KR20080061588A - Pattern measuring method of semiconductor manufacturing process - Google Patents
Pattern measuring method of semiconductor manufacturing process Download PDFInfo
- Publication number
- KR20080061588A KR20080061588A KR1020060136496A KR20060136496A KR20080061588A KR 20080061588 A KR20080061588 A KR 20080061588A KR 1020060136496 A KR1020060136496 A KR 1020060136496A KR 20060136496 A KR20060136496 A KR 20060136496A KR 20080061588 A KR20080061588 A KR 20080061588A
- Authority
- KR
- South Korea
- Prior art keywords
- pattern
- manufacturing process
- semiconductor manufacturing
- measuring
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000004065 semiconductor Substances 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000005259 measurement Methods 0.000 abstract description 8
- 239000000758 substrate Substances 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4702—Global scatter; Total scatter, excluding reflections
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
본 발명은 반도체 제조공정의 패턴 측정 방법에 관한 것으로, 반도체 기판상에 형성되는 패턴 모델을 측정시 상기 패턴에 단파장 광원을 규칙적으로 다각도에서 스캔하여 산란되는 빛을 검출하여 패턴의 수평 및 수직 치수를 동시에 측정하는 것으로, 상기 단파장 광원은 헬륨-네온 레이저를 사용하고, 상기 스캔 각도는 -47°~ 47°에서 실시한다. The present invention relates to a method for measuring a pattern in a semiconductor manufacturing process. When measuring a pattern model formed on a semiconductor substrate, the short wavelength light source is regularly scanned at multiple angles on the pattern to detect scattered light, thereby measuring horizontal and vertical dimensions of the pattern. By measuring simultaneously, the short wavelength light source uses a helium-neon laser, and the scan angle is performed at -47 ° to 47 °.
이와 같이 본 발명은 OCD를 이용한 측정을 채택함으로써 시간을 단축시킬 뿐 아니라 방대한 량의 CD 데이터를 단시간에 얻고, 또한 많은 CD 데이터를 바탕으로 정확도 높은 OPC 모델링이 가능하게 되는 것이다. As described above, the present invention not only shortens the time by adopting the measurement using the OCD, but also obtains a large amount of CD data in a short time, and enables accurate OPC modeling based on a large amount of CD data.
Description
도 1은 본 발명에 의한 OPC에 적용하기 위한 OCD의 원리 개념도.1 is a conceptual view of the principle of OCD for applying to OPC according to the present invention.
본 발명은 반도체 제조공정의 패턴 측정 방법에 관한 것으로, 보다 상세하게는 패턴 모델의 측정시 광학임계치수(OCD:Optical Critical Dimension) 를 이용함으로써 정확도가 높은 OPC 모델링을 구현하고, OPC 에러의 발생을 감소하도록 한 반도체 제조공정의 패턴 측정 방법에 관한 것이다.The present invention relates to a method for measuring a pattern in a semiconductor manufacturing process. More specifically, by using an optical critical dimension (OCD) in measuring a pattern model, high accuracy OPC modeling can be realized and generation of OPC errors can be avoided. It relates to a pattern measuring method of a semiconductor manufacturing process to reduce.
반도체 제조공정 중에서 포토리소그라피 관련 공정이 중요성은 동종업계에 는 공지되어 있다. 포토리소그라피 공정은 소자의 집적도가 높아질수록 그 정밀도가 더욱 요구되는데, 이는 소자의 집적도가 높아질수록 패턴의 사이즈는 작아지게 되며, 이러한 작은 패턴을 해상(Resolution)하기 위해서는 정밀도가 요구되는 공정이 필요하기 때문이다. 갈수록 작아지는 패턴을 포토리소그라피의 제반 장비의 기술력이 뒷받침되지 못하여 이러한 작은 패턴에 대한 해상력 향상과 패턴충실도를 위해서 개발되는 기술이 해상도 향상 기술(RET : Resolution Enhancement Technology)이다. 이 기술 중에서 본 발명에서 설명하고자 하는 것은 광근접보상(OPC, Optical Proximity Correction)이다.The importance of photolithography related processes in semiconductor manufacturing is well known in the art. The photolithography process requires more precision as the integration of the device increases. As the integration of the device increases, the size of the pattern becomes smaller. In order to resolve such a small pattern, a process that requires precision is required. Because. Resolution Enhancement Technology (RET) is a technology that is developed to improve resolution and pattern fidelity for such small patterns because the technology of the photolithography equipment is not supported. Among these techniques, the description of the present invention is optical proximity compensation (OPC).
일반적으로 반도체 제조공정에서 0.13um급 이하의 OPC는 거의 모든 기기에 보편화 된 해상도 향상 기술이다. 이에 모델에 근거한 OPC는 OPC 시뮬레이션 모델을 이용하여 타겟에 알맞는 이미지가 구현되도록 패턴을 보정하는 작업이다. 이러한 디자인 룰이 작아짐에 따라 점점 유용하게 이용되고 있는 실정이다. In general, in the semiconductor manufacturing process, OPC below 0.13um is a resolution enhancement technology that is common to almost all devices. Therefore, OPC based on the model is to correct the pattern to realize the image suitable for the target by using the OPC simulation model. As these design rules become smaller, they are increasingly used.
그러나 종래에는 정확도의 측면에서 로직 패턴(Logic pattern)의 경우를 모두 만족시키기는 어렵다. 즉, 모델의 정확도는 데이터의 양과 공정의 안정도에 기인하기 때문에 이를 모두 만족하는 상태에서 모델을 만들기가 어렵다고 할 것이다. 특히 ArF 광원을 이용하여 포토레지스트를 사용하는 경우에는 몇 가지 문제가 발생할 수 있는데, ArF 광원(193nm)의 포토레지스트는 임계 치수(CD;Critical Dimension) 측정시 수축(shrinkage)를 일으켜 데이터의 신뢰도를 떨어뜨릴 뿐 아니라 웨이퍼에서의 임계치수율(CDU:Critical Dimension Uniformity), 라인 에지 거칠기(LER:Line Edge roughness), ArF 포토레지스트 패턴에서 측정 횟수에 의해 CD 변화 등의 문제점이 발생한다. However, in the related art, it is difficult to satisfy all of the logic patterns in terms of accuracy. In other words, the accuracy of the model is due to the amount of data and the stability of the process. In particular, when using a photoresist using an ArF light source, some problems may occur. The photoresist of an ArF light source (193 nm) causes shrinkage when measuring critical dimensions (CD), thereby improving reliability of data. In addition to dropping, problems such as critical dimension uniformity (CDU), line edge roughness (LER), and CD variation due to the number of measurements in the ArF photoresist pattern occur.
표 1은 측정한 CD 데이터의 변화량을 보여주는 것으로 CD-SEM 장치를 이용하면 3 shot 의 CD 데이터를 얻는데 시간이 많이 걸릴 뿐 이니라 변화량이 큰 것을 알 수 있다. 이것은 모델 정확도(model accuracy)에 직접적인 악영향을 주어 OPC 후의 에러 발생을 높이는 요인이 된다. 표 1에서 L,C,R은 임계치수율(CDU:Critical Dimension Uniformity), 라인 에지 거칠기(LER:Line Edge roughness), ArF 포토레지스트 패턴을 의미하고, 3sigam는 통계에서 일반적으로 사용되는 데이터 분포의 표준편차를 나타낸다.Table 1 shows the amount of change in the measured CD data. When using the CD-SEM device, it is not only time-consuming to obtain 3 shots of CD data but also a large amount of change. This directly adversely affects model accuracy, which increases the chance of error after OPC. In Table 1, L, C, and R represent critical dimension uniformity (CDU), line edge roughness (LER), and ArF photoresist pattern, and 3sigam is a standard of data distribution commonly used in statistics. Indicates a deviation.
표 1Table 1
이와 같이 종래 측정 방법은 일반적으로 CD-SEM 장치를 사용하였는 바, CD-SEM 장치의 단점은 표면의 정보만 얻을 수 있다는데 있고, 측정 시간이 길며, 측정 오차가 크다는 것이다. As described above, the conventional measurement method generally uses a CD-SEM device. The disadvantage of the CD-SEM device is that only information on the surface can be obtained, the measurement time is long, and the measurement error is large.
또한, 한번 측정한 패턴을 다시 측정시에는 레지스트의 감소(수축)가 발생하여 처음 측정한 CD 값과 5nm 이상의 차이를 보인다. 따라서 재현성 확보가 어렵다는 단점이 있다.In addition, when the measured pattern is measured again, a decrease (contraction) of the resist occurs, and the difference between the first measured CD value and 5 nm or more is shown. Therefore, it is difficult to secure reproducibility.
본 발명의 목적은 OCD(Optical Critical Dimension) 를 이용하여 정확도가 높은 OPC 모델링을 구현하고, OPC 에러의 발생을 감소시키는 데 있다.An object of the present invention is to implement OPC modeling with high accuracy by using an optical critical dimension (OCD), and to reduce the occurrence of OPC errors.
상기의 목적을 달성하기 위한 본 발명은, OPC 모델링용 테스트 패턴의 데이터 측정에 있어서, 상기 패턴에 단파장 광원을 규칙적으로 다각도에서 스캔하여 산란되는 빛을 검출하여 패턴의 수평 및 수직 치수를 동시에 측정하는 것을 특징으로 한다.In the present invention for achieving the above object, in the measurement of the data of the test pattern for OPC modeling, by scanning a short wavelength light source on the pattern at regular angles to detect the scattered light to measure the horizontal and vertical dimensions of the pattern at the same time It is characterized by.
상기 단파장 광원은 헬륨-네온 레이저를 사용하는 것이 바람직하다.The short wavelength light source is preferably a helium-neon laser.
상기 스캔 각도는 -47°~ 47°인 것이 바람직하다.The scan angle is preferably -47 ° to 47 °.
이와 같이, 본 발명은 종래 기술의 문제점을 보완하는 Scatterometry 방법을 사용한 OCD를 이용한 측정을 채택한다.As such, the present invention adopts measurements using OCD using the Scatterometry method, which supplements the problems of the prior art.
OCD를 이용하여 CD를 측정하면 그 시간을 단축시킬 뿐 아니라 방대한 양의 CD 데이터를 단시간에 얻고, 또한 많은 CD 데이터를 바탕으로 정확도 높은 OPC 모델링이 가능하게 되는 것이다. Measuring CDs using OCD not only shortens the time, but also obtains a large amount of CD data in a short time, and enables accurate OPC modeling based on a large amount of CD data.
이하, 상기한 바와 같은 본 발명의 바람직한 실시예를 첨부도면 도 1에 의거하여 보다 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention as described above will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명에 OPC를 실시하기 위한 OCD의 개념도로서, 스캔 광학 장비(100)를 이용하여 단파장 광원(일반적으로 He-Ne 레이저(632.8nm))을 규칙적으로 배열된 패턴(110)에 여러 각도(-47°~ 47°)에서 스캔(scan)하여 산란된 S방향, P방향으로 편광된 빔(polarized beam)을 포토 검출(photo detector)부(120)로 얻는다.1 is a conceptual diagram of an OCD for implementing an OPC according to the present invention, in which a short wavelength light source (generally a He-Ne laser (632.8 nm)) is arranged in a regularly arranged
그 이후에 막(film)의 정보가 담긴 라이브러리(library)와 비교하여 수평(horizontal), 수직(vertical) 치수의 정보를 얻는다.Thereafter, horizontal and vertical dimensions are obtained by comparison with a library of film information.
상기 스캔 광학 장비(100)는 스캐테로미터(scatterometer)를 사용할 수 있으나, 이에 한정하는 것은 아니다.The scan
이와 같이 본 발명에 의한 OCD 측정 장치를 이용하면 수평, 수직 치수를 동시에 측정 가능하여 라인 임계 치수(Line CD)와 스페이스 임계 치수(Space CD)가 동시에 얻어짐은 물론이고, LER 까지 측정 가능한데 이는 단파장 광원에 의해 측정이 이루어지기 때문이다.As described above, when the OCD measuring device according to the present invention can measure horizontal and vertical dimensions simultaneously, the line critical dimension (Line CD) and the space critical dimension (Space CD) can be simultaneously obtained, as well as the LER. This is because the measurement is made by the light source.
또한, 한 번에 많은 량의 데이터를 얻을 수 있으며, 레지스트를 손상시키지 않으므로 측정의 재현성 확보가 가능하다. In addition, a large amount of data can be obtained at a time, and it is possible to secure the reproducibility of the measurement because it does not damage the resist.
이상에서 설명한 바와 같이, 본 발명은, 레지스트의 손상 없이 많은 양의 CD 데이터의 포토 확보가 가능한 효과가 있다.As described above, the present invention has the effect of securing a large amount of photos of CD data without damaging the resist.
또한, CD 데이터의 재현이 가능하고, OPC 모델링의 정확도를 높여 OPC 에러 발생을 줄이며, OPC 에러 포인트로 인한 마스크의 재제작 비용을 절감하고, OPC 모델링의 시간을 단축할 수 있는 등의 효과가 있다.In addition, CD data can be reproduced, OPC modeling accuracy can be improved, OPC error can be reduced, mask re-creation cost due to OPC error points can be reduced, and OPC modeling time can be shortened. .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060136496A KR20080061588A (en) | 2006-12-28 | 2006-12-28 | Pattern measuring method of semiconductor manufacturing process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060136496A KR20080061588A (en) | 2006-12-28 | 2006-12-28 | Pattern measuring method of semiconductor manufacturing process |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20080061588A true KR20080061588A (en) | 2008-07-03 |
Family
ID=39813827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060136496A Ceased KR20080061588A (en) | 2006-12-28 | 2006-12-28 | Pattern measuring method of semiconductor manufacturing process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20080061588A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9541500B2 (en) | 2011-09-21 | 2017-01-10 | Asml Netherlands B.V. | Method for calibrating a manufacturing process model |
-
2006
- 2006-12-28 KR KR1020060136496A patent/KR20080061588A/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9541500B2 (en) | 2011-09-21 | 2017-01-10 | Asml Netherlands B.V. | Method for calibrating a manufacturing process model |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10133191B2 (en) | Method for determining a process window for a lithographic process, associated apparatuses and a computer program | |
US9704810B2 (en) | Method and apparatus for determining an overlay error | |
KR102081271B1 (en) | Lithographic Apparatus and Device Manufacturing Method | |
US8908147B2 (en) | Method and apparatus for determining an overlay error | |
JP4846888B2 (en) | Alignment method | |
JP5412528B2 (en) | Inspection method, inspection system, substrate, and mask | |
US10663870B2 (en) | Gauge pattern selection | |
US9541500B2 (en) | Method for calibrating a manufacturing process model | |
US20180011398A1 (en) | Method and apparatus for reticle optimization | |
CN103782238A (en) | A method of determining focus corrections, lithographic processing cell and device manufacturing method | |
US9163935B2 (en) | Device manufacturing method and associated lithographic apparatus, inspection apparatus, and lithographic processing cell | |
US8717539B2 (en) | Calibration of optical line shortening measurements | |
KR102604928B1 (en) | Method and apparatus for inspection of structures and associated devices | |
CN116648675A (en) | Metrology system and photolithography system | |
KR102734372B1 (en) | Measurement methods and devices, computer programs and lithography systems | |
CN114144732A (en) | Method and system for determining information about a target structure | |
Lensing et al. | Lithography process control using scatterometry metrology and semi-physical modeling | |
KR20080061588A (en) | Pattern measuring method of semiconductor manufacturing process | |
TW202318098A (en) | A method of monitoring a lithographic process and associated apparatuses | |
WO2024000635A1 (en) | Measurement pattern and preparation method therefor, and measurement method | |
TW202318522A (en) | Method for determing a measurement recipe and associated apparatuses | |
TW202125110A (en) | Determining lithographic matching performance | |
US11886125B2 (en) | Method for inferring a local uniformity metric | |
TWI810749B (en) | A method of monitoring a lithographic process and associated apparatuses | |
TWI798537B (en) | Metrology method and apparatus, computer program and lithographic system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20061228 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20071221 Patent event code: PE09021S01D |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20080630 Patent event code: PE09021S02D |
|
PG1501 | Laying open of application | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20080903 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20080630 Comment text: Final Notice of Reason for Refusal Patent event code: PE06011S02I Patent event date: 20071221 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |