[go: up one dir, main page]

KR20090057205A - Thin film solar cell - Google Patents

Thin film solar cell Download PDF

Info

Publication number
KR20090057205A
KR20090057205A KR1020090042871A KR20090042871A KR20090057205A KR 20090057205 A KR20090057205 A KR 20090057205A KR 1020090042871 A KR1020090042871 A KR 1020090042871A KR 20090042871 A KR20090042871 A KR 20090042871A KR 20090057205 A KR20090057205 A KR 20090057205A
Authority
KR
South Korea
Prior art keywords
solar cell
layer
graphene
amorphous silicon
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020090042871A
Other languages
Korean (ko)
Inventor
이정호
Original Assignee
이정호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이정호 filed Critical 이정호
Priority to KR1020090042871A priority Critical patent/KR20090057205A/en
Publication of KR20090057205A publication Critical patent/KR20090057205A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/30Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

본 발명은 박막 태양전지에 관한 것으로서, 보다 상세하게는 높은 효율의 태양전지 제조가 가능한 박막 태양전지 제조 방법에 관한 것이다. 이러한 본 발명의 제조 방법은 (a)는 투명절연성 기판(100)준비 단계; (b)는 광반사 방직막(200)층을 형성하는 단계; (c) 투명전극(300)층 형성 단계; (d)는 상기 태양전지 반도체 n-type(400)층을 형성하는 단계; (e)는 그래핀(500)층을 증착하여 형성하는 단계; (f)는 태양전지 반도체 p -type(600)층 형성하는 단계; (g)는 후면 전극(700)을 형성하는 단계; (h)는 절연물질(800)로 형성하는 단계를 포함하여 이루어진다.          The present invention relates to a thin film solar cell, and more particularly, to a thin film solar cell manufacturing method capable of producing a high efficiency solar cell. The manufacturing method of the present invention (a) comprises the step of preparing a transparent insulating substrate 100; (b) forming a light reflective textile film layer; (c) forming a transparent electrode 300 layer; (d) forming the solar cell semiconductor n-type (400) layer; (e) depositing a graphene 500 layer; (f) forming a solar cell semiconductor p-type (600) layer; (g) forming a back electrode 700; (h) comprises the step of forming an insulating material (800).

따라서, 본 발명에 따르면 태양전지의 반도체(N-type P-type )접합층 면에 그래핀(500)층을 증착하는 것으로, 그래핀(graphene) 소재의 특성인 가시광선 구역에서 비교적 높은 몰 흡광 계수(molar absorption coefficient)를 가지고 있으며, 강한 전자획득 능력을 갖고 있어, 고효율의 태양전지를 제조 할 수 있는 특징이 있다.         Therefore, according to the present invention, by depositing a graphene 500 layer on the surface of a semiconductor (N-type P-type) junction layer of a solar cell, relatively high molar absorption in the visible light region, which is a characteristic of graphene (graphene) material It has a coefficient of absorption (molar absorption coefficient), has a strong electron acquisition ability, and has the characteristics of manufacturing a high efficiency solar cell.

Description

박막 태양전지 {Thin film solar cell }Thin film solar cell

본 발명은 박막 태양전지에 관한 것으로서, 보다 상세하게는 높은 효율의 태양전지 제조가 가능한 박막 태양전지 제조 방법에 관한 것이다.         The present invention relates to a thin film solar cell, and more particularly, to a thin film solar cell manufacturing method capable of producing a high efficiency solar cell.

실리콘계 태양전지는 반도체의 상(phase)에 따라 세부적으로 단결정(single crystalline) 실리콘, 다결정(polycrystalline) 실리콘, 비정질(amorphous) 실리콘 태양전지로 분류된다.            Silicon based solar cells are classified into single crystalline silicon, polycrystalline silicon, and amorphous silicon solar cells according to the phase of the semiconductor.

또한, 태양전지는 반도체의 두께에 따라 벌크(기판)형 태양전지와 박막형 태양전지로 분류되는데, 박막형 태양전지는 반도체층의 두께가 수 10㎛ 내지 수 ㎛ 이하의 태양전지이다.           In addition, solar cells are classified into bulk (substrate) type solar cells and thin film type solar cells according to the thickness of the semiconductor, wherein the thin film type solar cells are solar cells having a semiconductor layer thickness of several tens to several micrometers or less.

실리콘계 태양전지에서 단결정 및 다결정 실리콘 태양전지는 벌크형에 속하며, 비정질 실리콘 태양전지는 박막형에 속한다.          In silicon-based solar cells, monocrystalline and polycrystalline silicon solar cells belong to the bulk type, and amorphous silicon solar cells belong to the thin film type.

이 중에서 단결정 실리콘 태양전지는 결정 인상에 의한 단결정 잉곳(ingot)을 와이어 톱(wire saw)에 의해 웨이퍼 형상으로 잘라내고, 100~200㎛ 두께의 웨이퍼로 가공하고, 이에 pn접합, 전극, 보호막 등을 형성하여 태양전지 셀(solar battery cell)로 하고 있다.          Among them, the single crystal silicon solar cell cuts a single crystal ingot by crystal pulling into a wafer shape by a wire saw, processes it into a wafer having a thickness of 100 to 200 µm, and pn junction, electrode, protective film, etc. To form a solar battery cell.

다결정 실리콘에서는, 결정 인상에 의하지 않고, 주형에 의해 용융 금속 규소를 결정화시킴으로써 다결정의 잉곳(ingot)을 제조하고, 이것을 단결정 실리콘 태양전지와 마찬가지로 와이어 톱(wire saw)에 의해 웨이퍼 형상으로 잘라내고, 마찬가지로 100~200㎛ 두께의 웨이퍼로 하고, 단결정 실리콘 기판과 마찬가지로 pn접합,전극, 보호막을 형성하여 태양전지 셀로 하고 있다.          In polycrystalline silicon, polycrystalline ingots are produced by crystallizing molten metal silicon with a mold, regardless of the crystal pulling, which is cut into a wafer shape with a wire saw in the same manner as a single crystal silicon solar cell, Similarly, a wafer having a thickness of 100 to 200 µm is formed, and a pn junction, an electrode, and a protective film are formed as a single crystal silicon substrate to form a solar cell.

비정질 실리콘 태양전지에서는, 예를 들면, 플라즈마 CVD법(Chemical Vapour Deposition method)에 의해, 실란 가스를 기상 중에서 방전에 의해 분해함으로써, 기판 상에 비정질의 수소화 규소막을 형성하고, 이것에 도핑 가스로서 디보란(diborane), 포스핀(phosphine) 등을 첨가하고 동시에 퇴적시킴으로써, pn접합과 성막공정을 동시에 행하고, 전극, 보호막을 형성하여 태양전지 셀로 하고 있다. 비정질 실리콘 태양전지에서는, 비정질 실리콘이 직접 천이형으로서 입사광을 흡수하기 때문에, 그 광흡수 계수는 단결정 및 다결정 실리콘의 그것에 비해 대략 1자리수 높음으로써, 비정질 실리콘층의 두께는 결정계의 태양전지에 비해 대략          In an amorphous silicon solar cell, for example, an amorphous silicon hydride film is formed on a substrate by decomposing silane gas by discharge in a gas phase by a plasma CVD method (Chemical Vapor Deposition method), and as a doping gas, a dibo is formed. By adding a diborane, a phosphine, and the like and depositing them simultaneously, a pn junction and a film forming step are performed at the same time to form an electrode and a protective film to form a solar cell. In amorphous silicon solar cells, since the amorphous silicon directly absorbs incident light as a transition type, its light absorption coefficient is approximately one order higher than that of single crystal and polycrystalline silicon, so that the thickness of the amorphous silicon layer is approximately that of the crystalline solar cell.

100분의 1의 막 두께인 1㎛전후로 충분하다고 하는 이점이 있다. 최근, 태양전지의 생산량이 세계에서 연간 1기가와트(Giga Watt)를 넘어, 향후 더욱 생산량이 늘어나는 것을 생각하면, 자원을 유효하게 활용할 수 있는 박막의 비정질 실리콘 태양전지에 대한 기대는 크다.There is an advantage that around 1 μm, which is a hundredth the film thickness, is sufficient. In recent years, considering that the production of solar cells exceeds one gigawatt per year in the world, and the production is expected to increase further in the future, the expectation is high for thin film amorphous silicon solar cells that can effectively utilize resources.

그러나, 비정질 실리콘 태양전지의 제조에는, 원료에 실란(silane)이나 디실란(disilane) 등의 고순도의 가스 원료를 이용하는 것이나, 그 가스 원료의 유 효 이용률은 플라즈마 CVD(Chemical Vapour Deposition) 장치 내에서 기판 이외에 퇴적하는 것도 있는 것 등의 사정 때문에 결정계 태양전지에 필요한 막 두께와의 단순한비교로 자원의 유효 이용률을 결정할 수 없다. 또, 결정계 태양전지가 변환 효율에 있어서 15% 전후인데 대해, 비정질 실리콘 태양전지는 10% 전후이고, 또한, 광조사 하에 있어서의 출력 특성 열화의 문제가 여전히 남아 있다.         However, for the production of amorphous silicon solar cells, a high purity gas raw material such as silane or disilane is used as the raw material, but the effective utilization rate of the gas raw material is in a plasma chemical vapor deposition (CVD) apparatus. Due to the possibility of depositing other than the substrate, the effective utilization rate of the resource cannot be determined by simple comparison with the film thickness required for the crystalline solar cell. In addition, while the crystalline solar cell is about 15% in conversion efficiency, the amorphous silicon solar cell is around 10%, and there still remains a problem of deterioration of output characteristics under light irradiation.

그래서, 결정계 실리콘 재료를 이용하여 박막 태양전지를 개발하는 시도가 다양하게 이루어지고 있다.           Therefore, various attempts have been made to develop thin film solar cells using crystalline silicon materials.

본 발명에서 실시되는 그래핀 (graphene)이란. 탄소화합물로써 그래파이트(graphite)가 판상구조를 가지는데 그래파이트 한겹을 그래핀이라 한다. 그래핀은 2차원 물질(높이가 없음)이고 탄소로만 이루어져있기 때문에 실리콘과는 전혀 무관하다.        With graphene (graphene) carried out in the present invention. Graphite has a plate-like structure as a carbon compound. One layer of graphite is called graphene. Graphene has nothing to do with silicon because it is a two-dimensional material (no height) and consists only of carbon.

그래핀(graphene)은 탄소원자가 서로 연결돼 벌집 모양의 평면 구조를 이루는 물질로 구조적화학적으로 안정돼있고 매우 뛰어난 전기적 성질을 갖는다. 그래핀(graphene)이 튜브형태로 말려 있으면 그래핀(graphene)과 함께 차세대 전자소자 소재로 주목받는 탄소나노튜브가 된다. 현재 반도체에서 사용되는 단결정 실리콘보다 100배 이상 빠르게 전자가 이동할 뿐만 아니라 구리보다 100배 많은 전류가 흐를 수 있어 기존 기술을 대체할 차세대 트랜지스터 및 전극 소재로 주목받아왔다.          Graphene is a honeycomb-shaped planar structure in which carbon atoms are connected to each other. It is structurally and chemically stable and has excellent electrical properties. When graphene is rolled up in the form of a tube, it becomes carbon nanotubes that are attracting attention as next-generation electronic device materials along with graphene. Not only can electrons move more than 100 times faster than single-crystal silicon used in semiconductors, but 100 times more current can flow than copper, which has attracted attention as a next-generation transistor and electrode material to replace existing technology.

본 발명은, 상기의 문제점과 그래핀(graphene) 소재의 특성 감안하여 이루어진 것으로, 그 목적은, 단결정 실리콘 태양전지, 다결정 실리콘 태양전지, 비정질 실리콘 태양전지 및 박막형 태양전지에 있어서. 태양전지 반도체 n형층이 형성된 상에 그래핀(graphene)층을 층착하여 형성하고, 그 위에 태양전지 반도체 p형층을 형성하는 것으로, 태양전지 특성과 그래핀(graphene) 소재의 특성을 이용하여 높은 광 기전력 효과를 얻고 , 고 효율의 태양전지를 제공하자 한다           The present invention has been made in view of the above problems and the characteristics of graphene materials, and its object is to provide a single crystal silicon solar cell, a polycrystalline silicon solar cell, an amorphous silicon solar cell, and a thin film solar cell. Formed by laminating a graphene layer on the solar cell semiconductor n-type layer, and forming a solar cell semiconductor p-type layer thereon, using the characteristics of the solar cell and the graphene (graphene) material high optical Let's get the electromotive force effect and provide high efficiency solar cell

본 발명은 상기 전술한 문제점을 해결하기 위하여 안출된 것으로서, 이러한 본 발명의 제조 방법은 (a)는 투명절연성 기판(100)준비 단계; (b)는 광반사 방직막(200)층을 형성하는 단계; (c) 투명전극(300)층 형성 단계; (d)는 상기 태양전지 반도체 n-type(400)층을 형성하는 단계; (e)는 그래핀(500)층을 증착하여 형성하는 단계; (f)는 태양전지 반도체 p-type(600)층 형성하는 단계; (g)는 후면 전극(700)을 형성하는 단계; (h)는 절연물질(800)로 형성하는 단계를 포함하여 이루어진다. The present invention has been made to solve the above-described problems, the manufacturing method of the present invention (a) comprises the step of preparing a transparent insulating substrate (100); (b) forming a light reflective textile film layer; (c) forming a transparent electrode 300 layer; (d) forming the solar cell semiconductor n-type (400) layer; (e) depositing a graphene 500 layer; (f) forming a solar cell semiconductor p-type (600) layer; (g) forming a back electrode 700; (h) comprises the step of forming an insulating material (800).

상기 태양전지 제조방법에 의한 (d) 반도체(n-type)층 위에, 그래핀 소재를 증착하는 것으로, 증착은 전자빔 또는 열증착에 의하여 이루어지며, 그랜핀 (graphene)소재는 단원자층의 물질로써 나노미터 단위로 상호간 소정의 간격으로 이격되도록 증착한다. 상기 그래핀(graphene) 소재는 가시광선 구역에서 비교적 높 은 몰 흡광 계수(molar absorption coefficient)를 가지고 있고 강한 전자획득 능력을 갖고 있어 고효율의 태양전지를 제조 할 수 있다         (D) The method for depositing a graphene material on a semiconductor (n-type) layer by the solar cell manufacturing method, and the deposition is performed by electron beam or thermal evaporation, and the graphene material is a monolayer material. The deposition is performed at a predetermined interval from each other in nanometer units. The graphene (graphene) material has a relatively high molar absorption coefficient in the visible light region and has a strong electron acquisition ability to produce a highly efficient solar cell

본 발명은 태양전지 반도체(pn접합) 면에 그래핀(graphene)층을 형성하며,그래핀(graphene)소재는 특성을 태양전지에 적용한 것으로 고효율의 태양전지를 제조 할 수 있는 특징이 있다.         The present invention forms a graphene (graphene) layer on the solar cell semiconductor (pn junction) surface, the graphene (graphene) material is a feature that can be applied to the solar cell to produce a highly efficient solar cell.

본 발명의 실시의 형태에 대해서 구체적으로 설명하지만 본 발명은 이것들에 한정되는 것은 아니다.           Although embodiment of this invention is described concretely, this invention is not limited to these.

도 1,2,3은 본 발명에 의한 실시예로서 박막 실리콘 태양전지의 제조 방법의 일례를 나타내는 공정도이다.         1,2,3 are process drawings showing an example of a method of manufacturing a thin film silicon solar cell as an embodiment according to the present invention.

도 4는 그래핀(graphene) 소재 단원자층을 나타낸 것이다.         Figure 4 shows a graphene material monoatomic layer.

상기 (a)의 투명 절연성기판을 준비하고, 투명 절연성 기판에는 석역유리, 결정화유리, 봉규산유리, 소라다임유리등이 선택된다. 그 위에 (b)광 반사막층 형성한다. (c)는 투명전극층은 형성하는 단계로 투명전도성 물질 또는 금속성 물질이다.         The transparent insulating substrate of (a) is prepared, and as the transparent insulating substrate, quartz glass, crystallized glass, rod silicate glass, soda lime glass and the like are selected. (B) The light reflection film layer is formed on it. (c) is a step of forming a transparent electrode layer is a transparent conductive material or a metallic material.

여기서, 바람직하게는 상기 투명전도성 물질은 산화아연(Zinc Oxide (ZnO)), 산화주석(Tin Oxide (SnO2)) 또는 산화인듐주석(Indium Tin Oxide (ITO)) 중 어느 하나 이상이다. 상기 금속성 물질은 은(Ag), 알루미늄(Al), 또는 금(Au) 중 어느 하나 이상이다. (c) 단계에는 상호간 소정의 간격으로 이격되도록 금속으로 패터닝된 전극을 형성하는 단계가 포함된다. 투명 전도성 물질을 형성하는 단계; 투명 전도성 물질위에 인쇄법을 이용하여 일정 거리 이격되게 포토레지스터(photoresister; PR) 또는 폴리머 띠를 도포하여 패턴을 이루는 단계 ; 상기 도포된 포토레지스터 또는 폴리머 패턴을 마스크로 사용하여 상기 전도성 물질을 에칭하는 단계; 및 상기 포토레지스터 또는 폴리머 패턴을 제거하는 단계; 를 포함한다.          Preferably, the transparent conductive material is at least one of zinc oxide (ZnO), tin oxide (SnO 2), or indium tin oxide (ITO). The metallic material is at least one of silver (Ag), aluminum (Al), or gold (Au). Step (c) includes forming electrodes patterned with metal so as to be spaced apart from each other at predetermined intervals. Forming a transparent conductive material; Forming a pattern by applying a photoresister (PR) or a polymer strip to the transparent conductive material at a predetermined distance using a printing method; Etching the conductive material using the applied photoresist or polymer pattern as a mask; Removing the photoresist or polymer pattern; It includes.

(d)는 태양전지 반도체(n-type)층 형성하는 단계 이다.            (d) is a step of forming a solar cell semiconductor (n-type) layer.

(e)는 상기 (d)의 태양전지 반도체(n-type)층 위에, 그래핀(graphene) 소재를 증착하는 단계; 증착은 물리기상증착(Physical Vapor Deposition)과 화학기상증착(Chamical Vapor Deposition), 프라즈마 화학증착법(PACVD) 의하여 이루어지며 , 그랜핀(graphene) 소재는 단원자층의 물질로써 나노미터 단위로 상호간 소정의 간격으로 이격되도록 증착한다. 상기 그래핀(graphene) 소재는 가시광선 구역에서 비교적 높은 몰 흡광 계수(molar absorption coefficient)를 가지고 있고 강한 전자획득 능력을 갖고 있다.            (e) depositing a graphene material on the solar cell semiconductor (n-type) layer of (d); Deposition is performed by Physical Vapor Deposition, Chemical Vapor Deposition, and Plasma Chemical Vapor Deposition (PACVD) .Granene (graphene) material is a monoatomic layer with a predetermined interval between nanometers. To be spaced apart. The graphene material has a relatively high molar absorption coefficient in the visible light region and a strong electron acquisition ability.

상기 (f)는 태양전지 반도체(p-type)층 형성하는 단계 이다.              (F) is a step of forming a solar cell semiconductor (p-type) layer.

상기 태양전지 반도체(n-type, p-type)층은 실리콘계 태양전지는 비정질 실리콘 단일접합 태양전지(amorphous silicon(a-Si:H) single junction solar cell), 비정질 실리콘 다중접합 태양전지(a-Si:H/a-Si:H, a-Si:H/a-Si:H/a-Si:H multi-junction solar cell), 비정질 실리콘게르마늄 단일접합 태양전지(amorphous silicon-germanium(a-SiGe:H) single junction solar cell), 비정질 실리콘/비정질 실리콘게르마늄 이중접합 태양전지(a-Si:H/a-SiGe:H double junction solar cell), 비정질 실리콘/비정질 실리콘게르S마늄/비정질 실리콘게르마늄 삼중접합 태양전지(a-Si:H/a-SiGe:H/a-SiGe:H triple junction solar cell), 비정질 실리콘/마이크로결정 실리콘(다결정 실리콘) 이중접합 태양전지(amorphous silicon/microcrystalline(poly) silicon double junction             The solar cell semiconductor (n-type, p-type) layer is a silicon-based solar cell is an amorphous silicon single junction solar cell (amorphous silicon (a-Si: H) single junction solar cell), amorphous silicon multi-junction solar cell (a- Si: H / a-Si: H, a-Si: H / a-Si: H / a-Si: H multi-junction solar cell, amorphous silicon-germanium single junction solar cell (a-SiGe) : H) single junction solar cell), amorphous silicon / amorphous silicon germanium double junction solar cell (a-Si: H / a-SiGe: H double junction solar cell), amorphous silicon / amorphous silicon germanium / amorphous silicon germanium triple Junction solar cell (a-Si: H / a-SiGe: H / a-SiGe: H triple junction solar cell), amorphous silicon / microcrystalline silicon (polycrystalline silicon) double junction solar cell (amorphous silicon / microcrystalline (poly) silicon double junction

solar cell), 및 프로토결정(protocrystalline) 실리콘 태양전지 중 어느 하나를 이용하는 것과 태양전지 반도체층 형성하는 방법을 특징으로 한다.solar cell) and a protocrystalline silicon solar cell, and a method of forming a solar cell semiconductor layer.

상기 (g)는 후면전극층 형성하는 단계로 후면전극층은 금속성 물질로서 은(Ag), 알루미늄(Al), 또는 금(Au) 중 어느 하나 이상이다.              Wherein (g) is a step of forming a back electrode layer, the back electrode layer is a metallic material and is at least one of silver (Ag), aluminum (Al), or gold (Au).

상기 (g)는 후면 절연층을 형성하는 단계이다.              (G) is a step of forming a back insulation layer.

본 발명은 상기 실시 형태에 한정되는 것은 아니다, 그러므로 상기 단계적 공정에 있어서, 기판에 수소 이온 또는 가스 이온을 주입하는 공정과, 표면 활성화 처리를 하는 공정과, 기계적으로 박리 하는 공정과, 화성 스퍼터법 , 물리기상증착(Physical Vapor Deposition), 화학기상증착(Chamical Vapor Deposition), 프라즈마 화학증착법(PACVD)등에 의한 공정은 본 발명의 설명에서 생략 하였다. 상기 실시 형태는 단순한 예시이고, 본 발명의 특허 청구의 범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 가지고 동일한 작용 효과를 나타 내는 것은 어떠한 것이라도 본 발명의 기술적 사상에 포함된다.             This invention is not limited to the said embodiment, Therefore, in the said step process, the process of inject | pouring a hydrogen ion or gas ion to a board | substrate, the process of surface activation treatment, the process of mechanical peeling, and the chemical sputtering method , Processes such as physical vapor deposition, chemical vapor deposition, plasma chemical vapor deposition (PACVD), etc. are omitted in the description of the present invention. The above embodiment is merely an example, and any thing having the same configuration and substantially the same configuration as the technical idea described in the claims of the present invention is included in the technical idea of the present invention.

기존의 비정질 실리콘 태양전지는 10% 전후 효율을 나타내는 한계에 있으나 본 발명은 15% 이상의 효율을 기대할 수 있으며, 비교적 저렴한 박막 태양전지 제조 공정으로 고효율 태양전지를 기대할 수 있다.  Existing amorphous silicon solar cell has a limit of about 10% efficiency, but the present invention can be expected to be more than 15% efficiency, it can be expected a high efficiency solar cell with a relatively inexpensive thin film solar cell manufacturing process.

도 1은 본 발명에 따른 박막 태양전지 제조 공정 순서도.1 is a flow chart of a thin film solar cell manufacturing process according to the present invention.

도 2는 본 발명에 따른 박막 태양전지 단면도.2 is a cross-sectional view of a thin film solar cell according to the present invention.

도 3은 본 발명에 따른 박막 태양전지 제조 공정 순서도.Figure 3 is a flow chart of a thin film solar cell manufacturing process according to the present invention.

도 4는 그래핀 소재의 단원자층 구조도.Figure 4 is a monoatomic layer structure of graphene material.

*** 도면의 주요부분에 대한 부호의 설명 ****** Explanation of symbols for main parts of drawing ***

100: 투명기판 200: 반사방지막 100: transparent substrate 200: antireflection film

300: 투명전극층 400: n-type 반도체 300: transparent electrode layer 400: n-type semiconductor

500: 그래핀(graphene)층 600: p-type 반도체500: graphene layer 600: p-type semiconductor

700: 후면전극층 800: 후면절연층 700: back electrode layer 800: back insulation layer

Claims (3)

본 발명은 단결정(single crystalline) 실리콘, 다결정(polycrystalline) 실리콘, 비정질(amorphous) 실리콘 태양전지 및 박막 태양전지에 있어서,(a)는 투명절연성 기판(100)준비 단계; (b)는 광반사 방직막(200)층을 형성하는 단계; (c) 투명전극(300)층 형성 단계; (d)는 상기 태양전지 반도체 n-type(400)층을 형성하는 단계; (e)는 그래핀(500)층을 증착하여 형성하는 단계; (f)는 태양전지 반도체 p -type(600)층 형성하는 단계; (g)는 후면 전극(700)을 형성하는 단계; (h)는 절연물질(800)로 형성하는 단계를 포함하여 이루어는 것을 특징으로 하는 박막 태양전지. In the present invention, a single crystalline silicon, polycrystalline silicon, amorphous silicon solar cell and a thin film solar cell, (a) is a transparent insulating substrate (100) preparing step; (b) forming a light reflective textile film layer; (c) forming a transparent electrode 300 layer; (d) forming the solar cell semiconductor n-type (400) layer; (e) depositing a graphene 500 layer; (f) forming a solar cell semiconductor p-type (600) layer; (g) forming a back electrode 700; (h) is a thin film solar cell comprising the step of forming an insulating material (800). 제1 항에 있어서, 태양전지 반도체(n-type, p-type)층은 실리콘계 태양전지는 비정질 실리콘 단일접합 태양전지(amorphous silicon(a-Si:H) single junction solar cell), 비정질 실리콘 다중접합 태양전지(a-Si:H/a-Si:H, a-Si:H/a-Si:H/a-Si:H multi-junction solar cell), 비정질 실리콘게르마늄 단일접합 태양전지(amorphous silicon-germanium(a-SiGe:H) single junction solar cell), 비정질 실리콘/비정질 실리콘게르마늄 이중접합 태양전지(a-Si:H/a-SiGe:H double junction solar cell), 비정질 실리콘/비정질 실리콘게르S마늄/비정질 실리콘게르마늄 삼중접합 태양전지(a-Si:H/a-SiGe:H/a-SiGe:H triple junction solar cell), 비정질 실리콘/마이크로결정 실리콘(다결정 실리콘) 이중접합 태양전지(amorphous silicon/microcrystalline(poly) silicon double junctionsolar cell), 및 프로토결정(protocrystalline) 실리콘 태양전지 중 태양전지 반도체(pn접합) 면에 그래핀(graphene)층을 형성하며, 그래핀(graphene) 소재는 특성을 태양전지에 적용한 것으로서, 상기 어느 하나를 이용하는 것을 특징으로 하는 박막 태양전지.         The method of claim 1, wherein the solar cell semiconductor (n-type, p-type) layer is a silicon-based solar cell is amorphous silicon (a-Si: H) single junction solar cell, amorphous silicon multi-junction Solar cell (a-Si: H / a-Si: H, a-Si: H / a-Si: H / a-Si: H multi-junction solar cell), amorphous silicon germanium single junction solar cell (amorphous silicon- germanium (a-SiGe: H) single junction solar cell), amorphous silicon / amorphous silicon germanium double junction solar cell (a-Si: H / a-SiGe: H double junction solar cell), amorphous silicon / amorphous silicon germanium / Amorphous silicon germanium triple junction solar cell (a-Si: H / a-SiGe: H / a-SiGe: H triple junction solar cell), amorphous silicon / microcrystalline silicon (polycrystalline silicon) double junction solar cell (amorphous silicon / of microcrystalline (poly) silicon double junctionsolar cell, and protocrystalline silicon solar cell Forming a graphene (graphene) layer, the graphene (graphene) material is a thin film solar cell, characterized in that using any one of the characteristics applied to the solar cell. 제 1,2항에 있어서 , 태양전지 반도체(pn접합) 면에, 그래핀(graphene) 소재를 증착하는 방법에 물리기상증착(Physical Vapor Deposition)과 화학기상증착(Chamical Vapor Deposition), 프라즈마 화학증착법(PACVD) 의하여 이루어지며, 그랜핀(graphene) 소재는 단원자층의 물질로써 나노미터 단위로 상호간 소정의 간격으로 이격 되도록 증착하는 것을 특징으로 하는 박막 태양전지.         The method of claim 1, wherein the physical vapor deposition (Physical Vapor Deposition), Chemical Vapor Deposition, Plasma chemical vapor deposition method in the method of depositing a graphene material on the solar cell semiconductor (pn junction) surface The thin film solar cell is formed by (PACVD), the granene (graphene) material is a material of the monoatomic layer to be deposited so as to be spaced at a predetermined interval from each other in nanometer units.
KR1020090042871A 2009-05-16 2009-05-16 Thin film solar cell Ceased KR20090057205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090042871A KR20090057205A (en) 2009-05-16 2009-05-16 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090042871A KR20090057205A (en) 2009-05-16 2009-05-16 Thin film solar cell

Publications (1)

Publication Number Publication Date
KR20090057205A true KR20090057205A (en) 2009-06-04

Family

ID=40988206

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090042871A Ceased KR20090057205A (en) 2009-05-16 2009-05-16 Thin film solar cell

Country Status (1)

Country Link
KR (1) KR20090057205A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025216A3 (en) * 2009-08-24 2011-07-07 한양대학교 산학협력단 Photodetector using a graphene thin film and nanoparticles, and method for producing same
KR101119916B1 (en) * 2009-08-24 2012-03-13 삼성전자주식회사 Electronic device utilizing graphene electrodes and organic/inorganic hybrid composites and method for manufacturing the same
KR101133181B1 (en) * 2010-05-24 2012-04-09 (재)나노소자특화팹센터 Graphene layer where patterns are formed
WO2012091498A1 (en) * 2010-12-31 2012-07-05 성균관대학교산학협력단 Flexible/stretchable semiconductor device comprising a graphene electrode, method for reducing contact resistance between a semiconductor layer and a graphene electrode, and graphene interconnector
CN102635964A (en) * 2012-04-01 2012-08-15 中国科学院宁波材料技术与工程研究所 Broad-spectrum solar absorbing coating and preparation method thereof
KR101300799B1 (en) * 2010-06-18 2013-08-29 그래핀스퀘어 주식회사 Optical film having graphene, preparing method of the same, and back light unit and liquid crystal display device having the same
US8679976B2 (en) 2010-03-31 2014-03-25 Samsung Electronics Co., Ltd. Method of manufacturing graphene by using germanium layer
KR101405557B1 (en) * 2012-12-21 2014-06-11 경희대학교 산학협력단 Graphene solar cell
US9142409B2 (en) 2012-09-29 2015-09-22 Boe Technology Group Co., Ltd. Polysilicon thin film and manufacturing method thereof, array substrate and display device
CN108899374A (en) * 2017-05-15 2018-11-27 中国科学院微电子研究所 Silicon-based solar cell and preparation method thereof
KR20190060534A (en) * 2017-11-24 2019-06-03 한국전기연구원 Solar cell module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598568B2 (en) 2009-08-24 2013-12-03 Industry-University Cooperation Foundation, Hanyang University Photodetector using a graphene thin film and nanoparticles, and method for producing the same
KR101119916B1 (en) * 2009-08-24 2012-03-13 삼성전자주식회사 Electronic device utilizing graphene electrodes and organic/inorganic hybrid composites and method for manufacturing the same
WO2011025216A3 (en) * 2009-08-24 2011-07-07 한양대학교 산학협력단 Photodetector using a graphene thin film and nanoparticles, and method for producing same
KR101154347B1 (en) * 2009-08-24 2012-06-13 한양대학교 산학협력단 Photo detector utilizing graphene film and nano particles
US8641915B2 (en) 2009-08-24 2014-02-04 Samsung Electronics Co., Ltd. Electronic device utilizing graphene electrodes and organic/inorganic hybrid composites and method of manufacturing the electronic device
US8679976B2 (en) 2010-03-31 2014-03-25 Samsung Electronics Co., Ltd. Method of manufacturing graphene by using germanium layer
KR101133181B1 (en) * 2010-05-24 2012-04-09 (재)나노소자특화팹센터 Graphene layer where patterns are formed
KR101300799B1 (en) * 2010-06-18 2013-08-29 그래핀스퀘어 주식회사 Optical film having graphene, preparing method of the same, and back light unit and liquid crystal display device having the same
WO2012091498A1 (en) * 2010-12-31 2012-07-05 성균관대학교산학협력단 Flexible/stretchable semiconductor device comprising a graphene electrode, method for reducing contact resistance between a semiconductor layer and a graphene electrode, and graphene interconnector
CN102635964A (en) * 2012-04-01 2012-08-15 中国科学院宁波材料技术与工程研究所 Broad-spectrum solar absorbing coating and preparation method thereof
US9142409B2 (en) 2012-09-29 2015-09-22 Boe Technology Group Co., Ltd. Polysilicon thin film and manufacturing method thereof, array substrate and display device
KR101405557B1 (en) * 2012-12-21 2014-06-11 경희대학교 산학협력단 Graphene solar cell
CN108899374A (en) * 2017-05-15 2018-11-27 中国科学院微电子研究所 Silicon-based solar cell and preparation method thereof
CN108899374B (en) * 2017-05-15 2020-02-18 中国科学院微电子研究所 A kind of silicon-based solar cell and preparation method thereof
KR20190060534A (en) * 2017-11-24 2019-06-03 한국전기연구원 Solar cell module

Similar Documents

Publication Publication Date Title
KR20090057205A (en) Thin film solar cell
US9812599B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
JP5863391B2 (en) Method for manufacturing crystalline silicon solar cell
US20100175749A1 (en) Solar cell and method for manufacturing metal electrode layer to be used in the solar cell
JP6125594B2 (en) Method for manufacturing photoelectric conversion device
WO2009119161A2 (en) Solar cell and method for manufacturing metal electrode layer to be used in the solar cell
US20150053260A1 (en) Photoelectric conversion device and manufacturing method thereof
JP4341124B2 (en) Manufacturing method of semiconductor device
JP5656330B2 (en) Method for manufacturing photoelectric conversion device
US8207013B2 (en) Method of fabricating silicon nanowire solar cell device having upgraded metallurgical grade silicon substrate
KR101012847B1 (en) Method for manufacturing compound solar cell using nanorod and compound solar cell
US20110308587A1 (en) Photoelectric conversion device and method for manufacturing the same
CN106887483A (en) Silicon substrate heterojunction solar cell and preparation method thereof
JP5282198B2 (en) Polycrystalline silicon thin film manufacturing method, polycrystalline silicon thin film substrate, and polycrystalline silicon thin film solar cell
JP2011077454A (en) Crystal silicon system solar cell and method of manufacturing the same
JP2010177655A (en) Method for manufacturing back junction type solar cell
JP5975841B2 (en) Manufacturing method of photovoltaic device and photovoltaic device
KR20110044442A (en) Thin film solar cell transparent electrode and manufacturing method thereof
KR100965982B1 (en) Polycrystalline Silicon Solar Cell and Manufacturing Method Thereof
KR20100093291A (en) Method of fabricating solar sell
CN106910793A (en) Heterojunction solar cell
KR101084652B1 (en) Laminated solar cell crystallized using microcrystalline semiconductor layer and manufacturing method thereof
JP2024533257A (en) Methods and systems for photovoltaic devices using silicon particles - Patents.com
JP2014007198A (en) Crystal silicon-based photoelectric conversion device and manufacturing method of the same
JP2012049416A (en) Manufacturing method of silicon-based thin film

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20090516

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110118

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110712

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20111212

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20110822

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110712

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110309

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110215

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110118

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20120110

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20110822

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110712

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110309

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110215

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110118

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20120214

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20110822

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110712

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110309

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110215

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20110118

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I