[go: up one dir, main page]

KR20070085069A - Process for smelting ferronickel blast furnace for nickel oxide ore without crystal water - Google Patents

Process for smelting ferronickel blast furnace for nickel oxide ore without crystal water Download PDF

Info

Publication number
KR20070085069A
KR20070085069A KR1020067017169A KR20067017169A KR20070085069A KR 20070085069 A KR20070085069 A KR 20070085069A KR 1020067017169 A KR1020067017169 A KR 1020067017169A KR 20067017169 A KR20067017169 A KR 20067017169A KR 20070085069 A KR20070085069 A KR 20070085069A
Authority
KR
South Korea
Prior art keywords
ore
smelting
blast furnace
limestone
nickel oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020067017169A
Other languages
Korean (ko)
Inventor
쉔지 리우
Original Assignee
쉔지 리우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36076566&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20070085069(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 쉔지 리우 filed Critical 쉔지 리우
Publication of KR20070085069A publication Critical patent/KR20070085069A/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/02General features in the manufacture of pig-iron by applying additives, e.g. fluxing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 일종의 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정을 제공하는 것으로서, 주로 원광 파쇄 분립을 포함하는데, 광물가루를 소결광으로 만들고, 소결광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하여 고로 제련을 통해 페로니켈을 얻으며, 그 중에 첨가제와 소결광 중량비는 형석 0.3-8%, 백운석 0-8%, 석회석/생석회 4-35%이다. 기존 기술과 비교하여, 본 발명에서 제공하는 페로니켈 제련 공정의 형석과 소결광 비율은 고로 온도에 대한 크롬의 영향을 낮출 뿐만 아니라, 불소의 과다 함유로 인해 노저가 타버리는 등의 사고가 발생하는 것도 피하게 할 수 있다. 백운석에 함유된 마그네슘은 니켈크롬광석 중에 크롬으로 야기되는 용선 유동성 저하 문제를 해결할 수 있다. 석회석은 염기도를 제공할 뿐만 아니라 상기 두 가지 첨가제의 균형도 이룰 수 있으며, 발명이 제공하는 고로 제련법은 원가가 저렴하고, 원료 회수율이 높다.The present invention provides a process for smelting ferronickel blast furnace of nickel oxide ore without crystal water, mainly including ore crushing granules, making mineral powder into sintered ore, sintered ore lump, coke, limestone / quick lime, dolomite and fluorite The ferronickel is obtained by smelting the blast furnace, where the additive and sintered ore weight ratio is 0.3-8% of fluorspar, 0-8% of dolomite and 4-35% of limestone / quick lime. Compared with the existing technology, the fluorite and sintered ore ratio in the ferronickel smelting process provided by the present invention not only lowers the influence of chromium on the blast furnace temperature, but also causes an accident such as burnout of the furnace due to the excessive content of fluorine. Can be avoided. Magnesium contained in dolomite can solve the problem of reduced melt flow caused by chromium in nickel chromite ore. Limestone not only provides basicity, but can also balance the two additives. The blast furnace smelting method provided by the invention is inexpensive and has high raw material recovery.

Description

결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정{A SMELTING PROCESS OF FERRONICKEL WITH NICKEL OXIDE ORE FREE OF CRYSTAL WATER IN A BLAST FURNACE}A process for smelting ferronickel blast furnace of nickel oxide ore without crystal water {A SMELTING PROCESS OF FERRONICKEL WITH NICKEL OXIDE ORE FREE OF CRYSTAL WATER IN A BLAST FURNACE}

본 발명은 고로 제련 공정, 특히 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정에 관계된다.The present invention relates to a blast furnace smelting process, in particular a ferronickel blast furnace smelting process of nickel oxide ore without crystal water.

스테인레스와 특수강이 세계적으로 광범위하게 응용됨에 따라, 스테인레스와 특수강 제련의 가장 중요한 원소-니켈 금속의 공급 부족으로 가격 급등이 야기되고 있다. 전통적인 니켈 금속의 생산은 주로 지구 니켈 자원의 30%를 차지하는 황화니켈광석에서 추출하며, 성숙된 생산 공정을 가지고 있다. 하지만, 거의 백년에 가까운 연속 채굴을 거치면서, 현재 매장량 부족과 함께 자원은 위기를 보이고 있다. 이로써 지구 니켈 자원의 70%를 차지하는 라테라이트 니켈광(산화니켈광석)에서 니켈 금속을 채취하는 것에 대해 더 많은 관심을 기울일 수밖에 없게 되었다. 라테라이트 니켈광이 오랫동안 대규모적으로 개발되지 못한 주요 원인은 이러한 종류의 지하자원에서 니켈을 추출하는 공정의 원가가 높고, 공정이 복잡하며, 생산량이 낮고, 오염이 심각하기 때문이었다. 현재 국제적으로 고품질의 라테라이트 니켈광(니켈 함량 2.0% 이상)에 대해 일반적으로 광석 용광로 제련을 채택하고 있지만, 이 공정은 전력 소모가 많고, 환경 오염이 크며, 간헐식 생산으로 생산량이 낮다는 등의 폐단을 가지고 있다. 품질이 낮은 라테라이트 니켈광에 대해서는 대부분 습식제련, 즉 황산에 담그는 방법을 채택하는데, 라테라이트 니켈광 중에 고체의 산화니켈, 산화크롬, 산화철 등을 액체의 황산니켈, 황산크롬, 황산제1철 등 혼합 용액으로 변환시키고, 다시 황산니켈을 그 중에서 분리해내며, 전해를 통해 총량 1-2%만을 차지하는 금속 니켈을 형성하고, 그 나머지 성분은 모두 폐기된다. 이 공정 설비는 1차적 투자가 크고, 공정이 복잡하며, 주기가 길고, 환경 오염이 심각하다. 고로 제련이 경제적인 선택임에는 틀림없으나, 라테라이트 니켈광은 주로 Cr2O3 성분을 수반하기 때문에, 크롬의 녹는점이 너무 높아, 융해 후 용선의 점도가 너무 크게 되고, 니켈크롬을 함유한 용선이 순조롭게 유출되지 못하여, 고로 응결, 고로 훼손이라는 심각한 결과가 야기된다. 국내외 여러 기업과 연구 기관은 라테라이트 니켈광의 고로법을 통해 페로니켈(페로니켈)로 제련하는 공정에 대해 상당히 오랫동안 연구를 진행하였지만, 아직까지 성공했다는 보도가 없었다. 그러므로, 고효율 저소모, 높은 생산량, 저원가, 그리고 무오염 혹은 저오염인, 라테라이트 니켈광에서 직접 페로니켈로 제련하는 공정 기술을 찾는 것은 업계내에서 시급히 해결해야 하는 과제가 되었다.As stainless and special steels are widely used worldwide, soaring prices are caused by the shortage of the most important element-nickel metals in smelting stainless and special steels. Traditional nickel metal production is mainly derived from nickel sulfide ore, which accounts for 30% of the world's nickel resources, and has a mature production process. However, after nearly 100 years of continuous mining, resources are now in crisis with scarcity of reserves. This has drawn more attention to the collection of nickel metals from laterite nickel ores (nickel oxide ores), which account for 70% of the world's nickel resources. The main reason for the large-scale development of laterite nickel mines for a long time was the high cost, complex process, low production, and severe pollution of this process. Currently, ore smelting is generally adopted for high-quality laterite nickel ores (nickel content of 2.0% or more), but this process consumes a lot of power, has high environmental pollution, and has low production due to intermittent production. I have a defect. Most of low quality laterite nickel ores are wet smelting, that is, immersion in sulfuric acid.In the laterite nickel ore, solid nickel oxide, chromium oxide and iron oxide are mixed with liquid nickel sulfate, chromium sulfate and ferrous sulfate. Converted to a solution, nickel sulfate is separated therefrom, electrolytically forming metal nickel, which accounts for only 1-2% of the total amount, and all remaining components are discarded. The process equipment has a large initial investment, complex processes, long cycles and severe environmental pollution. Since smelting is an economical option, laterite nickel ore mainly involves Cr 2 O 3 , so the melting point of chromium is too high, the melt viscosity becomes too high after melting, and the molten iron containing nickel chromium smoothly. It is not leaked, causing serious consequences such as blast furnace condensation and blast furnace damage. Many domestic and international companies and research institutes have conducted research on the process of smelting ferronickel (ferronickel) through the blast furnace method of laterite nickel mine, but there have been no reports of success. Therefore, finding a process technology for smelting ferronickel directly from laterite nickel ore, which has high efficiency, low consumption, high yield, low cost, and no pollution or low pollution, is an urgent task in the industry.

본 발명의 취지는 상술한 문제를 해결하고, 결정수를 함유하지 않은 산화 니켈광석의 페로니켈 고로법 제련 공정을 제공하는 데에 있다.It is an object of the present invention to solve the above problems and to provide a process for smelting ferronickel blast furnace of nickel oxide ore which does not contain crystal water.

본 발명의 상기 목적은 다음 기술 방안을 통하여 실현한다.The above object of the present invention is realized through the following technical scheme.

본 발명은 일종의 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정을 제공하는 것으로서, 주로 다음 절차를 포함한다.The present invention provides a kind of smelting process for ferronickel blast furnace of nickel oxide ore without crystal water and mainly includes the following procedure.

원광을 파쇄 분립하고, 그 중에 입경이 10-60mm인 원광 덩어리를 고로 제련 원료로 하고, 직경이 10mm보다 작은 광물가루와 분코크스, 생석회/석회석은 배합 재료를 혼합하고 소결하여, 소결광 덩어리를 얻는다.Ore is crushed and separated, and the raw material of 10-60mm in diameter is used as smelting raw material, and mineral powder, coke and lime / limestone smaller than 10mm are mixed and sintered to obtain a sintered ore mass. .

소결광 덩어리, 원광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하고 고로 제련을 진행하여 페로니켈을 얻는데, 그 중에, 다음 첨가제와 소결광의 중량비는 다음과 같다.Sintered ore mass, ore mass, coke, limestone / limestone, dolomite and fluorite are mixed and blast furnace is smelted to obtain ferronickel, wherein the weight ratio of the following additives and sintered ore is

형석 0.3-8%    Fluorite 0.3-8%

백운석 0-8%   Dolomite 0-8%

석회석/생석회 4-35%    Limestone / quick lime 4-35%

그 중, 제련 절차 중에 원광 덩어리를 제련 원료로 첨가하지 않을 수도 있다.Among them, the ore mass may not be added as a smelting raw material during the smelting procedure.

그 중에 상기 산화니켈광석의 주요 성분과 중량비는 다음과 같다.Among them, the main components and the weight ratio of the nickel oxide ore are as follows.

니켈: 0.5-4.5%    Nickel: 0.5-4.5%

크롬: 0.3-12%    Chromium: 0.3-12%

철: 38-55%    Iron: 38-55%

그 중에 상기 첨가제와 소결광의 최적 중량비는 다음과 같다.Among them, the optimum weight ratio of the additive and the sintered ore is as follows.

형석 0.3-5%    Fluorite 0.3-5%

백운석 0.5-5%   Dolomite 0.5-5%

석회석/생석회 8-15%    Limestone / quick lime 8-15%

그 중, 상기 석회석 중의 CaO 함량은 50%보다 크고, 생석회 중의 CaO 함량은 80%보다 크며, 상기 백운석 중의 Mg 함량>10%, 상기 형석 중의 CaF2 함량>80%이다.Among them, the CaO content in the limestone is greater than 50%, the CaO content in the quicklime is greater than 80%, the Mg content> 10% in the dolomite, the CaF 2 content> 80% in the fluorite.

기존 기술과 비교하면, 전통적인 고로 제련 공정에서, 고로 온도는 최고 1700℃ 정도까지 도달할 수 있으며, 산화니켈광석 중에 함유된 크롬은 대부분 삼산화이크롬의 형식으로 존재하는데, 삼산화이크롬의 녹는점은 2300℃ 정도이므로, 산화니켈광석 중에 크롬의 환원 정도는 유한하여, 제련으로 얻는 용선의 유동성이 낮아지게 되며, 고로 응결 현상이 쉽게 발생하고, 심지어는 사고도 발생한다. 본 발명이 제공하는 니켈크롬철광의 페로니켈 제련 공정 중에 형석을 첨가하면 고로 온도에 대한 크롬의 영향을 효과적으로 낮출 수 있어, 용선의 유동성이 높아진다. 이와 동시에, 본 발명이 제공하는 제련 공정 중에 추가되는 형석의 양이 정밀한 계산을 거치므로, 형석 첨가량의 과다로 인해 야기되는 고로가 타버리는 것 등의 사고 발생도 효과적으로 피할 수 있다. 동시에, 본 발명에서 제공하는 공정 중에 백운석이 함유한 마그네슘도 니켈크롬광 중에 크롬으로 야기되는 용선 유동성 부족 문제를 해결하는 데에 도움을 줄 수 있다. 석회석은 염기도를 제공할 뿐만 아니라 상술한 두 가지 첨가제의 균형을 유지할 수도 있다. 본 발명이 제공하는 고로법 제련 공정은 공정 과정이 짧고, 연속 생산 생산량이 크며, 라테라이트 니켈광 중에 니켈크롬철 원소가 1차적으로 모두 추출되고, 자원 이용율이 높다. 이 제련으로 생산되는 슬래그는 시멘트 생산에 있어 좋은 원료이며, 어느 정도 CO2 가스를 배출하는 것을 제외하면, 기타 고체나 액체 폐기물이 발생하지 않아 오염이 없다.Compared with the existing technology, in the blast furnace smelting process, the blast furnace temperature can reach up to 1700 ℃, and most of the chromium contained in nickel oxide ore exists in the form of dichromium trioxide, and the melting point of dichromium trioxide is 2300 ℃. Since the degree of reduction of chromium in the nickel oxide ore is finite, the fluidity of the molten iron obtained by smelting becomes low, the blast furnace condensation easily occurs, and even an accident occurs. The addition of fluorspar during the ferronickel smelting process of nickel chromite ore provided by the present invention can effectively lower the influence of chromium on the blast furnace temperature, thereby increasing the flowability of the molten iron. At the same time, since the amount of fluorspar added during the smelting process provided by the present invention is precisely calculated, accidents such as burning of blast furnace caused by excessive amount of fluorspar addition can be effectively avoided. At the same time, the magnesium contained in the dolomite during the process provided by the present invention can also help to solve the problem of molten metal fluidity caused by chromium in nickel chromite. Limestone not only provides basicity but can also balance the two additives described above. The blast furnace smelting process provided by this invention has a short process process, a large continuous production yield, and all nickel chromium iron elements are extracted primarily in laterite nickel ore, and resource utilization rate is high. The slag produced by this smelting is a good raw material for the production of cement, except for the emission of CO 2 gas to some extent, other solid or liquid waste does not occur, there is no pollution.

대조해 보면, 본 발명이 제공하는 고로 제련 공정은 원가가 낮은데, 전통적인 광석 용광로 공정은 2000-4000킬로와트/톤 철, 코크스 0.5톤이 필요하였으나, 본 발명이 제공하는 공정 중에 고로 전력소모는 150-200킬로와트/톤 철이다. 에너지 절약이 가능하고, 생산량이 크며, 고로의 평균 생산량이 광석 용광로 평균 생산량보다 많다. 오염이 적고, 분진이 적다. 원료 회수율이 높고, 수율은 각각 철 97-98%, 니켈 99%, 크롬 40-50%이다.In contrast, the blast furnace smelting process provided by the present invention has a low cost, while a conventional ore blast furnace process requires 2000-4000 kilowatts / ton of iron and coke 0.5 tons, but the blast furnace power consumption of the present invention is 150-200. Kilowatt / tonne iron. Energy saving is possible, production is large, and the average production of blast furnace is more than the average production of ore furnace. Less pollution, less dust The recovery of raw materials is high, and the yields are 97-98% iron, 99% nickel and 40-50% chromium, respectively.

다음에서 구체적인 실시예를 접목하여 본 발명을 진일보하게 해석 및 설명하는데, 다음 실시예는 본 발명의 보호 범위에만 제한되지 않으며, 본 발명에 기반한 사고를 통해 이루어진 수정 및 조정 모두 본 발명의 보호의 범위에 속한다.In the following, the present invention is further interpreted and explained by combining specific embodiments, but the following embodiments are not limited only to the scope of protection of the present invention, and all modifications and adjustments made through the thinking based on the present invention are the scope of protection of the present invention. Belongs to.

원광을 파쇄 분립하고, 그 중에 입경이 10-60mm인 원광 덩어리를 고로 제련 원료로 하고, 입경이 10mm보다 작은 광물 가루와 분코크스, 생석회/석회석은 배합 재료를 혼합하고 소결하여 소결광 덩어리를 얻는다.The ore is crushed and separated, and among them, the raw ore agglomerates having a particle diameter of 10 to 60 mm are used as smelting raw materials, and the mineral powder, powdered coke and quicklime / limestone smaller than 10 mm are mixed and sintered to obtain a sintered ore agglomerate.

소결광 덩어리를 파쇄 분립하고, 입경 10-50mm인 소결광 덩어리를 고로 제련 원료로 하며, 입경이 10mm보다 작은 광물가루는 다시 소결한다.The sintered ore agglomerates are crushed and separated, and the sintered ore agglomerates having a particle size of 10-50 mm are used as smelting raw materials, and mineral powder smaller than 10 mm is sintered again.

소결광 덩어리, 원광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하고 고로 제련으로 페로니켈을 얻는다. Sintered ore mass, ore mass, coke, limestone / limestone, dolomite and fluorite are mixed and smelting of blast furnace to obtain ferronickel.

소결광과 기타 원료를 혼합하고 제련하며, 그 중에 소결광과 원광은 임의의 비율로 혼합할 수 있고, 소결광이나 원광만을 순전히 사용할 수도 있는데, 만약 전부 원광을 사용한다면, 광석과 코크스의 비율은 1.9-2.1: 1이고, 만약 전부 소결광으로 사용한다면, 광석과 코크스의 비율은 2.2-2.4: 1이다. The sintered ore and other raw materials are mixed and smelted, and the sintered ore can be mixed in any ratio, and only sintered ore ore can be used purely. If all ore is used, the ratio of ore and coke is 1.9-2.1 : 1, and if all are used as sintered ore, the ratio of ore and coke is 2.2-2.4: 1.

사용하는 니켈크롬철광의 주요 성분 및 함량(중량 %)은 다음과 같다.The main components and contents (% by weight) of nickel chromite ore used are as follows.

성분 로트번호Ingredient Lot Number FeFe NiNi CrCr CaCa SiSi MgMg AlAl 1One 38.1838.18 4.494.49 11.9211.92 4.524.52 3.243.24 1.671.67 3.143.14 22 40.1240.12 2.972.97 10.0710.07 4.014.01 3.123.12 1.551.55 3.013.01 33 43.7743.77 1.761.76 9.039.03 3.453.45 3.013.01 1.471.47 2.882.88 44 47.2147.21 1.351.35 7.487.48 3.063.06 2.882.88 1.201.20 2.512.51 55 50.3950.39 .087.087 5.485.48 2.972.97 2.562.56 1.071.07 2.342.34 66 54.8754.87 .053.053 3.133.13 2.072.07 2.152.15 1.031.03 2.072.07

얻어 낸 소결광의 주요 성분 및 함량(중량 %)은 다음과 같다The main components and the content (% by weight) of the obtained sintered ore are as follows.

성분 로트번호Ingredient Lot Number FeFe NiNi CrCr CaCa SiSi 1One 36.1036.10 4.784.78 12.1012.10 6.106.10 3.343.34 22 38.2438.24 3.633.63 10.8710.87 5.825.82 3.403.40 33 40.8140.81 1.761.76 9.049.04 5.615.61 3.523.52 44 43.5743.57 1.381.38 7.487.48 5.305.30 3.613.61 55 44.8244.82 0.880.88 3.483.48 5.105.10 3.623.62 66 46.5046.50 0.540.54 3.183.18 4.914.91 3.633.63

고로 재료 구성(중량 Kg)은 다음 표와 같다.The blast furnace material composition (weight Kg) is shown in the following table.

성분 로트번호Ingredient Lot Number 원광 덩어리Ore bullion 소결광Sintered ore 코크스cokes 형석fluorite 백운석dolomite 석회석/생석회Limestone / quick lime 1One 10001000 10001000 455455 8080 8080 350350 22 500500 10001000 415415 7070 7070 300300 33 500500 15001500 680680 6060 9090 300300 44 -- 15001500 625625 7575 7575 150150 55 -- 20002000 920920 2020 2020 160160 66 -- 20002000 830830 66 -- 8080

고로 제련 공정 계수Blast Furnace Smelting Process Coefficient

항목 모델Item model 노저 직경Noger diameter 투이어 직경Two diameter Pan 풍압wind pressure 고로 용적 36m3 Blast furnace volume 36m 3 2.1m2.1m 75mm75 mm 230m/s230 m / s 4200(수은주 밀리미터)4200 (millimeters of mercury) 고로 용적 90m3 Blast furnace volume 90m 3 2.9m2.9m 100mm100 mm 380m/s380 m / s 4600(수은주 밀리미터)4600 (millimeters of mercury)

제련으로 얻은 페로니켈 주요 성분 및 함량(중량 %)은 다음과 같다.The main components and contents (% by weight) of ferronickel obtained by smelting are as follows.

성분 로트번호Ingredient Lot Number FeFe NiNi CrCr SS PP 1One 48.2648.26 31.1031.10 33.1133.11 0.0610.061 0.0600.060 22 52.3152.31 10.5910.59 23.1023.10 0.0590.059 0.0610.061 33 64.5864.58 8.328.32 22.3822.38 0.0590.059 0.0590.059 44 75.5175.51 5.985.98 13.3613.36 0.0600.060 0.0580.058 55 85.2985.29 3.243.24 7.097.09 0.0580.058 0.0570.057 66 93.4693.46 0.920.92 0.630.63 0.0570.057 0.0600.060

본 발명은 일종의 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정을 제공하는 것으로서, 주로 원광 파쇄 분립을 포함하는데, 광물가루를 소결광으로 만 들고, 소결광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하여 고로 제련을 통해 페로니켈을 얻으며, 그 중에 첨가제와 소결광 중량비는 형석 0.3-8%, 백운석 0-8%, 석회석/생석회 4-35%이다. 기존 기술과 비교하여, 본 발명에서 제공하는 페로니켈 제련 공정의 형석과 소결광 비율은 고로 온도에 대한 크롬의 영향을 낮출 뿐만 아니라, 불소의 과다 함유로 인해 노저가 타버리는 등의 사고가 발생하는 것도 피하게 할 수 있다. 백운석에 함유된 마그네슘은 니켈크롬광석 중에 크롬으로 야기되는 용선 유동성 저하 문제를 해결할 수 있다. 석회석은 염기도를 제공할 뿐만 아니라 상기 두 가지 첨가제의 균형도 이룰 수 있으며, 발명이 제공하는 고로 제련법은 원가가 저렴하고, 원료 회수율이 높다.The present invention provides a process for smelting ferronickel blast furnace of nickel oxide ore without crystal water, mainly including ore crushing granules, making mineral powder into sintered ore, sintered ore lump, coke, limestone / quick lime, dolomite and fluorite The ferronickel is obtained by smelting the blast furnace, where the additive and sintered ore weight ratio is 0.3-8% of fluorspar, 0-8% of dolomite and 4-35% of limestone / quick lime. Compared with the existing technology, the fluorite and sintered ore ratio in the ferronickel smelting process provided by the present invention not only lowers the influence of chromium on the blast furnace temperature, but also causes an accident such as burnout of the furnace due to the excessive content of fluorine. Can be avoided. Magnesium contained in dolomite can solve the problem of reduced melt flow caused by chromium in nickel chromite ore. Limestone not only provides basicity, but can also balance the two additives. The blast furnace smelting method provided by the invention is inexpensive and has high raw material recovery.

Claims (7)

다음 단계를 포함하는, 일종의 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정:A process for smelting ferronickel blast furnace of a kind of crystal oxide-free nickel oxide ore, comprising the following steps: 원광을 분쇄 분립하여 그 중에 입경이 10-60mm인 원광 덩어리는 고로 제련 원료로 하고, 입경이 10mm보다 작은 광물가루와 분코크스, 생석회/석회석은 배합 재료를 혼합하고 소결을 진행하여 소결광 덩어리를 얻는 단계;    The ore is pulverized and granulated, and the ore agglomerate with a particle size of 10-60mm is used as smelting raw material, and the mineral powder, coke and lime / limestone with a particle size smaller than 10mm are mixed and sintered to obtain a sintered ore agglomerate. step; 소결광 덩어리를 파쇄 분립하고, 입경 10-50mm인 소결광 덩어리를 고로 제련 원료로 하며, 입경이 10mm보다 작은 광물가루는 다시 소결하는 단계;    Crushing and sintering the sintered ore agglomerates, using the sintered ore agglomerate having a particle diameter of 10-50 mm as a smelting raw material, and sintering the mineral powder having a particle diameter smaller than 10 mm again; 소결광 덩어리, 원광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하고 고로 제련을 진행하여 페로니켈을 얻으며, 여기서 첨가제와 소결광 중량비는 다음과 같음    Sintered ore mass, ore mass, coke, limestone / limestone, dolomite and fluorite are mixed and smelting is carried out to obtain ferronickel, where the additive and sintered ore weight ratio is as follows. 형석 0.3-8%    Fluorite 0.3-8% 백운석 0-8%    Dolomite 0-8% 석회석/생석회 4-35%.    Limestone / quick lime 4-35%. 제 1항에 있어서, 산화니켈광석의 주요 성분 및 중량비가 니켈 0.5-4.5%, 크롬 0.3-12%, 철 38-55%임을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정.The process for smelting ferronickel blast furnace of nickel oxide ore containing no crystal water according to claim 1, wherein the main component and weight ratio of nickel oxide ore are 0.5-4.5% nickel, 0.3-12% chromium and 38-55% iron. 제 1항에 있어서, 제련 절차 중에 원광 덩어리를 제련 원료로 첨가하지 않을 수 있음을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정.2. The process of smelting ferronickel blast furnace of crystal oxide-free nickel oxide ore according to claim 1, wherein the raw ore mass may not be added as a smelting raw material during the smelting procedure. 제 1항 내지 3항 중 어느 한 항에 있어서, 상기 첨가제와 소결광의 최적 중량비가 다음과 같음을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정The process for smelting ferronickel blast furnace of crystal oxide-free nickel oxide ore according to claim 1, wherein the optimum weight ratio of the additive and the sintered ore is as follows. 형석 0.3-5%    Fluorite 0.3-5% 백운석 0.5-5%    Dolomite 0.5-5% 석회석/생석회 8-15%.    Limestone / quick lime 8-15%. 제 1항 내지 3항 중 어느 한 항에 있어서, 상기 석회석 중에 CaO 함량이 50%보다 크고, 생석회 중에 CaO 함량이 80%보다 큼을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정.The process for smelting ferronickel blast furnace of nickel oxide ore without crystal water according to any one of claims 1 to 3, characterized in that the CaO content in the limestone is greater than 50% and the CaO content in the quicklime is greater than 80%. 제 1항 내지 3항 중 어느 한 항에 있어서, 상기 백운석 중에 Mg 함량이 >10% 임을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정.The process for smelting ferronickel blast furnace according to any one of claims 1 to 3, wherein the dolomite has a Mg content of> 10%. 제 1항 내지 3항 중 어느 한 항에 있어서, 상기 형석 중에 CaF2 함량이 >80% 임을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정.The process for smelting ferronickel blast furnace of crystal oxide-free nickel oxide ore according to any one of claims 1 to 3, characterized in that the CaF 2 content in the fluorspar is> 80%.
KR1020067017169A 2005-09-16 2005-11-02 Process for smelting ferronickel blast furnace for nickel oxide ore without crystal water Ceased KR20070085069A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510102984.5 2005-09-16
CNB2005101029845A CN1306049C (en) 2005-09-16 2005-09-16 Ferronickel smelting process of nickel oxide ore free of crystal water in blast furnace

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020107006684A Division KR20100039908A (en) 2005-09-16 2005-11-02 A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace

Publications (1)

Publication Number Publication Date
KR20070085069A true KR20070085069A (en) 2007-08-27

Family

ID=36076566

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020067017169A Ceased KR20070085069A (en) 2005-09-16 2005-11-02 Process for smelting ferronickel blast furnace for nickel oxide ore without crystal water
KR1020107006684A Ceased KR20100039908A (en) 2005-09-16 2005-11-02 A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020107006684A Ceased KR20100039908A (en) 2005-09-16 2005-11-02 A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace

Country Status (7)

Country Link
EP (1) EP1927667B1 (en)
JP (1) JP4734414B2 (en)
KR (2) KR20070085069A (en)
CN (1) CN1306049C (en)
AU (1) AU2005304190B2 (en)
MY (1) MY140939A (en)
WO (1) WO2006050658A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009034B1 (en) * 2008-09-19 2011-01-17 주식회사 포스코 Method of manufacturing ferronickel

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100595290C (en) * 2006-09-06 2010-03-24 刘光火 Technique for smelting nickel-cobalt-ferrum by nickel oxide ore through electrical furnace
KR100948926B1 (en) 2007-07-23 2010-03-24 주식회사 포스코 Method for producing nickel-containing molten iron
KR101322898B1 (en) * 2007-05-11 2013-10-29 주식회사 포스코 Method for manufacturing molten irons comprising nickels
KR101322897B1 (en) 2007-05-11 2013-10-29 주식회사 포스코 Method for manufacturing molten irons comprising nickels
WO2008140226A1 (en) * 2007-05-11 2008-11-20 Posco Method for manufacturing molten iron comprising nickel
AU2008316326B2 (en) * 2007-10-26 2013-06-20 Bhp Billiton Innovation Pty Ltd Production of nickel
CN101353708B (en) * 2008-09-11 2010-06-02 张家港浦项不锈钢有限公司 Nickel iron smelting process with nickel oxide ore and stainless steel production wastes as raw materials
CN101392331B (en) * 2008-10-10 2010-08-25 建德市新安江镍合金有限公司 Smelting technique for processing nickel ore by rotary kiln
CN102212681B (en) * 2010-12-27 2013-03-27 池州市润鹏冶金科技有限公司 Sintering synergistic agent and use method thereof
CN102650002A (en) * 2011-02-25 2012-08-29 云南锡业集团(控股)有限责任公司 Improved method for smelting laterite nickel ore to produce nickelferrite or nickel matte
FI123241B (en) * 2011-06-13 2013-01-15 Outokumpu Oy Process for improving the degree of reduction in melting of a ferro-mixture
CN102965521B (en) * 2012-11-26 2013-11-20 罕王实业集团有限公司 Method for nickel laterite ore through adopting wet pellet smelting lower temperature reduction mode
CN103131872B (en) * 2013-02-20 2015-06-03 罕王实业集团有限公司 Method of controlling temperature of energy-saving environment-friendly laterite-nickel ore smelting shaft furnace through aluminothermic process
FI126718B (en) * 2013-12-17 2017-04-28 Outotec Finland Oy Process for utilizing dust from a ferro-nickel process and sintered pellets prepared by the process
CN103773948B (en) * 2014-01-30 2015-08-26 首钢总公司 Method for using iron ore powder in iron-making system
CN104060084A (en) * 2014-05-08 2014-09-24 无锡市阳泰冶金炉料有限公司 Nickeliferous poor chromite separation and enrichment smelting method
CN104911288B (en) * 2015-04-14 2017-09-29 四川金广实业(集团)股份有限公司 Reduce the blast furnace process lateritic nickel ore method of slag oxidation content of magnesium
NO346383B1 (en) * 2017-05-05 2022-07-04 Knut Henriksen Method for converting a waste material from sulphide ore based nickel refining into nickel pig iron

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1290436A (en) * 1969-04-30 1972-09-27
SE354297B (en) * 1971-07-16 1973-03-05 Avesta Jernverks Ab
JPS62290843A (en) * 1986-06-10 1987-12-17 Nippon Kokan Kk <Nkk> Ferronickel manufacturing method
JPS62290842A (en) * 1986-06-10 1987-12-17 Nippon Kokan Kk <Nkk> Ferronickel manufacturing method
AUPN639995A0 (en) * 1995-11-03 1995-11-30 Technological Resources Pty Limited A method and an apparatus for producing metals and metal alloys
RU2132400C1 (en) * 1998-09-03 1999-06-27 Открытое акционерное общество "Серовский металлургический завод" Method of processing oxidized nickel ores
RU2157412C1 (en) * 1999-04-19 2000-10-10 ЗАО "Научно-производственное предприятие ФАН" Method of production of blast-furnace ferronickel
CN1237641A (en) * 1999-06-15 1999-12-08 吉林省冶金研究院 Technological process for extracting Ni, Cu, Co and Mg from nickel sulfide preparation concentrate and making nickelferrite
JP2001303113A (en) * 2000-04-26 2001-10-31 Mitsui Matsushima Co Ltd METHOD FOR UTILIZING COAL HAVING MUCH CaO COMPONENT AND Fe2O3 COMPONENT IN BURNT ASH
US6903585B2 (en) * 2003-06-27 2005-06-07 Analog Devices, Inc. Pulse width modulated common mode feedback loop and method for differential charge pump
CN1257295C (en) * 2004-11-15 2006-05-24 四川川投峨眉铁合金(集团)有限责任公司 Production method for extracting nickel by pyrogenic process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009034B1 (en) * 2008-09-19 2011-01-17 주식회사 포스코 Method of manufacturing ferronickel

Also Published As

Publication number Publication date
CN1733950A (en) 2006-02-15
JP2009508004A (en) 2009-02-26
EP1927667A4 (en) 2008-11-05
AU2005304190B2 (en) 2009-09-17
WO2006050658A1 (en) 2006-05-18
MY140939A (en) 2010-02-12
EP1927667B1 (en) 2013-06-19
AU2005304190A1 (en) 2006-05-18
EP1927667A1 (en) 2008-06-04
KR20100039908A (en) 2010-04-16
CN1306049C (en) 2007-03-21
JP4734414B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
KR20070085069A (en) Process for smelting ferronickel blast furnace for nickel oxide ore without crystal water
KR20070085068A (en) A smelting process of ferronickel with nickel oxide ore containing of crystal water in a blast furnace
CN101353708B (en) Nickel iron smelting process with nickel oxide ore and stainless steel production wastes as raw materials
CN100507013C (en) Method for directly producing ferrochromium from chrome ore powder and coal
WO2008131614A1 (en) A SMELTING METHOD OF LOW-P STAINLESS STEEL BASE USING LOW-GRADE IRONSTONE CONTAINING Ni AND Cr
CN103556068A (en) Method for producing weather-resisting steel by using low-grade nickel ores
CN101748298A (en) Method for treating laterite nickel ore and producing ferronickel by combining tunnel kiln prereduction and melting furnace final reduction
CN102534116B (en) Slag modifier and preparation method and application thereof
CN102634718B (en) Preparation process for organically-combined fluorite ball
CN107365093A (en) A kind of preparation method of the active copper ashes of binder materials
CN101353709B (en) Nickel iron smelting process with nickel oxide ore and stainless steel production wastes as raw materials
CN103757165B (en) A kind of high-iron bauxite blast-furnace smelting has valency constituent element method of comprehensive utilization
CN101560581A (en) A kind of converter coolant and its manufacturing method
CN110551869A (en) method for modifying slag in slag splashing stage of converter
CN100577818C (en) A blast furnace smelting process of ferronickel using nickel oxide ore as raw material
CN101665847A (en) Process for recovering iron by smelting reduction of electric furnace slag
CN101050506A (en) Technique for alloying steel making directly from tungsten ore
TWI831510B (en) Method for recovering waste rich in metal(2)
CN1059469C (en) Cold pressing flake iron ball cooling, slag melting agent and making method thereof
CN100595290C (en) Technique for smelting nickel-cobalt-ferrum by nickel oxide ore through electrical furnace
CN115595404A (en) Slagging agent for AOD furnace and preparation method thereof
CN117344077A (en) High-efficiency composite functional desulfurizing agent for molten iron pretreatment and preparation method thereof
CN118109654A (en) Converter smelting method using iron-containing waste slag melting agent
CN117551896A (en) A multi-layer smelting method of ferromolybdenum alloy
CN111944951A (en) Aluminum electric deoxidizer

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20060825

Patent event code: PA01051R01D

Comment text: International Patent Application

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20070622

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20081006

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20090520

Patent event code: PE09021S02D

E601 Decision to refuse application
E801 Decision on dismissal of amendment
PE0601 Decision on rejection of patent

Patent event date: 20091221

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20090520

Comment text: Final Notice of Reason for Refusal

Patent event code: PE06011S02I

Patent event date: 20081006

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

PE0801 Dismissal of amendment

Patent event code: PE08012E01D

Comment text: Decision on Dismissal of Amendment

Patent event date: 20091221

Patent event code: PE08011R01I

Comment text: Amendment to Specification, etc.

Patent event date: 20090729

Patent event code: PE08011R01I

Comment text: Amendment to Specification, etc.

Patent event date: 20090106

J201 Request for trial against refusal decision
PJ0201 Trial against decision of rejection

Patent event date: 20100317

Comment text: Request for Trial against Decision on Refusal

Patent event code: PJ02012R01D

Patent event date: 20091221

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Appeal kind category: Appeal against decision to decline refusal

Decision date: 20110210

Appeal identifier: 2010101002021

Request date: 20100317

A107 Divisional application of patent
PA0104 Divisional application for international application

Comment text: Divisional Application for International Patent

Patent event code: PA01041R01D

Patent event date: 20100326

J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20100317

Effective date: 20110210

PJ1301 Trial decision

Patent event code: PJ13011S01D

Patent event date: 20110210

Comment text: Trial Decision on Objection to Decision on Refusal

Appeal kind category: Appeal against decision to decline refusal

Request date: 20100317

Decision date: 20110210

Appeal identifier: 2010101002021