KR20070085069A - Process for smelting ferronickel blast furnace for nickel oxide ore without crystal water - Google Patents
Process for smelting ferronickel blast furnace for nickel oxide ore without crystal water Download PDFInfo
- Publication number
- KR20070085069A KR20070085069A KR1020067017169A KR20067017169A KR20070085069A KR 20070085069 A KR20070085069 A KR 20070085069A KR 1020067017169 A KR1020067017169 A KR 1020067017169A KR 20067017169 A KR20067017169 A KR 20067017169A KR 20070085069 A KR20070085069 A KR 20070085069A
- Authority
- KR
- South Korea
- Prior art keywords
- ore
- smelting
- blast furnace
- limestone
- nickel oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/02—Obtaining nickel or cobalt by dry processes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B3/00—General features in the manufacture of pig-iron
- C21B3/02—General features in the manufacture of pig-iron by applying additives, e.g. fluxing agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/008—Composition or distribution of the charge
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/02—Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/005—Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/02—Obtaining nickel or cobalt by dry processes
- C22B23/023—Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
본 발명은 일종의 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정을 제공하는 것으로서, 주로 원광 파쇄 분립을 포함하는데, 광물가루를 소결광으로 만들고, 소결광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하여 고로 제련을 통해 페로니켈을 얻으며, 그 중에 첨가제와 소결광 중량비는 형석 0.3-8%, 백운석 0-8%, 석회석/생석회 4-35%이다. 기존 기술과 비교하여, 본 발명에서 제공하는 페로니켈 제련 공정의 형석과 소결광 비율은 고로 온도에 대한 크롬의 영향을 낮출 뿐만 아니라, 불소의 과다 함유로 인해 노저가 타버리는 등의 사고가 발생하는 것도 피하게 할 수 있다. 백운석에 함유된 마그네슘은 니켈크롬광석 중에 크롬으로 야기되는 용선 유동성 저하 문제를 해결할 수 있다. 석회석은 염기도를 제공할 뿐만 아니라 상기 두 가지 첨가제의 균형도 이룰 수 있으며, 발명이 제공하는 고로 제련법은 원가가 저렴하고, 원료 회수율이 높다.The present invention provides a process for smelting ferronickel blast furnace of nickel oxide ore without crystal water, mainly including ore crushing granules, making mineral powder into sintered ore, sintered ore lump, coke, limestone / quick lime, dolomite and fluorite The ferronickel is obtained by smelting the blast furnace, where the additive and sintered ore weight ratio is 0.3-8% of fluorspar, 0-8% of dolomite and 4-35% of limestone / quick lime. Compared with the existing technology, the fluorite and sintered ore ratio in the ferronickel smelting process provided by the present invention not only lowers the influence of chromium on the blast furnace temperature, but also causes an accident such as burnout of the furnace due to the excessive content of fluorine. Can be avoided. Magnesium contained in dolomite can solve the problem of reduced melt flow caused by chromium in nickel chromite ore. Limestone not only provides basicity, but can also balance the two additives. The blast furnace smelting method provided by the invention is inexpensive and has high raw material recovery.
Description
본 발명은 고로 제련 공정, 특히 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정에 관계된다.The present invention relates to a blast furnace smelting process, in particular a ferronickel blast furnace smelting process of nickel oxide ore without crystal water.
스테인레스와 특수강이 세계적으로 광범위하게 응용됨에 따라, 스테인레스와 특수강 제련의 가장 중요한 원소-니켈 금속의 공급 부족으로 가격 급등이 야기되고 있다. 전통적인 니켈 금속의 생산은 주로 지구 니켈 자원의 30%를 차지하는 황화니켈광석에서 추출하며, 성숙된 생산 공정을 가지고 있다. 하지만, 거의 백년에 가까운 연속 채굴을 거치면서, 현재 매장량 부족과 함께 자원은 위기를 보이고 있다. 이로써 지구 니켈 자원의 70%를 차지하는 라테라이트 니켈광(산화니켈광석)에서 니켈 금속을 채취하는 것에 대해 더 많은 관심을 기울일 수밖에 없게 되었다. 라테라이트 니켈광이 오랫동안 대규모적으로 개발되지 못한 주요 원인은 이러한 종류의 지하자원에서 니켈을 추출하는 공정의 원가가 높고, 공정이 복잡하며, 생산량이 낮고, 오염이 심각하기 때문이었다. 현재 국제적으로 고품질의 라테라이트 니켈광(니켈 함량 2.0% 이상)에 대해 일반적으로 광석 용광로 제련을 채택하고 있지만, 이 공정은 전력 소모가 많고, 환경 오염이 크며, 간헐식 생산으로 생산량이 낮다는 등의 폐단을 가지고 있다. 품질이 낮은 라테라이트 니켈광에 대해서는 대부분 습식제련, 즉 황산에 담그는 방법을 채택하는데, 라테라이트 니켈광 중에 고체의 산화니켈, 산화크롬, 산화철 등을 액체의 황산니켈, 황산크롬, 황산제1철 등 혼합 용액으로 변환시키고, 다시 황산니켈을 그 중에서 분리해내며, 전해를 통해 총량 1-2%만을 차지하는 금속 니켈을 형성하고, 그 나머지 성분은 모두 폐기된다. 이 공정 설비는 1차적 투자가 크고, 공정이 복잡하며, 주기가 길고, 환경 오염이 심각하다. 고로 제련이 경제적인 선택임에는 틀림없으나, 라테라이트 니켈광은 주로 Cr2O3 성분을 수반하기 때문에, 크롬의 녹는점이 너무 높아, 융해 후 용선의 점도가 너무 크게 되고, 니켈크롬을 함유한 용선이 순조롭게 유출되지 못하여, 고로 응결, 고로 훼손이라는 심각한 결과가 야기된다. 국내외 여러 기업과 연구 기관은 라테라이트 니켈광의 고로법을 통해 페로니켈(페로니켈)로 제련하는 공정에 대해 상당히 오랫동안 연구를 진행하였지만, 아직까지 성공했다는 보도가 없었다. 그러므로, 고효율 저소모, 높은 생산량, 저원가, 그리고 무오염 혹은 저오염인, 라테라이트 니켈광에서 직접 페로니켈로 제련하는 공정 기술을 찾는 것은 업계내에서 시급히 해결해야 하는 과제가 되었다.As stainless and special steels are widely used worldwide, soaring prices are caused by the shortage of the most important element-nickel metals in smelting stainless and special steels. Traditional nickel metal production is mainly derived from nickel sulfide ore, which accounts for 30% of the world's nickel resources, and has a mature production process. However, after nearly 100 years of continuous mining, resources are now in crisis with scarcity of reserves. This has drawn more attention to the collection of nickel metals from laterite nickel ores (nickel oxide ores), which account for 70% of the world's nickel resources. The main reason for the large-scale development of laterite nickel mines for a long time was the high cost, complex process, low production, and severe pollution of this process. Currently, ore smelting is generally adopted for high-quality laterite nickel ores (nickel content of 2.0% or more), but this process consumes a lot of power, has high environmental pollution, and has low production due to intermittent production. I have a defect. Most of low quality laterite nickel ores are wet smelting, that is, immersion in sulfuric acid.In the laterite nickel ore, solid nickel oxide, chromium oxide and iron oxide are mixed with liquid nickel sulfate, chromium sulfate and ferrous sulfate. Converted to a solution, nickel sulfate is separated therefrom, electrolytically forming metal nickel, which accounts for only 1-2% of the total amount, and all remaining components are discarded. The process equipment has a large initial investment, complex processes, long cycles and severe environmental pollution. Since smelting is an economical option, laterite nickel ore mainly involves Cr 2 O 3 , so the melting point of chromium is too high, the melt viscosity becomes too high after melting, and the molten iron containing nickel chromium smoothly. It is not leaked, causing serious consequences such as blast furnace condensation and blast furnace damage. Many domestic and international companies and research institutes have conducted research on the process of smelting ferronickel (ferronickel) through the blast furnace method of laterite nickel mine, but there have been no reports of success. Therefore, finding a process technology for smelting ferronickel directly from laterite nickel ore, which has high efficiency, low consumption, high yield, low cost, and no pollution or low pollution, is an urgent task in the industry.
본 발명의 취지는 상술한 문제를 해결하고, 결정수를 함유하지 않은 산화 니켈광석의 페로니켈 고로법 제련 공정을 제공하는 데에 있다.It is an object of the present invention to solve the above problems and to provide a process for smelting ferronickel blast furnace of nickel oxide ore which does not contain crystal water.
본 발명의 상기 목적은 다음 기술 방안을 통하여 실현한다.The above object of the present invention is realized through the following technical scheme.
본 발명은 일종의 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정을 제공하는 것으로서, 주로 다음 절차를 포함한다.The present invention provides a kind of smelting process for ferronickel blast furnace of nickel oxide ore without crystal water and mainly includes the following procedure.
원광을 파쇄 분립하고, 그 중에 입경이 10-60mm인 원광 덩어리를 고로 제련 원료로 하고, 직경이 10mm보다 작은 광물가루와 분코크스, 생석회/석회석은 배합 재료를 혼합하고 소결하여, 소결광 덩어리를 얻는다.Ore is crushed and separated, and the raw material of 10-60mm in diameter is used as smelting raw material, and mineral powder, coke and lime / limestone smaller than 10mm are mixed and sintered to obtain a sintered ore mass. .
소결광 덩어리, 원광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하고 고로 제련을 진행하여 페로니켈을 얻는데, 그 중에, 다음 첨가제와 소결광의 중량비는 다음과 같다.Sintered ore mass, ore mass, coke, limestone / limestone, dolomite and fluorite are mixed and blast furnace is smelted to obtain ferronickel, wherein the weight ratio of the following additives and sintered ore is
형석 0.3-8% Fluorite 0.3-8%
백운석 0-8% Dolomite 0-8%
석회석/생석회 4-35% Limestone / quick lime 4-35%
그 중, 제련 절차 중에 원광 덩어리를 제련 원료로 첨가하지 않을 수도 있다.Among them, the ore mass may not be added as a smelting raw material during the smelting procedure.
그 중에 상기 산화니켈광석의 주요 성분과 중량비는 다음과 같다.Among them, the main components and the weight ratio of the nickel oxide ore are as follows.
니켈: 0.5-4.5% Nickel: 0.5-4.5%
크롬: 0.3-12% Chromium: 0.3-12%
철: 38-55% Iron: 38-55%
그 중에 상기 첨가제와 소결광의 최적 중량비는 다음과 같다.Among them, the optimum weight ratio of the additive and the sintered ore is as follows.
형석 0.3-5% Fluorite 0.3-5%
백운석 0.5-5% Dolomite 0.5-5%
석회석/생석회 8-15% Limestone / quick lime 8-15%
그 중, 상기 석회석 중의 CaO 함량은 50%보다 크고, 생석회 중의 CaO 함량은 80%보다 크며, 상기 백운석 중의 Mg 함량>10%, 상기 형석 중의 CaF2 함량>80%이다.Among them, the CaO content in the limestone is greater than 50%, the CaO content in the quicklime is greater than 80%, the Mg content> 10% in the dolomite, the CaF 2 content> 80% in the fluorite.
기존 기술과 비교하면, 전통적인 고로 제련 공정에서, 고로 온도는 최고 1700℃ 정도까지 도달할 수 있으며, 산화니켈광석 중에 함유된 크롬은 대부분 삼산화이크롬의 형식으로 존재하는데, 삼산화이크롬의 녹는점은 2300℃ 정도이므로, 산화니켈광석 중에 크롬의 환원 정도는 유한하여, 제련으로 얻는 용선의 유동성이 낮아지게 되며, 고로 응결 현상이 쉽게 발생하고, 심지어는 사고도 발생한다. 본 발명이 제공하는 니켈크롬철광의 페로니켈 제련 공정 중에 형석을 첨가하면 고로 온도에 대한 크롬의 영향을 효과적으로 낮출 수 있어, 용선의 유동성이 높아진다. 이와 동시에, 본 발명이 제공하는 제련 공정 중에 추가되는 형석의 양이 정밀한 계산을 거치므로, 형석 첨가량의 과다로 인해 야기되는 고로가 타버리는 것 등의 사고 발생도 효과적으로 피할 수 있다. 동시에, 본 발명에서 제공하는 공정 중에 백운석이 함유한 마그네슘도 니켈크롬광 중에 크롬으로 야기되는 용선 유동성 부족 문제를 해결하는 데에 도움을 줄 수 있다. 석회석은 염기도를 제공할 뿐만 아니라 상술한 두 가지 첨가제의 균형을 유지할 수도 있다. 본 발명이 제공하는 고로법 제련 공정은 공정 과정이 짧고, 연속 생산 생산량이 크며, 라테라이트 니켈광 중에 니켈크롬철 원소가 1차적으로 모두 추출되고, 자원 이용율이 높다. 이 제련으로 생산되는 슬래그는 시멘트 생산에 있어 좋은 원료이며, 어느 정도 CO2 가스를 배출하는 것을 제외하면, 기타 고체나 액체 폐기물이 발생하지 않아 오염이 없다.Compared with the existing technology, in the blast furnace smelting process, the blast furnace temperature can reach up to 1700 ℃, and most of the chromium contained in nickel oxide ore exists in the form of dichromium trioxide, and the melting point of dichromium trioxide is 2300 ℃. Since the degree of reduction of chromium in the nickel oxide ore is finite, the fluidity of the molten iron obtained by smelting becomes low, the blast furnace condensation easily occurs, and even an accident occurs. The addition of fluorspar during the ferronickel smelting process of nickel chromite ore provided by the present invention can effectively lower the influence of chromium on the blast furnace temperature, thereby increasing the flowability of the molten iron. At the same time, since the amount of fluorspar added during the smelting process provided by the present invention is precisely calculated, accidents such as burning of blast furnace caused by excessive amount of fluorspar addition can be effectively avoided. At the same time, the magnesium contained in the dolomite during the process provided by the present invention can also help to solve the problem of molten metal fluidity caused by chromium in nickel chromite. Limestone not only provides basicity but can also balance the two additives described above. The blast furnace smelting process provided by this invention has a short process process, a large continuous production yield, and all nickel chromium iron elements are extracted primarily in laterite nickel ore, and resource utilization rate is high. The slag produced by this smelting is a good raw material for the production of cement, except for the emission of CO 2 gas to some extent, other solid or liquid waste does not occur, there is no pollution.
대조해 보면, 본 발명이 제공하는 고로 제련 공정은 원가가 낮은데, 전통적인 광석 용광로 공정은 2000-4000킬로와트/톤 철, 코크스 0.5톤이 필요하였으나, 본 발명이 제공하는 공정 중에 고로 전력소모는 150-200킬로와트/톤 철이다. 에너지 절약이 가능하고, 생산량이 크며, 고로의 평균 생산량이 광석 용광로 평균 생산량보다 많다. 오염이 적고, 분진이 적다. 원료 회수율이 높고, 수율은 각각 철 97-98%, 니켈 99%, 크롬 40-50%이다.In contrast, the blast furnace smelting process provided by the present invention has a low cost, while a conventional ore blast furnace process requires 2000-4000 kilowatts / ton of iron and coke 0.5 tons, but the blast furnace power consumption of the present invention is 150-200. Kilowatt / tonne iron. Energy saving is possible, production is large, and the average production of blast furnace is more than the average production of ore furnace. Less pollution, less dust The recovery of raw materials is high, and the yields are 97-98% iron, 99% nickel and 40-50% chromium, respectively.
다음에서 구체적인 실시예를 접목하여 본 발명을 진일보하게 해석 및 설명하는데, 다음 실시예는 본 발명의 보호 범위에만 제한되지 않으며, 본 발명에 기반한 사고를 통해 이루어진 수정 및 조정 모두 본 발명의 보호의 범위에 속한다.In the following, the present invention is further interpreted and explained by combining specific embodiments, but the following embodiments are not limited only to the scope of protection of the present invention, and all modifications and adjustments made through the thinking based on the present invention are the scope of protection of the present invention. Belongs to.
원광을 파쇄 분립하고, 그 중에 입경이 10-60mm인 원광 덩어리를 고로 제련 원료로 하고, 입경이 10mm보다 작은 광물 가루와 분코크스, 생석회/석회석은 배합 재료를 혼합하고 소결하여 소결광 덩어리를 얻는다.The ore is crushed and separated, and among them, the raw ore agglomerates having a particle diameter of 10 to 60 mm are used as smelting raw materials, and the mineral powder, powdered coke and quicklime / limestone smaller than 10 mm are mixed and sintered to obtain a sintered ore agglomerate.
소결광 덩어리를 파쇄 분립하고, 입경 10-50mm인 소결광 덩어리를 고로 제련 원료로 하며, 입경이 10mm보다 작은 광물가루는 다시 소결한다.The sintered ore agglomerates are crushed and separated, and the sintered ore agglomerates having a particle size of 10-50 mm are used as smelting raw materials, and mineral powder smaller than 10 mm is sintered again.
소결광 덩어리, 원광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하고 고로 제련으로 페로니켈을 얻는다. Sintered ore mass, ore mass, coke, limestone / limestone, dolomite and fluorite are mixed and smelting of blast furnace to obtain ferronickel.
소결광과 기타 원료를 혼합하고 제련하며, 그 중에 소결광과 원광은 임의의 비율로 혼합할 수 있고, 소결광이나 원광만을 순전히 사용할 수도 있는데, 만약 전부 원광을 사용한다면, 광석과 코크스의 비율은 1.9-2.1: 1이고, 만약 전부 소결광으로 사용한다면, 광석과 코크스의 비율은 2.2-2.4: 1이다. The sintered ore and other raw materials are mixed and smelted, and the sintered ore can be mixed in any ratio, and only sintered ore ore can be used purely. If all ore is used, the ratio of ore and coke is 1.9-2.1 : 1, and if all are used as sintered ore, the ratio of ore and coke is 2.2-2.4: 1.
사용하는 니켈크롬철광의 주요 성분 및 함량(중량 %)은 다음과 같다.The main components and contents (% by weight) of nickel chromite ore used are as follows.
얻어 낸 소결광의 주요 성분 및 함량(중량 %)은 다음과 같다The main components and the content (% by weight) of the obtained sintered ore are as follows.
고로 재료 구성(중량 Kg)은 다음 표와 같다.The blast furnace material composition (weight Kg) is shown in the following table.
고로 제련 공정 계수Blast Furnace Smelting Process Coefficient
제련으로 얻은 페로니켈 주요 성분 및 함량(중량 %)은 다음과 같다.The main components and contents (% by weight) of ferronickel obtained by smelting are as follows.
본 발명은 일종의 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정을 제공하는 것으로서, 주로 원광 파쇄 분립을 포함하는데, 광물가루를 소결광으로 만 들고, 소결광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하여 고로 제련을 통해 페로니켈을 얻으며, 그 중에 첨가제와 소결광 중량비는 형석 0.3-8%, 백운석 0-8%, 석회석/생석회 4-35%이다. 기존 기술과 비교하여, 본 발명에서 제공하는 페로니켈 제련 공정의 형석과 소결광 비율은 고로 온도에 대한 크롬의 영향을 낮출 뿐만 아니라, 불소의 과다 함유로 인해 노저가 타버리는 등의 사고가 발생하는 것도 피하게 할 수 있다. 백운석에 함유된 마그네슘은 니켈크롬광석 중에 크롬으로 야기되는 용선 유동성 저하 문제를 해결할 수 있다. 석회석은 염기도를 제공할 뿐만 아니라 상기 두 가지 첨가제의 균형도 이룰 수 있으며, 발명이 제공하는 고로 제련법은 원가가 저렴하고, 원료 회수율이 높다.The present invention provides a process for smelting ferronickel blast furnace of nickel oxide ore without crystal water, mainly including ore crushing granules, making mineral powder into sintered ore, sintered ore lump, coke, limestone / quick lime, dolomite and fluorite The ferronickel is obtained by smelting the blast furnace, where the additive and sintered ore weight ratio is 0.3-8% of fluorspar, 0-8% of dolomite and 4-35% of limestone / quick lime. Compared with the existing technology, the fluorite and sintered ore ratio in the ferronickel smelting process provided by the present invention not only lowers the influence of chromium on the blast furnace temperature, but also causes an accident such as burnout of the furnace due to the excessive content of fluorine. Can be avoided. Magnesium contained in dolomite can solve the problem of reduced melt flow caused by chromium in nickel chromite ore. Limestone not only provides basicity, but can also balance the two additives. The blast furnace smelting method provided by the invention is inexpensive and has high raw material recovery.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200510102984.5 | 2005-09-16 | ||
CNB2005101029845A CN1306049C (en) | 2005-09-16 | 2005-09-16 | Ferronickel smelting process of nickel oxide ore free of crystal water in blast furnace |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020107006684A Division KR20100039908A (en) | 2005-09-16 | 2005-11-02 | A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20070085069A true KR20070085069A (en) | 2007-08-27 |
Family
ID=36076566
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020067017169A Ceased KR20070085069A (en) | 2005-09-16 | 2005-11-02 | Process for smelting ferronickel blast furnace for nickel oxide ore without crystal water |
KR1020107006684A Ceased KR20100039908A (en) | 2005-09-16 | 2005-11-02 | A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020107006684A Ceased KR20100039908A (en) | 2005-09-16 | 2005-11-02 | A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1927667B1 (en) |
JP (1) | JP4734414B2 (en) |
KR (2) | KR20070085069A (en) |
CN (1) | CN1306049C (en) |
AU (1) | AU2005304190B2 (en) |
MY (1) | MY140939A (en) |
WO (1) | WO2006050658A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101009034B1 (en) * | 2008-09-19 | 2011-01-17 | 주식회사 포스코 | Method of manufacturing ferronickel |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100595290C (en) * | 2006-09-06 | 2010-03-24 | 刘光火 | Technique for smelting nickel-cobalt-ferrum by nickel oxide ore through electrical furnace |
KR100948926B1 (en) | 2007-07-23 | 2010-03-24 | 주식회사 포스코 | Method for producing nickel-containing molten iron |
KR101322898B1 (en) * | 2007-05-11 | 2013-10-29 | 주식회사 포스코 | Method for manufacturing molten irons comprising nickels |
KR101322897B1 (en) | 2007-05-11 | 2013-10-29 | 주식회사 포스코 | Method for manufacturing molten irons comprising nickels |
WO2008140226A1 (en) * | 2007-05-11 | 2008-11-20 | Posco | Method for manufacturing molten iron comprising nickel |
AU2008316326B2 (en) * | 2007-10-26 | 2013-06-20 | Bhp Billiton Innovation Pty Ltd | Production of nickel |
CN101353708B (en) * | 2008-09-11 | 2010-06-02 | 张家港浦项不锈钢有限公司 | Nickel iron smelting process with nickel oxide ore and stainless steel production wastes as raw materials |
CN101392331B (en) * | 2008-10-10 | 2010-08-25 | 建德市新安江镍合金有限公司 | Smelting technique for processing nickel ore by rotary kiln |
CN102212681B (en) * | 2010-12-27 | 2013-03-27 | 池州市润鹏冶金科技有限公司 | Sintering synergistic agent and use method thereof |
CN102650002A (en) * | 2011-02-25 | 2012-08-29 | 云南锡业集团(控股)有限责任公司 | Improved method for smelting laterite nickel ore to produce nickelferrite or nickel matte |
FI123241B (en) * | 2011-06-13 | 2013-01-15 | Outokumpu Oy | Process for improving the degree of reduction in melting of a ferro-mixture |
CN102965521B (en) * | 2012-11-26 | 2013-11-20 | 罕王实业集团有限公司 | Method for nickel laterite ore through adopting wet pellet smelting lower temperature reduction mode |
CN103131872B (en) * | 2013-02-20 | 2015-06-03 | 罕王实业集团有限公司 | Method of controlling temperature of energy-saving environment-friendly laterite-nickel ore smelting shaft furnace through aluminothermic process |
FI126718B (en) * | 2013-12-17 | 2017-04-28 | Outotec Finland Oy | Process for utilizing dust from a ferro-nickel process and sintered pellets prepared by the process |
CN103773948B (en) * | 2014-01-30 | 2015-08-26 | 首钢总公司 | Method for using iron ore powder in iron-making system |
CN104060084A (en) * | 2014-05-08 | 2014-09-24 | 无锡市阳泰冶金炉料有限公司 | Nickeliferous poor chromite separation and enrichment smelting method |
CN104911288B (en) * | 2015-04-14 | 2017-09-29 | 四川金广实业(集团)股份有限公司 | Reduce the blast furnace process lateritic nickel ore method of slag oxidation content of magnesium |
NO346383B1 (en) * | 2017-05-05 | 2022-07-04 | Knut Henriksen | Method for converting a waste material from sulphide ore based nickel refining into nickel pig iron |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1290436A (en) * | 1969-04-30 | 1972-09-27 | ||
SE354297B (en) * | 1971-07-16 | 1973-03-05 | Avesta Jernverks Ab | |
JPS62290843A (en) * | 1986-06-10 | 1987-12-17 | Nippon Kokan Kk <Nkk> | Ferronickel manufacturing method |
JPS62290842A (en) * | 1986-06-10 | 1987-12-17 | Nippon Kokan Kk <Nkk> | Ferronickel manufacturing method |
AUPN639995A0 (en) * | 1995-11-03 | 1995-11-30 | Technological Resources Pty Limited | A method and an apparatus for producing metals and metal alloys |
RU2132400C1 (en) * | 1998-09-03 | 1999-06-27 | Открытое акционерное общество "Серовский металлургический завод" | Method of processing oxidized nickel ores |
RU2157412C1 (en) * | 1999-04-19 | 2000-10-10 | ЗАО "Научно-производственное предприятие ФАН" | Method of production of blast-furnace ferronickel |
CN1237641A (en) * | 1999-06-15 | 1999-12-08 | 吉林省冶金研究院 | Technological process for extracting Ni, Cu, Co and Mg from nickel sulfide preparation concentrate and making nickelferrite |
JP2001303113A (en) * | 2000-04-26 | 2001-10-31 | Mitsui Matsushima Co Ltd | METHOD FOR UTILIZING COAL HAVING MUCH CaO COMPONENT AND Fe2O3 COMPONENT IN BURNT ASH |
US6903585B2 (en) * | 2003-06-27 | 2005-06-07 | Analog Devices, Inc. | Pulse width modulated common mode feedback loop and method for differential charge pump |
CN1257295C (en) * | 2004-11-15 | 2006-05-24 | 四川川投峨眉铁合金(集团)有限责任公司 | Production method for extracting nickel by pyrogenic process |
-
2005
- 2005-09-16 CN CNB2005101029845A patent/CN1306049C/en not_active Expired - Fee Related
- 2005-11-02 KR KR1020067017169A patent/KR20070085069A/en not_active Ceased
- 2005-11-02 JP JP2008530296A patent/JP4734414B2/en not_active Expired - Fee Related
- 2005-11-02 AU AU2005304190A patent/AU2005304190B2/en not_active Ceased
- 2005-11-02 EP EP05803616.1A patent/EP1927667B1/en not_active Not-in-force
- 2005-11-02 KR KR1020107006684A patent/KR20100039908A/en not_active Ceased
- 2005-11-02 WO PCT/CN2005/001827 patent/WO2006050658A1/en active Application Filing
-
2006
- 2006-10-10 MY MYPI20064302A patent/MY140939A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101009034B1 (en) * | 2008-09-19 | 2011-01-17 | 주식회사 포스코 | Method of manufacturing ferronickel |
Also Published As
Publication number | Publication date |
---|---|
CN1733950A (en) | 2006-02-15 |
JP2009508004A (en) | 2009-02-26 |
EP1927667A4 (en) | 2008-11-05 |
AU2005304190B2 (en) | 2009-09-17 |
WO2006050658A1 (en) | 2006-05-18 |
MY140939A (en) | 2010-02-12 |
EP1927667B1 (en) | 2013-06-19 |
AU2005304190A1 (en) | 2006-05-18 |
EP1927667A1 (en) | 2008-06-04 |
KR20100039908A (en) | 2010-04-16 |
CN1306049C (en) | 2007-03-21 |
JP4734414B2 (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20070085069A (en) | Process for smelting ferronickel blast furnace for nickel oxide ore without crystal water | |
KR20070085068A (en) | A smelting process of ferronickel with nickel oxide ore containing of crystal water in a blast furnace | |
CN101353708B (en) | Nickel iron smelting process with nickel oxide ore and stainless steel production wastes as raw materials | |
CN100507013C (en) | Method for directly producing ferrochromium from chrome ore powder and coal | |
WO2008131614A1 (en) | A SMELTING METHOD OF LOW-P STAINLESS STEEL BASE USING LOW-GRADE IRONSTONE CONTAINING Ni AND Cr | |
CN103556068A (en) | Method for producing weather-resisting steel by using low-grade nickel ores | |
CN101748298A (en) | Method for treating laterite nickel ore and producing ferronickel by combining tunnel kiln prereduction and melting furnace final reduction | |
CN102534116B (en) | Slag modifier and preparation method and application thereof | |
CN102634718B (en) | Preparation process for organically-combined fluorite ball | |
CN107365093A (en) | A kind of preparation method of the active copper ashes of binder materials | |
CN101353709B (en) | Nickel iron smelting process with nickel oxide ore and stainless steel production wastes as raw materials | |
CN103757165B (en) | A kind of high-iron bauxite blast-furnace smelting has valency constituent element method of comprehensive utilization | |
CN101560581A (en) | A kind of converter coolant and its manufacturing method | |
CN110551869A (en) | method for modifying slag in slag splashing stage of converter | |
CN100577818C (en) | A blast furnace smelting process of ferronickel using nickel oxide ore as raw material | |
CN101665847A (en) | Process for recovering iron by smelting reduction of electric furnace slag | |
CN101050506A (en) | Technique for alloying steel making directly from tungsten ore | |
TWI831510B (en) | Method for recovering waste rich in metal(2) | |
CN1059469C (en) | Cold pressing flake iron ball cooling, slag melting agent and making method thereof | |
CN100595290C (en) | Technique for smelting nickel-cobalt-ferrum by nickel oxide ore through electrical furnace | |
CN115595404A (en) | Slagging agent for AOD furnace and preparation method thereof | |
CN117344077A (en) | High-efficiency composite functional desulfurizing agent for molten iron pretreatment and preparation method thereof | |
CN118109654A (en) | Converter smelting method using iron-containing waste slag melting agent | |
CN117551896A (en) | A multi-layer smelting method of ferromolybdenum alloy | |
CN111944951A (en) | Aluminum electric deoxidizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20060825 Patent event code: PA01051R01D Comment text: International Patent Application |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20070622 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20081006 Patent event code: PE09021S01D |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20090520 Patent event code: PE09021S02D |
|
E601 | Decision to refuse application | ||
E801 | Decision on dismissal of amendment | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20091221 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20090520 Comment text: Final Notice of Reason for Refusal Patent event code: PE06011S02I Patent event date: 20081006 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
PE0801 | Dismissal of amendment |
Patent event code: PE08012E01D Comment text: Decision on Dismissal of Amendment Patent event date: 20091221 Patent event code: PE08011R01I Comment text: Amendment to Specification, etc. Patent event date: 20090729 Patent event code: PE08011R01I Comment text: Amendment to Specification, etc. Patent event date: 20090106 |
|
J201 | Request for trial against refusal decision | ||
PJ0201 | Trial against decision of rejection |
Patent event date: 20100317 Comment text: Request for Trial against Decision on Refusal Patent event code: PJ02012R01D Patent event date: 20091221 Comment text: Decision to Refuse Application Patent event code: PJ02011S01I Appeal kind category: Appeal against decision to decline refusal Decision date: 20110210 Appeal identifier: 2010101002021 Request date: 20100317 |
|
A107 | Divisional application of patent | ||
PA0104 | Divisional application for international application |
Comment text: Divisional Application for International Patent Patent event code: PA01041R01D Patent event date: 20100326 |
|
J301 | Trial decision |
Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20100317 Effective date: 20110210 |
|
PJ1301 | Trial decision |
Patent event code: PJ13011S01D Patent event date: 20110210 Comment text: Trial Decision on Objection to Decision on Refusal Appeal kind category: Appeal against decision to decline refusal Request date: 20100317 Decision date: 20110210 Appeal identifier: 2010101002021 |