[go: up one dir, main page]

KR20080061588A - Pattern measuring method of semiconductor manufacturing process - Google Patents

Pattern measuring method of semiconductor manufacturing process Download PDF

Info

Publication number
KR20080061588A
KR20080061588A KR1020060136496A KR20060136496A KR20080061588A KR 20080061588 A KR20080061588 A KR 20080061588A KR 1020060136496 A KR1020060136496 A KR 1020060136496A KR 20060136496 A KR20060136496 A KR 20060136496A KR 20080061588 A KR20080061588 A KR 20080061588A
Authority
KR
South Korea
Prior art keywords
pattern
manufacturing process
semiconductor manufacturing
measuring
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020060136496A
Other languages
Korean (ko)
Inventor
강재현
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020060136496A priority Critical patent/KR20080061588A/en
Publication of KR20080061588A publication Critical patent/KR20080061588A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4702Global scatter; Total scatter, excluding reflections

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 발명은 반도체 제조공정의 패턴 측정 방법에 관한 것으로, 반도체 기판상에 형성되는 패턴 모델을 측정시 상기 패턴에 단파장 광원을 규칙적으로 다각도에서 스캔하여 산란되는 빛을 검출하여 패턴의 수평 및 수직 치수를 동시에 측정하는 것으로, 상기 단파장 광원은 헬륨-네온 레이저를 사용하고, 상기 스캔 각도는 -47°~ 47°에서 실시한다. The present invention relates to a method for measuring a pattern in a semiconductor manufacturing process. When measuring a pattern model formed on a semiconductor substrate, the short wavelength light source is regularly scanned at multiple angles on the pattern to detect scattered light, thereby measuring horizontal and vertical dimensions of the pattern. By measuring simultaneously, the short wavelength light source uses a helium-neon laser, and the scan angle is performed at -47 ° to 47 °.

이와 같이 본 발명은 OCD를 이용한 측정을 채택함으로써 시간을 단축시킬 뿐 아니라 방대한 량의 CD 데이터를 단시간에 얻고, 또한 많은 CD 데이터를 바탕으로 정확도 높은 OPC 모델링이 가능하게 되는 것이다. As described above, the present invention not only shortens the time by adopting the measurement using the OCD, but also obtains a large amount of CD data in a short time, and enables accurate OPC modeling based on a large amount of CD data.

Description

반도체 제조공정의 패턴 측정 방법 {METHOD FOR MESURING PATTERN IN SEMICONDUCTOR MANUFACTURING PROCESS}Pattern measurement method in semiconductor manufacturing process {METHOD FOR MESURING PATTERN IN SEMICONDUCTOR MANUFACTURING PROCESS}

도 1은 본 발명에 의한 OPC에 적용하기 위한 OCD의 원리 개념도.1 is a conceptual view of the principle of OCD for applying to OPC according to the present invention.

본 발명은 반도체 제조공정의 패턴 측정 방법에 관한 것으로, 보다 상세하게는 패턴 모델의 측정시 광학임계치수(OCD:Optical Critical Dimension) 를 이용함으로써 정확도가 높은 OPC 모델링을 구현하고, OPC 에러의 발생을 감소하도록 한 반도체 제조공정의 패턴 측정 방법에 관한 것이다.The present invention relates to a method for measuring a pattern in a semiconductor manufacturing process. More specifically, by using an optical critical dimension (OCD) in measuring a pattern model, high accuracy OPC modeling can be realized and generation of OPC errors can be avoided. It relates to a pattern measuring method of a semiconductor manufacturing process to reduce.

반도체 제조공정 중에서 포토리소그라피 관련 공정이 중요성은 동종업계에 는 공지되어 있다. 포토리소그라피 공정은 소자의 집적도가 높아질수록 그 정밀도가 더욱 요구되는데, 이는 소자의 집적도가 높아질수록 패턴의 사이즈는 작아지게 되며, 이러한 작은 패턴을 해상(Resolution)하기 위해서는 정밀도가 요구되는 공정이 필요하기 때문이다. 갈수록 작아지는 패턴을 포토리소그라피의 제반 장비의 기술력이 뒷받침되지 못하여 이러한 작은 패턴에 대한 해상력 향상과 패턴충실도를 위해서 개발되는 기술이 해상도 향상 기술(RET : Resolution Enhancement Technology)이다. 이 기술 중에서 본 발명에서 설명하고자 하는 것은 광근접보상(OPC, Optical Proximity Correction)이다.The importance of photolithography related processes in semiconductor manufacturing is well known in the art. The photolithography process requires more precision as the integration of the device increases. As the integration of the device increases, the size of the pattern becomes smaller. In order to resolve such a small pattern, a process that requires precision is required. Because. Resolution Enhancement Technology (RET) is a technology that is developed to improve resolution and pattern fidelity for such small patterns because the technology of the photolithography equipment is not supported. Among these techniques, the description of the present invention is optical proximity compensation (OPC).

일반적으로 반도체 제조공정에서 0.13um급 이하의 OPC는 거의 모든 기기에 보편화 된 해상도 향상 기술이다. 이에 모델에 근거한 OPC는 OPC 시뮬레이션 모델을 이용하여 타겟에 알맞는 이미지가 구현되도록 패턴을 보정하는 작업이다. 이러한 디자인 룰이 작아짐에 따라 점점 유용하게 이용되고 있는 실정이다. In general, in the semiconductor manufacturing process, OPC below 0.13um is a resolution enhancement technology that is common to almost all devices. Therefore, OPC based on the model is to correct the pattern to realize the image suitable for the target by using the OPC simulation model. As these design rules become smaller, they are increasingly used.

그러나 종래에는 정확도의 측면에서 로직 패턴(Logic pattern)의 경우를 모두 만족시키기는 어렵다. 즉, 모델의 정확도는 데이터의 양과 공정의 안정도에 기인하기 때문에 이를 모두 만족하는 상태에서 모델을 만들기가 어렵다고 할 것이다. 특히 ArF 광원을 이용하여 포토레지스트를 사용하는 경우에는 몇 가지 문제가 발생할 수 있는데, ArF 광원(193nm)의 포토레지스트는 임계 치수(CD;Critical Dimension) 측정시 수축(shrinkage)를 일으켜 데이터의 신뢰도를 떨어뜨릴 뿐 아니라 웨이퍼에서의 임계치수율(CDU:Critical Dimension Uniformity), 라인 에지 거칠기(LER:Line Edge roughness), ArF 포토레지스트 패턴에서 측정 횟수에 의해 CD 변화 등의 문제점이 발생한다. However, in the related art, it is difficult to satisfy all of the logic patterns in terms of accuracy. In other words, the accuracy of the model is due to the amount of data and the stability of the process. In particular, when using a photoresist using an ArF light source, some problems may occur. The photoresist of an ArF light source (193 nm) causes shrinkage when measuring critical dimensions (CD), thereby improving reliability of data. In addition to dropping, problems such as critical dimension uniformity (CDU), line edge roughness (LER), and CD variation due to the number of measurements in the ArF photoresist pattern occur.

표 1은 측정한 CD 데이터의 변화량을 보여주는 것으로 CD-SEM 장치를 이용하면 3 shot 의 CD 데이터를 얻는데 시간이 많이 걸릴 뿐 이니라 변화량이 큰 것을 알 수 있다. 이것은 모델 정확도(model accuracy)에 직접적인 악영향을 주어 OPC 후의 에러 발생을 높이는 요인이 된다. 표 1에서 L,C,R은 임계치수율(CDU:Critical Dimension Uniformity), 라인 에지 거칠기(LER:Line Edge roughness), ArF 포토레지스트 패턴을 의미하고, 3sigam는 통계에서 일반적으로 사용되는 데이터 분포의 표준편차를 나타낸다.Table 1 shows the amount of change in the measured CD data. When using the CD-SEM device, it is not only time-consuming to obtain 3 shots of CD data but also a large amount of change. This directly adversely affects model accuracy, which increases the chance of error after OPC. In Table 1, L, C, and R represent critical dimension uniformity (CDU), line edge roughness (LER), and ArF photoresist pattern, and 3sigam is a standard of data distribution commonly used in statistics. Indicates a deviation.

표 1Table 1

Figure 112006097693161-PAT00001
Figure 112006097693161-PAT00001

이와 같이 종래 측정 방법은 일반적으로 CD-SEM 장치를 사용하였는 바, CD-SEM 장치의 단점은 표면의 정보만 얻을 수 있다는데 있고, 측정 시간이 길며, 측정 오차가 크다는 것이다. As described above, the conventional measurement method generally uses a CD-SEM device. The disadvantage of the CD-SEM device is that only information on the surface can be obtained, the measurement time is long, and the measurement error is large.

또한, 한번 측정한 패턴을 다시 측정시에는 레지스트의 감소(수축)가 발생하여 처음 측정한 CD 값과 5nm 이상의 차이를 보인다. 따라서 재현성 확보가 어렵다는 단점이 있다.In addition, when the measured pattern is measured again, a decrease (contraction) of the resist occurs, and the difference between the first measured CD value and 5 nm or more is shown. Therefore, it is difficult to secure reproducibility.

본 발명의 목적은 OCD(Optical Critical Dimension) 를 이용하여 정확도가 높은 OPC 모델링을 구현하고, OPC 에러의 발생을 감소시키는 데 있다.An object of the present invention is to implement OPC modeling with high accuracy by using an optical critical dimension (OCD), and to reduce the occurrence of OPC errors.

상기의 목적을 달성하기 위한 본 발명은, OPC 모델링용 테스트 패턴의 데이터 측정에 있어서, 상기 패턴에 단파장 광원을 규칙적으로 다각도에서 스캔하여 산란되는 빛을 검출하여 패턴의 수평 및 수직 치수를 동시에 측정하는 것을 특징으로 한다.In the present invention for achieving the above object, in the measurement of the data of the test pattern for OPC modeling, by scanning a short wavelength light source on the pattern at regular angles to detect the scattered light to measure the horizontal and vertical dimensions of the pattern at the same time It is characterized by.

상기 단파장 광원은 헬륨-네온 레이저를 사용하는 것이 바람직하다.The short wavelength light source is preferably a helium-neon laser.

상기 스캔 각도는 -47°~ 47°인 것이 바람직하다.The scan angle is preferably -47 ° to 47 °.

이와 같이, 본 발명은 종래 기술의 문제점을 보완하는 Scatterometry 방법을 사용한 OCD를 이용한 측정을 채택한다.As such, the present invention adopts measurements using OCD using the Scatterometry method, which supplements the problems of the prior art.

OCD를 이용하여 CD를 측정하면 그 시간을 단축시킬 뿐 아니라 방대한 양의 CD 데이터를 단시간에 얻고, 또한 많은 CD 데이터를 바탕으로 정확도 높은 OPC 모델링이 가능하게 되는 것이다. Measuring CDs using OCD not only shortens the time, but also obtains a large amount of CD data in a short time, and enables accurate OPC modeling based on a large amount of CD data.

이하, 상기한 바와 같은 본 발명의 바람직한 실시예를 첨부도면 도 1에 의거하여 보다 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention as described above will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 OPC를 실시하기 위한 OCD의 개념도로서, 스캔 광학 장비(100)를 이용하여 단파장 광원(일반적으로 He-Ne 레이저(632.8nm))을 규칙적으로 배열된 패턴(110)에 여러 각도(-47°~ 47°)에서 스캔(scan)하여 산란된 S방향, P방향으로 편광된 빔(polarized beam)을 포토 검출(photo detector)부(120)로 얻는다.1 is a conceptual diagram of an OCD for implementing an OPC according to the present invention, in which a short wavelength light source (generally a He-Ne laser (632.8 nm)) is arranged in a regularly arranged pattern 110 using the scanning optical equipment 100. The photo detector 120 obtains the polarized beams scattered in the S and P directions by scanning at angles (−47 ° to 47 °).

그 이후에 막(film)의 정보가 담긴 라이브러리(library)와 비교하여 수평(horizontal), 수직(vertical) 치수의 정보를 얻는다.Thereafter, horizontal and vertical dimensions are obtained by comparison with a library of film information.

상기 스캔 광학 장비(100)는 스캐테로미터(scatterometer)를 사용할 수 있으나, 이에 한정하는 것은 아니다.The scan optical device 100 may use a scatterometer, but is not limited thereto.

이와 같이 본 발명에 의한 OCD 측정 장치를 이용하면 수평, 수직 치수를 동시에 측정 가능하여 라인 임계 치수(Line CD)와 스페이스 임계 치수(Space CD)가 동시에 얻어짐은 물론이고, LER 까지 측정 가능한데 이는 단파장 광원에 의해 측정이 이루어지기 때문이다.As described above, when the OCD measuring device according to the present invention can measure horizontal and vertical dimensions simultaneously, the line critical dimension (Line CD) and the space critical dimension (Space CD) can be simultaneously obtained, as well as the LER. This is because the measurement is made by the light source.

또한, 한 번에 많은 량의 데이터를 얻을 수 있으며, 레지스트를 손상시키지 않으므로 측정의 재현성 확보가 가능하다. In addition, a large amount of data can be obtained at a time, and it is possible to secure the reproducibility of the measurement because it does not damage the resist.

이상에서 설명한 바와 같이, 본 발명은, 레지스트의 손상 없이 많은 양의 CD 데이터의 포토 확보가 가능한 효과가 있다.As described above, the present invention has the effect of securing a large amount of photos of CD data without damaging the resist.

또한, CD 데이터의 재현이 가능하고, OPC 모델링의 정확도를 높여 OPC 에러 발생을 줄이며, OPC 에러 포인트로 인한 마스크의 재제작 비용을 절감하고, OPC 모델링의 시간을 단축할 수 있는 등의 효과가 있다.In addition, CD data can be reproduced, OPC modeling accuracy can be improved, OPC error can be reduced, mask re-creation cost due to OPC error points can be reduced, and OPC modeling time can be shortened. .

Claims (4)

OPC 모델링용 테스트 패턴의 데이터 측정에 있어서, In measuring the data of the test pattern for OPC modeling, 상기 패턴에 단파장 광원을 규칙적으로 다각도에서 스캔하여 산란되는 빛을 검출하여 패턴의 수평 및 수직 치수를 동시에 측정하는 것을 특징으로 하는 반도체 제조공정의 패턴 측정 방법.The pattern measuring method of the semiconductor manufacturing process, characterized in that by scanning a short wavelength light source on the pattern regularly from multiple angles to detect the scattered light to measure the horizontal and vertical dimensions of the pattern at the same time. 제 1 항에 있어서,The method of claim 1, 상기 단파장 광원은 헬륨-네온 레이저를 사용하는 것을 특징으로 하는 반도체 제조공정의 패턴 측정 방법.The short wavelength light source uses a helium-neon laser pattern measuring method of a semiconductor manufacturing process. 제 1 항에 있어서,The method of claim 1, 상기 스캔 각도는 -47°~ 47°인 것을 특징으로 하는 반도체 제조공정의 패턴 측정 방법.The scanning angle is a pattern measuring method of the semiconductor manufacturing process, characterized in that -47 ° ~ 47 °. 제 1 항에 있어서,The method of claim 1, 상기 패턴에 단파장 광원의 스캔시 스캐테로미터(scatterometer)를 사용하는 것을 특징으로 하는 반도체 제조공정의 패턴 측정 방법.A pattern measuring method of a semiconductor manufacturing process, characterized in that a scatterometer is used to scan a short wavelength light source for the pattern.
KR1020060136496A 2006-12-28 2006-12-28 Pattern measuring method of semiconductor manufacturing process Ceased KR20080061588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060136496A KR20080061588A (en) 2006-12-28 2006-12-28 Pattern measuring method of semiconductor manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060136496A KR20080061588A (en) 2006-12-28 2006-12-28 Pattern measuring method of semiconductor manufacturing process

Publications (1)

Publication Number Publication Date
KR20080061588A true KR20080061588A (en) 2008-07-03

Family

ID=39813827

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060136496A Ceased KR20080061588A (en) 2006-12-28 2006-12-28 Pattern measuring method of semiconductor manufacturing process

Country Status (1)

Country Link
KR (1) KR20080061588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541500B2 (en) 2011-09-21 2017-01-10 Asml Netherlands B.V. Method for calibrating a manufacturing process model

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541500B2 (en) 2011-09-21 2017-01-10 Asml Netherlands B.V. Method for calibrating a manufacturing process model

Similar Documents

Publication Publication Date Title
US10133191B2 (en) Method for determining a process window for a lithographic process, associated apparatuses and a computer program
US9704810B2 (en) Method and apparatus for determining an overlay error
KR102081271B1 (en) Lithographic Apparatus and Device Manufacturing Method
US8908147B2 (en) Method and apparatus for determining an overlay error
JP4846888B2 (en) Alignment method
JP5412528B2 (en) Inspection method, inspection system, substrate, and mask
US10663870B2 (en) Gauge pattern selection
US9541500B2 (en) Method for calibrating a manufacturing process model
US20180011398A1 (en) Method and apparatus for reticle optimization
CN103782238A (en) A method of determining focus corrections, lithographic processing cell and device manufacturing method
US9163935B2 (en) Device manufacturing method and associated lithographic apparatus, inspection apparatus, and lithographic processing cell
US8717539B2 (en) Calibration of optical line shortening measurements
KR102604928B1 (en) Method and apparatus for inspection of structures and associated devices
CN116648675A (en) Metrology system and photolithography system
KR102734372B1 (en) Measurement methods and devices, computer programs and lithography systems
CN114144732A (en) Method and system for determining information about a target structure
Lensing et al. Lithography process control using scatterometry metrology and semi-physical modeling
KR20080061588A (en) Pattern measuring method of semiconductor manufacturing process
TW202318098A (en) A method of monitoring a lithographic process and associated apparatuses
WO2024000635A1 (en) Measurement pattern and preparation method therefor, and measurement method
TW202318522A (en) Method for determing a measurement recipe and associated apparatuses
TW202125110A (en) Determining lithographic matching performance
US11886125B2 (en) Method for inferring a local uniformity metric
TWI810749B (en) A method of monitoring a lithographic process and associated apparatuses
TWI798537B (en) Metrology method and apparatus, computer program and lithographic system

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20061228

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20071221

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20080630

Patent event code: PE09021S02D

PG1501 Laying open of application
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20080903

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20080630

Comment text: Final Notice of Reason for Refusal

Patent event code: PE06011S02I

Patent event date: 20071221

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I