KR20070054314A - Sulfonated polysulfone ketone copolymer, polymer electrolyte comprising the same, and preparation method thereof - Google Patents
Sulfonated polysulfone ketone copolymer, polymer electrolyte comprising the same, and preparation method thereof Download PDFInfo
- Publication number
- KR20070054314A KR20070054314A KR1020050112185A KR20050112185A KR20070054314A KR 20070054314 A KR20070054314 A KR 20070054314A KR 1020050112185 A KR1020050112185 A KR 1020050112185A KR 20050112185 A KR20050112185 A KR 20050112185A KR 20070054314 A KR20070054314 A KR 20070054314A
- Authority
- KR
- South Korea
- Prior art keywords
- aromatic
- formula
- ketone
- sulfonated
- independently
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002492 poly(sulfone) Polymers 0.000 title claims abstract description 61
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 49
- 229920001577 copolymer Polymers 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title description 5
- 150000008365 aromatic ketones Chemical group 0.000 claims abstract description 40
- -1 aromatic sulfone Chemical class 0.000 claims abstract description 35
- 239000000446 fuel Substances 0.000 claims abstract description 26
- 150000002576 ketones Chemical class 0.000 claims abstract description 20
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims abstract description 10
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims abstract description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 9
- 150000001491 aromatic compounds Chemical group 0.000 claims abstract description 8
- 239000000178 monomer Substances 0.000 claims description 89
- 239000012528 membrane Substances 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 21
- 125000003118 aryl group Chemical group 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 125000005842 heteroatom Chemical group 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000011591 potassium Substances 0.000 claims description 6
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 238000006482 condensation reaction Methods 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 125000001424 substituent group Chemical group 0.000 claims description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 2
- 125000000217 alkyl group Chemical group 0.000 claims 2
- 229910052698 phosphorus Inorganic materials 0.000 claims 2
- 239000011574 phosphorus Substances 0.000 claims 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 abstract description 28
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 60
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 230000035699 permeability Effects 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000004696 Poly ether ether ketone Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 229920002530 polyetherether ketone Polymers 0.000 description 8
- 229920000557 Nafion® Polymers 0.000 description 7
- 239000003014 ion exchange membrane Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000006277 sulfonation reaction Methods 0.000 description 7
- 125000000542 sulfonic acid group Chemical group 0.000 description 7
- LSQARZALBDFYQZ-UHFFFAOYSA-N 4,4'-difluorobenzophenone Chemical class C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 LSQARZALBDFYQZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 125000001207 fluorophenyl group Chemical group 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 125000001033 ether group Chemical group 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- PLVUIVUKKJTSDM-UHFFFAOYSA-N 1-fluoro-4-(4-fluorophenyl)sulfonylbenzene Chemical compound C1=CC(F)=CC=C1S(=O)(=O)C1=CC=C(F)C=C1 PLVUIVUKKJTSDM-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- BWQOPMJTQPWHOZ-UHFFFAOYSA-N (2,3-difluorophenyl)-phenylmethanone Chemical compound FC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1F BWQOPMJTQPWHOZ-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000006159 dianhydride group Chemical group 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000110 poly(aryl ether sulfone) Polymers 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/02—Condensation polymers of aldehydes or ketones with phenols only of ketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 술폰화 폴리술폰케톤 공중합체, 및 이를 포함하는 고분자 전해질에 관한 것으로서, 보다 상세하게는 방향족 술폰 반복단위, 방향족 케톤 반복단위, 및 상기 반복단위를 에테르 결합으로 연결하는 방향족 화합물 반복단위를 포함하며, 상기 방향족 술폰 반복단위, 및 방향족 케톤 반복단위 중 적어도 1종 이상이 술폰산 또는 술폰산염 치환기를 가지는 것인 술폰화 폴리술폰케톤 공중합체, 및 이를 포함하는 고분자 전해질에 관한 것이다. The present invention relates to a sulfonated polysulfone ketone copolymer, and a polymer electrolyte including the same, and more particularly, to an aromatic sulfone repeating unit, an aromatic ketone repeating unit, and an aromatic compound repeating unit connecting the repeating unit with an ether bond. And a sulfonated polysulfone ketone copolymer comprising at least one of the aromatic sulfone repeating units and the aromatic ketone repeating units having a sulfonic acid or sulfonate substituent, and a polymer electrolyte comprising the same.
본 발명의 내열성과 형태안정성이 우수하며, 저습조건에서도 파괴되지 않으며, 수소이온 전도성이 우수하여 연료전지용 고분자 전해질로 사용되기에 적합하다. It is excellent in heat resistance and shape stability of the present invention, does not destroy even under low humidity conditions, and excellent hydrogen ion conductivity, which is suitable for use as a polymer electrolyte for fuel cells.
폴리술폰케톤, 공중합체, 분지형, 연료전지, 고분자 전해질 Polysulfone ketone, copolymer, branched, fuel cell, polymer electrolyte
Description
[산업상 이용분야][Industrial use]
본 발명은 술폰화 폴리술폰케톤 공중합체, 이를 포함하는 고분자 전해질, 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 내열성과 형태안정성이 우수하며, 저습조건에서도 파괴되지 않는 고분자 전해질용 공중합체, 이를 포함하는 고분자 전해질, 및 이의 제조방법에 관한 것이다. The present invention relates to a sulfonated polysulfone ketone copolymer, a polymer electrolyte comprising the same, and a method for preparing the same, and more particularly, a copolymer for a polymer electrolyte which is excellent in heat resistance and shape stability, and which is not destroyed even under low humidity conditions. It relates to a polymer electrolyte comprising, and a method for producing the same.
[종래기술][Private Technology]
고분자전해질 연료전지는 수소이온 교환 특성을 갖는 고분자막을 전해질로 사용하는 연료 전지이며, 고체 고분자전해질 연료전지(SPEFC, Solid Polymer Electrolyte Fuel Cells), 수소이온 교환막 연료전지(PEMFC, Proton Exchange Membrane Fuel Cells)등의 다양한 이름으로 불리고 있다.The polymer electrolyte fuel cell is a fuel cell using a polymer membrane having hydrogen ion exchange characteristics as an electrolyte, and a solid polymer electrolyte fuel cell (SPEFC) and a hydrogen ion exchange membrane fuel cell (PEMFC). It is called various names.
고분자 전해질 연료전지(PEMFC)는 다른 형태의 연료전지에 비하여 작동온도가 80℃ 정도로 낮고, 효율이 높으며, 전류밀도 및 출력밀도가 크고, 시동 시간이 짧은 동시에 부하변화에 따른 응답이 빠른 특성이 있다. Compared to other fuel cells, the polymer electrolyte fuel cell (PEMFC) has a low operating temperature of about 80 ° C, high efficiency, high current density and power density, short start-up time, and fast response to load changes. .
특히 전해질로 고분자막을 사용하기 때문에 부식 및 전해질 조절이 필요 없고 반응기체의 압력변화에도 덜 민감하다. 또한 디자인이 간단하고 제작이 쉬우며 다양한 범위의 출력을 낼 수 있는 장점이 있기 때문에 고분자전해질 연료전지(PEMFC)는 무공해 차량의 동력원, 현지 설치형 발전, 이동용 전원, 군사용 전원 등 매우 다양한 분야에 응용 될 수 있는 장점이 있다. In particular, since the polymer membrane is used as the electrolyte, there is no need for corrosion and electrolyte control, and it is less sensitive to changes in the pressure of the reactor. In addition, since the design is simple, easy to manufacture, and can produce a wide range of outputs, the polymer electrolyte fuel cell (PEMFC) can be applied to a wide variety of fields such as power sources of pollution-free vehicles, on-site power generation, mobile power, and military power. There are advantages to it.
연료전지 시장은 가정용 연료전지(Residential Power Generator)가 제일 선두에 설 것으로 전망되고 있다. 그 이유는 기존에 없던 신규시장이기 때문에 기술과 경제성으로 시장 침투가 시작되면 매우 빠르게 시장을 침투할 것으로 예상되기 때문이다. In the fuel cell market, residential fuel cells are expected to be at the forefront. The reason is that it is expected to penetrate the market very quickly when the market penetration begins with technology and economics because it is a new market that has not existed before.
가정용 연료전지는 용량의 확대에 따라 사무실용, 소규모 공장용등으로 응용이 될 수 있는데 기존의 송배전망에 연결하여 분산화 된 전력체계를 구축하는 것이 궁극적인 전개 방향이다. 따라서 선진국에서는 지역 유틸리티 사업자 혹은 가정에서 양방향 검침 및 통신이 가능한 지능형 계량기 기술개발과 표준 제정을 위한 노력을 진행 중이다. 즉 전력 에너지와 정보통신 기술의 접목으로 새로운 분산 전력 시스템의 도입이 추진되고 있다. Household fuel cells can be applied to offices and small factories according to the expansion of capacity. The ultimate development direction is to establish a decentralized power system by connecting to the existing transmission and distribution network. Therefore, in developed countries, efforts are being made to develop intelligent meter technology and establish standards that enable two-way meter reading and communication at local utility operators or at home. In other words, the introduction of a new distributed power system is being promoted by combining power energy with information and communication technology.
연료전지는 현재 2차전지의 시장을 대체할 수 있을 것으로 판단되며 소형 휴대용 전자기기(Portable Electronics)용 연료전지는 연로로서 수소대신 메탄올을 사용하는 직접메탄올 연료전지가 주목을 받고 있다. 핸드폰, PDA, 노트북 PC등 무선 통신기기의 급격한 성장은 충전을 필요로 하는 기존의 리튬계 2차전지에서 새로 운 개념인 충전이 필요 없고 출력밀도가 높은 연료전지, 즉 사용자 편의성을 크게 높인 새로운 전력원인 연료전지의 상업화를 촉진시키고 있다. 이 분야는 제품의 비용 압력은 적은 대신에 출력밀도와 신뢰성 등 기술의 개발을 필요로 하고 있다. Fuel cells are expected to replace the market of secondary batteries, and direct methanol fuel cells, which use methanol instead of hydrogen, are drawing attention as fuel cells for portable electronics. The rapid growth of wireless communication devices such as mobile phones, PDAs, and notebook PCs is a new concept that does not require charging, which is a new concept in conventional lithium-based secondary batteries that require charging, and a high power density fuel cell. Cause It is promoting the commercialization of fuel cells. This field requires the development of technologies such as power density and reliability at the cost of low product pressure.
종래에는 양이온 교환 능력이 있는 기능기 중 술폰산(sulfonic acid)기가 상업적으로 많이 사용되고 있는데 이는 술폰산기가 산도가 매우 크고, C-S 결합은 산화 조건에 강한 저항성을 가지고 있기 때문이다. Conventionally, sulfonic acid groups are widely used among functional groups capable of cation exchange because sulfonic acid groups have very high acidity and C-S bonds have strong resistance to oxidation conditions.
술폰산 음이온에 양이온인 수소이온이 붙어 있으면 수소이온 교환 효과를 나타내는데, 수소이온의 전도도를 높게 유지하기 위해서는 물 분자가 함께 존재해야 한다. 물분자 존재 시에는 막에 붙어 있는 술폰산기가 술폰산 음이온과 수소이온으로 해리되어, 마치 황산 용액 전해질에서의 수소이온처럼 농도 기울기나 전기장 영향에 의해 수소이온이 이동하게 된다. 수소이온 전도도는 술폰산기의 수, 막 구조와 막 내부 물의 양에 의해 영향을 크게 받는다. If the sulfonic anion is attached to a hydrogen ion as a cation, it has a hydrogen ion exchange effect. In order to maintain the conductivity of the hydrogen ion, water molecules must be present together. In the presence of water molecules, the sulfonic acid groups attached to the membrane dissociate into sulfonic acid anions and hydrogen ions, and the hydrogen ions are moved by concentration gradient or electric field effect, just like hydrogen ions in sulfuric acid solution electrolyte. Hydrogen ion conductivity is greatly influenced by the number of sulfonic acid groups, the membrane structure and the amount of water in the membrane.
연료전지 운전 중 수소이온 교환 막에서의 물의 공급처는 가습된 가스로부터 유입, 또는 산소 극 반응에 의한 생성수가 있다. 이 물은 수소이온과 함께 이동하는, 즉, 전기 삼투적 이끌림, 생성수의 확산 및 양쪽 전극간의 압력차에 의한 이동에 의해 막 내부에서 농도 기울기를 보이게 되어, 운전 중에는 대체로 연료극 쪽은 탈수가, 산소극 쪽은 침수가 일어나게 된다. 막 내부에 물 분자수가 줄어들면 이온쌍들의 해리가 어려워지고, 따라서 이온 전도도는 감소된다. 이온 교환막에서 물의 수착 특성에 영향을 주는 인자로는 이온 교환기의 종류와 양, 양이온의 종류, 운전 온도 등이 있으며, 물의 상 (액상 또는 기상), 이온 교환막의 열 이력 (thermal history)도 이러한 특성에 영향을 미친다. The source of water in the hydrogen ion exchange membrane during fuel cell operation may be water generated by inflow from humidified gas or by oxygen polar reaction. This water moves along with hydrogen ions, that is, it shows concentration gradients within the membrane due to electroosmotic attraction, diffusion of product water, and movement by pressure difference between both electrodes. Immersion occurs on the side of the oxygen pole. As the number of water molecules in the membrane decreases, the dissociation of the ion pairs becomes difficult, thus reducing the ionic conductivity. Factors affecting the sorption characteristics of water in the ion exchange membrane include the type and amount of ion exchanger, the type of cation, and the operating temperature.The water phase (liquid or gas phase) and the thermal history of the ion exchange membrane Affects.
수소이온 교환 막의 특성은 주로 이온 교환용량(IEC: Ion Exchange Capacity) 또는 당량 중량(EW: Equivalent Weight)으로 나타내어지고 연료전지용 전해질로 사용되는 수소이온 교환막이 가져야 할 성질은, 높은 수소이온 전도도와 기계적 강도, 낮은 기체 투과도, 및 물의 이동성이다. 수소이온 교환막은 탈수 시에 수소이온 전도도가 급격히 떨어지므로 탈수에 저항성이 있어야 한다. 막이 직접 겪게 되는 산화 및 환원 반응, 가수 분해 등에 대한 내성이 커야하며, 양이온 결합력이 좋아야 하고, 균질성이 요구된다. 그리고 이와 같은 성질들은 일정시간 동안 유지되어야 한다. The characteristics of the hydrogen ion exchange membrane are mainly expressed in ion exchange capacity (IEC) or equivalent weight (EW), and the properties of the hydrogen ion exchange membrane used as electrolyte for fuel cells are high hydrogen ion conductivity and mechanical properties. Strength, low gas permeability, and mobility of water. Hydrogen ion exchange membranes must be resistant to dehydration because the conductivity of hydrogen ions drops rapidly during dehydration. The membrane must have a high resistance to oxidation and reduction reactions, hydrolysis, etc. which are directly experienced, good cation binding strength, and homogeneity. And these properties must be maintained for some time.
이러한 조건을 모두 만족시키는 막이 개발되어도, 이를 상업화하기 위해서는 값싸고 환경 친화적인 제조 기술 개발이 필요하다. 이에 현 시점에서 비불소계 고분자 소재들에 대한 연구는 주로 내열성 고분자를 기본골격으로 하고 여기에 극성기를 도입하여 고분자 전해질로서의 기능을 부여한 것이다. Even if a membrane is developed that satisfies all of these conditions, it is necessary to develop inexpensive and environmentally friendly manufacturing technology to commercialize it. The research on non-fluorine-based polymer materials at this point is mainly based on heat-resistant polymers and introducing polar groups to give them functions as polymer electrolytes.
폴리이미드계 고분자 전해질인 술폰화폴리이미드(Sulfonated polyimide, S-PI) 막은 술폰산기를 갖고 있는 디아민과 디안하이드라이드(dianhydride)의 축합반응으로부터 얻어진다. S-PI막은 Nafion117보다 수소 기체투과는 3배정도 낮으면서 Nafion과 비슷한 셀 성능을 보이지만, 3000시간 정도의 수명 안정도를 보이고 있다. 이는 가수분해에 의해 사슬이 끊어지는 등, 기계적 강도가 낮아지기 때문이다. Sulfonated polyimide (S-PI) membranes, which are polyimide-based polymer electrolytes, are obtained from the condensation reaction of diamines and dianhydrides having sulfonic acid groups. The S-PI membrane has three times lower hydrogen gas permeation than Nafion117 and shows cell performance similar to that of Nafion, but has a lifetime stability of about 3000 hours. This is because the mechanical strength is lowered, such as breaking the chain due to hydrolysis.
폴리술폰은 페닐환이 에테르기와 술폰(-SO2-)기에 의해 교대로 연결된 고분 자로, 상업적으로는 폴리아릴에테르술폰(Poly(arylether sulfone), 폴리술폰(Polysulfone, PSU)(상품명Udel) 와 폴리에테르술폰(Polyethersulphone, PES)(상품명 Victrex) 등이 있다. Polysulfone is a polymer in which phenyl ring is alternately connected by ether group and sulfone (-SO 2- ) group. Commercially, poly (arylether sulfone), polysulfone (PSU) (trade name Udel) and polyether Polyethersulphone (PES) (trade name Victrex).
S-PSU의 경우 30%의 술폰화(sulfonation)만 해도 물에 녹으므로 연료전지용으로 사용될 가능성이 낮다. S-PES로 제조된 막의 경우에는 물에 매우 안정하다. 다만, 이온 전도도를 높이기 위해서는 많은 양의 술폰화가 필수적인데, 술폰화가 많이 진행될수록 막의 기계적 강도가 약해지게 된다. S-PES의 경우는 90%까지 술폰화를 시켜야 나피온의 전도도 값과 비슷해지는데, 이 경우 400%까지 팽윤이 일어나 기계적 강도가 매우 낮아진다. 이를 해결하기 위해서, 활성화된 술폰산기를 적절히 가교시켜 50% 정도로 팽윤도를 줄였으나, 전도도도 함께 감소하는 것으로 보고되었다. S-PSU is less likely to be used for fuel cells because only 30% of sulfonation is dissolved in water. Membranes made of S-PES are very stable in water. However, in order to increase the ionic conductivity, a large amount of sulfonation is essential. As the sulfonation proceeds more, the mechanical strength of the membrane becomes weaker. In the case of S-PES, sulfonation up to 90% is similar to Nafion's conductivity value, in which case swelling up to 400% results in very low mechanical strength. To solve this, the activated sulfonic acid group was properly crosslinked to reduce the swelling by 50%, but the conductivity was also reported to decrease.
폴리에테르케톤은 에테르와 카르보닐로 페닐기를 연결한 고분자로, 가장 일반적인 소재로는 Victrex PEEK으로 알려진 PEEK이다. PEEK를 직접 술폰화시켜 막을 얻으면 60%의 술폰화를 통해 실온에서 6×10-2S/cm의 이온 전도도를 얻었고, 50℃에서 PEEK막의 운전은 4000시간 정도의 안정도를 보였다.Polyetherketone is a polymer linking ether and carbonyl phenyl groups. The most common material is PEEK, also known as Victrex PEEK. When PEEK was directly sulfonated to obtain a membrane, ionic conductivity of 6 × 10 −2 S / cm was obtained at room temperature through sulfonation of 60%, and the operation of the PEEK membrane at 50 ° C. showed stability of about 4000 hours.
폴리에테르케톤의 기계적 강도를 높이기 위해 120℃에서 가교시킨 결과, 30%의 술폰산기가 술폰기로 바뀌었고 나피온 막과 같은 정도의 기계적 강도를 얻을 수 있었다(Journal of Membrabe Science 225 2003, 63-76). 이러한 기존의 결과로부터 효율적인 고분자전해질 막은 높은 수소이온 전도도를 가져야 하며, 열적 기계적 성 질이 우수하고 낮은 기체 메탄올 투과율을 보여야 상업적으로 응용 가능하다. As a result of crosslinking at 120 ° C. to increase the mechanical strength of polyetherketone, 30% of sulfonic acid groups were changed to sulfone groups and the same mechanical strength as Nafion membrane was obtained (Journal of Membrabe Science 225 2003, 63-76). . From these existing results, an efficient polyelectrolyte membrane should have high hydrogen ion conductivity, good thermal mechanical properties, and low gas methanol permeability to be commercially applicable.
본 발명의 목적은 가스 투과성이 낮고, 이온 전도성이 높으며, 구조적 안정성이 우수하여 저습조건에서도 파손되지 않는 고분자 전해질용 술폰화 폴리술폰케톤 공중합체를 제공하는 것이다. It is an object of the present invention to provide a sulfonated polysulfone ketone copolymer for polymer electrolytes having low gas permeability, high ion conductivity, and excellent structural stability that do not break even under low humidity conditions.
본 발명의 다른 목적은 상기 술폰화 폴리술폰케톤 공중합체를 포함하는 고분자 전해질을 제공하는 것이다. Another object of the present invention is to provide a polymer electrolyte comprising the sulfonated polysulfone ketone copolymer.
본 발명의 또 다른 목적은 상기 술폰화 폴리술폰케톤 공중합체의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method for preparing the sulfonated polysulfone ketone copolymer.
본 발명은 상기 목적을 달성하기 위하여, 방향족 술폰 반복단위, 방향족 케톤 반복단위, 및 상기 반복단위를 에테르 결합으로 연결하는 방향족 화합물 반복단위를 포함하며, 상기 방향족 술폰 반복단위, 및 방향족 케톤 반복단위 중 적어도 1종 이상이 술폰산 또는 술폰산염 치환기를 가지는 것인 술폰화 폴리술폰케톤 공중합체를 제공한다.In order to achieve the above object, the present invention includes an aromatic sulfone repeating unit, an aromatic ketone repeating unit, and an aromatic compound repeating unit linking the repeating unit with an ether bond, wherein the aromatic sulfone repeating unit and the aromatic ketone repeating unit Sulfonated polysulfone ketone copolymers are provided wherein at least one or more have sulfonic acid or sulfonate substituents.
본 발명은 또한, 상기 술폰화 폴리술폰케톤 공중합체를 포함하는 연료전지용 고분자 전해질을 제공한다.The present invention also provides a polymer electrolyte for a fuel cell comprising the sulfonated polysulfone ketone copolymer.
본 발명은 또한, 술폰화 또는 술폰화되지 않은 방향족 술폰 모노머, 술폰화 또는 술폰화되지 않은 방향족 케톤 모노머, 및 디히드록시 모노머를 포함하는 모노머 혼합물을 유기용매의 존재하에서 축합반응시키는 단계를 포함하며, 상기 방향족 술폰 모노머, 및 방향족 케톤 모노머 중 적어도 1종 이상이 술폰화된 것인 술폰화 폴리술폰케톤 공중합체의 제조방법을 제공한다.The present invention also includes a step of condensing a monomer mixture comprising a sulfonated or unsulfonated aromatic sulfone monomer, a sulfonated or unsulfonated aromatic ketone monomer, and a dihydroxy monomer in the presence of an organic solvent. It provides a method for producing a sulfonated polysulfone ketone copolymer wherein at least one or more of the aromatic sulfone monomer, and aromatic ketone monomer is sulfonated.
이하, 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
고온용 고분자 전해질로 적용 가능한 내열성고분자 중 폴리술폰과 폴리케톤은 제조단가가 낮고, 다양한 온도범위의 산화/환원조건에서 상당한 안정성을 나타낸다. 또한, 에테르기의 전자주게 성질로 인해 술폰화가 용이하여 적절한 수소이온 전도도를 보인다. Among the heat resistant polymers applicable to high temperature polymer electrolytes, polysulfone and polyketone have low manufacturing cost and exhibit considerable stability under oxidation / reduction conditions at various temperature ranges. In addition, due to the electron donor nature of the ether group, sulfonation is easy, and thus shows proper hydrogen ion conductivity.
그러나 술폰화 폴리에테르에테르케톤(S-PEEK)은 고분자 주사슬에 있는 에테르기의 존재로 인한 소수성과, 그로 인한 술포닐기의 산성도의 감소로 Nafion에 비해 친수성 영역과 소수성 영역간의 미세상 분리가 덜 나타난다. However, sulfonated polyetheretherketone (S-PEEK) has less hydrophobicity due to the presence of ether groups in the polymer main chain, and thus lower acidity of sulfonyl groups, resulting in less microphase separation between hydrophilic and hydrophobic regions than Nafion. appear.
본 발명에서는 가스 투과성이 낮고 이온 전도성이 높고 구조적 안정성이 높은 고분자 전해질을 제공하기 위하여, 결정성 고분자인 케톤과 무정형인 설폰 공중합체를 이용하여 술폰화 폴리술폰케톤 공중합체를 제조하였다. In the present invention, in order to provide a polymer electrolyte having low gas permeability, high ion conductivity, and high structural stability, a sulfonated polysulfone ketone copolymer was prepared using a crystalline polymer ketone and an amorphous sulfone copolymer.
또한, 보다 유동성있는 고분자 사슬을 유도하기 위해 작용기를 3개 이상 포함하는 분지제를 이용하여 분지형 술폰화 폴리술폰케톤 공중합체를 제조하였다.In addition, a branched sulfonated polysulfone ketone copolymer was prepared using a branching agent containing three or more functional groups to induce more fluid polymer chains.
본 발명의 술폰화 폴리술폰케톤 공중합체는 방향족 술폰 반복단위, 방향족 케톤 반복단위, 및 상기 반복단위를 에테르 결합으로 연결하는 방향족 화합물 반복단위를 포함하며, 상기 방향족 술폰 반복단위, 및 방향족 케톤 반복단위 중 적어도 1종 이상이 술폰산 또는 술폰산염 치환기를 가지는 것이다. The sulfonated polysulfone ketone copolymer of the present invention comprises an aromatic sulfone repeating unit, an aromatic ketone repeating unit, and an aromatic compound repeating unit linking the repeating unit with an ether bond, wherein the aromatic sulfone repeating unit, and aromatic ketone repeating unit At least one of them has a sulfonic acid or sulfonate substituent.
이 때, 상기 술폰산 또는 술폰산염 치환기를 가지는 반복단위의 몰분율은 상 기 방향족 술폰 반복단위, 및 방향족 케톤 반복단위 중 1 내지 50 몰%인 것이 바람직하며, 30내지 50인 것이 더 바람직하다. 상기 반복단위의 몰수가 1 몰% 이상인 경우에 충분한 수소이온 전도 특성을 얻을 수 있으며, 50 몰% 이하인 경우에 구조적 안정성을 확보할 수 있다.In this case, the mole fraction of the repeating unit having the sulfonic acid or sulfonate substituent is preferably 1 to 50 mol%, more preferably 30 to 50, of the aromatic sulfone repeating unit and the aromatic ketone repeating unit. When the number of moles of the repeating unit is 1 mol% or more, sufficient hydrogen ion conduction characteristics may be obtained, and when 50 mol% or less, structural stability may be secured.
본 발명의 술폰화 폴리술폰케톤 공중합체에서, 상기 방향족 술폰 반복단위는 하기 화학식 1로 표시되고, 상기 방향족 케톤 반복단위는 하기 화학식 2로 표시되고, 상기 반복단위를 에테르 결합으로 연결하는 방향족 화합물 반복단위는 하기 화학식 3으로 표시되고, 술폰산 또는 술폰산염 치환기를 가지는 방향족 술폰 반복단위는 하기 화학식 4로 표시되고, 술폰산 또는 술폰산염 치환기를 가지는 방향족 케톤 반복단위는 하기 화학식 5로 표시되는 것이 바람직하다.In the sulfonated polysulfone ketone copolymer of the present invention, the aromatic sulfone repeating unit is represented by the following Chemical Formula 1, and the aromatic ketone repeating unit is represented by the following Chemical Formula 2, and the aromatic compound repeats connecting the repeating unit by an ether bond. The unit is represented by the following formula (3), the aromatic sulfone repeating unit having a sulfonic acid or sulfonate substituent is represented by the following formula (4), the aromatic ketone repeating unit having a sulfonic acid or sulfonate substituent is preferably represented by the following formula (5).
[화학식 1][Formula 1]
[화학식 2][Formula 2]
[화학식 3][Formula 3]
[화학식 4][Formula 4]
[화학식 5][Formula 5]
상기 식에서, Where
M1, M2, M3, 및 M4는 각각 독립적으로 수소, 나트륨, 리튬, 및 칼륨으 로 이루어진 군에서 선택되는 1종 이상이고, M 1 , M 2 , M 3 , and M 4 are each independently one or more selected from the group consisting of hydrogen, sodium, lithium, and potassium,
K는 -CO-, -CO-CO-, 및 로 이루어진 군에서 선택되는 1종 이상의 케톤이고, K is -CO-, -CO-CO-, and At least one ketone selected from the group consisting of
X는 -O-, -S-, -NH-, -SO2-, -CO-, -C(CH3)2-, 및 -C(CF3)2- 로 이루어진 군에 서 선택되는 1종 이상이고, X is 1 type selected from the group consisting of -O-, -S-, -NH-, -SO 2- , -CO-, -C (CH 3 ) 2- , and -C (CF 3 ) 2- That's it,
R1, R2, R3, R4, 및 R5는 각각 독립적으로 산소, 질소, 및 황으로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 5 내지 30인 방향족환 및 탄소수 1 내지 30인 알킬 치환체로 이루어진 군에서 선택되는 1종 이상이고,R 1 , R 2 , R 3 , R 4 , and R 5 are each independently an aromatic ring having 5 to 30 carbon atoms and at least 1 to 30 carbon atoms containing at least one hetero atom selected from the group consisting of oxygen, nitrogen, and sulfur; At least one member selected from the group consisting of an alkyl substituent of 30,
a, b, 및 c는 각각 독립적으로 0 내지 4의 정수이고, a, b, and c are each independently an integer of 0 to 4,
x, 및 x'는 각각 독립적으로 0 내지 3의 정수, y 및 y'는 각각 독립적으로 1 내지 4의 정수, x+y 및 x'+y'는 각각 독립적으로 1 내지 4의 정수이다. x and x 'are each independently an integer of 0-3, y and y' are each independently an integer of 1-4, x + y and x '+ y' are each independently an integer of 1-4.
상기 치환기에 대한 정의는 이하 언급되는 모든 화학식에 동일하게 적용된다. The above definitions for substituents apply equally to all formulas mentioned below.
본 발명의 폴리술폰케톤 공중합체는 하기 화학식 6 또는 화학식 7로 표시되는 분자구조를 포함하는 것이 이온 전도성 및 구조적 안정성 측면에서 더 바람직하다. The polysulfone ketone copolymer of the present invention more preferably includes a molecular structure represented by the following formula (6) or (7) in terms of ion conductivity and structural stability.
[화학식 6][Formula 6]
[화학식 7][Formula 7]
본 발명의 술폰화 폴리술폰케톤 공중합체는 중량평균분자량이 10,000 내지 200,000인 것이 기계적 강도 및 수소이온 전도성 측면에서 바람직하고, 30,000내지 150,000인 것이 더 바람직하다. The sulfonated polysulfone ketone copolymer of the present invention preferably has a weight average molecular weight of 10,000 to 200,000 in terms of mechanical strength and hydrogen ion conductivity, and more preferably 30,000 to 150,000.
본 발명의 술폰화 폴리술폰케톤 공중합체는 선형의 고분자이거나, 분지형 고분자일 수 있으며, 하기 화학식 8 내지 15로 표시되는 화합물로부터 유도된 분지 단위(branching unit)를 더 포함하는 분지형 고분자인 것이 더 바람직하다. The sulfonated polysulfone ketone copolymer of the present invention may be a linear polymer or a branched polymer, and may be a branched polymer further comprising a branching unit derived from a compound represented by the following Chemical Formulas 8 to 15: More preferred.
[화학식 8][Formula 8]
[화학식 9][Formula 9]
[화학식 10][Formula 10]
[화학식 11][Formula 11]
[화학식 12][Formula 12]
[화학식 13][Formula 13]
[화학식 14][Formula 14]
[화학식 15][Formula 15]
본 발명의 분지형 술폰화 폴리술폰케톤 공중합체이 보다 우수한 기계적 물성을 가지기 위해서는 상기 분지 단위가 상기 나머지 반복단위를 에테르 결합으로 연결하는 방향족 화합물의 반복단위의 총 양에 대하여 0.1 몰% 이상 포함되는 것이 바람직하고, 지나친 가교로 인한 가공성의 저하를 막기 위해서는 1 몰% 이하로 포함되는 것이 바람직하다. In order for the branched sulfonated polysulfone ketone copolymer of the present invention to have more excellent mechanical properties, the branched units may include 0.1 mol% or more based on the total amount of the repeating units of the aromatic compound connecting the remaining repeating units with ether bonds. It is preferable to be included in 1 mol% or less in order to prevent the fall of the workability by excessive crosslinking.
본 발명의 분지형 술폰화 폴리술폰케톤 공중합체는 하기 화학식 16 또는 화학식 17로 표시되는 분자구조를 포함하는 분지형 고분자인 술폰화 폴리술폰케톤 공중합체인 것이 더 바람직하다.The branched sulfonated polysulfone ketone copolymer of the present invention is more preferably a sulfonated polysulfone ketone copolymer which is a branched polymer including a molecular structure represented by the following formula (16) or (17).
[화학식 16][Formula 16]
[화학식 17] [Formula 17]
본 발명의 술폰화 폴리술폰케톤 공중합체는 수소이온 전도성을 가지는 고분자 전해질로 사용가능하며, 특히 연료전지용 고분자 전해질막의 형태로 사용이 가능하다. The sulfonated polysulfone ketone copolymer of the present invention can be used as a polymer electrolyte having hydrogen ion conductivity, and in particular in the form of a polymer electrolyte membrane for a fuel cell.
본 발명에 따른 술폰화 폴리술폰케톤을 포함하는 고분자 전해질은 매우 높은 수소이온 전도도를 나타내며, 메탄올 투과율도 현저하게 낮아짐을 볼 수 있다. It can be seen that the polymer electrolyte containing sulfonated polysulfone ketone according to the present invention exhibits very high hydrogen ion conductivity and significantly lower methanol permeability.
특히, 분지형 술폰화 폴리술폰케톤 공중합체는 주쇄 및 사슬같은 간격이 좁아지고 통로가 좁아져 비교적 큰 분자들이 투과하지 못한다. 따라서, 본 발명에 의해 제조된 분지형 설폰 케톤 고분자는 박막 제조의 필름형성이 우수하며, 산화 환원에 대해 안정성을 보인다. In particular, branched sulfonated polysulfone ketone copolymers have narrow main chain and chain-like spacing and narrow passageways that prevent relatively large molecules from permeating. Therefore, the branched sulfone ketone polymer prepared by the present invention is excellent in film formation of thin film production and shows stability against redox.
보다 구체적으로, 본 발명의 술폰화 폴리술폰케톤 공중합체를 포함하는 고분자 전해질은 수소이온 전도도가 1.5 × 10-4 S/cm 이상인 것이 바람직하고, 1.5 × 10-4 내지 1 × 10-1 S/cm 인 것이 바람직하며, 메탄올 투과율이 1.0 × 10-6 cm2/sec 이하인 것이 바람직하고, 1 × 10-9 내지 1 × 10-6 cm2/sec인 것이 더 바람직하다. 상기 수소이온 전도도와 메탄올 투과율의 범위를 만족하는 경우에 직접메탄올연료전지용(DMFC) 고분자 전해질로서 충분한 효과를 나타내 수 있다. More specifically, the polymer electrolyte containing the sulfonated polysulfone ketone copolymer of the present invention preferably has a hydrogen ion conductivity of 1.5 × 10 -4 S / cm or more, and 1.5 × 10 -4 to 1 × 10 -1 S /. It is preferable that it is cm, and it is preferable that methanol transmittance is 1.0 * 10 <-6> cm <2> / sec or less, and it is more preferable that it is 1 * 10 <-9> -1 * 10 <-6> cm <2> / sec. When the range of the hydrogen ion conductivity and the methanol transmittance is satisfied, a sufficient effect can be obtained as a direct methanol fuel cell (DMFC) polymer electrolyte.
본 발명의 술폰화 폴리술폰케톤 공중합체는 술폰화 또는 술폰화되지 않은 방향족 술폰 모노머, 술폰화 또는 술폰화되지 않은 방향족 케톤 모노머, 및 디히드록시 모노머를 포함하는 모노머 혼합물을 유기용매의 존재하에서 축합반응시키는 방법으로 제조될 수 있으며, 이 때 상기 방향족 술폰 모노머, 및 방향족 케톤 모노머 중 적어도 1종 이상이 술폰화된 것이 바람직하다. The sulfonated polysulfone ketone copolymers of the present invention condense a monomer mixture comprising a sulfonated or unsulfonated aromatic sulfone monomer, a sulfonated or unsulfonated aromatic ketone monomer, and a dihydroxy monomer in the presence of an organic solvent. It can be produced by a method of reacting, wherein at least one of the aromatic sulfone monomer and the aromatic ketone monomer is preferably sulfonated.
상기 모노머 혼합물의 구체적인 예로는 Specific examples of the monomer mixture
a) 방향족 술폰 모노머, 술폰화 방향족 케톤 모노머, 및 방향족 디히드록시 모노머를 포함하는 모노머 혼합물; a) a monomer mixture comprising an aromatic sulfone monomer, a sulfonated aromatic ketone monomer, and an aromatic dihydroxy monomer;
b) 방향족 케톤 모노머, 술폰화 방향족 술폰 모노머, 및 방향족 디히드록시 모노머를 포함하는 모노머 혼합물; b) monomer mixtures comprising aromatic ketone monomers, sulfonated aromatic sulfone monomers, and aromatic dihydroxy monomers;
c) 술폰화 방향족 케톤 모노머, 술폰화 방향족 술폰 모노머, 및 방향족 디히드록시 모노머를 포함하는 모노머 혼합물; c) monomer mixtures comprising sulfonated aromatic ketone monomers, sulfonated aromatic sulfone monomers, and aromatic dihydroxy monomers;
d) 방향족 술폰 모노머, 방향족 케톤 모노머, 술폰화 방향족 케톤 모노머, 및 방향족 디히드록시 모노머를 포함하는 모노머 혼합물; d) monomer mixtures comprising aromatic sulfone monomers, aromatic ketone monomers, sulfonated aromatic ketone monomers, and aromatic dihydroxy monomers;
e) 방향족 술폰 모노머, 방향족 케톤 모노머, 술폰화 방향족 술폰 모노머, 및 방향족 디히드록시 모노머를 포함하는 모노머 혼합물; 또는 e) monomer mixtures comprising aromatic sulfone monomers, aromatic ketone monomers, sulfonated aromatic sulfone monomers, and aromatic dihydroxy monomers; or
f) 방향족 술폰 모노머, 방향족 케톤 모노머, 술폰화 방향족 케톤 모노머, 술폰화 방향족 술폰 모노머, 및 방향족 디히드록시 모노머를 포함하는 모노머 혼합물이 있다.f) monomer mixtures comprising aromatic sulfone monomers, aromatic ketone monomers, sulfonated aromatic ketone monomers, sulfonated aromatic sulfone monomers, and aromatic dihydroxy monomers.
상기 모노머 혼합물 중에서 상기 방향족 술폰 모노머는 하기 화학식 18로 표시되고, 상기 방향족 케톤 모노머는 하기 화학식 19로 표시되고, 상기 방향족 디히드록시 모노머는 하기 화학식 20으로 표시되고, 상기 술폰화 방향족 술폰 모노머는 하기 화학식 21로 표시되고, 상기 술폰화 방향족 케톤 모노머는 하기 화학식 22로 표시되는 것이 바람직하다. In the monomer mixture, the aromatic sulfone monomer is represented by the following Chemical Formula 18, the aromatic ketone monomer is represented by the following Chemical Formula 19, the aromatic dihydroxy monomer is represented by the following Chemical Formula 20, and the sulfonated aromatic sulfone monomer is It is represented by the formula (21), it is preferable that the sulfonated aromatic ketone monomer is represented by the following formula (22).
[화학식 18][Formula 18]
[화학식 19][Formula 19]
[화학식 20][Formula 20]
[화학식 21][Formula 21]
[화학식 22][Formula 22]
상기 식에서, Where
M1, M2, M3, 및 M4는 각각 독립적으로 수소, 나트륨, 리튬, 및 칼륨으 로 이루어진 군에서 선택되는 1종 이상이고, M 1 , M 2 , M 3 , and M 4 are each independently one or more selected from the group consisting of hydrogen, sodium, lithium, and potassium,
K는 -CO-, -CO-CO-, 및 로 이루어진 군에서 선택되는 1종 이상의 케톤이고, K is -CO-, -CO-CO-, and At least one ketone selected from the group consisting of
X는 -O-, -S-, -NH-, -SO2-, -CO-, -C(CH3)2-, 및 -C(CF3)2- 로 이루어진 군에서 선택되는 1종 이상이고, X is one or more selected from the group consisting of -O-, -S-, -NH-, -SO 2- , -CO-, -C (CH 3 ) 2- , and -C (CF 3 ) 2- ego,
Y는 각각 독립적으로 불소, 염소, 브롬, 및 요오드로 이루어진 군에서 선택되는 1종 이상의 할로겐족 원소이고, Each Y is independently at least one halogen group element selected from the group consisting of fluorine, chlorine, bromine, and iodine,
R1, R2, R3, R4, R5, R6, 및 R7은 각각 독립적으로 산소, 질소, 및 황으로 이 루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 5 내지 30인 방향족환 및 탄소수 1 내지 30인 알킬 치환체로 이루어진 군에서 선택되는 1종 이상이고,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each independently have 5 to 5 carbon atoms containing one or more heteroatoms selected from the group consisting of oxygen, nitrogen, and sulfur. At least one member selected from the group consisting of an aromatic ring having 30 and an alkyl substituent having 1 to 30 carbon atoms,
a, b, 및 c는 각각 독립적으로 0 내지 4의 정수이고, a, b, and c are each independently an integer of 0 to 4,
x, 및 x'는 독립적으로 0 내지 3의 정수, y 및 y'는 독립적으로 1 내지 4의 정수, x+y 및 x'+y'는 독립적으로 1 내지 4의 정수이다. x and x 'are independently an integer of 0-3, y and y' are independently an integer of 1-4, x + y and x '+ y' are independently an integer of 1-4.
상기 모노머 혼합물의 축합반응의 조건은 통상적인 에테르화 반응의 조건과 동일하며, 본 발명에서는 특별히 한정되지 않으므로 이에 대한 상세한 설명은 생략한다.The conditions of the condensation reaction of the monomer mixture are the same as those of the conventional etherification reaction, and are not particularly limited in the present invention, and thus detailed description thereof is omitted.
또한, 본 발명의 분지형 술폰화 폴리술폰케톤 공중합체는 상기 a) 내지 f)의 모노머 혼합물에 상기 화학식 8 내지 15로 표시되는 화합물로 이루어진 군으로부터 선택되는 1종 이상의 다관능성 모노머를 더 첨가하여 중합함으로써 제조될 수 있다. 상기 다관능성 모노머의 첨가량은 앞서 기재된 분지단위의 함량에 준한다. In addition, the branched sulfonated polysulfone ketone copolymer of the present invention may further include at least one polyfunctional monomer selected from the group consisting of the compounds represented by Formulas 8 to 15 to the monomer mixture of a) to f). It can be prepared by polymerization. The amount of the polyfunctional monomer added is based on the content of the branching units described above.
이하, 본 발명의 바람직한 실시예를 기재한다. 다만, 하기의 실시예는 본 발명의 바람직한 일 실시예일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention are described. However, the following examples are only preferred embodiments of the present invention, and the present invention is not limited to the following examples.
[실시예]EXAMPLE
제조예 1Preparation Example 1
(술폰화 방향족 케톤 모노머의 제조) (Preparation of sulfonated aromatic ketone monomer)
250 mL 플라스크에 4,4'-디플루오로벤조페논(4,4'-difluorobenzopenone) 30 g을 넣고 발연 황산(30%) 70 mL를 상기 플라스크에 천천히 가하여 상기 디플루오로벤조페논을 완전히 용해시킨 다음 서서히 온도를 가열하여 110℃에서 약 7시간 반응시켰다. 30 g of 4,4'-difluorobenzopenone was added to a 250 mL flask, and 70 mL of fuming sulfuric acid (30%) was slowly added to the flask to completely dissolve the difluorobenzophenone. Then, the temperature was gradually heated and reacted at 110 ° C. for about 7 hours.
상기 반응 용액을 실온까지 식힌 다음 얼음물에 붓고, 열이 완전히 식은 다음 과량의 NaOH를 혼합물에 넣어 중화시킨 후, 1 M NaCl 용액을 첨가하여 3,3'-디소듐술포닐-4,4'-디플루오로페닐케톤 고체를 얻었다.The reaction solution was cooled to room temperature, poured into iced water, cooled completely, and neutralized by adding an excess of NaOH to the mixture, followed by addition of 1 M NaCl solution to 3,3'-disodiumsulfonyl-4,4'- Difluorophenylketone solid was obtained.
상기 고체를 필터링한 후 건조하여 재결정하였다. 재결정은 이소프로필알코올과 물을 이용하여 2차에 걸쳐 실시하였다. 상기 술폰화 4,4'-디플루오로벤조페논의 총 수율은 약 75%이었으며, 1H-NMR과 FT-IR(KBr)을 이용하여 화합물을 확인하였다. The solid was filtered off and dried to recrystallize. Recrystallization was carried out in 2 times using isopropyl alcohol and water. The total yield of the sulfonated 4,4'-difluorobenzophenone was about 75%, and the compound was identified using 1 H-NMR and FT-IR (KBr).
1H NMR (300MHz) δ 7.3 (H, ortho H of fluorophenyl), δ 7.7 (H, meta H of fluorophenyl), δ8.0 (H, ortho H of ketone). 1 H NMR (300 MHz) δ 7.3 (H, ortho H of fluorophenyl), δ 7.7 (H, meta H of fluorophenyl), δ 8.0 (H, ortho H of ketone).
FT-IR(KBr) 1664cm-1 (C=O), 1259cm-1 and 1093cm-1 (S=O), 624cm-1 (C=S). FT-IR (KBr) 1664 cm -1 (C = O), 1259 cm -1 and 1093 cm -1 (S = O), 624 cm -1 (C = S).
제조예 2 Preparation Example 2
(술폰화 방향족 술폰 모노머의 제조) (Preparation of sulfonated aromatic sulfone monomer)
250 mL 플라스크에 비스(4-플루오로페닐)술폰 30 g을 넣고 발연황산 (30%) 70 mL를 상기 플라스크에 천천히 가하여 상기 비스(4-플루오로페닐)술폰을 완전히 용해시킨 다음 서서히 온도를 가열하여 110℃에서 약 7시간 반응시켰다. 30 g of bis (4-fluorophenyl) sulfone was added to a 250 mL flask, and 70 mL of fuming sulfuric acid (30%) was slowly added to the flask to completely dissolve the bis (4-fluorophenyl) sulfone, and then gradually heated to a temperature. The reaction was performed at 110 ° C. for about 7 hours.
상기 반응 용액을 실온까지 식힌 다음 얼음물에 붓고, 열이 완전히 식은 다음 과량의 NaOH를 혼합물에 넣어 중화시킨 후, 1M NaCl 용액 첨가하여 3,3'-디소듐술포닐-4-4'-디플루오로페닐술폰 고체를 얻었다.The reaction solution was cooled to room temperature, poured into iced water, cooled completely, and neutralized by adding an excess of NaOH to the mixture, followed by addition of 1M NaCl solution to 3,3'-disodiumsulfonyl-4-4'-difluor A rophenylsulfone solid was obtained.
상기 고체를 필터한 후 건조하여 재결정하였다. 재결정은 메탄올과 물을 이용하여 2차에 걸쳐서 실시하였다. 상기 3,3'-디소듐술포닐-4-4'-디플루오로페닐술폰의 수율은 약 75%이었으며, 1H-NMR과 FT-IR(KBr)을 이용하여 화합물을 확인하였다. The solid was filtered and dried to recrystallize. Recrystallization was carried out over two times using methanol and water. The yield of the 3,3'-disodiumsulfonyl-4-4'-difluorophenylsulfone was about 75%, and the compound was confirmed by 1 H-NMR and FT-IR (KBr).
1H NMR (300MHz) δ7.43 (H, ortho H of fluorophenyl), δ7.95 (H, meta H of fluorophenyl), δ8.17 (H, ortho H of sulfone). 1 H NMR (300 MHz) δ 7.43 (H, ortho H of fluorophenyl), δ 7.95 (H, meta H of fluorophenyl), δ 8.17 (H, ortho H of sulfone).
FT-IR(KBr) 1093cm-1 (S=O), 624cm-1 (C=S). FT-IR (KBr) 1093 cm −1 (S = O), 624 cm −1 (C = S).
실시예 1Example 1
(술폰화 폴리술폰케톤 공중합체의 합성)(Synthesis of sulfonated polysulfone ketone copolymer)
100 mL 3구 플라스크에 Dean-stark 트랩과 콘덴서를 장치하고, 비스페놀 A 0.01 mol, 4,4'-디플루오로벤조페논 0.005 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐술폰 (3,3'-disodiumsufonyl-4,4'-difluoropenylsulfone) 0.005 mol을 N-메틸피롤리돈(NMP) 15 mL에 녹인 후, 트리스-4-히드록시페닐에탄 (tris-4-hydroxyphenylethane) 0.00002 mol (비스페놀 A의 0.2 mol%)을 첨가하였다.A 100 mL three-necked flask was equipped with a Dean-stark trap and condenser, 0.01 mol of bisphenol A, 0.005 mol of 4,4'-difluorobenzophenone, 3,3'-disodiumsulfonyl-4,4'-di After dissolving 0.005 mol of 3,3'-disodiumsufonyl-4,4'-difluoropenylsulfone in 15 mL of N-methylpyrrolidone (NMP), tris-4-hydroxyphenylethane (tris-4- hydroxyphenylethane) 0.00002 mol (0.2 mol% of bisphenol A) was added.
K2CO3 (0.026mol)를 넣고, 70℃까지 온도를 올린 후, 톨루엔 10 mL를 첨가하고 5시간 동안 환류 반응하여 생성된 물을 제거하였다.K 2 CO 3 (0.026 mol) was added thereto, the temperature was raised to 70 ° C., 10 mL of toluene was added thereto, and the reaction product was refluxed for 5 hours to remove water.
물을 제거한 후 온도를 160℃까지 상승시키면서 톨루엔을 제거하였으며, 톨루엔 제거 후에도 160℃에서 약 6시간 동안 반응하여 술폰화 폴리술폰케톤 공중합체를 제조하였다. After removing water, increase the temperature to 160 ℃ Toluene was removed, and the reaction was performed at 160 ° C. for about 6 hours after toluene removal to prepare a sulfonated polysulfone ketone copolymer.
상기 제조된 술폰화 폴리술폰케톤 공중합체를 물과 메탄올의 혼합액(부피비 3:7) 200 mL에 침전시켜 고체를 얻었다. 상기 얻어진 고체의 점도는 약 0.3 내지 0.5 g/dL 이었다. The sulfonated polysulfone ketone copolymer prepared above was precipitated in 200 mL of a mixed solution of water and methanol (volume ratio 3: 7) to obtain a solid. The viscosity of the obtained solid was about 0.3 to 0.5 g / dL.
(고분자 전해질막의 제조)(Production of Polymer Electrolyte Membrane)
상기에서 얻어진 고분자를 NMP에 녹인 후, 평편한 유리판과 둥근 유리관을 이용하여 캐스팅한 후, 70 ℃ 진공오븐에서 건조하여 20 내지 50㎛의 두께를 가지는 갈색의 투명한 막을 제조하였다.The polymer obtained above was dissolved in NMP, cast using a flat glass plate and a round glass tube, and then dried in a vacuum oven at 70 ° C. to prepare a brown transparent membrane having a thickness of 20 to 50 μm.
상기 막을 0.1 N 염산용액에 5시간 동안 담근 후, 건조하여 막 특성을 측정하였다. The membrane was immersed in 0.1 N hydrochloric acid solution for 5 hours and then dried to measure membrane properties.
실시예 2Example 2
비스페놀 A 0.01 mol, 4,4'-디플루오로벤조페논 0.006 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐술폰 0.004 mol, 및 트리스-4-히드록시페닐에탄 0.00002 mol (비스페놀 A의 0.2 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으 로 술폰화 폴리술폰케톤과 고분자 전해질막을 제조하였다. 0.01 mol of bisphenol A, 0.006 mol of 4,4'-difluorobenzophenone, 0.004 mol of 3,3'-disodiumsulfonyl-4,4'-difluorophenylsulfone, and tris-4-hydroxyphenylethane A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that 0.00002 mol (0.2 mol% of bisphenol A) was used.
실시예 3Example 3
비스페놀 A 0.01 mol, 4,4'-디플루오로벤조페논 0.007 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐술폰 0.003 mol, 트리스-4-히드록시페닐에탄 0.00002 mol (비스페놀 A의 0.2 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질막을 제조하였다.Bisphenol A 0.01 mol, 4,4'-difluorobenzophenone 0.007 mol, 3,3'-disodiumsulfonyl-4,4'-difluorophenylsulfone 0.003 mol, tris-4-hydroxyphenylethane 0.00002 A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that mol (0.2 mol% of bisphenol A) was used.
실시예 4Example 4
비스페놀 A 0.01 mol, 4,4'-디플루오로벤조페논 0.008 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐술폰 0.002 mol, 트리스-4-히드록시페닐에탄 0.00002 mol (비스페놀 A의 0.2 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질막을 제조하였다.Bisphenol A 0.01 mol, 4,4'-difluorobenzophenone 0.008 mol, 3,3'-disodiumsulfonyl-4,4'-difluorophenylsulfone 0.002 mol, tris-4-hydroxyphenylethane 0.00002 A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that mol (0.2 mol% of bisphenol A) was used.
실시예 5Example 5
비스페놀 A 0.01 mol, 4,4'-디플루오로벤조페논 0.009 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐술폰 0.001 mol, 트리스-4-히드록시페닐에탄 0.00002 mol (비스페놀 A의 0.2 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질막을 제조하였다.Bisphenol A 0.01 mol, 4,4'-difluorobenzophenone 0.009 mol, 3,3'-disodiumsulfonyl-4,4'-difluorophenylsulfone 0.001 mol, tris-4-hydroxyphenylethane 0.00002 A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that mol (0.2 mol% of bisphenol A) was used.
실시예 6Example 6
비스페놀 A 0.01 mol, 4,4'-디플루오로페닐술폰 0.005 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐케톤 0.005 mol, 트리스-4-히드록시페닐에탄 0.00002 mol (비스페놀 A의 0.2 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질막을 제조하였다.Bisphenol A 0.01 mol, 4,4'-difluorophenylsulfone 0.005 mol, 3,3'-disosulfonyl-4,4'-difluorophenylketone 0.005 mol, tris-4-hydroxyphenylethane 0.00002 A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that mol (0.2 mol% of bisphenol A) was used.
실시예 7Example 7
비스페놀 A 0.01 mol, 4,4'-디플루오로페닐술폰 0.006 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐케톤 0.004 mol, 트리스-4-히드록시페닐에탄 0.00002 mol (비스페놀 A의 0.2 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질막을 제조하였다.Bisphenol A 0.01 mol, 4,4'-difluorophenylsulfone 0.006 mol, 3,3'-disodiumsulfonyl-4,4'-difluorophenylketone 0.004 mol, tris-4-hydroxyphenylethane 0.00002 A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that mol (0.2 mol% of bisphenol A) was used.
실시예 8 Example 8
비스페놀 A 0.01 mol, 4,4'-디플루오로페닐술폰 0.007 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐케톤 0.003 mol, 트리스-4-히드록시페닐에탄 0.00002 mol (비스페놀 A의 0.2 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질막을 제조하였다.Bisphenol A 0.01 mol, 4,4'-difluorophenylsulfone 0.007 mol, 3,3'-disodiumsulfonyl-4,4'-difluorophenylketone 0.003 mol, tris-4-hydroxyphenylethane 0.00002 A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that mol (0.2 mol% of bisphenol A) was used.
실시예 9 Example 9
비스페놀 A 0.01 mol, 4,4'-디플루오로페닐술폰 0.008 mol, 3,3'-디소듐술포 닐-4,4'-디플루오로페닐케톤 0.002 mol, 트리스-4-히드록시페닐에탄 0.00002 mol (비스페놀 A의 0.2 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질막을 제조하였다.Bisphenol A 0.01 mol, 4,4'-difluorophenylsulfone 0.008 mol, 3,3'-disodiumsulfonyl-4,4'-difluorophenylketone 0.002 mol, tris-4-hydroxyphenylethane 0.00002 A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that mol (0.2 mol% of bisphenol A) was used.
실시예 10Example 10
비스페놀 A 0.01 mol, 4,4'-디플루오로페닐술폰 0.009 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐케톤 0.001 mol, 트리스-4-히드록시페닐에탄 0.00002 mol (비스페놀 A의 0.2 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질막을 제조하였다.Bisphenol A 0.01 mol, 4,4'-difluorophenylsulfone 0.009 mol, 3,3'-disodiumsulfonyl-4,4'-difluorophenylketone 0.001 mol, tris-4-hydroxyphenylethane 0.00002 A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that mol (0.2 mol% of bisphenol A) was used.
실시예 11 내지 20 Examples 11-20
트리스-4-히드록시페닐에탄을 사용하지 않은 것을 제외하고는 각각 실시예 1 내지 10과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질 막을 제조하였다. Sulfonated polysulfone ketones and polymer electrolyte membranes were prepared in the same manner as in Examples 1 to 10, except that tris-4-hydroxyphenylethane was not used.
실시예 21Example 21
비스페놀 A 0.01 mol, 4,4'-디플루오로페닐술폰 0.005 mol, 3,3'-디소듐술포닐-4,4'-디플루오로페닐케톤 0.005 mol, 트리스-4-히드록시페닐에탄 0.00003 mol (비스페놀 A의 0.1 mol%)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 술폰화 폴리술폰케톤과 고분자 전해질 막을 제조하였다.Bisphenol A 0.01 mol, 4,4'-difluorophenylsulfone 0.005 mol, 3,3'-disodiumsulfonyl-4,4'-difluorophenylketone 0.005 mol, tris-4-hydroxyphenylethane 0.00003 A sulfonated polysulfone ketone and a polymer electrolyte membrane were prepared in the same manner as in Example 1 except that mol (0.1 mol% of bisphenol A) was used.
비교예 1 Comparative Example 1
상업적으로 이용 중인 Nafion 115을 고분자 전해질 막으로 이용하였다.Commercially available Nafion 115 was used as the polymer electrolyte membrane.
비교예 2Comparative Example 2
상업적으로 이용 중인 Nafion 112을 고분자 전해질 막으로 이용하였다.Commercially available Nafion 112 was used as the polymer electrolyte membrane.
비교예 3Comparative Example 3
Victrex사 폴리에테르에테르케톤(PEEK)을 진한 황산으로 술폰화(sulfonation)하여 얻은 80% 술폰화 폴리에테르에테르케톤(S-PEEK)을 사용하여 실시예 1과 동일한 방법으로 고분자 전해질 막을 제조하였다. A polymer electrolyte membrane was prepared in the same manner as in Example 1 using 80% sulfonated polyether ether ketone (S-PEEK) obtained by sulfonation of Victrex polyether ether ketone (PEEK) with concentrated sulfuric acid.
상기 실시예 1 내지 20, 비교예 1 내지 3에 따라 얻어진 고분자 전해질 막의 수소이온 전도도를 측정하였다. 수소이온 전도도의 측정은 2.54 cm2 면적의 전극 사이에 고분자막을 위치시키고 임피던스 분석기를 이용하여 30℃에서 초기저항 값 측정하였다. 측정 식은 하기 계산식 1과 같으며 측정값은 하기 표 1에 나타내었다. The hydrogen ion conductivity of the polymer electrolyte membrane obtained according to Examples 1 to 20 and Comparative Examples 1 to 3 was measured. Hydrogen ion conductivity was measured by placing a polymer film between electrodes of an area of 2.54 cm 2 and measuring the initial resistance at 30 ° C. using an impedance analyzer. The measurement formula is the same as formula 1 below and the measured values are shown in Table 1 below.
[계산식 1][Calculation 1]
수소이온 전도도(S/cm) = (막 두께(cm)/면적(cm2)) × 초기전도도(S) Hydrogen ion conductivity (S / cm) = (film thickness (cm) / area (cm 2 )) × initial conductivity (S)
메탄올 투과 정도를 측정하기 위하여, 상기 제조된 고분자 전해질막을 두 셀 의 중간에 위치시키고, 에폭시 접착제를 이용하여 고정하였다. 한쪽 셀에는 1몰의 메탄올 수용액 15 mL를 넣고 다른 쪽 셀에는 증류수 15 mL를 넣은 후, 증류수가 들어간 셀에서 10분당 1회 10㎕씩 분취한 후, 10㎕의 증류수를 넣어 부피를 10 mL로 맞추었다. 분취한 시료에 대하여 가스크로마토그래피를 이용하여 메탄올 농도를 측정하였다. In order to measure the degree of methanol permeation, the prepared polymer electrolyte membrane was placed in the middle of two cells and fixed using an epoxy adhesive. Put 15 mL of 1 mol of aqueous methanol solution into one cell, add 15 mL of distilled water into the other cell, divide 10 μl once every 10 minutes from the cell containing distilled water, and add 10 μl of distilled water to 10 mL. Fit. The methanol concentration of the aliquoted samples was measured using gas chromatography.
시간에 따른 메탄올 변화 그래프 작성하여 기울기로 투과도를 아래 계산식 2에 의해 산출하였으며, 그 결과를 하기 표 1에 나타내었다. A graph of methanol change over time was prepared and the permeability was calculated by the slope 2 as a slope, and the results are shown in Table 1 below.
[계산식 2][Calculation 2]
상기 계산식에서 고정된 값은 막의 지름 3cm, 메탄올 농도 1 mol(32000 ppm), 용액의 부피 15 mL이다. The fixed value in the above formula is 3 cm in diameter of membrane, 1 mol of methanol concentration (32000 ppm) and 15 mL of solution volume.
[표 1]TABLE 1
상기 표 1에서 보는 것과 같이, 본 발명의 실시예 1 내지 21에 따라 제조된 고분자 전해질 막은 수소이온 전도도가 우수하며, 메탄올 투과율이 낮은 것을 알 수 있다. As shown in Table 1, the polymer electrolyte membrane prepared according to Examples 1 to 21 of the present invention has excellent hydrogen ion conductivity and low methanol permeability.
특히, 비교예 1, 및 2의 나피온 고분자 전해질막의 경우에는 수소이온 전도성은 우수하나, 메탄올 투과율에 있어서는 본 발명의 실시예에 따른 고분자 전해질 막보다 약 10배 가량 높으며, 비교예 3의 S-PEEK 고분자 전해질막은 물과 메탄올 용액에서 화학적 안정성이 부족하여 물과 메탄올 혼합용매에 녹는 현상이 관찰되었다.In particular, the Nafion polymer electrolyte membranes of Comparative Examples 1 and 2 have excellent hydrogen ion conductivity, but in methanol permeability, they are about 10 times higher than the polymer electrolyte membrane according to the embodiment of the present invention. The PEEK polymer electrolyte membrane lacked chemical stability in water and methanol solution and was dissolved in water and methanol mixed solvent.
본 발명의 내열성과 형태안정성이 우수하며, 저습조건에서도 파괴되지 않으며, 수소이온 전도성이 우수하여 연료전지용 고분자 전해질로 사용되기에 적합하다. It is excellent in heat resistance and shape stability of the present invention, does not destroy even under low humidity conditions, and excellent hydrogen ion conductivity, which is suitable for use as a polymer electrolyte for fuel cells.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050112185A KR101286265B1 (en) | 2005-11-23 | 2005-11-23 | Sulfonated poly(sulfone-ketone) copolymer, polymer electrolyte comprising the same, and mehtod for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050112185A KR101286265B1 (en) | 2005-11-23 | 2005-11-23 | Sulfonated poly(sulfone-ketone) copolymer, polymer electrolyte comprising the same, and mehtod for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070054314A true KR20070054314A (en) | 2007-05-29 |
KR101286265B1 KR101286265B1 (en) | 2013-07-15 |
Family
ID=38276139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050112185A Active KR101286265B1 (en) | 2005-11-23 | 2005-11-23 | Sulfonated poly(sulfone-ketone) copolymer, polymer electrolyte comprising the same, and mehtod for preparing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101286265B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010053297A3 (en) * | 2008-11-04 | 2010-08-19 | 주식회사 엘지화학 | Polymer electrolyte membrane |
KR100986493B1 (en) * | 2008-05-08 | 2010-10-08 | 주식회사 동진쎄미켐 | Polymer electrolyte membrane for fuel cell |
KR101306230B1 (en) * | 2006-09-07 | 2013-09-09 | 주식회사 동진쎄미켐 | Organic-inorganic composite polymer and polymer electrolyte membrane using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4375170B2 (en) * | 2003-09-30 | 2009-12-02 | 住友化学株式会社 | Block copolymer and use thereof |
JP2005232439A (en) * | 2004-01-16 | 2005-09-02 | Idemitsu Kosan Co Ltd | Polyaryl ether copolymer, method for producing the same, and polymer electrolyte membrane using the same |
-
2005
- 2005-11-23 KR KR1020050112185A patent/KR101286265B1/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101306230B1 (en) * | 2006-09-07 | 2013-09-09 | 주식회사 동진쎄미켐 | Organic-inorganic composite polymer and polymer electrolyte membrane using the same |
KR100986493B1 (en) * | 2008-05-08 | 2010-10-08 | 주식회사 동진쎄미켐 | Polymer electrolyte membrane for fuel cell |
WO2010053297A3 (en) * | 2008-11-04 | 2010-08-19 | 주식회사 엘지화학 | Polymer electrolyte membrane |
US8461287B2 (en) | 2008-11-04 | 2013-06-11 | Lg Chem, Ltd. | Polymer electrolyte membrane |
US8796412B2 (en) | 2008-11-04 | 2014-08-05 | Lg Chem, Ltd. | Polymer electrolyte membrane |
Also Published As
Publication number | Publication date |
---|---|
KR101286265B1 (en) | 2013-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Synthesis and properties of novel sulfonated poly (arylene ether sulfone) ionomers for vanadium redox flow battery | |
Chen et al. | Synthesis and characterization of novel sulfonated poly (arylene thioether) ionomers for vanadium redox flow battery applications | |
Xing et al. | Sulfonated poly (aryl ether ketone) s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes | |
Lee et al. | Preparation and evaluation of sulfonated-fluorinated poly (arylene ether) s membranes for a proton exchange membrane fuel cell (PEMFC) | |
KR101007744B1 (en) | Nitrogen containing aromatic compound and its manufacturing method | |
CN101003623B (en) | Ion-conducting cross-linked copolymer and fuel cell comprising the same | |
KR101161483B1 (en) | Polymer electrolyte membrane | |
KR101566789B1 (en) | Sulfonated polyarylene ether copolymer process of manufacturing the same and polymer electrolyte membrane for fuel cell using the copolymer | |
Wang et al. | Considerations of the effects of naphthalene moieties on the design of proton-conductive poly (arylene ether ketone) membranes for direct methanol fuel cells | |
AU2003237849A1 (en) | Sulfonated copolymer | |
WO2009066952A1 (en) | Monomer for proton-conducting polymer having acid group in side chain thereof, proton-conducting polymer prepared using the monomer, method of preparing the proton-conducting polymer, electrolyte membrane comprising the proton-conducting polymer, and membrane-electrode assembly including the electrolyte | |
CA2602240A1 (en) | Crosslinked polymer electrolyte and method for producing same | |
Jin et al. | An imidazolium type ionic liquid functionalized ether-free poly (terphenyl piperidinium) membrane for high temperature polymer electrolyte membrane fuel cell applications | |
KR100963409B1 (en) | Sulfonated poly (arylene ether) alternating copolymer and sulfonated poly (arylene ether) alternating copolymer containing a crosslinked structure at the polymer chain terminal and polymer electrolyte membrane using the same | |
KR101306230B1 (en) | Organic-inorganic composite polymer and polymer electrolyte membrane using the same | |
KR100986493B1 (en) | Polymer electrolyte membrane for fuel cell | |
CA2493047A1 (en) | Polyaryl ether copolymer, process for the production thereof, and polymer electrolytic film formed of the same | |
JP4241237B2 (en) | Block copolymer and use thereof | |
KR100954060B1 (en) | Sulfonated poly (arylene ether) copolymer, preparation method thereof and crosslinked polymer electrolyte membrane using the same | |
KR101286265B1 (en) | Sulfonated poly(sulfone-ketone) copolymer, polymer electrolyte comprising the same, and mehtod for preparing the same | |
KR20120028169A (en) | Tri-block copolymer and electrolyte membrane made from the same | |
US8741454B2 (en) | Proton exchange membrane for fuel cell | |
KR100817554B1 (en) | Method for producing acid / base blend polymer electrolyte membrane prepared using acidic or basic polymer, acid / base blend polymer electrolyte membrane prepared therefrom and direct methanol fuel cell employing the same | |
KR20150019051A (en) | Proton Exchange Membrane for Fuel Cells And Manufacturing Method Thereof | |
KR100598159B1 (en) | Polysulfone copolymer grafted with polystyrene sulfonic acid and its manufacturing method, polymer electrolyte membrane for fuel cell using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20051123 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20101028 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20051123 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20120615 Patent event code: PE09021S01D |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20121224 Patent event code: PE09021S02D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20130619 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20130709 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20130709 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20160608 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20160608 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170621 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20170621 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20200609 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20240603 Start annual number: 12 End annual number: 12 |