KR20090057027A - Recovery of calorific value regenerated during the production of lower olefins from methanol - Google Patents
Recovery of calorific value regenerated during the production of lower olefins from methanol Download PDFInfo
- Publication number
- KR20090057027A KR20090057027A KR1020097005634A KR20097005634A KR20090057027A KR 20090057027 A KR20090057027 A KR 20090057027A KR 1020097005634 A KR1020097005634 A KR 1020097005634A KR 20097005634 A KR20097005634 A KR 20097005634A KR 20090057027 A KR20090057027 A KR 20090057027A
- Authority
- KR
- South Korea
- Prior art keywords
- reaction
- catalyst
- pyrolysis
- methanol
- zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 183
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 37
- 238000011084 recovery Methods 0.000 title claims 4
- 238000004519 manufacturing process Methods 0.000 title description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 131
- 239000003054 catalyst Substances 0.000 claims abstract description 104
- 238000000034 method Methods 0.000 claims abstract description 68
- 238000000197 pyrolysis Methods 0.000 claims abstract description 53
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 26
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 25
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 13
- 239000002808 molecular sieve Substances 0.000 claims description 16
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 16
- 239000003502 gasoline Substances 0.000 claims description 15
- 239000003350 kerosene Substances 0.000 claims description 15
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 10
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000004927 clay Substances 0.000 claims description 5
- 239000002283 diesel fuel Substances 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 229910021536 Zeolite Inorganic materials 0.000 claims 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims 1
- 238000011069 regeneration method Methods 0.000 abstract description 18
- 239000002994 raw material Substances 0.000 abstract description 13
- 230000008929 regeneration Effects 0.000 abstract description 13
- 238000005336 cracking Methods 0.000 abstract description 3
- 239000012530 fluid Substances 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 38
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 17
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 15
- 239000005977 Ethylene Substances 0.000 description 15
- 239000007795 chemical reaction product Substances 0.000 description 15
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 15
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 15
- 238000009826 distribution Methods 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000007233 catalytic pyrolysis Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 150000001924 cycloalkanes Chemical class 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- -1 ethylene, propylene Chemical group 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229940094933 n-dodecane Drugs 0.000 description 2
- 125000004817 pentamethylene group Chemical class [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000019577 caloric intake Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G51/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
- C10G51/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
- C10G51/04—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only including only thermal and catalytic cracking steps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/40—Ethylene production
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
본 발명은 유동상(fluid bed) 공정을 이용하여 메탄올을 원료로 저급(低級) 올레핀을 제조하는 과정에서 재생된 열량을 회수하는 방법에 관한 것이다. 상기 방법중 재생후의 고온 촉매를 메탄올과 접촉시키기 전에 먼저 열분해(cracking) 반응 흡열구역에 들어가게 하고, 이 흡열구역내에서 상기 촉매를 탄화수소와 접촉시킨다. 고온 촉매가 지닌 일부분의 열량을 탄화수소 열분해 반응을 이용하여 흡수함으로써, 촉매의 온도를 하강시켜 메탄올 전환반응의 온도 요구에 부합하게 한다.The present invention relates to a method for recovering the amount of heat regenerated in the process of producing lower olefins from methanol as a raw material using a fluid bed process. In this process, the hot catalyst after regeneration is first put into a cracking reaction endothermic zone before contacting with methanol, in which the catalyst is brought into contact with a hydrocarbon. By absorbing a portion of the heat of the high temperature catalyst using a hydrocarbon pyrolysis reaction, the temperature of the catalyst is lowered to meet the temperature requirements of the methanol conversion reaction.
Description
본 발명은 재생열량의 회수방법에 관한 것으로서, 더욱 상세하게는 메탄올로부터 저급 올레핀을 제조하는 과정에서 재생되는 고온촉매가 지니는 열량을 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering the amount of regenerated heat, and more particularly, to a method for recovering the amount of heat of a high temperature catalyst regenerated in the process of preparing a lower olefin from methanol.
에틸렌, 프로필렌 등 저급 올레핀은 화학공업의 기초 원료이다. 일반적으로 에틸렌, 프로필렌은 주로 탄화수소의 증기 분해로부터 제조되며, 사용되는 원료는 나프타(naphtha), 경질 디젤유(light diesel oil), 수소화 분해 잔유 (hydrogenation cracking tail oil) 등이다. 최근 몇 년 사이 석유가격이 대폭적으로 상승됨에 따라 상기 원료로 에틸렌, 프로필렌을 제조하는 원가가 끊임없이 높아지고 있다. 이와 동시에 에틸렌, 프로필렌을 생산하는 전통적인 방법은 주로 고온 관식 가열로 분해공정을 이용하기에 열량 소비가 비교적 높다. 이러한 요소는 올레핀을 생산하는 새로운 공정에 관한 연구와 개발을 촉진하는 원인이 되고 있다.Lower olefins such as ethylene and propylene are the basic raw materials of the chemical industry. Generally, ethylene and propylene are mainly produced from steam cracking of hydrocarbons, and raw materials used are naphtha, light diesel oil and hydrogenation cracking tail oil. As oil prices have risen considerably in recent years, the cost of producing ethylene and propylene from these raw materials is constantly increasing. At the same time, the traditional method of producing ethylene and propylene is relatively high in calorie consumption, mainly due to the high temperature tubular furnace cracking process. These factors are driving the research and development of new processes for producing olefins.
비석유 원료로 저급 올레핀을 제조하는 노선은 근년에 비교적 많은 주목을 받고 있는 공정노선이다. 구체적으로는 석탄 또는 천연가스를 합성가스(synthesis gas)를 거쳐 메탄올로 전환시킨후, 메탄올을 저급 올레핀으로 전환시키는 공정노선이 광범하게 주목받고 있다. 그 중 분자체 촉매 위에서 메탄올(또는 메탄올의 탈수에 의해 생성되는 디메틸에테르)이 선택적으로 저급(C2-C4) 올레핀으로 전환되는 과정을 일반적으로 MTO 과정이라고 한다.The process for producing lower olefins from non-petroleum raw materials is a process route that has received much attention in recent years. Specifically, a process route for converting coal or natural gas into methanol via a synthesis gas and then converting methanol into lower olefins has been widely received. Among them, the process of selectively converting methanol (or dimethyl ether produced by dehydration of methanol) onto lower (C 2 -C 4 ) olefins on a molecular sieve catalyst is generally referred to as MTO process.
근년에 연속반응-재생 방법을 취하고 있는 유동상 MTO 공정이 많은 주목을 받고 있다. 유동상 공정의 기본적 원리는 아래와 같다. 즉 원료인 메탄올과 촉매를 반응기내에서 혼합하여 유동화(fluidization)하고, 일정한 온도에서 에틸렌, 프로필렌 등 생성물을 함유하는 혼합물로 전환시키며, 촉매는 반응에 의하여 탄소를 침착(carbon deposit)하여 일부 또는 전부가 비활성화(deactivation) 된다. 기체상태의 반응 생성물은 반응기에서 유출되어 분리장치에 들어가고, 비활성화된 촉매는 끊임없이 반응기에서 유출되어 재생기에 들어가 재생된다. 즉 산소함유 분위기에서 연소시켜 침착된 탄소를 제거한 후 다시 반응기에 되돌아와 반응 원료와 접촉한다.In recent years, the fluidized bed MTO process, which takes a continuous reaction-regeneration method, has received much attention. The basic principle of a fluidized bed process is as follows. That is, the raw material methanol and the catalyst are mixed in a reactor to fluidize and convert to a mixture containing products such as ethylene and propylene at a constant temperature, and the catalyst deposits some or all of the carbon by reaction to deposit carbon. Is deactivated. The gaseous reaction product exits the reactor and enters the separator, and the deactivated catalyst is constantly discharged from the reactor and enters the regenerator to be regenerated. In other words, it is burned in an oxygen-containing atmosphere to remove the deposited carbon and then returned to the reactor to contact with the reaction raw materials.
상기 연속반응-재생 방법을 취하고 있는 유동상 공정에 있어서, 비활성화된 촉매의 표면에 침착된 탄소는 고온 연소 방식에 의하여 제거된다. 일반적으로 연소 반응의 온도는 600℃보다 높으며, 가장 높게는 700℃ 이상에 도달할 수 있다. 만약 산열(散熱)에 의한 손실을 계산하지 않는다면, 침착 탄소의 연소에 의해 생성된 열량은 두 가지 방식으로 재생기로부터 전이된다. 즉 배출되는 고온 재생가스가 일부분의 열량을 가져가고 다른 일부분의 열량은 재생된 고온촉매가 가져간다.In a fluidized bed process employing the continuous reaction-regeneration method, carbon deposited on the surface of the deactivated catalyst is removed by high temperature combustion. In general, the temperature of the combustion reaction is higher than 600 ° C, the highest can reach 700 ° C or more. If the losses due to heat dissipation are not calculated, the heat generated by the combustion of the deposited carbon is transferred from the regenerator in two ways. In other words, the discharged hot regeneration gas takes a part of the heat and the other part takes the heat of the regenerated hot catalyst.
한편, 고온 재생가스가 지니고 나간 열량은 일반적으로 증기의 생산 또는 발 전 등 방식에 의해 회수되어 이용된다. 예를 들면, 미국 특허공개 US20050238543 A1는 재생가스로부터 열량을 회수하는 방법을 개시하였으며, 상기 방법은 여러 번의 열전달에 의해 재생가스의 온도를 낮추고 얻은 열량을 증기의 생산에 사용하는 것 등 을 포함한다.On the other hand, the heat carried out by the hot regeneration gas is generally recovered and used by the production or generation of steam or the like. For example, US Patent Publication No. US20050238543 A1 discloses a method for recovering heat from regeneration gas, which includes lowering the temperature of the regeneration gas by multiple heat transfers and using the calories obtained for the production of steam. .
다른 한편, 재생된 고온 촉매가 지니고 나간 열량은 일반적으로 반응에 공급된다. 전통적인 유동상 반응 공정은 일반적으로 탄화수소의 촉매분해 등 흡열반응에 응용되고, 일부분의 반응열은 재생과정에서 재생된 고온 촉매로부터 제공된다. 즉 비활성화된 촉매는 재생기 내의 산소함유 분위기에서 연소하여 침착된 탄소가 제거되어 재생되고 가열되며, 그 후 반응기에 되돌아옴과 동시에 열량을 전자로부터 후자에 전달함으로써 적어도 부분적으로 반응열을 제공한다.On the other hand, the calories left with the regenerated hot catalyst are generally supplied to the reaction. Traditional fluidized bed reaction processes are generally applied to endothermic reactions, such as catalytic cracking of hydrocarbons, and part of the heat of reaction is provided from the hot catalyst regenerated during the regeneration process. That is, the deactivated catalyst is burned in an oxygen-containing atmosphere in the regenerator to remove the deposited carbon, regenerated and heated, and then at least partially provides heat of reaction by transferring heat from the former to the latter while returning to the reactor.
하지만 이러한 열량 이용방식은 메탄올을 올레핀으로 전환시키는 반응에 알맞지 않다. 그 원인은 다음과 같다. 메탄올을 올레핀으로 전환시키는 반응은 강한 발열반응이고 촉매는 반응기내에서 가열되기 때문에 반응기에 들어가는 촉매의 온도가 반응상(reaction bed)층 온도보다 낮아야만 반응 온도의 안정성을 유지할 수 있다. 메탄올을 저급 올레핀으로 전환시키는 반응에서 바람직한 온도는 350-600℃이며, 촉매 제탄(charcoaling)의 재생온도(600-700℃), 즉 재생된 촉매의 온도보다 낮다. 때문에 재생된 고온 촉매는 재생과정에서 얻은 열량을 방출하고, 온도가 저하된 후에 반응기에 들어가야만 메탄올을 저급 올레핀으로 전환시키는 반응의 요구를 만족시킬 수 있다.However, this calorie utilization is not suitable for the conversion of methanol to olefins. The causes are as follows. The conversion of methanol to olefins is a strong exothermic reaction and the catalyst is heated in the reactor so that the temperature of the catalyst entering the reactor must be lower than the reaction bed bed temperature to maintain the stability of the reaction temperature. The preferred temperature in the reaction for converting methanol to lower olefins is 350-600 ° C., which is lower than the regeneration temperature of the catalyst charcoaling (600-700 ° C.), ie the temperature of the regenerated catalyst. Therefore, the regenerated high temperature catalyst releases the amount of heat obtained during the regeneration process and must enter the reactor after the temperature is lowered to satisfy the reaction requirement of converting methanol into lower olefins.
본 발명의 목적은 메탄올로부터 저급 올레핀을 제조하는 과정에서 재생된 고온 촉매의 열량을 회수하는 방법을 제공하는 데 있다.It is an object of the present invention to provide a method for recovering the calorific value of a regenerated high temperature catalyst in the process of preparing lower olefins from methanol.
본 발명자들은 깊고 섬세한 연구를 거쳐 본 발명을 완성하였다.The present inventors have completed the present invention through a deep and delicate study.
본 발명은 메탄올로부터 저급 올레핀을 제조하는 과정에서 재생된 고온 촉매의 열량을 회수하는 방법을 제공한다. 이 방법은 아래 단계를 포함한다. 즉, 재생된 고온 촉매를 먼저 열분해 반응 흡열구역에 들어가게 한 후, 메탄올 전환 반응기에 들어가게 하며, 여기서 탄화수소를 상기 열분해 반응 흡열구역에 인입함과 동시에 상기 재생된 고온 촉매와 접촉하게 하여 열분해 반응이 일어나게 하며, 상기 재생후의 고온 촉매의 온도는 500-800℃이다.The present invention provides a method for recovering the calorific value of the regenerated high temperature catalyst in the process of preparing lower olefins from methanol. This method includes the following steps. That is, the regenerated high temperature catalyst is first introduced into the pyrolysis endothermic zone, and then enters the methanol conversion reactor, where the hydrocarbon is introduced into the pyrolysis endothermic zone and brought into contact with the regenerated high temperature catalyst to cause the pyrolysis reaction to occur. The temperature of the high temperature catalyst after the regeneration is 500-800 ° C.
본 발명에 있어서, 사용되는 촉매는 규소알루미늄 제올라이트 및/또는 인규산염 분자체 촉매 및 이들의 원소 변성(變性) 생성물이며, 이의 미세공 직경이 0.3-0.6nm인 것이 바람직하다.In the present invention, the catalysts used are silicon aluminum zeolites and / or phosphate molecular sieve catalysts and their elemental modification products, preferably having a pore diameter of 0.3-0.6 nm.
본 발명에 있어서, 촉매의 기질 재료(matrix material)는 산화규소, 산화알루미늄 혹은 점토 중에서 선택되는 1종 또는 몇 가지 종류의 물질인 것이 바람직하다.In the present invention, the matrix material of the catalyst is preferably one or several kinds of materials selected from silicon oxide, aluminum oxide or clay.
본 발명에 있어서, 열분해 반응 흡열구역의 온도는 400-700℃인 것이 바람직하다.In the present invention, the temperature of the pyrolysis endothermic zone is preferably 400-700 ° C.
본 발명에 있어서, 열분해 반응 흡열구역의 입구와 출구간의 촉매의 온도차가 50-300℃인 것이 바람직하다.In the present invention, it is preferable that the temperature difference of the catalyst between the inlet and the outlet of the pyrolysis endothermic zone is 50-300 ° C.
본 발명에 있어서, 열분해 반응 흡열구역 내에 인입되는 탄화수소는 메탄올로부터 올레핀을 생성하는 반응에서의 C4 이상의 생성물 및/또는 기타 C4-C20 탄화수소인 것이 바람직하다.In the present invention, the hydrocarbon to be drawn in the thermal decomposition reaction heat absorbing zone is preferably a C 4 or more products and / or other C 4 -C 20 hydrocarbons in the reaction to produce olefins from methanol.
본 발명에 있어서, 열분해 반응 흡열구역 내에 인입되는 탄화수소는 나프타, 가솔린(gasoline), 응축유(natural gasoline), 경질디젤유, 수소화 잔유 및/또는 등유(kerosene)인 것이 바람직하다. In the present invention, the hydrocarbons introduced into the endothermic zone of the pyrolysis reaction are preferably naphtha, gasoline, natural gasoline, light diesel oil, hydrogenated resid and / or kerosene.
본 발명에 있어서, 탄화수소의 열분해 반응 흡열구역에서의 생성물을 메탄올로부터 저급 올레핀을 제조하는 반응에서 얻은 생성물에 합병시키는 것이 바람직하다. In the present invention, it is preferable to merge the product in the endothermic zone of pyrolysis reaction of hydrocarbon with the product obtained in the reaction for producing lower olefins from methanol.
본 발명에 있어서, 상기 열분해 반응 흡열구역이 메탄올 전환 장치에서 하나의 단독적인 반응구역인 것이 바람직하다.In the present invention, the pyrolysis endothermic zone is preferably one independent reaction zone in the methanol conversion apparatus.
본 발명에 있어서, 상기 열분해 반응 흡열구역이 메탄올 전환 반응기의 리프트(lift) 구역인 것이 바람직하다. In the present invention, the pyrolysis endothermic zone is preferably a lift zone of the methanol conversion reactor.
본 발명에 의한 방법은 메탄올로부터 저급 올레핀을 제조하는 과정에서 재생된 촉매가 지닌 일부분의 열량을 회수할 수 있으며, 또한 재생된 촉매의 온도를 조절함으로써 메탄올을 저급 올레핀으로 전환시키는 반응의 온도요구를 만족시킬 수 있다.The process according to the present invention can recover the heat content of a portion of the regenerated catalyst in the process of preparing the lower olefin from methanol, and also control the temperature requirement of the reaction for converting methanol into the lower olefin by controlling the temperature of the regenerated catalyst. Can satisfy.
상기 목적을 달성하기 위하여, 본 발명에 의한 메탄올로부터 저급 올레핀을 제조하는 과정에서의 재생열량의 회수방법에 있어서, 재생된 고온 촉매를 열분해 반응 흡열구역에 흘러 들어가게 하고, 이 흡열구역내에서 탄화수소 촉매의 열분해 반응에 의해 촉매가 지닌 열량을 흡수하고, 촉매 온도가 저하된 후 메탄올 전환 반응기에 들어가게 한다.In order to achieve the above object, in the method for recovering the heat of regeneration in the process of producing the lower olefin from methanol according to the present invention, the regenerated high temperature catalyst is allowed to flow into the endothermic zone of pyrolysis reaction, and the hydrocarbon catalyst in the endothermic zone. The heat of the catalyst is absorbed by the pyrolysis reaction, and the catalyst temperature is lowered before entering the methanol conversion reactor.
상기 방법에 있어서, 사용되는 촉매는 규소알루미늄 제올라이트 및/또는 인규산염 분자체 촉매 및 이들의 원소 변성 생성물이며, 이의 미세공 직경은 0.3-0.6nm이다. In the process, the catalysts used are silicon aluminum zeolites and / or phosphate molecular sieve catalysts and their elemental modification products, the micropore diameters of which are 0.3-0.6 nm.
상기 방법에 있어서, 촉매의 기질재료는 산화규소, 산화알루미늄 혹은 점토 중에서 선택되는 1종 또는 몇 가지 종류의 물질이다. In the above method, the substrate material of the catalyst is one or several kinds of materials selected from silicon oxide, aluminum oxide or clay.
상기 방법에 있어서, 열분해 반응 흡열구역의 온도는 400-700℃이다. In this method, the temperature of the pyrolysis endothermic zone is 400-700 ° C.
상기 방법에 있어서, 열분해 반응 흡열구역의 입구와 출구간의 촉매의 온도차는 50-300℃이다. In this method, the temperature difference of the catalyst between the inlet and the outlet of the pyrolysis endothermic zone is 50-300 ° C.
상기 방법에 있어서, 열분해 반응 흡열구역내에 인입되는 탄화수소는 메탄올의 올레핀으로의 생성 반응에서의 C4 이상의 생성물 및/또는 기타 C4-C20 탄화수소이다. In the process, the hydrocarbons introduced into the endothermic zone of the pyrolysis reaction are C 4 or more products and / or other C 4 -C 20 hydrocarbons in the production reaction of methanol to olefins.
상기 방법에 있어서, 열분해 반응 흡열구역 내에 인입되는 탄화수소는 나프타, 가솔린(gasoline), 응축유(natural gasoline), 경질 디젤유, 수소화 잔유 및/또는 등유(kerosene)이다. In the process, the hydrocarbons introduced into the endothermic zone of the pyrolysis reaction are naphtha, gasoline, natural gasoline, light diesel oil, hydrogenated resid and / or kerosene.
상기 방법에 있어서, 열분해 반응 흡열구역에서 생성되는 에틸렌과 프로필렌을 함유하는 생성물을 메탄올의 전환반응 생성물에 합병한다. In this process, the product containing ethylene and propylene produced in the pyrolysis endothermic zone is merged with the conversion reaction product of methanol.
본 발명에 의하면, 흡열반응에 속하는 탄화수소 열분해 반응을 이용하여 메탄올로부터 저급 올레핀을 제조하는 과정에서의 일부의 재생열량을 회수할 수 있다. 본 발명은 아래의 특징을 갖는다. 즉 연속반응 특징을 갖는 반응-재생 유동상 공정을 취하는 메탄올로부터 저급 올레핀을 제조하는 과정에 있어서, 재생된 고온 촉매를 메탄올과 접촉하기 전에 먼저 열분해 반응 흡열구역에 들어가도록 하고, 이 흡열구역내에 C4-C20 탄화수소를 인입하여 상기 재생된 고온 촉매와 접촉하게 하며, 탄화수소의 열분해 반응을 이용하여 촉매가 지닌 열량을 흡수하며, 촉매 온도가 메탄올의 전환에 적합한 온도로 저하한 후, 메탄올 전환반응기에 인입한다. 그와 동시에 열분해 반응에 의해 생산된 저급 올레핀을 메탄올로부터 생성된 올레핀 산품에 합병할 수 있다.According to the present invention, it is possible to recover a part of regeneration heat in the process of producing a lower olefin from methanol using a hydrocarbon pyrolysis reaction belonging to the endothermic reaction. The present invention has the following features. That is, in the process of producing lower olefins from methanol, which takes a reaction-regeneration fluidized bed process with continuous reaction characteristics, the regenerated high temperature catalyst is first put into a pyrolysis reaction endothermic zone before contacting methanol, and the C4 within the endothermic zone. -C20 hydrocarbons are introduced into contact with the regenerated high temperature catalyst, the thermal decomposition of the hydrocarbons is used to absorb the heat of the catalyst, the catalyst temperature is lowered to a temperature suitable for the conversion of methanol, and then introduced into the methanol conversion reactor. do. At the same time the lower olefins produced by the pyrolysis reaction can be incorporated into the olefin products produced from methanol.
본 발명은 메탄올로부터 저급 올레핀을 제조하는 과정에서의 일부의 재생열량을 회수하는 방법을 제공한다. 즉 유동상 공정을 취하는 메탄올로부터 저급 올레핀을 제조하는 과정에 있어서, 메탄올 원료와 촉매를 반응기내에서 혼합하여 유동하게 하고 일정한 온도에서 에틸렌, 프로필렌과 기타 탄화수소를 함유하는 생성물 혼합물로 전환시키며, 촉매는 반응에 의해 탄소를 침착하여 일부 또는 전부가 비활성화되며, 기체상태의 반응 생성물을 반응기에서 유출시켜 분리장치에 들어가도록 하고 비활성화된 촉매를 끊임없이 반응기에서 유출시켜 재생기에 인입하여 재생시키며, 비활성화된 촉매를 재생기에 인입하기 전에 먼저 증기 스트리퍼(stream stripper)를 경과시켜 수증기 등 비활성기체를 이용하여 촉매위에 남은 탄화수소를 제거한 후 재생기내의 산소 함유 분위기에서 연소하여 침착된 탄소를 제거하며, 침착된 탄소의 연소에 의하여 방출되는 열량의 일부분은 재생가스에, 다른 일부분은 재생된 촉매에 휴대되며, 수증기 등 비활성 기체를 이용하여 재생기 내에서 600-700℃로 가열된 촉매중의 잔류 산소를 제거한 후 열분해 반응 흡열구역에 인입시킨다. 상기 반응 흡열구역은 하나의 단독적인 고밀도상(dense-phase) 반응구역일 수도 있고 동시에 촉매를 메탄올 전환 반응기에 수송하는 리프트 구역일 수도 있고 동시에 촉매를 메탄올 전환 반응기에 수송하는 리프트 구역일 수도 있다. 이 반응 흡열구역내에서 탄화수소 연료를 재생된 촉매와 접촉시키면 열분해되면서 촉매가 지닌 열량을 흡수한다. 이 반응 흡열구역내의 온도는 400-700℃이며, 촉매는 상기 반응 흡열구역에서 유출된 후 온도가 이 흡열구역 입구보다 50-300℃ 낮게 되어 메탄올을 올레핀으로 전환하는 반응기의 요구에 맞는 온도에 도달한다. 상기 촉매를 다시 메탄올을 올레핀으로 전환하는 반응기에 인입시킨다. 상기 열분해 반응 흡열구역내에서 생산된 에틸렌과 프로필렌을 포함하는 생성물을 메탄올 전환 생성물에 합칠 수 있다.The present invention provides a method for recovering some of the heat of regeneration in the process of producing lower olefins from methanol. That is, in the process of producing lower olefins from methanol in a fluidized bed process, the methanol raw material and the catalyst are mixed in a reactor to flow and converted to a product mixture containing ethylene, propylene and other hydrocarbons at a constant temperature. Reaction of carbon deposits some or all of the carbon, and the gaseous reaction product is discharged from the reactor to enter the separator, and the deactivated catalyst is continuously discharged from the reactor and introduced into the regenerator to regenerate the deactivated catalyst. Before entering the regenerator, a stream stripper is first passed to remove the remaining hydrocarbons on the catalyst by using an inert gas such as water vapor, and then burned in an oxygen-containing atmosphere in the regenerator to remove the deposited carbon. Work of emitted calories Min is the regeneration gas, and the other mobile part is the regenerated catalyst, and then by using water vapor, such as inert gas, remove the residual oxygen in the heated catalyst in the regenerator 600-700 ℃ thereby pulling the endothermic pyrolysis reaction zone. The reaction endothermic zone may be a single dense-phase reaction zone and at the same time a lift zone for transporting the catalyst to the methanol conversion reactor and at the same time a lift zone for transporting the catalyst to the methanol conversion reactor. In this reaction endothermic zone, the hydrocarbon fuel is contacted with the regenerated catalyst to thermally decompose and absorb the heat of the catalyst. The temperature in the reaction endothermic zone is 400-700 ° C., and the catalyst is discharged from the reaction endotherm and then the temperature is 50-300 ° C. lower than the inlet of this endothermic zone to reach the temperature required by the reactor for converting methanol into olefin. do. The catalyst is again introduced into a reactor that converts methanol into olefins. The product comprising ethylene and propylene produced in the pyrolysis endothermic zone may be combined with a methanol conversion product.
상기 촉매는 미세공 직경이 0.3-0.6nm인 규소알루미늄 제올라이트 및/또는 인규산염 분자체 촉매(예를 들면, ZSM-5, ZSM-11, SAPO-11등) 및 이들의 원소 변성 생성물을 포함한다. 상기 촉매는 기질재료도 포함하며, 기질재료는 산화규소, 산화알루미늄 혹은 점토 중에서 선택되는 1종 또는 몇 가지 종류의 물질인 것이 바람직하다. 상기 반응 흡열구역에서 사용되는 탄화수소의 탄소원자수는 4-20이며, 이는 메탄올로부터 올레핀을 제조하는 반응에서의 C4 이상의 생성물일 수도 있고, 기타 C4-C20의 탄화수소일 수도 있으며, 나프타, 가솔린, 응축유, 경질디젤유, 수소화 잔유와 등유 등을 포함한다.The catalysts include silicon aluminum zeolites with a micropore diameter of 0.3-0.6 nm and / or phosphate molecular sieve catalysts (eg, ZSM-5, ZSM-11, SAPO-11, etc.) and elemental denaturation products thereof. . The catalyst also includes a substrate material, and the substrate material is preferably one or several kinds of materials selected from silicon oxide, aluminum oxide or clay. The number of carbon atoms of the hydrocarbon used in the reaction endothermic zone is 4-20, which may be a product of C4 or more in the reaction for producing olefins from methanol, other C 4 -C 20 hydrocarbons, naphtha, gasoline, Condensed oil, light diesel oil, hydrogenated residual oil and kerosene and the like.
아래에 실시예를 통하여 본 발명을 상세히 설명하나, 본 발명은 아래 실시예에 제한된 것이 아니다. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.
실시예 1Example 1
2-부틸렌의 SAPO-34 분자체 촉매위에서의 열분해.Pyrolysis of 2-Butylene over SAPO-34 Molecular Sieve Catalyst.
촉매의 제조방법은 아래와 같다: SAPO-34(대련 화학물리연구소, 규소 알루미늄 비율 0.2), 점토, 알루미늄 졸과 규소 졸(전부 절강 우달화공유한회사에서 구매)을 혼합하고 물에 분산시켜 슬러리를 제조하였다. 상기 슬러리를 분무성형하여 입자 직경 분포가 20-100㎛인 미소구체를 만들었다. 상기 미소구체를 600℃에서 4시간 배소하여 본 실시예에서 사용하는 촉매를 얻었다. 촉매중에서 SAPO-34 분자체 함유량은 30wt%이다.The method for preparing the catalyst is as follows: a slurry is prepared by mixing SAPO-34 (Dalian Chemical Physics Research Institute, silicon aluminum ratio 0.2), clay, aluminum sol and silicon sol (all purchased from Zhejiang Oda Co., Ltd.) and dispersing it in water. It was. The slurry was spray molded to produce microspheres with a particle diameter distribution of 20-100 μm. The microspheres were roasted at 600 ° C. for 4 hours to obtain a catalyst used in this example. The SAPO-34 molecular sieve content in the catalyst is 30 wt%.
반응은 내경이 20mm인 유동상 마이크로 반응기내에서 진행되었다. 반응 조건은 아래와 같다. 즉 촉매의 첨가량은 10g이고, 2-부틸렌(부순 석유화학회사, 순도 98%, 시스:트랜스 2-부틸렌 비율은 1) 원료가 들어가는 질량 공간속도는 1.0 hr-1이며, 반응 압력은 0.1MPa이다. 반응 생성물을 Varian CP-3800 기체크로마토그래피, Pona 컬럼과 수소화염 검출기로 분석하였으며, 샘플링 시간은 2분간이다. The reaction proceeded in a fluidized bed micro reactor with an internal diameter of 20 mm. The reaction conditions are as follows. That is, the addition amount of the catalyst is 10g, 2-butylene (crude petrochemical company, purity 98%, cis: trans 2-butylene ratio is 1), the mass space velocity of the raw material is 1.0 hr -1 , the reaction pressure is 0.1 MPa. The reaction product was analyzed by Varian CP-3800 gas chromatography, Pona column and hydrogen flame detector and the sampling time was 2 minutes.
원료와 생성물의 열역학적 상수에 근거하여 반응열을 계산하였고, 그 중 C5 의 열역학 데이터는 열 가지 알칸, 올레핀, 디엔과 시클로알칸 이성체의 평균치이고, C6는 열두 가지 알칸, 올레핀, 디엔과 시클로알칸 이성체의 평균치이다. 각 물질은 반응 조건에서 모두 이상 기체로 가정하였다.The heat of reaction was calculated based on the thermodynamic constants of the raw materials and products, of which the thermodynamic data of C5 is the average of the ten alkanes, olefins, dienes and cycloalkanes isomers, and C6 is the twelve alkanes, olefins, dienes and cycloalkanes isomers. Average. Each material was assumed to be an ideal gas all at reaction conditions.
2-부틸렌의 분자체 촉매위에서의 전환 반응 결과와 반응열을 표 1에 나타냈다. 반응 온도는 500℃이다. 표 1의 데이터로부터, 이 반응 조건에서 반응 생성물중의 에틸렌, 프로필렌의 선택성은 78.1%이며, 이러한 생성물 분포 조건에서 열분해 반응의 반응 흡열량은 471KJ/Kg인 것을 알 수 있다. Table 1 shows the results of the conversion reaction and the heat of reaction on the molecular sieve catalyst of 2-butylene. Reaction temperature is 500 degreeC. From the data in Table 1, it can be seen that the selectivity of ethylene and propylene in the reaction product under these reaction conditions is 78.1%, and the endothermic amount of reaction of the pyrolysis reaction under these product distribution conditions is 471 KJ / Kg.
[표 1] 실시예 1의 2-부틸렌의 열분해 반응 생성물과 반응열(500℃) Table 1 Pyrolysis product of 2-butylene of Example 1 and the heat of reaction (500 ° C.)
C6 +는 C6 및 C6 이상의 생성물을 나타낸다. C 6 + represents a C 6 and a C 6 or more product.
실시예 2Example 2
반응 온도를 550℃로 한 것을 제외하고는, 실시예 1의 절차를 반복하였다. The procedure of Example 1 was repeated except that the reaction temperature was set at 550 ° C.
2-부틸렌의 분자체 촉매위에서의 전환 반응 결과와 반응열을 표 2에 나타냈다. 표 2의 데이터로부터, 이 반응 조건에서 반응 생성물 중의 에틸렌, 프로필렌의 선택성은 82.21%이며, 이러한 생성물 분포 조건에서 열분해 반응의 반응 흡열량은 704 KJ/Kg인 것을 알 수 있다. The conversion reaction results and the heat of reaction on the molecular sieve catalyst of 2-butylene are shown in Table 2. From the data in Table 2, it can be seen that the selectivity of ethylene and propylene in the reaction product under these reaction conditions is 82.21%, and the endothermic amount of reaction of the pyrolysis reaction under these product distribution conditions is 704 KJ / Kg.
[표 2] 실시예 2의 2-부틸렌의 열분해 반응 생성물과 반응열(550℃) Table 2 Pyrolysis Product of 2-Butylene of Example 2 and Heat of Reaction (550 ° C)
C6 +는 C6 및 C6 이상의 생성물을 나타낸다. C 6 + represents a C 6 and a C 6 or more product.
실시예 3Example 3
반응 온도를 600℃로 한 것을 제외하고는, 실시예 1의 절차를 반복하였다. The procedure of Example 1 was repeated except that the reaction temperature was set at 600 ° C.
2-부틸렌의 분자체 촉매위에서의 전환 반응 결과와 반응열을 표 3에 나타냈다. 표 3의 데이터로부터, 이 반응 조건에서 반응 생성물 중의 에틸렌, 프로필렌의 선택성은 80.97%이며, 이러한 생성물 분포 조건에서 열분해 반응의 반응 흡열량은 825 KJ/Kg인 것을 알 수 있다. The conversion reaction results and the heat of reaction on the molecular sieve catalyst of 2-butylene are shown in Table 3. From the data in Table 3, it can be seen that the selectivity of ethylene and propylene in the reaction product under these reaction conditions is 80.97%, and the endothermic amount of reaction of the pyrolysis reaction under these product distribution conditions is 825 KJ / Kg.
[표 3] 실시예 3의 2-부틸렌의 열분해 반응 생성물과 반응열(600℃) Table 3 Pyrolysis Product of 2-Butylene of Example 3 and Heat of Reaction (600 ° C)
C6 +는 C6 및 C6 이상의 생성물을 나타낸다. C 6 + represents a C 6 and a C 6 or more product.
실시예 4Example 4
등유의 ZSM-5 분자체 촉매위에서의 열분해Pyrolysis over Kerosene ZSM-5 Molecular Sieve Catalyst
촉매의 제조 절차와 반응 조작은 실시예 1과 같으나, 그 가운데서 SAPO-34 분자체를 ZSM-5(남개 대학교 분자체 공장, 규소 알루미늄 비율은 50)로 바꾸고, 원료를 등유(3호 항공 등유, 기로 석유화학)로 바꿨다. 반응열 계산방법은 실시예 1과 같고 등유의 연소 엔탈피는 -7513 KJ.Kg-1을 취하였다. The preparation procedure and reaction operation of the catalyst are the same as in Example 1, among which the SAPO-34 molecular sieve is changed to ZSM-5 (Nam University molecular sieve plant, silicon aluminum ratio is 50), and the raw material is kerosene (No. 3 aviation kerosene, To petrochemicals). The reaction heat calculation method was the same as in Example 1, and the combustion enthalpy of kerosene was -7513 KJ.Kg -1 .
등유의 분자체 촉매위에서의 전환 반응 결과와 반응열을 표 4에 나타냈다. 반응 온도는 550℃이었다. 등유의 기타 열역학적 함수는 n-도데칸으로 계산하였다. 표 4의 데이터로부터, 이 반응 조건에서 반응 생성물중의 에틸렌, 프로필렌의 선택성은 28.91%이며, 이러한 생성물 분포 조건에서 열분해 반응의 반응 흡열량은 2238 KJ/Kg인 것을 알 수 있다.Table 4 shows the results of the conversion reaction and the heat of reaction on the molecular sieve catalyst of kerosene. Reaction temperature was 550 degreeC. Other thermodynamic functions of kerosene were calculated with n-dodecane. From the data in Table 4, it can be seen that the selectivity of ethylene and propylene in the reaction product under these reaction conditions is 28.91%, and the endothermic amount of reaction of the pyrolysis reaction under these product distribution conditions is 2238 KJ / Kg.
[표 4] 실시예 4의 등유의 열분해 반응 생성물과 반응열(550℃)TABLE 4 Pyrolysis reaction products and heat of reaction of kerosene of Example 4 (550 ℃)
C5 +는 C5 및 C5 이상의 생성물을 나타낸다.C 5 + represents a C 5 and C 5 or more product.
실시예 5Example 5
반응 온도를 600℃로 한 것을 제외하고는, 실시예 4의 절차를 반복하였다. The procedure of Example 4 was repeated except that the reaction temperature was set at 600 ° C.
등유의 분자체 촉매위에서의 전환 반응 결과와 반응열을 표 5에 나타냈다. 등유의 연소 엔탈피는 -7513 KJ.Kg-1을 취하였고 등유의 기타 열역학적 함수는 n-도데칸으로 계산하였다. 표 5의 데이터로부터, 이 반응 조건에서 반응 생성물 중의 에틸렌, 프로필렌의 선택성은 36.97%이며, 이러한 생성물 분포 조건에서 열분해 반응의 반응 흡열량은 2821 KJ/Kg인 것을 알 수 있다. The conversion reaction results and the heat of reaction on the molecular sieve catalyst of kerosene are shown in Table 5. The combustion enthalpy of kerosene was -7513 KJ.Kg -1 and the other thermodynamic functions of kerosene were calculated as n-dodecane. From the data in Table 5, it can be seen that the selectivity of ethylene and propylene in the reaction product under these reaction conditions is 36.97%, and the endothermic amount of reaction of the pyrolysis reaction under these product distribution conditions is 2821 KJ / Kg.
[표 5] 실시예 5의 등유의 열분해 반응 생성물과 반응열(600℃) TABLE 5 Pyrolysis reaction products and heat of reaction of kerosene of Example 5 (600 ℃)
C5 +는 C5 및 C5 이상의 생성물을 나타낸다.C 5 + represents a C 5 and C 5 or more product.
실시예 6Example 6
가솔린의 ZSM-5 분자체 촉매위에서의 전환 반응 결과와 반응열을 표 6에 나타냈다. 촉매의 제조 절차와 반응 조작은 실시예 4와 같으나, 그 가운데서 원료를 가솔린(부순 석유화학의 촉매 가솔린, 올레핀 함유량 40%)으로 바꿨다. 반응 온도는 640℃이었다. 가솔린의 열역학적 함수는 여러가지 펜텐의 평균치로 계산하였다. 표 6의 데이터로부터, 이 반응 조건에서 반응 생성물 중의 에틸렌, 프로필렌의 수율은 44.01%이며, 이러한 생성물 분포 조건에서 열분해 반응의 반응 흡열량은 361 KJ/Kg인 것을 알 수 있다. Table 6 shows the conversion reaction results and heat of reaction on the gasoline ZSM-5 molecular sieve catalyst. The catalyst production procedure and reaction operation were the same as in Example 4, in which the raw materials were changed to gasoline (catalytic gasoline of petroleum petrochemical, olefin content of 40%). The reaction temperature was 640 deg. The thermodynamic function of gasoline was calculated from the average of various pentenes. From the data in Table 6, it was found that the yield of ethylene and propylene in the reaction product was 44.01% under these reaction conditions, and the endothermic amount of reaction of the pyrolysis reaction was 361 KJ / Kg under these product distribution conditions.
[표 6] 실시예 6의 가솔린의 열분해 반응 생성물과 반응열(640℃)TABLE 6 Pyrolysis reaction products and heat of reaction of gasoline of Example 6 (640 ℃)
C5 +는 C5 및 C5 이상의 생성물을 나타낸다.C 5 + represents a C 5 and C 5 or more product.
실시예 7Example 7
반응 온도를 610℃로 한 것을 제외하고는, 실시예 6의 절차를 반복하였다. The procedure of Example 6 was repeated except that the reaction temperature was set at 610 ° C.
가솔린의 분자체 촉매위에서의 전환 반응 결과와 반응열을 표 7에 나타냈다. 가솔린의 열역학적 함수는 여러가지 펜텐의 평균치로 계산하였다. 표 7의 데이터로부터, 이 반응 조건에서 반응 생성물 중의 에틸렌, 프로필렌의 수율은 39.66%이며, 이러한 생성물 분포 조건에서 열분해 반응의 반응 흡열량은 367 KJ/Kg임을 알수 있다. Table 7 shows the results of the conversion reaction and the heat of reaction on the molecular sieve catalyst of gasoline. The thermodynamic function of gasoline was calculated from the average of various pentenes. The data in Table 7 shows that the yield of ethylene and propylene in the reaction product under these reaction conditions is 39.66%, and the endothermic amount of the pyrolysis reaction under these product distribution conditions is 367 KJ / Kg.
[표 7] 실시예 7의 가솔린의 열분해 반응 생성물과 반응열(610℃) TABLE 7 Pyrolysis reaction products and heat of reaction of gasoline of Example 7 (610 ° C)
C5 +는 C5 및 C5 이상의 생성물을 나타낸다.C 5 + represents a C 5 and C 5 or more product.
실시예 8Example 8
메탄올 전환 규모가 60만톤/년인 메탄올로 올레핀 제조용 장치를 사용하였 다. 상기 장치가 평균 매년 정상적으로 300일 작업하면 메탄올의 하루 처리량은 2000톤이다. 이 전환 장치는 반응-재생 유동상 공정을 사용하였고 주로 메탄올 전환 반응기와 촉매 재생기를 포함하며 재생기로부터 메탄올 전환 반응기에 유출되는 촉매 수송 노선에 열분해 흡열반응기를 설치하였고, 이 반응기는 유동상 방식을 취하였다. 재생된 고온 촉매는 먼저 상기 열분해 반응 흡열구역을 통과한 후 메탄올 전환 반응기에 들어갔다. Methanol with a 600,000 tonne / year methanol conversion was used for the production of olefins. If the device works normally on average 300 days per year, the daily throughput of methanol is 2000 tons. The conversion unit used a reaction-regeneration fluidized bed process, which mainly included a methanol conversion reactor and a catalytic regenerator, and installed a pyrolysis endothermic reactor on the catalyst transport route that flowed out of the regenerator to the methanol conversion reactor, which took the fluidized bed method. It was. The regenerated hot catalyst first passed through the pyrolysis endothermic zone and then entered the methanol conversion reactor.
SAPO-34 유동 촉매(촉매의 제조 절차는 실시예 1과 같음)를 사용하였고 촉매 순환량은 2000톤/일이다. 재새된 촉매(증기 스트리핑후)의 온도는 650℃이며, 촉매가 메탄올 전환 반응기에 들어가기 전에 온도가 430℃로 저하되어야 한다.The SAPO-34 flow catalyst (catalyst preparation procedure is the same as in Example 1) was used and the catalyst circulation was 2000 tons / day. The temperature of the renewed catalyst (after steam stripping) is 650 ° C. and the temperature must be lowered to 430 ° C. before the catalyst enters the methanol conversion reactor.
상기 열분해 흡열 반응기에서 2-부틸렌(실시예 1과 같음)의 촉매 열분해를 통하여 재생된 촉매가 지닌 열량을 흡수하여 온도를 550℃로 하강시킨다. 촉매의 열용량은 840J/(KgㆍK)이므로, 온도가 저하되는 과정에서 촉매의 방출열량은 1.68 ×108 KJ/일이다. 촉매는 상기 흡열반응기에서 유출되어 메탄올 전환 반응기에 들어가기 전에 도관로(pipeline) 통과하여 산열함으로써 온도가 430℃로 하강되며, 산열된 열량 손실은 2.02 ×108 KJ/일이다. 도관로 산열 손실을 억제하기 위하여 재생된 촉매의 수송 도관로에 대하여 적당한 보온 조치를 취하는 것이 필요하다.In the pyrolysis endothermic reactor, the heat of the regenerated catalyst is absorbed through catalytic pyrolysis of 2-butylene (as in Example 1), and the temperature is lowered to 550 ° C. Since the heat capacity of the catalyst is 840 J / (Kg · K), the amount of heat released by the catalyst is 1.68 × 10 8 KJ / day in the course of decreasing temperature. The catalyst exits the endothermic reactor and passes through a pipeline to disperse before entering the methanol conversion reactor, whereby the temperature is lowered to 430 ° C., and the amount of heat lost is 2.02 × 10 8 KJ / day. Appropriate warming measures are required for the transport conduit of the regenerated catalyst to suppress acid heat loss in the conduit.
열분해 반응기에서 2-부틸렌을 200℃까지 예열한 후 이를 공급하며 반응 온도는 550℃이다. 2-부틸렌의 열용량은 Cp = 1456 J/(KgㆍK)를 취하였다. 매톤 2-부틸렌이 공급될 때부터 완전히 반응될 때까지의 흡열량은 12.14 ×105 KJ/Kg이고, 2- 부틸렌의 일회(once-through) 전환율은 75%이므로, 2-부틸렌 원료 공급량은 184톤/일이면, 촉매 온도를 650℃로부터 550℃로 저하시킬 수 있다. 2-butylene was preheated to 200 ° C. in a pyrolysis reactor and then supplied thereto, and the reaction temperature was 550 ° C. The heat capacity of 2-butylene was Cp = 1456 J / (Kg · K). The endothermic amount from the supply of Mathene 2-butylene to the complete reaction is 12.14 × 10 5 KJ / Kg, and the once-through conversion rate of 2-butylene is 75%, so the 2-butylene raw material If the feed amount is 184 tons / day, the catalyst temperature can be lowered from 650 ° C to 550 ° C.
상기 반응 공정에서 2-부틸렌의 촉매 열분해에 의해 회수할 수 있는 열량은 재생된 촉매가 지닌 열량의 45%이며, 회수된 열량은 2-부틸렌의 촉매 열분해에 사용되며, 에틸렌을 37.8톤/일, 프로필렌을 76.0톤/일 증산할 수 있다.The amount of heat that can be recovered by catalytic pyrolysis of 2-butylene in the reaction process is 45% of the heat of the regenerated catalyst, and the recovered heat is used for catalytic pyrolysis of 2-butylene, and 37.8 tons / ethylene is used. It is possible to increase 76.0 tons / day of propylene.
비교예 1Comparative Example 1
메탄올 전환 규모가 60만톤/년인 메탄올로 올레핀 제조용 장치를 사용하였다. 상기 장치가 평균 매년 정상적으로 300일 작업하면 메탄올의 하루 처리량은 2000톤이다. 이 전환 장치는 실시예 8과 비슷한 반응-재생 유동상 공정을 사용하였으며, 주로 메탄올 전환 반응기와 촉매 재생기를 포함하나, 열분해 반응 흡열구역이 설치되어 있지 않고, 촉매는 수송노선을 통해 직접 재생기로부터 메탄올 전환 반응기에 유출된다.An apparatus for producing olefins with methanol having a methanol conversion scale of 600,000 tons / year was used. If the device works normally on average 300 days per year, the daily throughput of methanol is 2000 tons. This conversion device used a reaction-regeneration fluidized bed process similar to that of Example 8, which mainly includes a methanol conversion reactor and a catalyst regenerator, but without the pyrolysis endothermic zone, and the catalyst is transported directly from the regenerator via Outflow to the conversion reactor.
SAPO-34 유동촉매(촉매의 제조 절차는 실시예 1과 같음)를 사용하였으며 촉매 순환량은 2000톤/일이다. 재생된 촉매(증기 스티리핑 후)의 온도는 650℃이고, 촉매가 메탄올 전환 반응기에 들어가기 전에 온도를 430℃로 하강시키는 것이 필요하다.The SAPO-34 fluid catalyst (the procedure for preparing the catalyst is the same as in Example 1) was used and the catalyst circulation was 2000 tons / day. The temperature of the regenerated catalyst (after steam stiffening) is 650 ° C. and it is necessary to lower the temperature to 430 ° C. before the catalyst enters the methanol conversion reactor.
촉매는 전적으로 도관로(pipeline)에 의해 산열되어 온도가 430℃로 저하되며, 촉매의 열용량은 840J/(KgㆍK)이며, 온도가 저하되는 과정에서 산열된 열량 손 실은 3.70×108 KJ/일이다.The catalyst is totally annealed by a pipeline to lower the temperature to 430 ° C., and the heat capacity of the catalyst is 840 J / (Kg · K), and the amount of heat lost during the temperature decrease is 3.70 × 10 8 KJ / It's work.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610112557XA CN101130469B (en) | 2006-08-23 | 2006-08-23 | Method for recovering reactivation heat in process of preparing low carbon olefinic hydrocarbon with methanol |
CN200610112557.X | 2006-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20090057027A true KR20090057027A (en) | 2009-06-03 |
Family
ID=39127901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020097005634A Ceased KR20090057027A (en) | 2006-08-23 | 2007-08-22 | Recovery of calorific value regenerated during the production of lower olefins from methanol |
Country Status (7)
Country | Link |
---|---|
JP (1) | JP2010501495A (en) |
KR (1) | KR20090057027A (en) |
CN (1) | CN101130469B (en) |
AU (1) | AU2007291786A1 (en) |
BR (1) | BRPI0715687A2 (en) |
WO (1) | WO2008025247A1 (en) |
ZA (1) | ZA200901045B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016018097A1 (en) * | 2014-08-01 | 2016-02-04 | 한국화학연구원 | Naphtha and methanol mixed catalytic cracking reaction process |
US10131850B2 (en) | 2014-08-01 | 2018-11-20 | Korea Research Institute Of Chemical Technology | Naphtha and methanol mixed catalytic cracking reaction process |
WO2024014924A1 (en) * | 2022-07-15 | 2024-01-18 | 한국화학연구원 | Catalyst for catalytic cracking of mixed raw material of diesel and methanol and preparation method therefor |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8704028B2 (en) * | 2010-03-30 | 2014-04-22 | Uop Llc | Conversion of acyclic symmetrical olefins to higher and lower carbon number olefin products |
CN101844087B (en) * | 2010-06-22 | 2012-04-25 | 西南化工研究设计院 | Preparation method of catalyst for preparing propylene by methanol conversion |
US20120041243A1 (en) * | 2010-08-10 | 2012-02-16 | Uop Llc | Integration of a methanol-to-olefin reaction system with a hydrocarbon pyrolysis system |
CN102464522B (en) * | 2010-11-17 | 2015-02-11 | 中国石油化工股份有限公司 | Method for producing low-carbon olefins |
CN102875297B (en) * | 2011-07-12 | 2015-09-09 | 中国石油化工股份有限公司 | The method of low-carbon alkene is prepared with methyl alcohol and petroleum naphtha |
CN102875295B (en) * | 2011-07-12 | 2015-01-07 | 中国石油化工股份有限公司 | Production method of low-carbon olefins |
CN102875288B (en) * | 2011-07-12 | 2015-06-10 | 中国石油化工股份有限公司 | Method for producing low-carbon olefins |
CN102875299A (en) * | 2011-07-12 | 2013-01-16 | 中国石油化工股份有限公司 | Method for producing low-carbon olefins by using methanol and naphtha |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4229608A (en) * | 1978-12-18 | 1980-10-21 | Mobil Oil Corporation | Heat balanced cyclic process for manufacture of light olefins |
FR2577549B1 (en) * | 1985-02-15 | 1987-03-20 | Inst Francais Du Petrole | PROCESS FOR THE CONVERSION OF METHANOL OR DIMETHYLETHER TO OLEFINS |
US4840928A (en) * | 1988-01-19 | 1989-06-20 | Mobil Oil Corporation | Conversion of alkanes to alkylenes in an external catalyst cooler for the regenerator of a FCC unit |
US5043517A (en) * | 1989-10-30 | 1991-08-27 | Mobil Oil Corporation | Upgrading light olefin fuel gas in a fluidized bed catalyst reactor and regeneration of the catalyst |
CN1065853C (en) * | 1996-05-24 | 2001-05-16 | 中国科学院大连化学物理研究所 | Preparation of ethylene, propylene and other low-carton olefine from methyl alcohol or dimethyl ether |
RO114524B1 (en) * | 1997-10-02 | 1999-05-28 | Sc Zecasin Sa | Process for producing olefins with low molecular mass by fluidized bed catalytic conversion of methanol |
US6437208B1 (en) * | 1999-09-29 | 2002-08-20 | Exxonmobil Chemical Patents Inc. | Making an olefin product from an oxygenate |
US7034196B2 (en) * | 2002-06-19 | 2006-04-25 | Exxonmobil Chemical Patents Inc. | Method and apparatus for reducing decomposition byproducts in a methanol to olefin reactor system |
-
2006
- 2006-08-23 CN CN200610112557XA patent/CN101130469B/en active Active
-
2007
- 2007-08-22 KR KR1020097005634A patent/KR20090057027A/en not_active Ceased
- 2007-08-22 BR BRPI0715687-1A2A patent/BRPI0715687A2/en not_active Application Discontinuation
- 2007-08-22 AU AU2007291786A patent/AU2007291786A1/en not_active Abandoned
- 2007-08-22 JP JP2009524885A patent/JP2010501495A/en active Pending
- 2007-08-22 ZA ZA200901045A patent/ZA200901045B/en unknown
- 2007-08-22 WO PCT/CN2007/002537 patent/WO2008025247A1/en active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016018097A1 (en) * | 2014-08-01 | 2016-02-04 | 한국화학연구원 | Naphtha and methanol mixed catalytic cracking reaction process |
US10131850B2 (en) | 2014-08-01 | 2018-11-20 | Korea Research Institute Of Chemical Technology | Naphtha and methanol mixed catalytic cracking reaction process |
WO2024014924A1 (en) * | 2022-07-15 | 2024-01-18 | 한국화학연구원 | Catalyst for catalytic cracking of mixed raw material of diesel and methanol and preparation method therefor |
KR20240010329A (en) * | 2022-07-15 | 2024-01-23 | 한국화학연구원 | catalysts for the catalytic cracking of mixed feed of diesel and methanol and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN101130469B (en) | 2011-04-13 |
BRPI0715687A2 (en) | 2014-12-23 |
AU2007291786A1 (en) | 2008-03-06 |
JP2010501495A (en) | 2010-01-21 |
ZA200901045B (en) | 2010-05-26 |
CN101130469A (en) | 2008-02-27 |
WO2008025247A1 (en) | 2008-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20090057027A (en) | Recovery of calorific value regenerated during the production of lower olefins from methanol | |
AU2015336835B2 (en) | Method for preparing low-carbon alkene | |
CN108017496B (en) | Apparatus for producing olefins and aromatic hydrocarbons and method thereof | |
JP2965344B2 (en) | Method for improving the quality of sampled olefin fuel gas in a fluidized bed catalytic reactor and method for regenerating the catalyst | |
CN101440014B (en) | Method for producing light olefins | |
KR20100006577A (en) | Decomposition of Olefin-Rich Hydrocarbon Feedstocks | |
CN110540869B (en) | A method of catalytic cracking | |
EP2300396B1 (en) | Process to make olefins from oxygenates | |
JPH01279993A (en) | Modification of hydrocarbon | |
JP2017533199A5 (en) | ||
EP2303806B1 (en) | Process to make olefins from oxygenates | |
RU2649385C1 (en) | Fluidized bed reactor, installation and method of production of light olefins | |
CN114540069A (en) | Method and device for preparing olefin by cracking petroleum hydrocarbon and application | |
CN112745926A (en) | Method and system for treating catalytic pyrolysis gasoline, and process and device for producing light olefins and light aromatics in high yield | |
CN101293801B (en) | Method for preparing dimethyl ether, low carbon olefin hydrocarbon with combination of methanol dehydration catalytic pyrolysis | |
CN110540866B (en) | A kind of processing method of crude oil whole fraction | |
CN110950731A (en) | Catalytic cracking method | |
KR20230133345A (en) | Integrated loop system for catalyst regeneration in multi-zone fluidized bed reactor and method of using the same | |
CN112723970B (en) | Method for producing propylene, ethylene and aromatic hydrocarbon from heavy oil and catalytic conversion device | |
US9233885B2 (en) | Two stage oxygenate conversion reactor with improved selectivity | |
KR20070018836A (en) | System and Method for Decomposing Selective Components to Maximize the Production of Light Olefins | |
CN107266279B (en) | A kind of method for preparing light olefin from oxygen-containing compound | |
CN110951501B (en) | Catalytic conversion method of low-coke-formation raw material | |
CN101205477B (en) | Low energy consumption catalytic conversion method of hydrocarbon oil | |
CN113509893A (en) | Method for producing low-carbon olefin by using efficient oxygen-containing compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20090319 Patent event code: PA01051R01D Comment text: International Patent Application |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20090327 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20110104 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20110324 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20110104 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |