016-06-11 | 2017-09-18 | Apple Inc | Data driven natural language event detection and classification |
US10474753B2 (en) | 2016-09-07 | 2019-11-12 | Apple Inc. | Language identification using recurrent neural networks |
US10043516B2 (en) | 2016-09-23 | 2018-08-07 | Apple Inc. | Intelligent automated assistant |
US11281993B2 (en) | 2016-12-05 | 2022-03-22 | Apple Inc. | Model and ensemble compression for metric learning |
US10691507B2 (en) * | 2016-12-09 | 2020-06-23 | Fujitsu Limited | API learning |
US10593346B2 (en) | 2016-12-22 | 2020-03-17 | Apple Inc. | Rank-reduced token representation for automatic speech recognition |
US11204787B2 (en) | 2017-01-09 | 2021-12-21 | Apple Inc. | Application integration with a digital assistant |
CN107015964B (zh) * | 2017-03-22 | 2021-10-19 | 北京光年无限科技有限公司 | 面向智能机器人开发的自定义意图实现方法及装置 |
DK201770383A1 (en) | 2017-05-09 | 2018-12-14 | Apple Inc. | USER INTERFACE FOR CORRECTING RECOGNITION ERRORS |
US10417266B2 (en) | 2017-05-09 | 2019-09-17 | Apple Inc. | Context-aware ranking of intelligent response suggestions |
DK201770439A1 (en) | 2017-05-11 | 2018-12-13 | Apple Inc. | Offline personal assistant |
US10395654B2 (en) | 2017-05-11 | 2019-08-27 | Apple Inc. | Text normalization based on a data-driven learning network |
US10726832B2 (en) | 2017-05-11 | 2020-07-28 | Apple Inc. | Maintaining privacy of personal information |
DK201770429A1 (en) | 2017-05-12 | 2018-12-14 | Apple Inc. | LOW-LATENCY INTELLIGENT AUTOMATED ASSISTANT |
DK179496B1 (en) | 2017-05-12 | 2019-01-15 | Apple Inc. | USER-SPECIFIC Acoustic Models |
US11301477B2 (en) | 2017-05-12 | 2022-04-12 | Apple Inc. | Feedback analysis of a digital assistant |
DK179745B1 (en) | 2017-05-12 | 2019-05-01 | Apple Inc. | SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT |
DK201770432A1 (en) | 2017-05-15 | 2018-12-21 | Apple Inc. | Hierarchical belief states for digital assistants |
DK201770431A1 (en) | 2017-05-15 | 2018-12-20 | Apple Inc. | Optimizing dialogue policy decisions for digital assistants using implicit feedback |
US20180336892A1 (en) | 2017-05-16 | 2018-11-22 | Apple Inc. | Detecting a trigger of a digital assistant |
US10403278B2 (en) | 2017-05-16 | 2019-09-03 | Apple Inc. | Methods and systems for phonetic matching in digital assistant services |
US10311144B2 (en) | 2017-05-16 | 2019-06-04 | Apple Inc. | Emoji word sense disambiguation |
US20180336275A1 (en) | 2017-05-16 | 2018-11-22 | Apple Inc. | Intelligent automated assistant for media exploration |
DK179560B1 (en) | 2017-05-16 | 2019-02-18 | Apple Inc. | FAR-FIELD EXTENSION FOR DIGITAL ASSISTANT SERVICES |
US10657328B2 (en) | 2017-06-02 | 2020-05-19 | Apple Inc. | Multi-task recurrent neural network architecture for efficient morphology handling in neural language modeling |
US10445429B2 (en) | 2017-09-21 | 2019-10-15 | Apple Inc. | Natural language understanding using vocabularies with compressed serialized tries |
US10755051B2 (en) | 2017-09-29 | 2020-08-25 | Apple Inc. | Rule-based natural language processing |
US10636424B2 (en) | 2017-11-30 | 2020-04-28 | Apple Inc. | Multi-turn canned dialog |
US10733982B2 (en) | 2018-01-08 | 2020-08-04 | Apple Inc. | Multi-directional dialog |
US10733375B2 (en) | 2018-01-31 | 2020-08-04 | Apple Inc. | Knowledge-based framework for improving natural language understanding |
US10789959B2 (en) | 2018-03-02 | 2020-09-29 | Apple Inc. | Training speaker recognition models for digital assistants |
US10592604B2 (en) | 2018-03-12 | 2020-03-17 | Apple Inc. | Inverse text normalization for automatic speech recognition |
US10818288B2 (en) | 2018-03-26 | 2020-10-27 | Apple Inc. | Natural assistant interaction |
US10909331B2 (en) | 2018-03-30 | 2021-02-02 | Apple Inc. | Implicit identification of translation payload with neural machine translation |
US10928918B2 (en) | 2018-05-07 | 2021-02-23 | Apple Inc. | Raise to speak |
US11145294B2 (en) | 2018-05-07 | 2021-10-12 | Apple Inc. | Intelligent automated assistant for delivering content from user experiences |
US10984780B2 (en) | 2018-05-21 | 2021-04-20 | Apple Inc. | Global semantic word embeddings using bi-directional recurrent neural networks |
DK180639B1 (en) | 2018-06-01 | 2021-11-04 | Apple Inc | DISABILITY OF ATTENTION-ATTENTIVE VIRTUAL ASSISTANT |
US10892996B2 (en) | 2018-06-01 | 2021-01-12 | Apple Inc. | Variable latency device coordination |
US11386266B2 (en) | 2018-06-01 | 2022-07-12 | Apple Inc. | Text correction |
DK179822B1 (da) | 2018-06-01 | 2019-07-12 | Apple Inc. | Voice interaction at a primary device to access call functionality of a companion device |
DK201870355A1 (en) | 2018-06-01 | 2019-12-16 | Apple Inc. | VIRTUAL ASSISTANT OPERATION IN MULTI-DEVICE ENVIRONMENTS |
US11076039B2 (en) | 2018-06-03 | 2021-07-27 | Apple Inc. | Accelerated task performance |
US11010561B2 (en) | 2018-09-27 | 2021-05-18 | Apple Inc. | Sentiment prediction from textual data |
US11462215B2 (en) | 2018-09-28 | 2022-10-04 | Apple Inc. | Multi-modal inputs for voice commands |
US10839159B2 (en) | 2018-09-28 | 2020-11-17 | Apple Inc. | Named entity normalization in a spoken dialog system |
US11170166B2 (en) | 2018-09-28 | 2021-11-09 | Apple Inc. | Neural typographical error modeling via generative adversarial networks |
CN109388802B (zh) * | 2018-10-11 | 2022-11-25 | 北京轮子科技有限公司 | 一种基于深度学习的语义理解方法和装置 |
US11475898B2 (en) | 2018-10-26 | 2022-10-18 | Apple Inc. | Low-latency multi-speaker speech recognition |
US11638059B2 (en) | 2019-01-04 | 2023-04-25 | Apple Inc. | Content playback on multiple devices |
US11348573B2 (en) | 2019-03-18 | 2022-05-31 | Apple Inc. | Multimodality in digital assistant systems |
CN110096570B (zh) * | 2019-04-09 | 2021-03-30 | 苏宁易购集团股份有限公司 | 一种应用于智能客服机器人的意图识别方法及装置 |
US11475884B2 (en) | 2019-05-06 | 2022-10-18 | Apple Inc. | Reducing digital assistant latency when a language is incorrectly determined |
US11307752B2 (en) | 2019-05-06 | 2022-04-19 | Apple Inc. | User configurable task triggers |
US11423908B2 (en) | 2019-05-06 | 2022-08-23 | Apple Inc. | Interpreting spoken requests |
DK201970509A1 (en) | 2019-05-06 | 2021-01-15 | Apple Inc | Spoken notifications |
US11140099B2 (en) | 2019-05-21 | 2021-10-05 | Apple Inc. | Providing message response suggestions |
DK180129B1 (en) | 2019-05-31 | 2020-06-02 | Apple Inc. | User activity shortcut suggestions |
US11496600B2 (en) | 2019-05-31 | 2022-11-08 | Apple Inc. | Remote execution of machine-learned models |
DK201970510A1 (en) | 2019-05-31 | 2021-02-11 | Apple Inc | Voice identification in digital assistant systems |
US11289073B2 (en) | 2019-05-31 | 2022-03-29 | Apple Inc. | Device text to speech |
US11360641B2 (en) | 2019-06-01 | 2022-06-14 | Apple Inc. | Increasing the relevance of new available information |
WO2021056255A1 (en) | 2019-09-25 | 2021-04-01 | Apple Inc. | Text detection using global geometry estimators |
US20210117882A1 (en) | 2019-10-16 | 2021-04-22 | Talkdesk, Inc | Systems and methods for workforce management system deployment |
US11736615B2 (en) | 2020-01-16 | 2023-08-22 | Talkdesk, Inc. | Method, apparatus, and computer-readable medium for managing concurrent communications in a networked call center |
US11038934B1 (en) | 2020-05-11 | 2021-06-15 | Apple Inc. | Digital assistant hardware abstraction |
US11755276B2 (en) | 2020-05-12 | 2023-09-12 | Apple Inc. | Reducing description length based on confidence |
US11610065B2 (en) | 2020-06-12 | 2023-03-21 | Apple Inc. | Providing personalized responses based on semantic context |
US11677875B2 (en) | 2021-07-02 | 2023-06-13 | Talkdesk Inc. | Method and apparatus for automated quality management of communication records |
US11856140B2 (en) | 2022-03-07 | 2023-12-26 | Talkdesk, Inc. | Predictive communications system |
US11736616B1 (en) | 2022-05-27 | 2023-08-22 | Talkdesk, Inc. | Method and apparatus for automatically taking action based on the content of call center communications |
US11971908B2 (en) | 2022-06-17 | 2024-04-30 | Talkdesk, Inc. | Method and apparatus for detecting anomalies in communication data |
US11943391B1 (en) | 2022-12-13 | 2024-03-26 | Talkdesk, Inc. | Method and apparatus for routing communications within a contact center |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7146381B1 (en) * | 1997-02-10 | 2006-12-05 | Actioneer, Inc. | Information organization and collaboration tool for processing notes and action requests in computer systems |
JP2001188555A (ja) * | 1999-12-28 | 2001-07-10 | Sony Corp | 情報処理装置および方法、並びに記録媒体 |
WO2001073755A1 (en) * | 2000-03-24 | 2001-10-04 | Eliza Corporation | Web-based speech recognition with scripting and semantic objects |
US6836760B1 (en) * | 2000-09-29 | 2004-12-28 | Apple Computer, Inc. | Use of semantic inference and context-free grammar with speech recognition system |
US7016849B2 (en) * | 2002-03-25 | 2006-03-21 | Sri International | Method and apparatus for providing speech-driven routing between spoken language applications |
US7200559B2 (en) * | 2003-05-29 | 2007-04-03 | Microsoft Corporation | Semantic object synchronous understanding implemented with speech application language tags |
US8301436B2 (en) * | 2003-05-29 | 2012-10-30 | Microsoft Corporation | Semantic object synchronous understanding for highly interactive interface |
US7412387B2 (en) * | 2005-01-18 | 2008-08-12 | International Business Machines Corporation | Automatic improvement of spoken language |
US7460996B2 (en) * | 2005-06-23 | 2008-12-02 | Microsoft Corporation | Using strong data types to express speech recognition grammars in software programs |
US8019714B2 (en) * | 2005-12-12 | 2011-09-13 | Qin Zhang | Thinking system and method |
KR100764174B1 (ko) * | 2006-03-03 | 2007-10-08 | 삼성전자주식회사 | 음성 대화 서비스 장치 및 방법 |
US7689420B2 (en) * | 2006-04-06 | 2010-03-30 | Microsoft Corporation | Personalizing a context-free grammar using a dictation language model |
US20070239453A1 (en) * | 2006-04-06 | 2007-10-11 | Microsoft Corporation | Augmenting context-free grammars with back-off grammars for processing out-of-grammar utterances |
US8396713B2 (en) * | 2007-04-30 | 2013-03-12 | Nuance Communications, Inc. | Method and system for using a statistical language model and an action classifier in parallel with grammar for better handling of out-of-grammar utterances |
KR100919225B1 (ko) * | 2007-09-19 | 2009-09-28 | 한국전자통신연구원 | 음성 대화 시스템에 있어서 다단계 검증을 이용한 대화오류 후처리 장치 및 방법 |
US20090235253A1 (en) * | 2008-03-12 | 2009-09-17 | Apple Inc. | Smart task list/life event annotator |
-
2009
- 2009-10-01 KR KR1020090094019A patent/KR20110036385A/ko not_active Application Discontinuation
-
2010
- 2010-09-30 US US12/894,846 patent/US20110082688A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190082900A (ko) * | 2017-02-15 | 2019-07-10 | 텐센트 테크놀로지(센젠) 컴퍼니 리미티드 | 음성 인식 방법, 전자 디바이스, 및 컴퓨터 저장 매체 |
KR20180124716A (ko) * | 2017-05-11 | 2018-11-21 | 경희대학교 산학협력단 | 효과적인 대화 관리를 위한 의료 시스템에서의 의도-컨텍스트 융합 방법 |
Also Published As
Publication number | Publication date |
---|---|
US20110082688A1 (en) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20110036385A (ko) | 사용자 의도 분석 장치 및 방법 | |
US7072837B2 (en) | Method for processing initially recognized speech in a speech recognition session | |
US9934777B1 (en) | Customized speech processing language models | |
KR100920267B1 (ko) | 음성 대화 분석 시스템 및 그 방법 | |
US7529657B2 (en) | Configurable parameters for grammar authoring for speech recognition and natural language understanding | |
US7043422B2 (en) | Method and apparatus for distribution-based language model adaptation | |
US10902846B2 (en) | Spoken language understanding apparatus and spoken language understanding method using the same | |
US7634406B2 (en) | System and method for identifying semantic intent from acoustic information | |
US7124080B2 (en) | Method and apparatus for adapting a class entity dictionary used with language models | |
US20140350918A1 (en) | Method and system for adding punctuation to voice files | |
US8255220B2 (en) | Device, method, and medium for establishing language model for expanding finite state grammar using a general grammar database | |
JPH08278794A (ja) | 音声認識装置および音声認識方法並びに音声翻訳装置 | |
WO2018192186A1 (zh) | 语音识别方法及装置 | |
JP7544989B2 (ja) | ルックアップテーブルリカレント言語モデル | |
US20030093272A1 (en) | Speech operated automatic inquiry system | |
US20130238321A1 (en) | Dialog text analysis device, method and program | |
JP2010078877A (ja) | 音声認識装置、音声認識方法及び音声認識プログラム | |
KR100726875B1 (ko) | 구두 대화에서의 전형적인 실수에 대한 보완적인 언어모델을 갖는 음성 인식 디바이스 | |
Badenhorst et al. | Collecting and evaluating speech recognition corpora for 11 South African languages | |
Moyal et al. | Phonetic search methods for large speech databases | |
US20110224985A1 (en) | Model adaptation device, method thereof, and program thereof | |
Kitaoka et al. | Dynamic out-of-vocabulary word registration to language model for speech recognition | |
KR100723404B1 (ko) | 음성 인식 및 반응을 위한 음성 처리 장치와 방법 | |
Švec et al. | Hierarchical discriminative model for spoken language understanding | |
US6772116B2 (en) | Method of decoding telegraphic speech |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20091001 |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination | ||
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |