[go: up one dir, main page]

KR20100026470A - Preparation of novel nanostructured titanium oxide nano-composite and its electrode application for charge storage devices - Google Patents

Preparation of novel nanostructured titanium oxide nano-composite and its electrode application for charge storage devices Download PDF

Info

Publication number
KR20100026470A
KR20100026470A KR1020080085489A KR20080085489A KR20100026470A KR 20100026470 A KR20100026470 A KR 20100026470A KR 1020080085489 A KR1020080085489 A KR 1020080085489A KR 20080085489 A KR20080085489 A KR 20080085489A KR 20100026470 A KR20100026470 A KR 20100026470A
Authority
KR
South Korea
Prior art keywords
titanium oxide
nanocomposite
carbon
present
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020080085489A
Other languages
Korean (ko)
Other versions
KR101046432B1 (en
Inventor
윤성훈
이철위
박미선
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020080085489A priority Critical patent/KR101046432B1/en
Publication of KR20100026470A publication Critical patent/KR20100026470A/en
Application granted granted Critical
Publication of KR101046432B1 publication Critical patent/KR101046432B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 산화티타늄(TiO2) 물질의 리튬이차전지 및 하이브리드 캐패시터 와 같은 전하저장 장치의 전극재료 적용을 위한 산화티타늄 물질 처리법 및 새로운 구조의 산화티타늄 물질에 관한 것으로, 더욱 상세하게는 기존의 산화티타늄의 산 및 열처리를 통하여 나노튜브 형태의 모양을 갖거나 산 및 열처리 시 탄소재료 및 금속재료와의 나노복합체 형성 반응을 통하여 새로운 나노구조를 갖는 산화티타늄 제조에 관한 것이다. The present invention relates to a titanium oxide material treatment method and a new structure of titanium oxide material for the application of electrode materials of charge storage devices such as lithium secondary batteries and hybrid capacitors of titanium oxide (TiO 2 ) material, more specifically, the existing oxidation The present invention relates to the production of titanium oxide having a new nanostructure by forming a nanotube through acid and heat treatment of titanium or forming a nanocomposite with a carbon material and a metal material during acid and heat treatment.

본 발명의 새로이 제조된 물질을 리튬이차전지 음극 재료 및 하이브리드 캐패시터 재료로의 적용을 통하여, 종래보다 높은 용량, 높은 속도 특성을 갖는 음극재료를 제공하여 고출력, 고에너지 전극 물질을 갖는 리튬이차전지 및 하이브리드 캐패시터를 실현하는데 있다. By applying the newly prepared material of the present invention to a lithium secondary battery negative electrode material and a hybrid capacitor material, a lithium secondary battery having a high output and high energy electrode material by providing a negative electrode material having a higher capacity and higher speed characteristics than the conventional one; It is to realize a hybrid capacitor.

Description

새로운 나노복합체 산화티타늄 제조법 및 고에너지, 고출력 전하저장용 전극재료로의 적용 {Preparation of novel nanostructured titanium oxide nano-composite and its electrode application for charge storage devices }Preparation of new nanocomposite titanium oxide nano-composite and its electrode application for charge storage devices}

본 발명은 산화티타늄의 열화학적 처리 및 탄소와 이종 금속과의 반응을 통한 새로운 나노구조 산화티타늄을 제조함으로써, 종래보다 용량 및 속도 특성이 우수하여 리튬이차전지 및 하이브리드 캐패시터의 에너지와 출력을 증가시킬 수 있는 새로운 전극재료에 관한 것이다.The present invention provides a new nanostructured titanium oxide through the thermochemical treatment of titanium oxide and the reaction of carbon and dissimilar metals, thereby increasing the energy and output of lithium secondary batteries and hybrid capacitors with superior capacity and speed characteristics. It relates to a new electrode material that can be.

현재 기술의 성숙도가 높아지고 있는 추세에 있는 리튬이차전지는 기존의 NiMH, NiCd 등의 이차전지에 비해 용량이 크고 출력이 높아 광범위하게 적용되고 있다. 이러한 기존의 리튬이차전지는 양극으로 리튬전이금속 산화물과 음극으로는 흑연 등의 탄소계열의 물질이 주로 적용되고 있다. 그러나 하이브리드 자동차(HEV, hybrid electric vehicle), 플러그 인 하이브리드 자동차(PHEV, plug-in HEV) 등에 적용되는 전지에서는 고에너지, 고출력, 고안전을 요구하고 있으며 이러한 요구에 기존의 탄소계열 음극재료로는 실현하기 어려운 문제점이 있다.Lithium secondary batteries, which are currently increasing in maturity, are widely applied due to their larger capacity and higher output than secondary batteries such as NiMH and NiCd. The conventional lithium secondary battery is mainly a carbon-based material such as lithium transition metal oxide as a positive electrode and graphite as a negative electrode. However, batteries applied to hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) require high energy, high output, and high safety. There is a problem that is difficult to realize.

그러므로 향후 리튬이차전지의 고안전화 및 고출력화를 위한 음극재료로서 현재 활발히 제시되고 있는 Ti 산화물계 음극소재 (LixTiyOz, TiO2)는 전압의 작동영역이 1 V에서 2 V 사이에 존재하고 층간 삽입 등에 의한 구조 변화가 작아 안전성 및 속도 특성이 뛰어난 재료로서 각광받고 있다. 이중 리튬을 함유한 Ti 산화물계 음극 재료로는 Li2Ti3O7, Li4Ti5O12 등이 있으며 이중 Li4Ti5O12는 현재 HEV 등의 고출력 음극 재료로서 적용이 진행 중에 있다.Therefore, Ti oxide-based negative electrode material (Li x Ti y O z , TiO 2 ), which is currently being actively proposed as a negative electrode material for innovation and high output of lithium secondary battery, has an operating range of 1 V to 2 V. It is present in the spotlight as a material having excellent safety and speed characteristics due to its small structure change due to intercalation and the like. Examples of the Ti oxide-based anode material containing lithium include Li 2 Ti 3 O 7 and Li 4 Ti 5 O 12 Li 4 Ti 5 O 12 is currently being applied as a high output cathode material such as HEV.

그러나 리튬을 함유한 Ti 산화물의 경우 이론 용량이 175 mAh/g 이며 작동 전압이 1.5 V에서 평탄면이 나타나므로 중대형 전력 저장 물질이 가져야 하는 특성인 고에너지, 전지의 전압을 통한 내부 용량 예측 등에 있어서 문제점을 가진다. 그러므로 리튬을 함유하지 않은 TiO2계 음극 재료가 현재 활발히 연구되고 있는데 이에는 8가지의 상(phase)을 가지며, 아나타제(anatase), 브론즈(bronze, TiO2(B)), 루틸(rutile) TiO2 등의 상의 경우 음극 재료로의 적용이 활발히 이루어지고 있으며 특히 나노 구조제어를 통해 용량, 전압 및 속도 특성 등의 변화가 일어난다는 장점이 있다. 이러한 TiO2계 음극 재료는 아직 연구단계에 있으나 높은 가역용량 (이론용량 : 335 mAh/g, 구현용량 270 mAh/g)과 높은 안전성, 개선 가능한 속도 특성 및 사이클 특성 등의 장점을 가지므로 기존의 탄소계 음극 재료가 가지는 취약한 안전성 및 낮은 부피당 용량의 문제를 해결할 것으로 예상된다.However, the lithium oxide containing Ti oxide has a theoretical capacity of 175 mAh / g and a flat surface at 1.5 V, so the high energy, which is the characteristic of medium and large power storage materials, and the internal capacity prediction through the voltage of the battery I have a problem. Therefore, TiO 2 -based negative electrode materials containing no lithium are currently being actively studied, which have eight phases, and include anatase, bronze, TiO 2 (B), and rutile TiO. In the case of two phases, the application to the cathode material is being actively performed, in particular, there is an advantage that changes in capacity, voltage, and speed characteristics occur through nano structure control. Such TiO 2 -based anode material is still in the research stage, but has the advantages of high reversible capacity (theoretical capacity: 335 mAh / g, implementation capacity 270 mAh / g), high safety, improveable speed characteristics and cycle characteristics. It is expected to solve the problem of poor safety and low volume per volume of carbon-based negative electrode materials.

TiO2계 음극재료에 대한 연구는 최근에 와서 활발히 연구되고 있으며 입자 형상 및 나노 크기의 입자 제어를 통한 연구가 가장 활발하다. 이러한 나노 기 술을 이용한 TiO2 입자의 경우 용량이 300 mAh/g 부근까지 증가하고 용량 발현 전위가 2 V에서 1 V까지의 기울기를 가져 중대형 전력 저장 물질의 경우 필요한 고용량 특성 및 외부 전압에서 전지의 용량 예측을 쉽게 하는 장점을 가지는 것으로 문헌에 보고된다. 그러나 현재 TiO2계 음극 물질은 사이클 특성이 저조하며, 속도 특성도 떨어져서 개선이 필요하다. Recently, research on TiO 2 based anode materials has been actively studied, and research through particle control of nanoparticles and particle size is the most active. In the case of TiO 2 particles using this nanotechnology, the capacity is increased to around 300 mAh / g, and the capacity expression potential is inclined from 2 V to 1 V. It is reported in the literature as having the advantage of facilitating dose prediction. However, TiO 2 -based negative electrode materials have poor cycle characteristics and poor speed characteristics, and need improvement.

본 발명은 산화티타늄의 열화학적 처리 및 탄소와 이종 금속과의 반응을 통한 새로운 나노구조 산화티타늄을 제조함으로써, 종래보다 용량 및 속도 특성이 우수하여 리튬이차전지 및 하이브리드 캐패시터의 에너지와 출력을 증가시킬 수 있는 새로운 전극재료를 제공하는데 그 목적이 있다.The present invention provides a new nanostructured titanium oxide through the thermochemical treatment of titanium oxide and the reaction of carbon and dissimilar metals, thereby increasing the energy and output of lithium secondary batteries and hybrid capacitors with superior capacity and speed characteristics. The purpose is to provide a new electrode material that can be.

또한, 발명은 새롭게 제조된 전극물질을 기반으로 기존보다 에너지, 출력, 안전성이 우수한 전하저장 장치인 리튬이온전지 및 하이브리드 캐패시터를 제공하는데 그 목적이 있다.Another object of the present invention is to provide a lithium ion battery and a hybrid capacitor, which are charge storage devices having better energy, output, and safety than existing ones, based on newly manufactured electrode materials.

본 발명은 산화티타늄 물질과 금속염 혹은 탄소분 등을 고농도의 염기성 용액하에서 반응시켜 다양한 형태의 나노구조를 합성하는 방법 및 이러한 방법을 통하여 합성된 산화티타늄 나노복합체에 대한 것이다.The present invention relates to a method for synthesizing various types of nanostructures by reacting a titanium oxide material with a metal salt or carbon powder under a high concentration of basic solution, and a titanium oxide nanocomposite synthesized through such a method.

본 발명은 산화티타늄 물질 처리법 및 새로운 구조의 산화티타늄 물질을 제조하여 기존의 산화티타늄계 음극재가 가지는 단점을 해결하여 높은 사이클 특성, 높은 용량, 높은 속도특성을 가지며 안전성이 우수한 음극재를 제공하는 효과가 있다. The present invention solves the disadvantages of the conventional titanium oxide-based negative electrode material by producing a titanium oxide material treatment method and a new structure of titanium oxide material to provide a high cycle characteristics, high capacity, high speed characteristics and excellent safety material There is.

또한, 본 발명은 새롭게 제조된 전극물질을 기반으로 기존보다 에너지, 출력, 안전성이 우수한 전하저장 장치인 리튬이온전지 및 하이브리드 캐패시터를 제 고하는 효과가 있다. In addition, the present invention has the effect of improving the lithium ion battery and the hybrid capacitor, which is a charge storage device with superior energy, output, and safety than the existing based on the newly manufactured electrode material.

본 발명은 산화티타늄 물질과 금속 염 혹은 탄소 재료등을 고농도의 염기성 용액하에서 반응시켜 다양한 형태의 나노구조를 합성하는 방법 및 이러한 방법을 통하여 합성된 산화티타늄 나노복합체에 대한 것이다.The present invention relates to a method for synthesizing various types of nanostructures by reacting a titanium oxide material with a metal salt or carbon material under a high concentration of basic solution, and to a titanium oxide nanocomposite synthesized through such a method.

본 발명은 주석(Sn), 아연(Zn), 니켈(Ni), 코발트(Co) 및 규소(Si) 중에서 선택된 1종 또는 2종 이상의 금속의 염 또는 산화물, 또는 탄소분의 혼합물을 산화티타늄과 혼합하여 염기성 용액에 넣은 혼합용액을 상온에서 교반하는 1 단계; 100 ~ 200 ℃ 고압반응기(autoclave)에서 교반된 혼합용액을 반응시키는 2 단계; 및 상기 반응물을 여과하여 0.01 ~ 0.1 M 염산으로 세척 후 건조하여 산화티타늄 나노복합체를 수득하는 3 단계; 를 포함하는 산화티타늄 나노복합체 제조방법에 관한 것이다.The present invention is a mixture of a salt or oxide of one or two or more metals selected from tin (Sn), zinc (Zn), nickel (Ni), cobalt (Co) and silicon (Si), or a mixture of carbon powder and titanium oxide. 1 step of stirring the mixed solution in a basic solution at room temperature; Reacting the stirred mixed solution in an autoclave at 100-200 ° C .; And filtering the reactants, washing with 0.01 to 0.1 M hydrochloric acid, and drying to obtain titanium oxide nanocomposites. It relates to a titanium oxide nanocomposite manufacturing method comprising a.

더 자세하게는 본 발명은 상기 염기성 용액은 수산화나트륨, 수산화칼륨, 수산화리튬 및 수산화마그네슘 용액 중에서 선택된 1종 또는 2종 이상의 혼합용액인 것을 특징으로 하는 산화티타늄 나노복합체 제조방법에 대한 것이다.More particularly, the present invention relates to a titanium oxide nanocomposite manufacturing method characterized in that the basic solution is one or two or more mixed solutions selected from sodium hydroxide, potassium hydroxide, lithium hydroxide and magnesium hydroxide solution.

산화티타늄과 활성탄/무기물 등을 함께 1 ~ 20 M 농도의 수산화나트륨용액에 넣고 30분 ~ 5시간 정도 상온에서 교반하고 100 ~ 200 ℃ 사이의 온도에서 고압반응기(autoclave)에 넣고 1 ~ 10일 사이에 유지시킨 후 이를 걸러주고 0.01 ~ 0.1 M 염산으로 충분히 세척하고 이를 건조하여 제조하게 된다. 상기 수산화나트륨용액 대신에 수산화칼륨, 수산화리튬 및 수산화마그네슘 용액도 사용이 가능하다.Titanium oxide and activated carbon / minerals are added together in a 1-20 M sodium hydroxide solution, stirred at room temperature for 30 minutes to 5 hours, and placed in an autoclave at a temperature between 100 and 200 ° C for 1 to 10 days. After maintaining in the filter, it is washed with 0.01 ~ 0.1 M hydrochloric acid and dried to prepare it. Potassium hydroxide, lithium hydroxide and magnesium hydroxide solutions may also be used instead of the sodium hydroxide solution.

이러한 방법으로 제조된 물질은 기공의 크기가 5 ~ 50 nm 정도이고 표면적이 50 ~ 500 m2/g 정도를 갖게 된다. 여기에서 산화티타늄의 모폴로지(morphology)가 변화하는 반응이 일어날 때 탄소를 첨가하면 탄소와 나노크기로 섞이게 되어 전도도 및 구조의 안정성이 증대되게 된다.The material produced in this way has a pore size of about 5 to 50 nm and a surface area of about 50 to 500 m 2 / g. In this case, when the reaction of changing the morphology of titanium oxide occurs, the addition of carbon is mixed with the carbon to nano size, thereby increasing the conductivity and stability of the structure.

이러한 탄소와 산화티타늄의 나노복합체 형성 비율은 탄소를 1 내지 50 중량 % 정도로 첨가하는 것이며 더욱 바람직하게는 5 ~ 20 중량 %의 탄소를 함유한다.The formation rate of the nanocomposite of carbon and titanium oxide is about 1 to 50% by weight of carbon, and more preferably 5 to 20% by weight of carbon.

또한 본 발명은 상기 산화티타늄은 입자의 크기가 0.01 ~ 100 ㎛인 것을 특징으로 하는 산화티타늄 나노복합체 제조방법에 대한 것이다.In another aspect, the present invention relates to a titanium oxide nanocomposite manufacturing method characterized in that the particle size of the particle is 0.01 ~ 100 ㎛.

더 자세하게는 본 발명은 상기 탄소분은 활성탄 또는 카본블랙 중에서 선택된 1종 또는 2종 혼합물인 것을 특징으로 하는 산화티타늄 나노복합체 제조방법에 대한 것이다.More specifically, the present invention relates to a titanium oxide nanocomposite manufacturing method characterized in that the carbon powder is one or a mixture of two selected from activated carbon or carbon black.

여기서 사용되는 산화티타늄의 종류로는 현재 사용되는 저가의 안료(pigment) 계열 등을 포함하며 입자의 크기는 0.01 ~ 100 ㎛를 갖는 것의 이용 가능하다. 더욱 바람직하게는 0.5 ~ 5 ㎛의 크기가 바람직하다. 또한 사용가능한 탄소의 종류로는 표면적이 비교적 큰 활성탄, 케첸블랙(ketjenblack), 덴카 블랙(denka black), 수퍼-p(super-p) 등의 카본 블랙(carbon black) 등의 다양한 탄소가 사용가능하다.Types of titanium oxide used herein include inexpensive pigment-based pigments and the like, and particles having a particle size of 0.01 to 100 μm may be used. More preferably, a size of 0.5 to 5 μm is preferred. In addition, various kinds of carbons such as activated carbon, ketjenblack, denka black, and super-p such as carbon black can be used. Do.

사용가능한 무기물의 종류로는 Zn계열의 염(salt), Sn 계열, Co, Ni 등의 전이금속 등의 물질이 사용가능하며 이러한 물질을 투여할 경우 용량의 상승을 기대 할 수 있다.Examples of the inorganic materials that can be used include materials such as salts of Zn-based salts, Sn-based metals, Co, Ni, and transition metals, and doses of these materials can be expected.

이러한 방법으로 제작된 티타늄/탄소 혹은 티타늄/무기물 나노복합체는 다음과 같은 특성을 갖는다. 먼저 기존의 티타늄에 비해 높은 가역적 충방전 용량 ( 약 180 mAh/g)을 가지며, 100 싸이클(cycle)의 충방전 후에도 용량의 감소가 초기용량에 비해 99 % 이상으로 높게 유지되는 특성을 갖는다. 또한 상기한 바와 같이 속도특성이 처리하지 않은 산화티타늄이나, 산화티타늄만 반응하여 제조된 물질에 비해 10C에서 3배 정도 되는 용량을 발현가능하다. 이것은 기본적으로 전자 전도도가 현저히 떨어지는 TiO2 에 비해 전자 전도도가 우수한 전이금속 산화물 혹은 탄소재료와 나노 복합체의 형태로 제조되기 때문이다.Titanium / carbon or titanium / inorganic nanocomposites produced in this way has the following characteristics. First, it has a high reversible charge and discharge capacity (about 180 mAh / g) compared to the conventional titanium, and even after 100 cycles (charge), the capacity is maintained to be higher than 99% compared to the initial capacity. In addition, as described above, it is possible to express a capacity of about 3 times at 10C as compared with a material prepared by reacting only titanium oxide or titanium oxide that has not been treated with a rate characteristic. This is because it is basically manufactured in the form of a transition metal oxide or a carbon material and a nanocomposite having excellent electron conductivity compared to TiO 2 , which has a significantly lower electron conductivity.

또한 본 반응에 의해 제조된 물질은 다양한 형태의 구조를 갖는데, 나노튜브 형태, 구형 형태 등의 구조를 가지게 되며 바람직하게는 구형형태가 여러 특성이 우수하다. In addition, the material produced by the reaction has a structure of various forms, it has a structure such as nanotube form, spherical form, preferably the spherical form is excellent in many properties.

본 발명은 산화티타늄 100 중량부에 대하여 주석(Sn), 아연(Zn), 니켈(Ni), 코발트(Co) 및 규소(Si) 중에서 선택된 1종 또는 2종 이상의 금속의 염 또는 산화물, 또는 탄소분의 혼합물 1 ~ 50 중량부를 포함하는 산화티타늄 나노복합체에 관한 것이다.The present invention relates to salts or oxides of one or two or more metals selected from tin (Sn), zinc (Zn), nickel (Ni), cobalt (Co), and silicon (Si) based on 100 parts by weight of titanium oxide, or carbon powder. It relates to a titanium oxide nanocomposite comprising a mixture of 1 to 50 parts by weight.

더 자세하게는 본 발명은 상기 산화티타늄은 입자의 크기가 0.01 ~ 100 ㎛인 것을 특징으로 하는 산화티타늄 나노복합체에 대한 것이다.More particularly, the present invention relates to a titanium oxide nanocomposite, wherein the titanium oxide has a particle size of 0.01 to 100 μm.

본 발명은 상기 산화티타늄 나노복합체를 포함하는 음극을 구성으로 하는 것 을 특징으로 하는 리튬이온이차전지에 관한 것이다.The present invention relates to a lithium ion secondary battery comprising a negative electrode including the titanium oxide nanocomposite.

또한, 본 발명은 상기 산화티타늄 나노복합체를 포함하는 음극을 구성으로 하는 것을 특징으로 하는 하이브리드 캐패시터에 관한 것이다.In addition, the present invention relates to a hybrid capacitor comprising a cathode including the titanium oxide nanocomposite.

본 발명으로 제조된 산화티타늄 나노복합체는 리튬이온전지 음극재료 적용 시 종래보다 높은 용량, 높은 속도 특성, 높은 사이클 특성을 가지므로 이를 전지에 적용했을 경우 높은 에너지 밀도, 높은 출력, 수명 등을 갖게 되며, 안전성 또한 우수한 전지가 제작가능하다. Titanium oxide nanocomposites prepared by the present invention have a higher capacity, higher speed characteristics, and higher cycle characteristics than conventional lithium ion battery anode materials when applied to the battery, and thus have high energy density, high output, and lifetime. A battery having excellent safety and safety can be manufactured.

이하, 본 발명을 다음의 실시예에 의거하여 더욱 상세히 설명하겠는바 본 발명이 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited to the examples.

실시예Example 1.  One. TiOTiO 22 /탄소 산화티타늄 나노복합체/ Carbon Titanium Oxide Nanocomposites

산화티타늄 물질 95 g과 첨가된 표면적 100 m2/g의 활성탄 5 g을 10 M 농도의 수산화나트륨용액 400 g에 넣고 2시간 정도 상온에서 교반하고, 100 ℃의 온도에서 고압반응기(autoclave)에 넣고 5일간 유지시킨 후 이를 걸러주고 0.05 M 염산으로 충분히 세척하고 이를 건조하여 산화티타늄 나노복합체를 제조하였다. 95 g of titanium oxide material and 5 g of activated carbon having a surface area of 100 m 2 / g were added to 400 g of 10 M sodium hydroxide solution, stirred at room temperature for about 2 hours, and placed in an autoclave at a temperature of 100 ° C. After maintaining for 5 days, it was filtered and washed sufficiently with 0.05 M hydrochloric acid and dried to prepare a titanium oxide nanocomposite.

실시예Example 2.  2. TiOTiO 22 /Of ZnClZnCl 22 산화티타늄 나노복합체 Titanium Oxide Nanocomposites

실시예 1에서 사용된 활성탄 대신 ZnCl2 물질 5 g을 첨가하여 같은 방법으로 산화티타늄 나노복합체를 제조하였다.Titanium oxide nanocomposites were prepared in the same manner by adding 5 g of ZnCl 2 material instead of the activated carbon used in Example 1.

비교예Comparative example 1.  One. TiOTiO 22 산화티타늄 Titanium oxide

나노화 되지 않은 산화티타늄을 준비하였다.Titanium oxide that was not nanonized was prepared.

비교예Comparative example 2.  2. TiOTiO 22 산화티타늄 나노복합체 Titanium Oxide Nanocomposites

산화티타늄 물질 100 g을 10 M 농도의 수산화나트륨용액에 400 g에 넣고 2시간 정도 상온에서 교반하고, 100 ℃의 온도에서 고압반응기(autoclave)에 넣고 5일간 유지시킨 후 이를 걸러주고 0.05 M 염산으로 충분히 세척하고 이를 건조하여 산화티타늄 나노복합체를 제조하였다.100 g of titanium oxide was added to 400 g of 10 M sodium hydroxide solution, stirred at room temperature for 2 hours, and placed in an autoclave at 100 ° C. for 5 days, filtered and filtered. It was sufficiently washed and dried to prepare a titanium oxide nanocomposite.

제조예Production Example . 산화티타늄 나노복합체를 이용한 . Using titanium oxide nanocomposites 리튬이온전지의Of lithium ion battery 제조  Produce

상기 실시예 1, 2 및 비교예 1, 2의 제조된 물질과 바인더인 PVDF(Polyvinylidene Fluoride), 도전제인 카본블랙(super p)와 90: 5: 5의 비율로 혼합하여 이를 알루미늄 집전체 코팅한 후, 이를 건조시키고 롤프레스(roll press)하여 제조된 전극을 사용하여 코인셀을 제작하였다. Examples 1 and 2 and Comparative Examples 1 and 2 and the material and the binder PVDF (Polyvinylidene Fluoride), the conductive agent is mixed with carbon black (super p) in a ratio of 90: 5: 5 and coated with an aluminum current collector Then, it was dried and roll press (roll press) to produce a coin cell using an electrode prepared.

여기서 사용된 전해질은 1 M LiPF6 EC/DMC를 이용하였다.The electrolyte used here was 1 M LiPF 6 EC / DMC.

시험예Test Example 1. 산화티타늄 나노복합체의 구조특성 측정 1. Measurement of Structural Characteristics of Titanium Oxide Nanocomposites

상기 실시예 1, 2 및 비교예 1, 2의 기공크기와 표면적을 각각 측정하였다.The pore sizes and surface areas of Examples 1 and 2 and Comparative Examples 1 and 2 were measured, respectively.

기공크기는 질소 흡착법을 이용하여 BJH adsorption 방법을 이용하여 측정하였으며, 표면적은 BET (Brunauer,Emmett,Teller) 방법으로 측정하였으며. 그 결과는 하기 표 1에 나타내었다.The pore size was measured by BJH adsorption method using nitrogen adsorption method, and the surface area was measured by BET (Brunauer, Emmmett, Teller) method. The results are shown in Table 1 below.

구조 및 음극 특성Structure and cathode properties 기공 크기 (nm)Pore size (nm) 표면적 (m2/g)Surface area (m 2 / g) 가역용량 (mAh/g)Reversible Capacity (mAh / g) 사이클 보존 (100사이클)Cycle preservation (100 cycles) 속도특성(%/10 C)Speed characteristic (% / 10 C) 실시예 1Example 1 1010 103103 175175 9999 6060 실시예 2Example 2 2020 9090 150150 9696 4343 비교예 1Comparative Example 1 55 250250 100100 3030 1010 비교예 2Comparative Example 2 1010 8787 155155 9898 2020

기공 크기는 나노 산화티타늄이 아닌 비교예 1은 10 nm로 나노 산화티타늄을 도입한 실시예 1, 2 및 비교예 2에서는 기공 크기가 10 nm이상으로 크기의 차이가 있다. 또한, 표면적도 나노 산화티타늄이 아닌 비교예 1인 경우만이 250 m2/g으로 나노 산화티타늄을 도입한 실시예 1, 2 및 비교예 2에서는 표면적이 103 m2/g로으로 면적의 차이가 크다.The pore size is not nano titanium oxide Comparative Example 1 is 10 nm in Examples 1, 2 and Comparative Example 2 in which nano titanium oxide is introduced, the pore size is 10 nm or more, there is a difference in size. In addition, in Examples 1, 2 and Comparative Example 2 in which the nano titanium oxide was introduced at 250 m 2 / g only in the case of Comparative Example 1, which is not nano titanium oxide, the surface area was 103 m 2 / g. Big.

시험예Test Example 2. 산화티타늄 나노복합체의 음극특성 측정 2. Measurement of Cathodic Characteristics of Titanium Oxide Nanocomposites

상기 제조예에 따른 코인셀을 200 mAh/g 기준으로 10 C의 전류를 인가하여 높은 전류하에서 용량의 저하 정도를 이용하여 속도특성을 조사하였으며, 0.5 C 기준으로 1 ~ 2.5 V 전압 사이에서 충방전 사이클 특성을 조사하여 그 결과를 상기 표 1에 나타내었다. 또한, 충방전을 통하여 가역용량을 측정하여 그 결과를 상기 표 1에 나타내었다.The coin cell according to the manufacturing example was applied to a current of 10 C on the basis of 200 mAh / g to investigate the speed characteristics by using the degree of capacity reduction under high current, charging and discharging between 1 ~ 2.5 V voltage on the basis of 0.5 C The cycle characteristics were examined and the results are shown in Table 1 above. In addition, the reversible capacity was measured through charge and discharge, and the results are shown in Table 1 above.

실시예 1과 비교예 2의 코인셀을 200 mAh/g 기준으로 0.1, 0.5, 1. 5. 10 C 정도의 전류를 인가하여 높은 전류하에서 용량의 저하정도를 이용하여 속도특성을 조사하여 도 5, 6에 나타내었다.The coin cells of Example 1 and Comparative Example 2 were applied with currents of about 0.1, 0.5, 1. 5. 10 C based on 200 mAh / g, and the speed characteristics were investigated using the degree of deterioration of the capacity under high current. , 6 is shown.

실시예 1과 비교예 2의 가역용량을 측정하여 도 1, 2에 도시하였다. 충전은 전압이 낮아지는 과정(리튬 저장), 방전은 전압이 높아지는 방향(리튬 방출) 으로 정의되며, 특히 3번째 충전시에는 전류가 2배로 증가하여 충전 용량이 감소함을 알 수 있었다.The reversible capacities of Example 1 and Comparative Example 2 were measured and shown in FIGS. 1 and 2. Charging is defined as the process of lowering the voltage (lithium storage), and discharging is defined as the direction of increasing the voltage (lithium emission). Particularly, in the third charging, the current is doubled and the charging capacity is decreased.

상기 표 1에 따르면 나노 산화티타늄을 도입한 경우가 일반 산화티타늄을 사용한 경우 보다 가역용량과 사이클 보전성이 우수함을 알 수 있다.According to Table 1, it can be seen that the case of introducing nano titanium oxide is superior to the reversible capacity and cycle integrity of the case of using general titanium oxide.

또한, 나노 산화티타늄만을 도입한 비교예 2의 경우는 속도특성이 산화티타늄 나노복합체를 도입한 경우보다 속도 특성이 우수함을 알 수 있다. 특히, 도 5와 6을 비교해 보면, 실시예 1의 경우에 속도특성이 월등히 뛰어남을 알 수 있다.In addition, in the case of Comparative Example 2 in which only nano titanium oxide was introduced, it can be seen that the speed characteristic is superior to the case in which the titanium oxide nanocomposite is introduced. In particular, when comparing Figs. 5 and 6, it can be seen that in the case of Example 1, the speed characteristic is much superior.

도 1은 본 발명의 실시예 1에 따라서 제조된 산화티타늄 나노복합체로 제조된 음극의 리튬이차전지 전극재료 특성을 나타낸 것이다. 여기서 파란색선은 1번째 충방전, 빨간색은 2번째 충방전, 검은선은 3번째 충방전을 나타내고 있다.Figure 1 shows the characteristics of the lithium secondary battery electrode material of the anode made of titanium oxide nanocomposites prepared according to Example 1 of the present invention. The blue line represents the first charge and discharge, the red represents the second charge and discharge, and the black line represents the third charge and discharge.

도 2는 본 발명의 비교예 2에 따라서 제조된 산화티타늄 나노복합체로 제조된 음극의 리튬이차전지 전극재료 특성을 나타낸 것이다. 여기서 파란색선은 1번째 충방전, 빨간색은 2번째 충방전, 검은선은 3번째 충방전을 나타내고 있다.Figure 2 shows the characteristics of the lithium secondary battery electrode material of the anode made of titanium oxide nanocomposites prepared according to Comparative Example 2 of the present invention. The blue line represents the first charge and discharge, the red represents the second charge and discharge, and the black line represents the third charge and discharge.

도 3는 본 발명의 실시예 1에 따라서 제조된 산화티타늄 나노복합체의 주자전자현미경(scanning electron microsopy)을 나타낸 것이다.FIG. 3 shows a scanning electron microsopy of a titanium oxide nanocomposite prepared according to Example 1 of the present invention.

도 4는 본 발명의 실시예 1에 따라서 제조된 산화티타늄 나노복합체의 투과전자현미경(transmission electron microscopy)을 나타낸 것이다.4 shows a transmission electron microscopy of the titanium oxide nanocomposites prepared according to Example 1 of the present invention.

도 5는 본 발명의 실시예 1에 따라서 제조된 산화티타늄 나노복합체로 제조된 음극의 리튬이차전지의 0.1, 0.5, 1, 5, 10 C에 따른 속도특성을 나타낸 것이다. 여기서 빨간색 원은 충전, 파란색 사각형은 방전을 나타내고 있다.Figure 5 shows the rate characteristics according to 0.1, 0.5, 1, 5, 10 C of the lithium secondary battery of the negative electrode prepared by the titanium oxide nanocomposite prepared according to Example 1 of the present invention. The red circle represents charge and the blue rectangle represents discharge.

도 6는 본 발명의 비교예 2에 따라서 제조된 산화티타늄 나노복합체로 제조된 음극의 리튬이차전지의 0.1, 0.5, 1, 5, 10 C에 따른 속도특성을 나타낸 것이다. 여기서 빨간색 원은 충전, 파란색 사각형은 방전을 나타내고 있다.Figure 6 shows the speed characteristics according to 0.1, 0.5, 1, 5, 10 C of the lithium secondary battery of the negative electrode made of titanium oxide nanocomposites prepared according to Comparative Example 2 of the present invention. The red circle represents charge and the blue rectangle represents discharge.

Claims (8)

주석(Sn), 아연(Zn), 니켈(Ni), 코발트(Co) 및 규소(Si) 중에서 선택된 1종 또는 2종 이상의 금속의 염 또는 산화물, 또는 탄소분의 혼합물을 산화티타늄과 혼합하여 염기성 용액에 넣은 혼합용액을 상온에서 교반하는 1 단계;A basic solution by mixing a salt or oxide of one or two or more metals selected from tin (Sn), zinc (Zn), nickel (Ni), cobalt (Co) and silicon (Si), or a mixture of carbon powders with titanium oxide 1 step of stirring the mixed solution at room temperature; 100 ~ 200 ℃ 고압반응기(autoclave)에서 교반된 혼합용액을 반응시키는 2 단계; 및Reacting the stirred mixed solution in an autoclave at 100-200 ° C .; And 상기 반응물을 여과하여 0.01 ~ 0.1 M 염산으로 세척 후 건조하여 산화티타늄 나노복합체를 수득하는 3 단계;Filtering the reactants, washing with 0.01 to 0.1 M hydrochloric acid, and drying to obtain titanium oxide nanocomposites; 를 포함하는 산화티타늄 나노복합체 제조방법.Titanium oxide nanocomposite manufacturing method comprising a. 제 1 항에 있어서,The method of claim 1, 상기 염기성 용액은 수산화나트륨, 수산화칼륨, 수산화리튬 및 수산화마그네슘 용액 중에서 선택된 1종 또는 2종 이상의 혼합용액인 것을 특징으로 하는 산화티타늄 나노복합체 제조방법.The basic solution is a titanium oxide nanocomposite manufacturing method, characterized in that one or two or more mixed solutions selected from sodium hydroxide, potassium hydroxide, lithium hydroxide and magnesium hydroxide solution. 제 1 항에 있어서,The method of claim 1, 상기 산화티타늄은 입자의 크기가 0.01 ~ 100 ㎛인 것을 특징으로 하는 산화 티타늄 나노복합체 제조방법.The titanium oxide nanoparticles manufacturing method, characterized in that the particle size of 0.01 ~ 100 ㎛. 제 1 항에 있어서,The method of claim 1, 상기 탄소분은 활성탄 또는 카본블랙 중에서 선택된 1종 또는 2종 혼합물인 것을 특징으로 하는 산화티타늄 나노복합체 제조방법.The carbon powder is a titanium oxide nanocomposite manufacturing method, characterized in that the mixture of one or two selected from activated carbon or carbon black. 산화티타늄 100 중량부에 대하여 주석(Sn), 아연(Zn), 니켈(Ni), 코발트(Co) 및 규소(Si) 중에서 선택된 1종 또는 2종 이상의 금속의 염 또는 산화물, 또는 탄소분의 혼합물 1 ~ 50 중량부를 포함하는 산화티타늄 나노복합체.Salts or oxides of one or two or more metals selected from tin (Sn), zinc (Zn), nickel (Ni), cobalt (Co) and silicon (Si) based on 100 parts by weight of titanium oxide, or a mixture of carbon powder 1 Titanium oxide nanocomposite comprising 50 parts by weight. 제 5 항에 있어서,The method of claim 5, wherein 상기 산화티타늄은 입자의 크기가 0.01 ~ 100 ㎛인 것을 특징으로 하는 산화티타늄 나노복합체.The titanium oxide nanoparticles nanocomposite, characterized in that the particle size of 0.01 ~ 100 ㎛. 제 5 항 또는 제 6 항의 산화티타늄 나노복합체를 포함하는 음극을 구성으로 하는 것을 특징으로 하는 리튬이온이차전지.A lithium ion secondary battery comprising a negative electrode comprising the titanium oxide nanocomposite of claim 5 or 6. 제 5 항 또는 제 6 항의 산화티타늄 나노복합체를 포함하는 음극을 구성으로 하는 것을 특징으로 하는 하이브리드 캐패시터.A hybrid capacitor comprising a cathode including the titanium oxide nanocomposite of claim 5 or 6.
KR1020080085489A 2008-08-29 2008-08-29 Preparation of novel nanostructured titanium oxide nano-composite and its electrode application for charge storage devices Expired - Fee Related KR101046432B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080085489A KR101046432B1 (en) 2008-08-29 2008-08-29 Preparation of novel nanostructured titanium oxide nano-composite and its electrode application for charge storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080085489A KR101046432B1 (en) 2008-08-29 2008-08-29 Preparation of novel nanostructured titanium oxide nano-composite and its electrode application for charge storage devices

Publications (2)

Publication Number Publication Date
KR20100026470A true KR20100026470A (en) 2010-03-10
KR101046432B1 KR101046432B1 (en) 2011-07-05

Family

ID=42177797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080085489A Expired - Fee Related KR101046432B1 (en) 2008-08-29 2008-08-29 Preparation of novel nanostructured titanium oxide nano-composite and its electrode application for charge storage devices

Country Status (1)

Country Link
KR (1) KR101046432B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339994A (en) * 2010-07-23 2012-02-01 中国科学院宁波材料技术与工程研究所 Transition metal oxide/graphene nanocomposite electrode material for lithium battery and preparation method thereof
KR101409693B1 (en) * 2013-02-12 2014-06-20 서울대학교산학협력단 Method for synthesizing nanocarbon-metal/metal oxide hybrids via solid-solvothermal process, nanocarbon-metal/metal oxide hybrids, and lithium ion reachargeable batteries using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784137B1 (en) * 2006-04-28 2007-12-12 대주전자재료 주식회사 Room temperature curing type titanium dioxide photocatalyst composition and coating method
KR100912807B1 (en) * 2007-03-19 2009-08-18 한국전자통신연구원 Method for producing carbon nanotubes uniformly coated with titanium dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339994A (en) * 2010-07-23 2012-02-01 中国科学院宁波材料技术与工程研究所 Transition metal oxide/graphene nanocomposite electrode material for lithium battery and preparation method thereof
KR101409693B1 (en) * 2013-02-12 2014-06-20 서울대학교산학협력단 Method for synthesizing nanocarbon-metal/metal oxide hybrids via solid-solvothermal process, nanocarbon-metal/metal oxide hybrids, and lithium ion reachargeable batteries using the same

Also Published As

Publication number Publication date
KR101046432B1 (en) 2011-07-05

Similar Documents

Publication Publication Date Title
US20230043211A1 (en) Method for preparing metal oxide nanosheets
Lu et al. Graphene nanosheets encapsulated α-MoO 3 nanoribbons with ultrahigh lithium ion storage properties
US9620783B2 (en) Mesoporous metal oxide microsphere electrode compositions and their methods of making
Ghiyasiyan-Arani et al. Synergic and coupling effect between SnO 2 nanoparticles and hierarchical AlV 3 O 9 microspheres toward emerging electrode materials for lithium-ion battery devices
Wang et al. Hierarchical mesoporous rutile TiO2/C composite nanospheres as lithium-ion battery anode materials
US10263253B2 (en) Method of preparing a vanadium oxide compound and use thereof in electrochemical cells
JP6809473B2 (en) Fibrous carbon-containing lithium-titanium composite oxide powder, electrode sheet using it, and power storage device using it
KR101751787B1 (en) Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
EP4266411A1 (en) Negative electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR101465385B1 (en) A micron sized anode active material containing titanium dioxide nanoparticles and method for the preparation thereof
Wu et al. Hydrothermal synthesis of Li 4 Ti 5 O 12 nanosheets as anode materials for lithium ion batteries
KR20220071426A (en) Anode active material coated with nitrogen-doped carbon for sodium ion secondary battery and method of preparing the same
Gu et al. Copper sulfide nanostructures and their sodium storage properties
KR101604003B1 (en) Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
Cai et al. Facile fabrication of N-doped TiO2 nanoparticles/carbon composite with excellent electrochemical properties for lithium ion batteries
Chen et al. Spinel Li 4 Ti 5 O 12 hollow nanospheres prepared with colloid carbon spheres as templates for high power Li-ion battery anodes
Wu et al. Preparation of TiO2 (B) nanosheets by a hydrothermal process and their application as an anode for lithium-ion batteries
Li et al. Mesoporous CuFe2O4/CuO and reduced-graphene oxide composite anodes mediated by Prussian blue analogues and different surfactants for advanced lithium storage applications
KR20210077071A (en) (Positive electrode material for lithium secondary battery and method for preparing the same
KR101484193B1 (en) Carbon supported metal oxide catalyst and preparing method for thereof
US20190097210A1 (en) Extraordinary capacity of titanium dioxide (tio2) nanostructures towards high power and high energy lithium-ion batteries
KR101046432B1 (en) Preparation of novel nanostructured titanium oxide nano-composite and its electrode application for charge storage devices
Kurc et al. Bismuth-titanium-silicon-based ternary oxide system: A comprehensive analysis and electrochemical utility
Ponnusamy et al. Transition Metal Oxide‐Based Nanomaterials for Lithium‐Ion Battery Applications: Synthesis, Properties, and Prospects
CN103618076B (en) Boron doping sub-micron ball TiO2Electrode material and method for making thereof and the application in lithium ion battery

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20080829

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20100830

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20110530

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20110628

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20110629

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20140327

Start annual number: 4

End annual number: 4

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee