KR20100045274A - High electrical conductivity and heat resistance aluminum alloys - Google Patents
High electrical conductivity and heat resistance aluminum alloys Download PDFInfo
- Publication number
- KR20100045274A KR20100045274A KR1020080104384A KR20080104384A KR20100045274A KR 20100045274 A KR20100045274 A KR 20100045274A KR 1020080104384 A KR1020080104384 A KR 1020080104384A KR 20080104384 A KR20080104384 A KR 20080104384A KR 20100045274 A KR20100045274 A KR 20100045274A
- Authority
- KR
- South Korea
- Prior art keywords
- conductivity
- aluminum alloy
- heat resistance
- heat
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 26
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 13
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 abstract description 9
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 238000004881 precipitation hardening Methods 0.000 abstract description 5
- 239000004020 conductor Substances 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 description 20
- 229910045601 alloy Inorganic materials 0.000 description 19
- 230000005484 gravity Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 238000000137 annealing Methods 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 7
- 230000032683 aging Effects 0.000 description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 5
- 238000005275 alloying Methods 0.000 description 5
- 239000010953 base metal Substances 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910018580 Al—Zr Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
본 발명은 고전도 내열 알루미늄 합금에 관한 것으로서 특히, 석출경화 열처리를 통하여 우수한 전기전도도 및 내열성을 얻을 수 있는 알루미늄 합금에 관한 것이다.The present invention relates to a high-conductivity heat-resistant aluminum alloy, and more particularly, to an aluminum alloy that can obtain excellent electrical conductivity and heat resistance through precipitation hardening heat treatment.
본 발명에 의한 고전도 내열 알루미늄 합금은 스칸듐(Sc) 0.03~0.3중량% 및 나머지는 알루미늄(Al)과 기타 불가피한 불순물로 알루미늄 합금이 구성됨으로써, 상온 도전율이 58%IACS 이상이고, 상온 인장강도가 160MPa 이상이며, 내열온도가 350℃ 이상의 특징을 가지고 있기 때문에, 산업발전에 따른 송전전력의 초고압화 및 송전량의 대용량화에 따른 송전선 등의 도전용 소재로 사용할 수 있다.The high-conductivity heat-resistant aluminum alloy according to the present invention is composed of 0.03 to 0.3% by weight of scandium (Sc) and the remainder of aluminum (Al) and other unavoidable impurities, so that the room temperature conductivity is 58% IACS or more, and the room temperature tensile strength is Since it is 160 MPa or more and has a heat resistance temperature of 350 ° C. or more, it can be used as a conductive material for transmission lines such as ultra-high pressure transmission power according to industrial development and power capacity increase in power transmission capacity.
Description
본 발명은 고전도 내열 알루미늄 합금에 관한 것으로서 특히, 석출경화 열처리를 통하여 우수한 전기전도도 및 내열성을 얼을 수 있는 알루미늄 합금에 관한 것이다.The present invention relates to a high-conductivity heat-resistant aluminum alloy, and more particularly, to an aluminum alloy capable of freezing excellent electrical conductivity and heat resistance through precipitation hardening heat treatment.
알루미늄의 비중은 약 2.7로서 구리(비중: 8.9)에 비하여 약 30% 수준으로 가볍고, 또한 알루미늄의 도전율은 약 64%IACS로서 구리(도전율: 100%IACS)에 비하여 약 64% 수준으로 다른 금속에 비하여 매우 높다.The specific gravity of aluminum is about 2.7, which is about 30% lighter than copper (specific gravity: 8.9), and the conductivity of aluminum is about 64% IACS, which is about 64% compared to copper (conductivity: 100% IACS). Very high compared to
상기와 같이 알루미늄의 비중 대비 도전율은 구리의 비중 대비 도전율에 비하여 알루미늄이 약 2배 이상 높기 때문에 구리를 대체하는 송전선 등의 도전용 소재로서 널리 사용되고 있다. As described above, the electrical conductivity relative to specific gravity of aluminum is widely used as a conductive material such as a transmission line replacing copper because aluminum is about two times higher than the electrical conductivity to specific gravity of copper.
송전용 알루미늄 소재로는 일반적으로 순 알루미늄, Al-Mg 합금, Al-Zr 합금 등이 사용되고 있다. 그러나 지속적인 산업발전에 따른 송전전력의 초고압화 및 송 전량의 대용량화에 대처하기 위하여 고전도성 및 내열성을 갖춘 도전용 알루미늄 합금 소재의 적용이 요구되고 있다. Pure aluminum, Al-Mg alloy, Al-Zr alloy, etc. are generally used as a transmission aluminum material. However, in order to cope with the ultra high pressure of transmission power and the large capacity of transmission power due to continuous industrial development, application of conductive aluminum alloy material with high conductivity and heat resistance is required.
현재는 고전도성 및 내열성을 갖춘 도전용 알루미늄 합금으로는 지르코늄이 함유된 Al-Zr 합금이 사용되고는 있으나, 알루미늄(비중: 2.7)과 지르코늄(비중: 6.5)의 현격한 비중차이로 인하여 합금 용해공정에서 합금원소 편석 현상이 발생하고, 합금 용해공정에서 지르코늄의 산화손실로 인하여 지르코늄 회수율이 낮으며, 합금 열처리 공정에서 알루미늄 중의 지르코늄 확산 속도가 낮기 때문에 50~100 시간 정도의 장시간의 석출경화 열처리를 해야 하는 등 제조공정상의 많은 문제점이 있다.Currently, Al-Zr alloy containing zirconium is used as a conductive aluminum alloy with high conductivity and heat resistance, but due to the significant difference in specific gravity between aluminum (specific gravity: 2.7) and zirconium (specific gravity: 6.5) Alloy element segregation occurs in the alloying process, zirconium recovery is low due to the oxidation loss of zirconium in the alloy melting process, and the zirconium diffusion rate in aluminum in the alloy heat treatment process is low, so long time precipitation hardening heat treatment of about 50 to 100 hours is required. There are many problems in the manufacturing process.
따라서 송전선 등의 도전용 소재로 사용하기 위하여, 합금원소간 비중차이로 인한 합금 용해 공정에서의 합금원소 편석 현상을 최소한으로 줄이고, 합금원소의 산화손실로 인한 합금 용해 공정에서의 합금원소 회수율을 최대한으로 향상시키며, 합금의 석출경화 열처리 시간을 최소한으로 줄일 수 있는, 고전도 및 내열성을 갖춘 알루미늄 합금 개발에 대한 필요성이 절실히 요구되고 있지만, 현재까지는 Al-Zr계 합금이 도전용 고전도 내열 알루미늄 합금으로 사용되고 있는 실정이다.Therefore, in order to use it as a conductive material such as transmission line, the alloy element segregation phenomenon is minimized in the alloy dissolution process due to the specific gravity difference between alloy elements, and the alloy element recovery rate in the alloy dissolution process due to the oxidation loss of the alloy element is maximized. The need for the development of high-alloy and heat-resistant aluminum alloys, which can be improved and reduced the precipitation hardening heat treatment time of alloys to a minimum, is presently required for Al-Zr-based alloys. It is being used as.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로서 알루미늄(Al)과 스칸듐(Sc)을 합금함으로써, 상온 도전율이 58%IACS 이상이고, 상온 인장강도가 160MPa 이상이며, 내열온도가 350℃ 이상을 요구하는 송전선 등의 도전용 고전도 내열 알루미늄 합금을 제공하는 것이 본 발명의 목적이다.The present invention has been made to solve the above problems, by alloying aluminum (Al) and scandium (Sc), the room temperature conductivity is 58% IACS or more, the room temperature tensile strength is 160MPa or more, the heat resistance temperature is 350 ℃ or more It is an object of the present invention to provide a conductive high-conductivity heat-resistant aluminum alloy, such as power transmission lines.
상기의 목적을 달성하기 위하여 본 발명은, 고전도 내열 알루미늄 합금에 있어서, 스칸듐(Sc) 0.03~0.3중량% 및 나머지는 알루미늄(Al)과 기타 불가피한 불순물로 알루미늄 합금이 구성됨으로써, 상온 도전율이 58%IACS 이상이고, 상온 인장강도가 160MPa 이상이며, 내열온도가 350℃ 이상인 것을 특징을 갖는다.In order to achieve the above object, the present invention, in the high-temperature heat-resistant aluminum alloy, 0.03-0.3% by weight of scandium (Sc) and the remainder is composed of aluminum (Al) and other unavoidable impurities, the room temperature conductivity is 58 It is more than% IACS, the tensile strength of room temperature is 160MPa or more, and heat-resistant temperature is 350 degreeC or more.
이때, 상기 알루미늄 합금은 270~330℃의 온도에서 5~10시간 동안 시효처리된 것을 특징으로 한다.At this time, the aluminum alloy is characterized in that aged for 5 to 10 hours at a temperature of 270 ~ 330 ℃.
본 발명에 의한 고전도 내열 알루미늄 합금은 알루미늄(Al)과 스칸듐(Sc)으로 합금됨으로써, 상온 도전율이 58%IACS 이상이고, 상온 인장강도가 160MPa 이상이고, 내열온도가 350℃ 이상을 요구하는 송전선 등의 도전용 소재로 사용할 수 있다.The high-conductivity heat-resistant aluminum alloy according to the present invention is alloyed with aluminum (Al) and scandium (Sc), and thus has a wire conductivity of 58% IACS or higher at room temperature, a tensile strength of 160MPa or higher, and a heat resistance temperature of 350 ° C or higher. It can be used as a conductive material.
이하 본 발명에 의한 고전도 내열 알루미늄 합금에 대하여 상세히 설명한다.Hereinafter, the high-conductivity heat-resistant aluminum alloy according to the present invention will be described in detail.
본 발명에 의한 고전도 내열 알루미늄 합금은 스칸듐(Sc) 0.03~0.3중량%와 나머지는 알루미늄(Al) 및 기타 불가피한 불순물로 구성된다.High-conductivity heat-resistant aluminum alloy according to the present invention is composed of 0.03-0.3% by weight of scandium (Sc) and the remainder is composed of aluminum (Al) and other unavoidable impurities.
본 발명은 상기 조성량에 따라서 알루미늄 기지 금속에 석출물의 형성이 가능한 스칸듐(Sc)을 첨가하고, 270~330℃의 온도에서 5~10시간 석출경화 열처리를 통하여 알루미늄 기지 금속에 Al3Sc 미세 석출물을 균일하게 분산시킴으로써 상온 도전율이 58%IACS 이상이고, 상온 인장강도가 160MPa 이상이며, 내열온도가 350℃ 이상의 특성을 가지게 된다.The present invention adds scandium (Sc) capable of forming a precipitate on the aluminum base metal according to the composition amount, and Al 3 Sc fine precipitate on the aluminum base metal through precipitation hardening heat treatment for 5 to 10 hours at a temperature of 270 ~ 330 ℃ By uniformly dispersing, the electrical conductivity at room temperature is 58% IACS or higher, the tensile strength at room temperature is 160MPa or higher, and the heat resistance temperature is 350 ° C or higher.
상기 합금원소의 첨가 및 함량 한정 이유는 다음과 같다.The reason for the addition and content limitation of the alloying element is as follows.
스칸듐(Sc)은 알루미늄에 합금원소로 첨가되었을 때 알루미늄과의 비중 차이가 작아서(스칸듐 비중: 2.9, 알루미늄 비중: 2.7), 합금 용해 공정에서의 합금 원소의 편석 현상을 최소한으로 줄일 수 있으며, 270~330℃의 온도에서 5~10시간 정도의 짧은 시효처리 시간으로도 알루미늄 기지 금속에 Al3Sc 미세 석출물을 균일하게 분산시킴으로써 고전도성을 유지하면서 동시에 내열성을 효과적으로 증가시킬 수 있는 원소이다. Scandium (Sc), when added as an alloying element to aluminum, has a small difference in specific gravity from aluminum (scandium specific gravity: 2.9, aluminum specific gravity: 2.7), thereby minimizing segregation of alloying elements in the alloy melting process. Even after a short aging time of about 5 to 10 hours at a temperature of ˜330 ° C., Al 3 Sc fine precipitates are uniformly dispersed in the aluminum base metal to maintain high conductivity and increase heat resistance effectively.
본 발명에 의한 고전도 내열 알루미늄 합금에는 스칸듐(Sc)이 0.03~0.3중량% 첨가되는데, 스칸듐(Sc)의 함량이 0.03중량% 미만이면 알루미늄 기지 금속에 석출되는 Al3Sc 미세 석출물의 감소로 인하여 내열성이 저하되어 350℃ 이상의 온도에서 내열성을 얻을 수 없고, 스칸듐(Sc)의 함량이 0.3중량% 이상이면 알루미늄 기지 금속에 과잉의 스칸듐(Sc)이 고용되기 때문에 도전율이 저하되어 58%IACS 이상의 도전율을 얻을 수 없기 때문이다.Scandium (Sc) is added in the high-heat-resistant aluminum alloy according to the present invention 0.03 ~ 0.3% by weight, if the content of scandium (Sc) less than 0.03% by weight due to the reduction of Al 3 Sc fine precipitates deposited on the aluminum base metal If the heat resistance is lowered and heat resistance cannot be obtained at a temperature of 350 ° C. or higher, and if the content of scandium (Sc) is 0.3% by weight or more, an excess of scandium (Sc) is dissolved in the aluminum base metal so that the conductivity is lowered and the conductivity is higher than 58% IACS. Because you can't get it.
또한, 상기 시효처리온도를 270℃ 이하로 할 경우에는 인장강도에 기여하는 Al3Sc 석출물의 석출속도가 느려져서 일정 이상의 인장강도에 도달하기 위해서는 10시간 이상으로 길게 하여야하기 때문에 열처리 비용이 높아지게 되고, 상기 시효처리온도를 330℃ 이상으로 할 경우에는 인장강도에 기여하는 Al3Sc 석출물의 석출속도가 증가하여 시효처리시간을 단축할 수는 있으나 Al3Sc 석출물의 급속한 조대화(과시효)가 일어나서 인장강도 저하의 원인이 되기 때문에 상기 시효처리온도는 270~330℃의 범위 내에서 이루어지는 것이 바람직하다.In addition, when the aging treatment temperature is 270 ℃ or less, the precipitation rate of Al 3 Sc precipitates that contribute to the tensile strength is slowed down, so that the heat treatment cost is increased because it must be longer than 10 hours to reach a predetermined tensile strength, When the aging treatment temperature is higher than 330 ° C., the precipitation rate of Al 3 Sc precipitates, which contributes to tensile strength, can be increased to shorten the aging treatment time, but rapid coarsening (over aging) of Al 3 Sc precipitates occurs. In order to reduce the tensile strength, the aging treatment temperature is preferably within the range of 270 to 330 ° C.
(실시예)(Example)
이하 본 발명에 따른 고전도 내열 알루미늄 합금에 대하여 본 발명의 바람직한 실시예를 나타낸 첨부 표를 참조하여 상세하게 설명한다.Hereinafter, the high-conductivity heat-resistant aluminum alloy according to the present invention will be described in detail with reference to the accompanying table showing a preferred embodiment of the present invention.
본 발명에 따른 고전도 내열 알루미늄 합금을 제조하기 위해 다음의 표 1에 나타낸 조성을 갖는 합금을 통상적인 용융 교반식 알루미늄 합금 제조 방법으로 슬라브를 제조하였다. In order to manufacture a high-conductivity heat-resistant aluminum alloy according to the present invention, an alloy having a composition shown in Table 1 was manufactured by a conventional melt stirring aluminum alloy manufacturing method.
즉, 표 1과 같은 조성의 알루미늄 합금을 전기저항 용해로를 이용하여 대기 중에서 용해한 후, 720℃의 온도로 금형에 주조하여 폭 100㎜, 두께 20㎜, 길이 200㎜의 슬라브를 제조하였다.That is, the aluminum alloy of the composition shown in Table 1 was melt | dissolved in air | atmosphere using the electric resistance melting furnace, and was cast to the mold at the temperature of 720 degreeC, and the slab of width 100mm, thickness 20mm, and length 200mm was manufactured.
[표 1] TABLE 1
그리고, 상기 슬라브를 300℃의 온도에서 5시간 시효 처리한 후에, 이것을 상온에서 압연하여 두께 2㎜의 판재를 제조하여 압연재 시험편을 얻었으며, 다시 압연 판재를 350℃ 온도에서 1시간 소둔 처리하여 소둔재 시험편을 얻었다. After the slab was aged for 5 hours at a temperature of 300 ° C., the slab was rolled at room temperature to prepare a plate having a thickness of 2 mm to obtain a rolled material test piece, and the rolled plate was further annealed at 350 ° C. for 1 hour. An annealing material test piece was obtained.
상기 시험편에 대한 시험 및 그 방법은 다음과 같다.The test on the test piece and its method are as follows.
인장시험기를 이용하여 상온에서 인장강도, 항복강도 및 신율을 측정하였고, 전기전도도 측정기를 이용하여 상온에서 도전율을 측정하였다. 내열온도를 결정하기 위한 내열성은 소둔 처리전의 압연재의 인장강도와 350℃ 온도에서 1시간 소둔 처리한 소둔재의 인장강도의 비율로 계산하여 나타내었다. 이때 시험편의 내열성이 90% 이상이면 350℃ 온도를 내열온도로 정하였다.Tensile strength, yield strength and elongation were measured at room temperature using a tensile tester, and conductivity was measured at room temperature using an electrical conductivity meter. The heat resistance for determining the heat resistance temperature was calculated by calculating the ratio of the tensile strength of the rolled material before the annealing treatment and the tensile strength of the annealing material after annealing at 350 ° C. for 1 hour. At this time, if the heat resistance of the test piece is 90% or more, 350 ℃ temperature was set as the heat resistance temperature.
[표 2]TABLE 2
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 고전도 내열 알루미늄 합금은 상온 도전율이 58%IACS 이상이고, 상온 인장강도가 160MPa 이상이고, 내열온도가 350℃ 이상의 값을 나타내었다. As shown in Table 2, the high-conductivity heat-resistant aluminum alloy according to the present invention exhibits a conductivity of 58% IACS or higher at room temperature, a tensile strength of 160MPa or higher, and a heat resistance temperature of 350 ° C or higher.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080104384A KR20100045274A (en) | 2008-10-23 | 2008-10-23 | High electrical conductivity and heat resistance aluminum alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080104384A KR20100045274A (en) | 2008-10-23 | 2008-10-23 | High electrical conductivity and heat resistance aluminum alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20100045274A true KR20100045274A (en) | 2010-05-03 |
Family
ID=42273044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080104384A Ceased KR20100045274A (en) | 2008-10-23 | 2008-10-23 | High electrical conductivity and heat resistance aluminum alloys |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20100045274A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104561694A (en) * | 2014-11-20 | 2015-04-29 | 湖北瑞林特铝业有限公司 | Method for producing current transmission aluminum profile with high strength, heat resistance and high electrical conductivity |
CN105603237A (en) * | 2016-02-04 | 2016-05-25 | 东南大学 | Scandium-containing casting conductive aluminum alloy and preparation process thereof |
CN109234577A (en) * | 2018-09-25 | 2019-01-18 | 全球能源互联网研究院有限公司 | A kind of Al-Sc-B heat-resistant alloy monofilament and preparation method thereof |
CN113957301A (en) * | 2021-10-28 | 2022-01-21 | 全球能源互联网研究院有限公司 | Aluminum alloy monofilament and preparation method thereof |
-
2008
- 2008-10-23 KR KR1020080104384A patent/KR20100045274A/en not_active Ceased
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104561694A (en) * | 2014-11-20 | 2015-04-29 | 湖北瑞林特铝业有限公司 | Method for producing current transmission aluminum profile with high strength, heat resistance and high electrical conductivity |
CN104561694B (en) * | 2014-11-20 | 2016-06-29 | 湖北瑞林特铝业有限公司 | A kind of production method of the electric current transmission aluminium section bar of high strength heat resistant high conductivity |
CN105603237A (en) * | 2016-02-04 | 2016-05-25 | 东南大学 | Scandium-containing casting conductive aluminum alloy and preparation process thereof |
CN109234577A (en) * | 2018-09-25 | 2019-01-18 | 全球能源互联网研究院有限公司 | A kind of Al-Sc-B heat-resistant alloy monofilament and preparation method thereof |
CN113957301A (en) * | 2021-10-28 | 2022-01-21 | 全球能源互联网研究院有限公司 | Aluminum alloy monofilament and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1925065B (en) | Copper alloy material for electrical components and manufacturing method thereof | |
TWI395824B (en) | Cu-Ni-Si alloy for electronic materials | |
JP5117604B1 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP5320642B2 (en) | Copper alloy manufacturing method and copper alloy | |
CN101984107B (en) | Method for preparing CuNiSiAl elastic copper alloy | |
CN104302794B (en) | Electric conductivity and the copper alloy plate of stress relaxation characteristics excellence | |
KR101612185B1 (en) | Cu-co-si-based copper alloy strip and method of manufacturing the same | |
CN104334759A (en) | Copper Alloy Sheet Having Outstanding Electro-Conductivity And | |
KR20150126064A (en) | Copper-cobalt-silicon alloy for electrode material | |
CN104718302A (en) | Copper alloy plate exhibiting excellent conductivity and stress-relaxation properties | |
KR20100045274A (en) | High electrical conductivity and heat resistance aluminum alloys | |
JP2017179502A (en) | Copper alloy plate with excellent strength and conductivity | |
JP6214126B2 (en) | Titanium copper and method for producing the same, as well as copper products and electronic device parts using titanium copper | |
CN109295346A (en) | A kind of soft aluminum alloy with high electrical conductivity and preparation method and application thereof | |
JP2016183418A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP5325178B2 (en) | Cu-Co-Si based copper alloy excellent in strength, electrical conductivity and bending workability and method for producing the same | |
JP6749122B2 (en) | Copper alloy plate with excellent strength and conductivity | |
JP2015206075A (en) | Copper alloy material, power distribution member for electric car, and power distribution member for hybrid car | |
JP2004269962A (en) | High strength copper alloy | |
JP6095562B2 (en) | Copper alloy material, distribution member for electric vehicle and distribution member for hybrid vehicle | |
JP4750602B2 (en) | Copper alloy with excellent hot workability | |
KR20120097748A (en) | Cu-cr-mg-p-zr alloys with high electrical conductivity and high tensile strength and manufacturing methods of them | |
KR100592206B1 (en) | Copper Alloy for Electronic Materials | |
JP2008056974A (en) | Copper alloy superior in hot workability | |
JPH11217639A (en) | Cu-Ni-Si based copper base alloy with improved annealing cracking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20081023 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20101016 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20110613 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20101016 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |