KR20110000424A - Hot-rolled steel sheet having excellent galvanized coating quality and the method for manufacturing the same - Google Patents
Hot-rolled steel sheet having excellent galvanized coating quality and the method for manufacturing the same Download PDFInfo
- Publication number
- KR20110000424A KR20110000424A KR1020090057892A KR20090057892A KR20110000424A KR 20110000424 A KR20110000424 A KR 20110000424A KR 1020090057892 A KR1020090057892 A KR 1020090057892A KR 20090057892 A KR20090057892 A KR 20090057892A KR 20110000424 A KR20110000424 A KR 20110000424A
- Authority
- KR
- South Korea
- Prior art keywords
- hot
- steel sheet
- rolled steel
- less
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 83
- 239000010959 steel Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000011248 coating agent Substances 0.000 title description 4
- 238000000576 coating method Methods 0.000 title description 4
- 238000007747 plating Methods 0.000 claims abstract description 67
- 238000005246 galvanizing Methods 0.000 claims abstract description 27
- 239000012535 impurity Substances 0.000 claims abstract description 26
- 229910052796 boron Inorganic materials 0.000 claims abstract description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 229910052718 tin Inorganic materials 0.000 claims description 14
- 238000005554 pickling Methods 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 5
- 238000003303 reheating Methods 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 19
- 229910052698 phosphorus Inorganic materials 0.000 description 17
- 239000011701 zinc Substances 0.000 description 16
- 229910052725 zinc Inorganic materials 0.000 description 11
- 239000010410 layer Substances 0.000 description 10
- 239000011572 manganese Substances 0.000 description 10
- 238000005204 segregation Methods 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- 238000009628 steelmaking Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910015372 FeAl Inorganic materials 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000021110 pickles Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Coating With Molten Metal (AREA)
Abstract
본 발명은 C: 0.001~0.04wt%, Si: 0초과 0.05wt% 이하, Mn: 0초과 0.5wt% 이하를 기본성분으로 하는 성분계에 P: 0.02~0.1wt% B: 0.0003~0.001wt%를 포함하고 나머지 Fe과 기타 불가피한 불순물의 합금조성을 갖는 슬라브를 1180~1250℃의 온도에서 재가열 하고, 재가열된 슬라브를 열간압연한 후 580~700℃의 온도에서 권취한다. The present invention is P: 0.02 ~ 0.1wt% B: 0.0003 ~ 0.001wt% in the component system based on C: 0.001 ~ 0.04wt%, Si: greater than 0 and 0.05wt%, Mn: greater than 0 and 0.5wt% Slabs containing the alloy composition of the remaining Fe and other unavoidable impurities are reheated at a temperature of 1180 ~ 1250 ° C, and hot rolled the reheated slabs and wound at a temperature of 580 ~ 700 ° C.
본 발명에 의하면, 용융아연도금시 과도금 현상이 방지되고 가공시에도 내 파우더링이 향상되므로 표면 품질이 우수한 용융아연도금 열연강판을 제조할 수 있는 이점이 있다. According to the present invention, there is an advantage that a hot-dip galvanized hot-rolled steel sheet having excellent surface quality can be manufactured because the over-plating phenomenon is prevented during hot dip galvanizing and powdering is improved even during processing.
열연강판, 용융아연도금 Hot Rolled Steel, Hot Dip Galvanized
Description
본 발명은 열연강판 및 그 제조방법에 관한 것으로, 더욱 상세하게는 제강공정시 발생하는 P 성분의 첨가량을 증가시켜 용융아연 도금 특성이 향상되도록 한 용융아연 도금 특성이 우수한 열연강판 및 그 제조방법에 관한 것이다. The present invention relates to a hot-rolled steel sheet and a method for manufacturing the same, and more particularly, to a hot-rolled steel sheet excellent in hot-dip galvanizing properties to improve the hot-dip galvanizing properties by increasing the amount of P component generated during the steelmaking process, and a method of manufacturing the same. It is about.
자동차 및 건축용 자재, 가전부품 등의 소재로 사용되는 강판은 내식성 향상을 위해 용융아연도금 공정이 수행된다.Steel sheets used as materials for automobiles, construction materials, and home appliances are subjected to hot dip galvanizing to improve corrosion resistance.
열연강판의 내식성 향상을 위한 용융아연도금 공정은 크게 강판의 이물질을 제거하기 위한 탈지 공정, 열연스케일을 제거하기 위한 산세 및 세척 공정, 산화방지를 위한 플럭스(Flux) 전처리 및 건조 공정, 용융아연 도금욕에 침지하는 아연욕 침지공정으로 구분되며, 용융아연도금 공정 후에는 추가 내식성 확보를 위해 용융아연도금된 열연강판에 크롬을 주성분으로 하는 크로메이트 처리를 실시하고 건조하는 건조 공정을 거치게 된다. Hot dip galvanizing process to improve the corrosion resistance of hot rolled steel sheet is largely degreasing process to remove foreign substances in steel sheet, pickling and washing process to remove hot roll scale, flux pretreatment and drying process to prevent oxidation, hot dip galvanizing It is divided into zinc bath immersion process immersed in the bath, and after the hot dip galvanizing process is subjected to a chromate treatment of chromium as a main component on the hot-dip galvanized hot-rolled steel sheet to secure additional corrosion resistance and drying process.
그러나 이와 같은 종래 기술에는 다음과 같은 문제점이 있다. However, such a prior art has the following problems.
스크랩을 주원료로 사용하는 전기로 공정에서는 일반적인 강 생산공정 중에 제거되지 않는 Cu, Ni, Sn, As, Cr, Mo, Pb 등의 불순물 원소가 강 중에 잔류하게 된다. In an electric furnace process using scrap as a main raw material, impurity elements such as Cu, Ni, Sn, As, Cr, Mo, and Pb, which are not removed during a general steel production process, remain in the steel.
이러한 불순물 원소는 목적에 의해 첨가되는 성분이 아니며, 강 중에 불필요하게 잔류하여 강판의 품질을 열화시키게 된다. Such an impurity element is not a component added by the purpose, and it remains unnecessarily in steel and deteriorates the quality of a steel plate.
또한, 강 중에 불필요하게 잔류되는 Si, Cu, Sn 등은 용융아연도금시 강판의 표면에 농화되어 Fn-Zn간의 반응을 가속화 하거나 지연시켜 도금 품질을 저하시키게 된다. In addition, Si, Cu, Sn and the like remaining unnecessarily in the steel is concentrated on the surface of the steel sheet during hot dip galvanizing to accelerate or delay the reaction between the Fn-Zn to reduce the plating quality.
도금 품질 저하는 내 파우더링성을 악화시키고 후공정인 크로메이트 처리시 균일한 코팅층을 형성하기 어려워 강판의 외관 품질을 저하시키는 원인이 된다. Degradation of the plating quality deteriorates the powdering resistance and makes it difficult to form a uniform coating layer during the subsequent chromate treatment, which causes a decrease in the appearance quality of the steel sheet.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로 본 발명의 목적은 제강공정시 발생하는 P 성분의 첨가량을 증가시킴으로써 Si, Cu, Sn 등에 의한 과도금으로 발생하는 외관손상 및 내 파우더링성 악화를 미연에 방지하도록 한 용융아연도금 특성이 우수한 열연강판 및 그 제조방법을 제공하는 것이다. The present invention is to solve the conventional problems as described above, the object of the present invention is to increase the amount of P component generated during the steelmaking process, the appearance damage and powdering resistance caused by overplating by Si, Cu, Sn, etc. To provide a hot-rolled steel sheet excellent in hot-dip galvanizing properties to prevent deterioration in advance, and a manufacturing method thereof.
상기한 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 C: 0.001~0.04wt%, Si: 0초과 0.05wt% 이하, Mn: 0초과 0.5wt% 이하를 기본성분으로 하는 성분계에 P: 0.02~0.1wt% B: 0.0003~0.001wt%를 포함하고 나머지 Fe과 기타 불가피한 불순물의 합금조성을 갖는다. According to a feature of the present invention for achieving the above object, the present invention is P in the component system based on C: 0.001 ~ 0.04wt%, Si: more than 0 and 0.05wt%, Mn: more than 0 and 0.5wt% or less : 0.02 ~ 0.1wt% B: It contains 0.0003 ~ 0.001wt% and has alloy composition of remaining Fe and other unavoidable impurities.
상기 불순물은 S: 0초과 0.01wt% 이하, Cu: 0초과 0.20wt% 이하, Sn: 0초과 0.03wt% 이하를 포함한다. The impurities include S: more than 0 and 0.01 wt% or less, Cu: 0 and more and 0.20 wt% or less and Sn: 0 and more and 0.03 wt% or less.
C: 0.001~0.04wt%, Si: 0초과 0.05wt% 이하, Mn: 0초과 0.5wt% 이하를 기본성분으로 하는 성분계에 P: 0.02~0.1wt% B: 0.0003~0.001wt%를 포함하고 나머지 Fe과 기타 불가피한 불순물의 합금조성을 갖는 슬라브를 C: 0.001 to 0.04 wt%, Si: greater than 0 and 0.05 wt% or less, Mn: greater than 0 and 0.5 wt% or less P: 0.02 to 0.1 wt% B: 0.0003 to 0.001 wt% Slabs with alloys of Fe and other unavoidable impurities
1180~1250℃의 온도에서 재가열 하고, 재가열된 슬라브를 열간압연한 후 580~700℃의 온도에서 권취한다. Reheat at a temperature of 1180 ~ 1250 ℃, hot roll the reheated slab and wind up at a temperature of 580 ~ 700 ℃.
상기 권취 후에는 산세하고 도금욕에 침지하여 용융아연도금처리하는 공정을 수행하며, 상기 도금욕에 인입되는 열연강판의 온도는 400~450℃이다. After the winding, pickling and immersion in a plating bath are performed to perform a hot dip galvanizing process. The temperature of the hot rolled steel sheet drawn into the plating bath is 400 to 450 ° C.
상기 도금욕에는 Fe-Zn간의 급속한 반응을 방지하기 위해 Al이 첨가된다. Al is added to the plating bath to prevent a rapid reaction between Fe and Zn.
상기 도금욕 내 전체 도금액 대비 Al 농도는 0.10~0.12wt%이다. Al concentration is 0.10 ~ 0.12wt% relative to the total plating solution in the plating bath.
상기 불순물은 S: 0초과 0.01wt% 이하, Cu: 0초과 0.20wt% 이하, Sn: 0초과 0.03wt% 이하를 포함한다. The impurities include S: more than 0 and 0.01 wt% or less, Cu: 0 and more and 0.20 wt% or less and Sn: 0 and more and 0.03 wt% or less.
본 발명에 의하면, 전기로 공정에 의해 P, S, Cu, Sn 등의 불가피한 불순물을 포함하는 성분계에 P 및 B를 추가로 함유하여 산세성이 향상되도록 하였다. 이는 용융아연도금시 강판 전체에 균일한 도금 조건을 부여하여 균일한 도금층이 형성되도록 한다. According to the present invention, the pickling property is improved by further containing P and B in a component system containing inevitable impurities such as P, S, Cu, and Sn by an electric furnace process. This imparts uniform plating conditions to the entire steel sheet during hot dip galvanizing to form a uniform plating layer.
또한, 본 발명은 아연 도금욕에 Al을 추가로 첨가하여 용융아연도금을 실시한다. 도금욕에 첨가된 Al은 Fe-Zn간의 급속한 반응이 발생하는 것을 방지하여 과도금을 방지한다. In the present invention, Al is further added to the zinc plating bath to perform hot dip galvanizing. Al added to the plating bath prevents rapid plating between Fe-Zn to prevent overplating.
따라서, 표면 품질이 우수하고 가공시에도 내 파우더링성이 향상된 용융아연도금 열연강판을 제조할 수 있는 효과가 있다. Therefore, there is an effect that can be produced hot-dip galvanized hot-rolled steel sheet having excellent surface quality and improved powdering resistance during processing.
이하, 본 발명에 의한 용융아연 도금 특성이 우수한 열연강판 및 그 제조방법의 바람직한 실시예를 상세하게 설명한다. Hereinafter, the preferred embodiment of the hot-rolled steel sheet excellent in the hot-dip galvanizing properties according to the present invention and its manufacturing method will be described in detail.
본 발명은, 우수한 도금 특성을 얻기 위해 불순물 원소인 P를 0.02~0.1wt%로 함유하고, P첨가에 의한 2차 가공취성을 방지하기 위해 B를 추가로 첨가한다. 그리고, 도금욕 침적 전에 강판에 균일한 도금 조건을 부여하기 위해 아연 도금욕에 Al 을 추가로 첨가한다. In order to obtain the excellent plating property, this invention contains P which is an impurity element at 0.02-0.1 wt%, and also adds B in order to prevent secondary work brittleness by P addition. And Al is further added to the zinc plating bath in order to give uniform plating conditions to a steel plate before plating bath deposition.
도금욕에 첨가된 Al은 Fe-Zn간의 금속간화합물 생성시 FeAl5반응 억제층을 형성하여 Fe-Zn간의 급속한 반응이 발생하는 것을 방지한다. Al added to the plating bath forms a FeAl 5 reaction suppression layer during the formation of the intermetallic compound between Fe-Zn to prevent rapid reaction between Fe-Zn.
본 발명의 구체적인 합금조성은 C: 0.001~0.04wt%, Si: 0초과 0.05wt% 이하, Mn: 0초과 0.5wt% 이하를 기본조성으로 하고, 불순물 원소로 P: 0.02~0.1wt%, S: 0초과 0.01wt% 이하, Cu: 0초과 0.20wt% 이하, Sn: 0초과 0.03wt% 이하를 포함하며, 추가로 B: 0.0003~0.001wt%를 함유하고 나머지 Fe로 이루어진다. Specific alloy composition of the present invention is C: 0.001 ~ 0.04wt%, Si: more than 0 and 0.05wt% or less, Mn: more than 0 and 0.5wt% or less as a basic composition, P: 0.02 ~ 0.1wt%, S as an impurity element : More than 0 wt% and less than 0.01 wt%, Cu: more than 0 wt% and less than 0.20 wt% and less than Sn: more than 0 wt% and less than 0.03 wt%, further comprising B: 0.0003 to 0.001 wt% and remaining Fe.
이하, 본 발명의 합금원소들의 기능과 함유량에 대하여 상세히 설명한다.Hereinafter, the function and content of the alloying elements of the present invention will be described in detail.
C: 0.001~0.04wt%C: 0.001-0.04wt%
C는 강도향상이 목적이다. 탄소는 미량으로 첨가되면 강도확보가 어려워 고용강화 원소를 첨가해야 하므로 제조원가가 상승하고, 과다 첨가되면 산세를 어렵게 하고 용접성이 저하되며 강도 증가에 따른 연성 및 스트레치-플렌지성이 저하된다. 여기서, C의 상한치는 본 발명이 일반 탄소강, 극저탄소강에 모두 적용되므로 극저탄소강을 기준으로 설정한다. C is for strength. If carbon is added in a small amount, it is difficult to secure strength, and thus, a solid solution element must be added, and thus, the production cost increases, and if it is added excessively, pickling becomes difficult, weldability decreases, and ductility and stretch-flange property decreases as strength increases. Here, the upper limit of C is set based on the ultra low carbon steel because the present invention is applied to both general carbon steel and ultra low carbon steel.
Si: 0초과 0.05wt% 이하Si: more than 0 and 0.05wt% or less
Si는 고용강화 원소로 강의 청정화에 기여한다. Si는 적정 Mn이 첨가되는 강에 첨가되면 용접시 용융금속의 유동성을 향상시켜 용접부 내 개재물 잔류를 최대한 감소시키고 항복비와 강도 및 연성의 균형을 저해하기 않으면서 강도를 향상시 킨다. Si is a solid solution hardening element, which contributes to the steel cleaning. When added to the steel to which the appropriate Mn is added, Si improves the fluidity of the molten metal during welding, thereby reducing the inclusions in the weld as much as possible and improving the strength without disturbing the yield ratio and the balance between strength and ductility.
그러나 Si는 다량 첨가되면 열간압연시 표면에 FeSiO4와 같은 단단한 화합물을 형성하여 산세를 어렵게 하고, 용융아연도금시 도금부착성을 저하시켜 미도금 및 도금 박리현상 등의 문제점을 발생시킨다. 따라서, Si의 함량을 0.05wt% 이하로 제한한다. However, when a large amount of Si is added, a hard compound such as FeSiO 4 is formed on the surface during hot rolling, making it difficult to pickle and deteriorating plating adhesion during hot dip galvanizing, thereby causing problems such as unplating and plating peeling. Therefore, the content of Si is limited to 0.05 wt% or less.
Mn: 0초과 0.5wt% 이하Mn: more than 0 and less than 0.5wt%
Mn은 강 중의 S를 MnS로 석출하여 고용 황에 의한 적열취성을 방지하며 연성의 손상없이 결정입자를 미세화시킨다. Mn precipitates S in the steel as MnS to prevent red brittleness by solid-solution sulfur and to refine crystal grains without ductile damage.
또한, 오스테나이트 페라이트간의 변태온도를 낮추어 미세한 페라이트를 형성시켜 강도를 향상시키는 역할도 한다. In addition, by lowering the transformation temperature between austenite ferrite to form a fine ferrite also serves to improve the strength.
Mn은 0.5wt%를 초과하면 가공성이 열악해지고 슬라브 주조시 두께 중심부에서 망간밴드가 발달하여 굽힘 가공성이 저하되는 것과 동시에 산세를 어렵게 하고 스폿 용접시 너겟 용접부에서 파괴가 유발될 수 있으므로 0.5wt% 이하로 제한한다.If the Mn exceeds 0.5wt%, the machinability is poor and the manganese band develops at the center of the thickness during slab casting, which decreases the bending workability and makes it difficult to pickle. Limited to
상술한 기본 합금성분 외에도 요구되는 기계적 특성에 따라, Nb, Ti, Cr 등 원소가 추가로 함유될 수 있다. In addition to the basic alloy components described above, depending on the required mechanical properties, elements such as Nb, Ti, Cr may be further contained.
P, S, Cu, Sn은 불순물 개념으로 전기로의 경우 일정량 이상 강 중에 잔류하게 되는 원소이다. 이 중 Cu, Sn 등은 용융아연도금 공정 중에 강판의 표면에 농화되어 Fe-Zn간의 반응을 가속화 하거나 지연시켜 도금 품질을 저하시키게 된다. P, S, Cu, Sn is an impurity concept is an element remaining in the steel more than a certain amount in the case of an electric furnace. Among them, Cu, Sn, etc. are concentrated on the surface of the steel sheet during the hot dip galvanizing process to accelerate or delay the reaction between Fe-Zn, thereby reducing the plating quality.
P: 0.02~0.1wt%P: 0.02 ~ 0.1wt%
P는 산세성 향상을 목적으로 첨가된다. P는 산세시 모재 표면에 불순물 원소의 농화를 제거한다. P is added for the purpose of improving pickling. P removes the concentration of impurity elements on the surface of the base material during pickling.
P는 0.02wt% 이상이면 산세성이 향상되어 도금 품질이 향상되나, 0.1wt%를 초과하면 P편석에 의한 2차 가공 취성이 발생할 수 있으므로 함량을 0.02~0.1wt%로 제한한다. If P is more than 0.02wt%, pickling property is improved and plating quality is improved, but if it exceeds 0.1wt%, secondary processing brittleness may occur due to P segregation, so the content is limited to 0.02 ~ 0.1wt%.
S: 0초과 0.01wt% 이하S: greater than 0 and less than 0.01wt%
불가피한 불순물로 S가 포함될 수 있다. S은 강 중에 잔류시 적열취성이 발생되고, MnS석출물의 크기를 증가시키므로 그 함량을 0.008wt% 이하로 제한한다. S may be included as an unavoidable impurity. S is a red brittle occurs when remaining in the steel, and increases the size of the MnS precipitates to limit the content to less than 0.008wt%.
Cu: 0초과 0.20wt% 이하Cu: more than 0 and less than 0.20wt%
Cu는 스크랩을 원료로 사용하는 제강공정에서 제거할 수 없는 불순물로 존재한다. Cu는 주로 강도를 높이는 원소로 작용하는 측면이 있지만 강의 연신율, r값 및 표면품질을 저하시키므로 그 함량을 0.20wt% 이하로 규제하는 것이 바람직하다. Cu is present as an impurity that cannot be removed in a steelmaking process using scrap as a raw material. Cu mainly has a side effect as an element to increase strength, but it is preferable to regulate the content to 0.20 wt% or less because it lowers elongation, r value and surface quality of steel.
Sn: 0초과 0.03wt% 이하Sn: more than 0 and less than 0.03wt%
Sn은 Cu와 마찬가지로 스크랩을 원료로 하는 제강공정에서 제거할 수 없는 불순물로 존재한다. Sn은 다른 불순물 원소와 달리 강의 기계적 성질을 저하시키는 결정적 역할을 한다. 따라서, Sn의 함량을 0.03wt% 이하로 제한한다.Sn, like Cu, exists as an impurity that cannot be removed in a steelmaking process using scrap as a raw material. Sn plays a decisive role in lowering the mechanical properties of steel, unlike other impurity elements. Therefore, the content of Sn is limited to 0.03wt% or less.
B: 0.0003~0.001wt%B: 0.0003 to 0.001 wt%
B는 P 첨가로 인해 발생하는 입계편석을 방지하기 위해 첨가된다. B는 침입형 원소로 P와의 자리경쟁효과(site competition effect)로 P의 입계편석을 방지한다. 그리고, 강 중에 존재하는 B는 강 중의 고용N과 결합하여 BN으로 석출되므로 가공성 향상에도 기여하게 된다. B is added to prevent intergranular segregation caused by P addition. B is an invasive element that prevents P from grain boundary segregation due to a site competition effect with P. In addition, B present in the steel is combined with solid solution N in the steel to precipitate as BN, thereby contributing to the improvement of workability.
보론(B)은 0.0003wt% 미만으로 첨가되면 그 효과가 없고, 0.001wt%를 초과하여 첨가되면 제강공정 제어가 어려워 열연 및 열처리 후 강판의 재질편차가 커지게 된다. 따라서, B의 함량을 0.0003~0.001wt%로 제어한다.If boron (B) is added less than 0.0003wt% has no effect, if it is added exceeding 0.001wt% difficult to control the steelmaking process, the material deviation of the steel sheet after hot rolling and heat treatment becomes large. Therefore, the content of B is controlled to 0.0003 to 0.001 wt%.
추가 원소로 Ni이 첨가될 수 있다. Ni은 0초과 0.05wt% 범위로 첨가되면 균일한 합금화를 조성하여 용융아연도금시 균일한 도금 조건을 부여한다. Ni may be added as an additional element. When Ni is added in the range of more than 0 wt% and 0.05 wt%, it forms a uniform alloying to give uniform plating conditions during hot dip galvanizing.
상술한 합금성분 외에도 원료, 자재, 제조설비 등의 상황에 따라 함유되는 원소로서 불가피한 불순물이 미량 함유될 수 있다. In addition to the above-described alloy components, it may contain trace amounts of inevitable impurities as elements contained according to the situation of raw materials, materials, manufacturing facilities, and the like.
상세한 공정조건은 아래와 같다. Detailed process conditions are as follows.
[재가열, 열간압연 공정][Reheating, Hot Rolling Process]
주조시 편석된 성분을 재고용하기 위한 것으로 1180~1250℃의 온도범위에서 실시한다. 재가열 후에는 통상의 조건으로 열간압연을 마무리하여 열연강판으로 제조하고, P의 입계편석을 방지하기 위해 700℃ 이하의 온도범위에서 권취하고 냉각 한다. 냉각은 요구되는 조직 특성에 따라 수냉 또는 공냉을 실시할 수 있다. To re-use segregated components during casting, it is carried out in the temperature range of 1180 ~ 1250 ℃. After reheating, hot rolling is finished under normal conditions to produce a hot rolled steel sheet, and wound and cooled in a temperature range of 700 ° C. or lower to prevent grain boundary segregation of P. Cooling can be performed by water or air cooling depending on the desired tissue properties.
재가열 온도는 1180℃보다 낮은 경우 균일한 오스테나이트 결정립이 되지 못하고 혼립이 발생할 수 있으며 P에 의한 입내, 입계 편석이 발생하여 표면품질 저하를 가져오게 된다. 재가열 온도가 1250℃보다 높으면 비정상적인 결정입자 성장과 함께 재질이 연화되고 고온가열로 제조원가가 상승하게 된다. If the reheating temperature is lower than 1180 ° C., uniform austenite grains may not be obtained and may be mixed, resulting in degradation of surface quality due to intragranular and grain boundary segregation caused by P. If the reheating temperature is higher than 1250 ° C, the material softens with abnormal grain growth and the manufacturing cost increases due to high temperature heating.
열간압연 마무리 온도는 요구되는 조직 특성에 따라 Ar3온도 직상 또는 직하에서 실시할 수 있다. The hot rolled finishing temperature can be carried out directly above or below the Ar3 temperature, depending on the required tissue properties.
권취 온도는 580~700℃가 바람직하다. 권취 온도는 580℃보다 낮으면 연신율이 감소하고 재질의 열화가 발생되며, 700℃보다 높으면 P에 의한 입내, 입계 편석이 발생하여 표면품질 저하를 가져오게 된다. As for winding temperature, 580-700 degreeC is preferable. If the coiling temperature is lower than 580 ℃, elongation is reduced and material degradation occurs, and if higher than 700 ℃, the particle quality, grain boundary segregation by P occurs, resulting in surface quality degradation.
[용융아연도금 공정][Molten zinc plating process]
권취된 열연강판을 8%~12% HCl 용액에 10~25초간 침지하여 열연 산화물층을 제거한 후 세척하고, 산화방지를 위해 플럭스(Flux) 전처리와 건조를 수행한다. 이 후 강판을 도금욕에 침지하여 용융아연도금 처리를 수행한다.The wound hot rolled steel sheet is immersed in 8% to 12% HCl solution for 10 to 25 seconds to remove the hot rolled oxide layer and then washed, and is subjected to flux pretreatment and drying to prevent oxidation. Thereafter, the steel sheet is immersed in a plating bath to perform hot dip galvanizing.
도금욕에 인입되는 강판온도는 400~450℃인 것이 바람직하다. 여기서, 도금욕에 인입되는 강판온도는 도금욕에 인입되기 직전의 강판온도 이다. It is preferable that the steel plate temperature drawn into a plating bath is 400-450 degreeC. Here, the steel sheet temperature introduced into the plating bath is the steel sheet temperature immediately before entering the plating bath.
도금온도는 400℃ 미만이면 강판의 표면 품질이 열화될 수 있고, 450℃를 초과하면 도금 부착량 증가에 따른 도금층 자체의 밀착성이 열화될 수 있다. If the plating temperature is less than 400 ℃ surface quality of the steel sheet may be deteriorated, if it exceeds 450 ℃ the adhesion of the plating layer itself may be deteriorated due to the increase in the coating amount.
도금욕에는 Fe-Zn간의 급속한 반응을 방지하기 위해 Al이 첨가된다. 도금욕 내 전체 도금액 대비 Al농도는 0.12~0.20wt%가 바람직하다. Al is added to the plating bath to prevent rapid reaction between Fe and Zn. The Al concentration of the plating solution in the plating bath is preferably 0.12 to 0.20 wt%.
도금욕 내 Al농도는 0.12wt% 미만이면 FeAl5반응 억제층 형성이 미비하고, 0.12wt%를 초과하면 과도한 FeAl5반응 억제층 형성으로 Fe과 Zn의 합금화 반응이 억제될 수 있다. If the Al concentration in the plating bath is less than 0.12wt%, FeAl 5 reaction suppression layer formation is insufficient, and if it exceeds 0.12wt%, Fe and Zn alloying reaction may be suppressed due to excessive FeAl 5 reaction suppression layer formation.
용융아연도금 공정 후에는 추가 내식성 확보를 위해 크로메이트 코팅 처리를 추가로 실시할 수 있다. After the hot dip galvanizing process, chromate coating may be further performed to secure additional corrosion resistance.
이하, 상술한 용융아연도금 특성이 우수한 열연강판의 제조방법을 실시예를 통해 설명하기로 한다. Hereinafter, a method of manufacturing a hot rolled steel sheet having excellent hot dip galvanizing characteristics will be described with reference to examples.
[실시예][Example]
C, Si, Mn을 기본조성으로 하고, 불순물 원소로 P, S, Cu, Sn를 포함하며 B가 선택적으로 함유된 슬라브를 1120℃에서 2시간 가열하고 Ar3점 직하에서 열간압연을 마무리 한 후 650℃에서 권취하였다. Slab containing C, Si, Mn as basic composition, containing P, S, Cu, Sn as an impurity element, and optionally containing B, was heated at 1120 ℃ for 2 hours, and hot rolled under Ar3 point. It was wound up at ° C.
이 후 440℃, 460℃에서 용융아연도금을 실시하고 도금특성을 측정하였다. 이때, 도금욕에는 Fe-Zn간의 급속한 반응을 방지하기 위해 0.12wt%의 Al을 첨가하였다. Thereafter, hot dip galvanizing was performed at 440 ° C. and 460 ° C., and plating characteristics were measured. At this time, 0.12wt% Al was added to the plating bath to prevent rapid reaction between Fe and Zn.
하기의 표1은 화학 성분비와 공정조건 및 그에 따른 도금특성을 나타낸 것이다. Table 1 below shows chemical composition ratios, process conditions, and plating properties accordingly.
division
비고
Remarks
(g/m2)Adhesion
(g / m 2 )
도금 부착량은 40~65가 적당한데, 이는 도금 부착량이 40미만이면 내식성이 불충분하고, 65를 초과하면 도금층이 과도하게 두꺼워져 도금층 자체의 밀착성이 열화되는 동시에 외관이 나빠지기 때문이다. 40-65 is suitable for plating adhesion amount, since the plating adhesion amount is less than 40, corrosion resistance is inadequate, and when it exceeds 65, the plating layer becomes excessively thick, the adhesiveness of the plating layer itself deteriorates, and appearance deteriorates.
파우더링은 가공시 도금층이 깨져 분말 상태로 박리되는지를 보는 것으로 3등급 이상이면 적정한 것으로 판단한다. Powdering is to determine whether the plating layer is cracked during processing and peeled off in a powder state.
표 1과 표 2를 살펴보면, 비교강 1의 경우와 같이 Si와 P, S, Cu, Sn 등의 불순물이 0.01wt% 이하로 함유되는 경우에는 부착량도 양호하고, 표면결함도 발생되지 않았으며, 파우더링성도 양호하였다. 하지만 스크랩을 주원료로 사용하는 전기로 공정에서는 Si, P, S, Cu, Sn을 비교강 1의 범위로 제어하기 어렵고, 제어하더라도 제강원가의 상승을 초래하므로 바람직하지 않다. Looking at Table 1 and Table 2, as in the case of Comparative Steel 1, when the impurities such as Si, P, S, Cu, Sn and the like contained less than 0.01wt%, the adhesion amount is good, and no surface defects occurred, Powdering property was also good. However, in an electric furnace process using scrap as a main raw material, Si, P, S, Cu, and Sn are difficult to control in the range of Comparative Steel 1, and even if controlled, it is not preferable because it causes an increase in steelmaking cost.
비교강 2 내지 비교강 7의 경우에는 Si, P, S, Cu, Sn 중 어느 한 성분의 함량이 증가함에 따라 도금 특성이 저하되었다. 이로 부터 전기로 공정의 불순물 원소가 도금욕 침적 이후 도금 부착량을 증가시키는 원인이 됨을 알 수 있다. In the case of Comparative Steels 2 to 7, the plating properties decreased as the content of any one of Si, P, S, Cu, and Sn increased. From this, it can be seen that the impurity element of the electric furnace process causes the plating adhesion amount to increase after plating bath deposition.
비교강 2의 경우에는 Si함량 증가에 따라 과도금이 발생되었고 그에 따라 표면결함이 발생하였으며, 비교강 3의 경우에는 Cu함량 증가에 따라 과도금이 발생하였고, 비교강 4의 경우에는 Sn함량 증가로 과도금이 발생되었고, 표면결함도 발생되었다. In the case of Comparative Steel 2, overplating occurred as the Si content increased, and the surface defect occurred according to the increase of the Si content. In the case of Comparative Steel 3, the overplating occurred as the Cu content increased. As a result of over plating, surface defects were also generated.
비교강 5와 비교강 6을 비교하면, Cu, Sn의 함량 증가에 따라 과도금이 발생하나, 강판의 도금온도가 높은 경우 과도금 정도가 더 증대되었다. Comparing Comparative Steel 5 and Comparative Steel 6, overplating occurs as the content of Cu and Sn increases, but the degree of overplating is further increased when the plating temperature of the steel sheet is high.
반면, 발명강 8 내지 발명강 12의 경우에는 Si, P, S, Cu, Sn 중 어느 한 성분 이상의 함량이 증가하더라도 P와 B첨가에 의해 도금 특성이 양호하였다. 하지만 비교강 7의 경우에는 P와 B가 첨가되더라도 P첨가량이 낮은 경우 도금온도가 높아 부착량이 증가하였고 그에 따라 표면 결함도 발생하였다. On the other hand, in the invention steel 8 to invention steel 12, even if the content of any one or more of Si, P, S, Cu, Sn increased the plating properties by the addition of P and B. However, in the case of Comparative Steel 7, even if P and B were added, when the P content was low, the coating temperature was increased due to the high plating temperature, and thus surface defects occurred.
한편, 도 1에는 P, B 및 도금욕에 Al의 첨가 여부에 따른 Fe-Zn간의 금속간화합물 생성반응이 모식도가 도시되어 있다. On the other hand, Figure 1 is a schematic diagram showing the intermetallic compound formation reaction between Fe, Zn according to the addition of Al to P, B and the plating bath.
도 1의 (a)는 표 1의 비교강 5에 해당되는 모식도로서, P, B가 본 발명의 범위로 첨가되지 않아 과도금 및 불순물 편석이 발생하였다. Figure 1 (a) is a schematic diagram corresponding to Comparative Steel 5 of Table 1, P and B were not added to the scope of the present invention, the overplating and impurity segregation occurred.
도 1의 (b)는 P, B는 본 발명의 범위로 첨가되어 산세성이 좋았으나, 도금욕에 Al이 미첨가되어 과도금이 발생된 경우이다. 이 경우 Fe-Zn간의 급속한 반응으로 과도금이 발생되었다고 볼 수 있다. 1 (b) shows that P and B are added within the scope of the present invention, so that the pickling property is good, but Al is not added to the plating bath to cause overplating. In this case, it can be said that overplating occurred due to the rapid reaction between Fe and Zn.
도 1의 (c)는 도금욕에 Al은 첨가되었으나, P, B의 미첨가로 불순물 원소들이 열연강판의 표면 위에 농화되어 Fe-Al반응의 불균일 조건을 형성하여 과도금, 편석이 발생한 경우이다. 1 (c) illustrates that Al is added to the plating bath, but impurity elements are concentrated on the surface of the hot-rolled steel sheet due to the non-addition of P and B to form a non-uniform condition of the Fe-Al reaction, thereby causing overplating and segregation. .
도 2의 (d)는 표 1의 발명강 8 내지 발명강 12에 해당되는 모식도로서, P가 산세성을 향상시켜 강판 전체에 균일한 도금 조건을 부여하였고, B가 P편석을 방지하였으며, 도금욕에 첨가되는 Al이 FeAl5반응 억제층을 형성하여 과도금을 방지하였다. Figure 2 (d) is a schematic diagram corresponding to the invention steel 8 to invention steel 12 of Table 1, P improves pickling properties to give uniform plating conditions to the entire steel sheet, B prevents P segregation, plating Al added to the bath forms a FeAl 5 reaction inhibiting layer to prevent overplating.
이는 도 2에서도 확인되는 바와 같이, P, B가 첨가되고, 도금욕에 Al을 첨가한 (c)에서 용융도금 후 열연강판의 외관 표면이 미려함을 알 수 있다. 여기서, 도 2의 (a)는 표 1의 비교강 1을 보인 표면 사진이고, (b)는 표 1의 비교강 5를 보인 표면 사진이며, (c)는 표 1의 발명강 12를 보인 표면 사진이다. As can be seen in Figure 2, P, B is added, it can be seen that the appearance surface of the hot-rolled steel sheet after hot-dip galvanizing (c) in which Al is added to the plating bath. Here, (a) of FIG. 2 is the surface photograph which showed the comparative steel 1 of Table 1, (b) is the surface photograph which shows the comparative steel 5 of Table 1, (c) is the surface which showed invention steel 12 of Table 1 It is a photograph.
위 실험결과로 부터, 스크랩을 주원료로 사용하는 전기로 공정을 적용하더라도 P와 B첨가와 도금온도 제어 및 도금욕에 Al을 첨가함에 의해 용융아연도금 특성이 우수한 열연강판을 제조할 수 있음을 알 수 있다. From the above test results, it can be seen that hot rolled steel sheet with excellent hot-dip galvanizing properties can be manufactured by adding P and B, controlling the plating temperature, and adding Al to the plating bath even if the electric furnace process using scrap as a main raw material is applied. Can be.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 기술분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다. It is to be understood that the invention is not limited to the disclosed embodiments, but is capable of many modifications and alterations, all of which are within the scope of the appended claims. It is self-evident.
도 1은 P, B 및 도금욕에 Al의 첨가 여부에 따른 Fe-Zn간의 금속간화합물 생성반응을 보인 모식도. 1 is a schematic diagram showing the intermetallic compound formation reaction between Fe, Zn according to the addition of Al to P, B and the plating bath.
도 2는 표 1의 비교강과 발명강의 용융아연도금 후 표면을 보인 사진. Figure 2 is a photograph showing the surface after hot-dip galvanizing of the comparative steel and the inventive steel of Table 1.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090057892A KR101149202B1 (en) | 2009-06-26 | 2009-06-26 | Method for manufacturing hot-rolled steel sheet having excellent galvanized coating quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090057892A KR101149202B1 (en) | 2009-06-26 | 2009-06-26 | Method for manufacturing hot-rolled steel sheet having excellent galvanized coating quality |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110000424A true KR20110000424A (en) | 2011-01-03 |
KR101149202B1 KR101149202B1 (en) | 2012-05-25 |
Family
ID=43609287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090057892A Expired - Fee Related KR101149202B1 (en) | 2009-06-26 | 2009-06-26 | Method for manufacturing hot-rolled steel sheet having excellent galvanized coating quality |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101149202B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160056224A (en) | 2014-11-11 | 2016-05-19 | 한양여자대학교산학협력단 | Heeled shoes decorated using the same method and using the lacquerware techniques |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3094807B2 (en) * | 1994-09-02 | 2000-10-03 | 日本鋼管株式会社 | Hot-rolled steel sheet excellent in hot-dip galvanizing property and method for producing the same |
JP4276482B2 (en) | 2003-06-26 | 2009-06-10 | 新日本製鐵株式会社 | High-strength hot-rolled steel sheet with excellent ultimate deformability and shape freezing property and its manufacturing method |
JP4528191B2 (en) * | 2005-04-15 | 2010-08-18 | 新日本製鐵株式会社 | Hot-dip galvanized steel sheet with excellent spot weldability, paintability and workability, and method for producing the same |
-
2009
- 2009-06-26 KR KR1020090057892A patent/KR101149202B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160056224A (en) | 2014-11-11 | 2016-05-19 | 한양여자대학교산학협력단 | Heeled shoes decorated using the same method and using the lacquerware techniques |
Also Published As
Publication number | Publication date |
---|---|
KR101149202B1 (en) | 2012-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102189791B1 (en) | Low-density hot-dip galvanized steel and its manufacturing method | |
JP6458833B2 (en) | Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate | |
JP6458834B2 (en) | Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate | |
KR20080061853A (en) | High strength galvanized steel sheet with excellent mechanical properties and surface quality and its manufacturing method | |
JP5531757B2 (en) | High strength steel plate | |
KR100264258B1 (en) | Cold rolled steel strip and hot dip coated cold rolled steel strip for use as building material and manufacturing method thereof | |
JP5251207B2 (en) | High strength steel plate with excellent deep drawability and method for producing the same | |
JP4735552B2 (en) | Manufacturing method of high strength steel plate and high strength plated steel plate | |
JP4890492B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance | |
JP3745496B2 (en) | Manufacturing method of cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance | |
KR102484978B1 (en) | High strength galvannealed steel sheet having excellent powdering resistance and manufacturing method for the same | |
KR101899680B1 (en) | High strength galvanized steel sheet having excellent surface property and coating adhesion and method of manufacturing the same | |
KR101736640B1 (en) | Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same | |
KR101149202B1 (en) | Method for manufacturing hot-rolled steel sheet having excellent galvanized coating quality | |
JP3464611B2 (en) | High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same | |
JP4415579B2 (en) | Method for producing hot-dip galvanized steel sheet | |
KR101452052B1 (en) | High strength alloyed galvanized steel sheet with excellent coating adhesion and method for manufacturing the same | |
KR101076092B1 (en) | Hot dip galvanized hot rolled steel sheet having high strength and high elongation property and the method for manufacturing the same | |
JP5251206B2 (en) | High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method | |
KR102403647B1 (en) | Bake hardening hot-dip galvannealed steel sheet having excellent powdering and method for manufacturing the same | |
JP4486518B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent press formability and coating adhesion during press forming | |
JP3716439B2 (en) | Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics | |
JP4218598B2 (en) | High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics | |
KR20220168836A (en) | Bake hardening hot-dip galvannealed steel sheet having excellent coated surface quality and method for manufacturing the same | |
KR20040037520A (en) | A manufacturing method of high strength galvannealed steel sheets having excellent formability and coating adhesion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20090626 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20100128 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20090626 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20111121 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20120427 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20120516 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20120516 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20160409 |