KR20060116552A - N-formylhydroxylamine derivatives as matrix metalloproteinase inhibitors - Google Patents
N-formylhydroxylamine derivatives as matrix metalloproteinase inhibitors Download PDFInfo
- Publication number
- KR20060116552A KR20060116552A KR1020050039006A KR20050039006A KR20060116552A KR 20060116552 A KR20060116552 A KR 20060116552A KR 1020050039006 A KR1020050039006 A KR 1020050039006A KR 20050039006 A KR20050039006 A KR 20050039006A KR 20060116552 A KR20060116552 A KR 20060116552A
- Authority
- KR
- South Korea
- Prior art keywords
- mmp
- compound
- preparation example
- benzyl
- methyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/02—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
- C07C237/04—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
- C07C237/10—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/02—Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/22—Separation; Purification; Stabilisation; Use of additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
본 발명은 매트릭스 메탈로프로테이나제 (matrix metalloproteinase, MMP) 억제제로서 유용한 화학식Ⅰ의 화합물 또는 약학적으로 허용 가능한 염, 및 이의 제조방법에 관한 것으로 특히, 젤라티나제 계열의 메탈로프로테이나제 (MMP-2 및 MMP-9)을 선택적으로 저해하며 폐섬유종양 세포 (HT-1080)의 침윤과 제대혈관내피세포 (human umbilical vein endothelial cell; HUVEC)의 tube formation을 억제하는 효과가 우수한 N-포르밀 히드록실아민 화합물의 제조방법에 관한 것이다.The present invention relates to a compound of formula (I) or a pharmaceutically acceptable salt useful as a matrix metalloproteinase (MMP) inhibitor, and a method for preparing the same, in particular, a gelatinase-based metalloproteinase ( N-pores, which selectively inhibit MMP-2 and MMP-9) and inhibit the invasion of pulmonary fibrous tumor cells (HT-1080) and tube formation of human umbilical vein endothelial cells (HUVECs). It relates to a method for producing a wheat hydroxylamine compound.
상기 화학식Ⅰ에서,In Chemical Formula I,
R1은 수소, 직쇄상 또는 분지상의 C1-6 알킬, 할로겐, 히드록시이고;R 1 is hydrogen, straight or branched C 1-6 alkyl, halogen, hydroxy;
R2는 직쇄상 또는 분지상의 C1-6 알킬, 벤질이고;R 2 is straight or branched C 1-6 alkyl, benzyl;
R3은 직쇄상 또는 분지상의 C1-6 알킬, 벤질이고;R 3 is straight or branched C 1-6 alkyl, benzyl;
R4는 수소, C1-6 알킬이다.R 4 is hydrogen, C 1-6 alkyl.
Description
도 1은 제조실시예 4, 제조실시예 7 화합물 및 대조물질인 BB-94에 의한 폐섬유종양 세포 (HT-1080)의 세포 독성을 분석한 결과이다. 1 is a result of analyzing the cytotoxicity of pulmonary fibrous tumor cells (HT-1080) by Example 4, Preparation Example 7 compound and the control material BB-94.
도 2는 제조실시예 4, 제조실시예 7 화합물 및 대조물질인 BB-94에 의한 폐섬유종양 세포 (HT-1080) 침윤성 저해를 분석한 결과이다.Figure 2 shows the results of analysis of the infiltration of lung fibroblast tumor cells (HT-1080) by Example 4, Preparation Example 7 compound and the control BB-94.
도 3은 제조실시예 4, 제조실시예 7 화합물 및 대조물질인 BB-94에 의한 사람 제대혈관내피세포 (human umbilical vein endothelial cell; HUVEC)의 혈관형성 저해를 분석한 사진이다. Figure 3 is a photograph analyzing the inhibition of angiogenesis of human umbilical vein endothelial cells (HUVEC) by Preparation Example 4, Preparation Example 7 compound and the control BB-94.
본 발명은 특정 계열의 매트릭스 메탈로프로테이나제 (matrix metalloproteinase, MMP)를 저해하는 신규한 N-포르밀 히드록실아민 유도체에 관한 것이다. 좀더 구체적으로, 본 발명은 젤라티나제 계열의 메탈로프로테이나제들에 선택적인 저해제로서 신규한 N-포르밀 히드록실아민 유도체 또는 약학적으로 허용 가능한 염, 및 이의 제조방법에 관한 것이다.The present invention relates to novel N-formyl hydroxylamine derivatives that inhibit certain classes of matrix metalloproteinases (MMPs). More specifically, the present invention relates to novel N-formyl hydroxylamine derivatives or pharmaceutically acceptable salts as selective inhibitors of gelatinase-based metalloproteinases, and methods for their preparation.
매트릭스 메탈로프로테이나제 (matrix metalloproteinase, 이하 MMP로 기술한다)는 활성부위에 아연이온 (Zn2+)을 포함하며 세포외 매트릭스 (extracellular matrix, ECM) 구성성분들의 분해에 중요 역할을 하는 효소군이다. MMP는 사람에서 23종이 알려져 있으며, MMP-1 (collagenase-1) 및 MMP-8 (collagenase-2)이 속하는 콜라게나제 계열, MMP-2 (gelatinase A) 및 MMP-9 (gelatinase B)이 속하는 젤라티나제 계열, MMP-3 (stromelysin-1) 및 MMP-10 (stromelysin-2)이 속하는 스트로멜라이신 계열, MMP-14 (membrane type-1 MMP) 등이 속하는 membrane-type MMP 계열로 분류된다. MMP는 ECM 분해가 필수적인 배발생 (embryonic development), 상처의 수복 및 재생 등과 같은 정상적인 과정뿐 아니라, MMP가 과발현 또는 과도한 활성화에 의하여 암세포의 성장, 침윤 (invasion), 전이, 신혈관생성 (angiogenesis), 류마토이드 관절염, 관절골염, 비정상 골흡수증, 골다공증, 치주염, 간질성 신염, 동맥경화증, 폐기종, 경변증, 각막손상, 자가면역질병, 또는 백혈구의 침범에 의해 유발되는 질병 등과 같은 병리학적 과정에도 중요한 역할을 하는 것으로 알려져 있다 (참조: Visse and Nagase, Circ. Res. 92:827-839, 2003). 상술한 MMP 중에서 젤라티나제 계열의 MMP-2와 MMP-9은 기저막(basement membrane)의 주성분인 type Ⅳ 콜라겐 (type Ⅳ collagen)을 비롯한 ECM 성분을 분해한다. 특히 암세포 침윤과 전이 과정과 암세포 성장에 요구되는 신혈관생성 과정에서 기저막 분해가 필수적으로 일어나므로, 젤라티나제 계열의 MMP가 이러한 병리학적 과정들에서 중요하다는 것이 알려져 있다(참조: Murphy and Crabbe, Methods Enzymol. 248:470-484, 1995; McCawley and Matrisian, Mol. Med. Today 6:149-156, 2000).Matrix metalloproteinases (hereinafter referred to as MMPs) are a group of enzymes that contain zinc ions (Zn 2+ ) at their active sites and play an important role in the degradation of extracellular matrix (ECM) components. to be. There are 23 known MMPs in humans, and the collagenase family, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), belong to MMP-1 (collagenase-1) and MMP-8 (collagenase-2). Gelatinase family, MMP-3 (stromelysin-1) and MMP-10 (stromelysin-2) belong to the stromelysin family, MMP-14 (membrane type-1 MMP) belongs to the membrane-type MMP family . MMPs are a common process, such as embryonic development, wound repair and regeneration, where ECM degradation is necessary, as well as growth, invasion, metastasis, and angiogenesis of cancer cells by overexpression or excessive activation of MMPs. Important for pathological processes such as rheumatoid arthritis, osteoarthritis, abnormal osteoporosis, osteoporosis, periodontitis, interstitial nephritis, arteriosclerosis, emphysema, cirrhosis, corneal injury, autoimmune disease, or disease caused by invasion of white blood cells Known to play a role (Visse and Nagase, Circ.Res. 92: 827-839, 2003). Among the MMPs described above, gelatinase-based MMP-2 and MMP-9 decompose ECM components including type IV collagen, which is a main component of the basement membrane. It is known that gelatinase-based MMPs are important in these pathological processes, as basal membrane degradation is essential, particularly during cancer cell infiltration and metastasis and during neovascularization, which is required for cancer cell growth. Methods Enzymol. 248: 470-484, 1995; McCawley and Matrisian, Mol. Med. Today 6: 149-156, 2000).
따라서, MMP 저해제는 상기한 MMP 관련 질환의 치료제로서 사용될 수 있다는 점에서 중요성을 갖는다.Thus, MMP inhibitors are of importance in that they can be used as therapeutic agents for MMP related diseases as described above.
현재까지 개발된 MMP 저해제는 세가지 세대 (generation)로 나누어 볼 수 있다. 1세대 MMP 저해제로는 batimastat (BB-94, British Biotech 사) 등을 예로 들 수 있으며, 대부분의 MMP들에 저해능을 갖고 있지만 경구투여에 적합하지 않았다. 2세대 MMP 저해제로는 marimastat (British Biotech 사)와 prinomastat (Agouron Pharmaceuticals 사) 등을 예로 들 수 있으며, 역시 대부분의 MMP들에 저해능을 보일 뿐만 아니라 경구투여가 가능한 것들이다. 이러한 2세대 MMP 저해제들은 대부분의 MMP를 저해하는 특징으로 인하여 임상적용시 musculoskeletal pain 등의 부작용이 큰 단점이 있었다. 이러한 단점을 개선하기 위하여 일부 MMP들을 선택적으로 저해하는 3세대 MMP 저해제가 개발되고 있으며, 그 예로는 BAY12-9566 (Bayer Corporation 사) 등이 포함된다.MMP inhibitors developed to date can be divided into three generations. The first generation of MMP inhibitors include batimastat (BB-94, British Biotech) and the like. Most of the MMPs have inhibitory effects but are not suitable for oral administration. Second-generation MMP inhibitors include marimastat (British Biotech) and prinomastat (Agouron Pharmaceuticals), which are not only inhibitory to most MMPs but can also be administered orally. These second-generation MMP inhibitors have a major disadvantage due to the characteristics that inhibit most MMPs, such as musculoskeletal pain during clinical application. In order to remedy this drawback, third generation MMP inhibitors that selectively inhibit some MMPs have been developed, and examples thereof include BAY12-9566 (Bayer Corporation).
본 발명자들은 젤라티나제 계열 (MMP-2, MMP-9)의 MMP에 선택적 저해능이 우수한 신물질을 개발하고자 연구 노력한 결과, 새로이 합성된 N-포르밀 히드록실아 민 유도체가 MMP-2와 MMP-9의 활성을 선택적으로 억제하는 것과 암세포의 침윤과 제대혈관내피세포의 혈관생성 과정을 저해하는 것을 확인함으로써, 본 발명을 완성하게 되었다. The present inventors have tried to develop a novel substance having excellent selective inhibitory ability on MMPs of gelatinase family (MMP-2, MMP-9). As a result, the newly synthesized N-formyl hydroxylamine derivatives are MMP-2 and MMP- By selectively inhibiting the activity of 9 and inhibiting cancer cell invasion and angiogenesis of umbilical cord endothelial cells, the present invention was completed.
본 발명에서는 젤라티나제 계열 (MMP-2, MMP-9)의 MMP에 선택적 저해능이 우수한 신물질을 개발할 목적으로 다음과 같은 접근 방법을 사용하였다.In the present invention, the following approach was used for the purpose of developing a novel substance having excellent selective inhibitory ability to MMP of gelatinase family (MMP-2, MMP-9).
첫째, 특정 MMP에 선택적 저해능을 확보하기 위하여, 많은 MMP 저해제에 사용된 바 있는 강력한 아연배위 기 (Zinc Binding Group, ZBG)인 히드록사믹 산 대신 상대적으로 약한 ZBG로 알려진 N-포르밀 히드록실아민을 사용하였다. 또한, MMP의 활성자리의 S1, S1' 및 S2' subsite pocket에 결합할 수 있도록 화합물의 R1, R2 및 R3의 변형을 통하여, N-포르밀 히드록실아민 유도체들을 합성하였다. First, to ensure selective inhibition of specific MMPs, N-formyl hydroxylamine, known as relatively weak ZBG, is used instead of the hydroxyxamic acid, a strong zinc binding group (ZBG) used in many MMP inhibitors. Was used. In addition, N-formyl hydroxylamine derivatives were synthesized through modification of the compounds R 1 , R 2 and R 3 to bind to the S1, S1 'and S2' subsite pockets of the active site of MMP.
둘째, 재조합 MMP-1, MMP-2, MMP-9, MMP-3 및 MMP-14를 제조하고 fluorogenic oligopeptide를 기질로 하여 각 MMP의 분석 조건을 확립하였다. 합성한 N-포르밀 히드록실아민 유도체들을 대상으로 재조합 MMP-1, MMP-2, MMP-9, MMP-3 및 MMP-14에 대한 활성 저해능을 분석하였다. 이 결과 제조실시예 4의 화합물이 젤라티나제 계열(MMP-2와 MMP-9)의 MMP와 콜라게나제 계열의 MMP-1을 선택적으로 저해하는 것으로 확인되었다. Second, recombinant MMP-1, MMP-2, MMP-9, MMP-3, and MMP-14 were prepared and the conditions for analysis of each MMP were established using fluorogenic oligopeptide as a substrate. The synthesized N-formyl hydroxylamine derivatives were analyzed for activity inhibition against recombinant MMP-1, MMP-2, MMP-9, MMP-3 and MMP-14. As a result, it was confirmed that the compound of Preparation Example 4 selectively inhibited MMP of gelatinase family (MMP-2 and MMP-9) and MMP-1 of collagenase family.
셋째, 위의 결과에서 제조실시예 4 화합물의 R2를 변형시킬 경우 젤라티나제 계열의 MMP를 보다 선택적으로 저해할 수 있을 것으로 예상되었으므로, 이 결과를 반영하여 새로운 N-포르밀 히드록실아민 유도체인 제조실시예 7 화합물을 합성하였 다. 합성한 제조실시예 7 화합물을 대상으로 다시 MMP-1, MMP-2, MMP-9, MMP-3 및 MMP-14에 대한 활성 저해능을 분석한 결과, 제조실시예 7 화합물은 젤라티나제 계열의 MMP를 제조실시예 4 화합물보다 선택적으로 저해하는 것을 확인하였다. Third, when the R 2 of the compound of Preparation Example 4 was modified from the above results, it was expected that the MMP of the gelatinase family could be more selectively inhibited. Thus, the new N-formyl hydroxylamine derivative was reflected in this result. Phosphorus Preparation Example 7 A compound was synthesized. As a result of analyzing the inhibitory activity against MMP-1, MMP-2, MMP-9, MMP-3, and MMP-14, the synthesized Example 7 compound was prepared in the gelatinase family. It was confirmed that MMP was selectively inhibited than the compound of Preparation Example 4.
넷째, 젤라티나제 계열의 MMP를 선택적으로 저해하는 제조실시예 4 및 제조실시예 7 화합물을 대상으로 폐섬유종양 세포(HT-1080)의 세포 성장에 미치는 영향을 분석한 결과, 제조실시예 4 및 제조실시예 7 화합물은 대조약물인 BB-94에 비하여 세포 독성이 낮다는 것을 확인하였다. 또한, 제조실시예 4 및 제조실시예 7 화합물은 젤라티나제 계열의 MMP를 선택적으로 저해함에도 불구하고, 암 전이능을 관찰할 수 있는 폐섬유종양 세포(HT-1080)의 침윤성 분석과 신혈관생성을 관찰할 수 있는 제대혈관내피세포(HUVEC)의 tube formation 분석에서 대부분의 MMP를 저해하는 BB-94에 비하여 다소 약하거나(제조실시예 4 화합물) 대등한(제조실시예 7 화합물) 저해 효과를 보였다. 따라서, 선정된 젤라티나제 계열의 MMP를 저해하는 제조실시예 4 및 제조실시예 7의 화합물은 전이암을 비롯한 MMP 관련 질환의 치료제로 활용 가능성이 높은 MMP 저해제임을 확인할 수 있었다.Fourth, as a result of analyzing the effect on the cell growth of pulmonary fibrous tumor cells (HT-1080) to the compound of Preparation Example 4 and Preparation Example 7 to selectively inhibit gelatinase MMP, Preparation Example 4 And Preparation Example 7 It was confirmed that the compound is low in cytotoxicity compared to the reference drug BB-94. In addition, Preparation Example 4 and Preparation Example 7 compound, despite the selective inhibition of gelatinase-based MMP, invasiveness and renal blood vessels of pulmonary fibrous tumor cells (HT-1080) that can observe the cancer metastatic capacity In the tube formation analysis of umbilical vascular endothelial cells (HUVEC) whose production can be observed, the inhibitory effect is somewhat weaker than that of BB-94 which inhibits most MMPs (Compound 4) and comparable (Compound 7) Showed. Accordingly, the compounds of Preparation Example 4 and Preparation Example 7 which inhibit the selected gelatinase-based MMPs were confirmed to be MMP inhibitors that are highly applicable as therapeutic agents for MMP-related diseases including metastatic cancer.
결국, 본 발명의 주된 목적은 젤라티나제 계열의 MMP 활성을 선택적으로 저해하는 N-포르밀 히드록실아민 유도체를 제공하는 것이다. 본 발명의 다른 목적은 전기 유도체의 제조방법을 제공하는 것이다. After all, the main object of the present invention is to provide an N-formyl hydroxylamine derivative that selectively inhibits the gelatinase family of MMP activity. Another object of the present invention is to provide a method for producing an electrical derivative.
상기 화학식Ⅰ에서,In Chemical Formula I,
R1은 수소, 직쇄상 또는 분지상의 C1-6 알킬, 할로겐, 히드록시이고;R 1 is hydrogen, straight or branched C 1-6 alkyl, halogen, hydroxy;
R2는 직쇄상 또는 분지상의 C1-6 알킬, 벤질이고;R 2 is straight or branched C 1-6 alkyl, benzyl;
R3은 직쇄상 또는 분지상의 C1-6 알킬, 벤질이고;R 3 is straight or branched C 1-6 alkyl, benzyl;
R4는 수소, C1-6 알킬이다.R 4 is hydrogen, C 1-6 alkyl.
본 발명의 화합물은 부재탄소를 함유함으로서, 라세믹체 또는 광학이성질체 또는 부분입체이성질체의 형태일 수 있다. 따라서, 본 발명의 화합물은 이러한 라세믹체, 광학이성질체 및 부분입체이성질체 모두를 포함한다.The compounds of the present invention may be in the form of racemic or optical isomers or diastereomers by containing the carbon free. Accordingly, the compounds of the present invention include all such racemates, optical isomers and diastereomers.
또한, 본 발명의 화합물은 약제학적으로 허용 가능한 염, 수화물, 또는 용매화물의 형태일 수 있다. 본 발명의 화합물에 적용될 수 있는 약제학적으로 허용 가능한 염의 예로는 염산염, 브롬산염, 황산염, 질산염, 메틸설폰산염, p-톨루엔설폰산염, 인산염, 초산염, 피루브산염, 시트르산염, 석신산염, 락트산염, 타르타르산염, 푸마르산염, 말레산염, 스테아르산염, 살리실산염, 나트륨염, 칼륨염, 마그네슘염, 및 칼슘염 등이 포함된다. In addition, the compounds of the present invention may be in the form of pharmaceutically acceptable salts, hydrates, or solvates. Examples of pharmaceutically acceptable salts that can be applied to the compounds of the present invention include hydrochloride, bromate, sulfate, nitrate, methylsulfonate, p-toluenesulfonate, phosphate, acetate, pyruvate, citrate, succinate, lactate, Tartarate, fumarate, maleate, stearate, salicylate, sodium salt, potassium salt, magnesium salt, calcium salt and the like.
본 발명은 상기 화학식 Ⅰ의 화합물 또는 그의 약제학적으로 허용 가능한 염의 제조방법을 포함한다. The present invention includes a process for preparing the compound of formula (I) or a pharmaceutically acceptable salt thereof.
즉, 화학식 Ⅱ의 화합물을 화학식 Ⅲ의 화합물 또는 그의 염과 반응시킨 후 포르밀기를 도입하고, 히드록시 보호기를 제거하는 단계를 포함하는 화학식 Ⅰ의 화합물 및 그의 약학적으로 허용 가능한 염의 제조방법을 포함한다. That is, a method of preparing a compound of formula (I) and a pharmaceutically acceptable salt thereof comprising reacting a compound of formula (II) with a compound of formula (III) or a salt thereof followed by introducing a formyl group and removing a hydroxy protecting group do.
화학식 Ⅱ의 화합물과 화학식 Ⅲ의 화합물 또는 그의 염과 반응시키는 단계는 통상의 펩티드 합성방법, 예를 들면, 펜타-플루오로페놀, N,O-디메틸히드록실아민, DMAP-EDCI 또는 EDCI-HOBt-NMM 등의 펩티드 결합시약의 존재 하에서 수행할 수 있으며 사용 가능한 용매는 테트라히드로퓨란, 디클로로메탄, N,N-디메틸포름아미드 등의 용매를 포함한다. 벤질과 같은 보호기는 수소화 촉매, 바람직하게는 팔라듐 촉매를 아미드 생성물에 첨가하여 수소 분위기 하에서 약 2 내지 약 24 시간 교반하여 수행할 수 있다. The reaction of the compound of formula II with the compound of formula III or a salt thereof may be carried out using conventional peptide synthesis methods such as penta-fluorophenol, N, O-dimethylhydroxylamine, DMAP-EDCI or EDCI-HOBt-. It can be carried out in the presence of a peptide binding reagent, such as NMM and available solvents include solvents such as tetrahydrofuran, dichloromethane, N, N- dimethylformamide. A protecting group such as benzyl can be carried out by adding a hydrogenation catalyst, preferably a palladium catalyst, to the amide product and stirring for about 2 to about 24 hours under a hydrogen atmosphere.
상기 식에서 R1, R2, R3 및 R4는 상기에서 정의한 바와 같다.Wherein R 1 , R 2 , R 3 and R 4 are as defined above.
본 발명은 하기 실시예를 참조하여 설명될 것이나, 이 실시예는 단지 설명을 위한 것일 뿐 본 발명의 범위를 제한하는 것으로 해석되어서는 안된다. The present invention will be described with reference to the following examples, but these examples are for illustrative purposes only and should not be construed as limiting the scope of the invention.
[제조실시예]Production Example
일반절차: (R)-2-[(포르밀-히드록시-아미노)-메틸]-4-메틸-펜탄산 ((S)-알킬)-아미드의 합성 (반응식 1)General Procedure: Synthesis of (R) -2-[(formyl-hydroxy-amino) -methyl] -4-methyl-pentanoic acid ((S) -alkyl) -amide (Scheme 1)
단계 1: (S)-4-벤질-3-(4-메틸-펜타노일)-옥사졸리딘-2-온 (c)Step 1: (S) -4-benzyl-3- (4-methyl-pentanoyl) -oxazolidin-2-one (c)
플라스크 A: 질소 분위기하에서 건조된 테트라히드로퓨란 (200 ml)에 화합물 a (R2=iso-부틸, 20 g, 172.18 mmol)을 녹이고 -78℃까지 냉각하여 트리에틸아민 (31.2 ml, 223.83 mmol)과 트리메틸아세틸 클로리드 (23.3 ml, 189.4 mmol)를 첨가하고 30분 교반 후 실온에서 2시간 교반 하고 다시 -78℃까지 냉각하였다. 플라스 크 B: 질소 분위기하에서 건조된 테트라히드로퓨란 (400 ml)에 화합물 b ((S)-4-벤질-옥사졸리딘-2-온, 36.6g, 206.55 mmol)을 녹이고 -78℃까지 냉각하여 2.5M n-부틸리튬 (82.65 ml, 206.55 mmol)을 가하고 1시간 동안 교반하였다. 플라스크 B의 반응액을 플라스크 A 반응액에 천천히 가한 다음 실온에서 12시간 이상 교반하였다. 반응 혼합액을 1M KHCO3 (250 ml)로 처리하고 감압농축 후 에틸아세테이트로 묽히고 물로 세척하였다. 유기층을 마그네슘설페이트로 건조하고 농축한 후 실리카겔 크로마토그라피로 정제하여 오일 형태의 표제 화합물 (42.6 g, 89.9%)을 얻었다.Flask A: Compound a (R 2 = iso-butyl, 20 g, 172.18 mmol) was dissolved in tetrahydrofuran (200 ml) dried under nitrogen atmosphere and cooled to -78 ° C to triethylamine (31.2 ml, 223.83 mmol) And trimethylacetyl chloride (23.3 ml, 189.4 mmol) were added, stirred for 30 minutes, stirred at room temperature for 2 hours, and cooled to -78 ° C. Flask B: Compound b ((S) -4-benzyl-oxazolidin-2-one, 36.6 g, 206.55 mmol) was dissolved in tetrahydrofuran (400 ml) dried under a nitrogen atmosphere, and cooled to -78 ° C. 2.5M n-butyllithium (82.65 ml, 206.55 mmol) was added and stirred for 1 hour. The reaction solution of Flask B was slowly added to the flask A reaction solution, followed by stirring at room temperature for 12 hours or more. The reaction mixture was treated with 1M KHCO 3 (250 ml), concentrated under reduced pressure, diluted with ethyl acetate and washed with water. The organic layer was dried over magnesium sulfate, concentrated and purified by silica gel chromatography to obtain the title compound (42.6 g, 89.9%) in the form of an oil.
1H-NMR(CDCl3): δ 7.35-7.19 (m, 5H), 4.69-4.64 (m, 1H), 4.22-4.14 (m, 2H), 3.29 (dd, 1H), 2.98-2.90 (m, 2H), 2.80-2.72 (m, 1H), 1.67-1.54 (m, 3H), 0.94 (d, 6H). 1 H-NMR (CDCl 3 ): δ 7.35-7.19 (m, 5H), 4.69-4.64 (m, 1H), 4.22-4.14 (m, 2H), 3.29 (dd, 1H), 2.98-2.90 (m, 2H), 2.80-2.72 (m, 1H), 1.67-1.54 (m, 3H), 0.94 (d, 6H).
단계 2: (S)-4-벤질-3-((R)-2-벤질옥시메틸-4-메틸-펜타노일)-옥사졸리딘-2-온 (d)Step 2: (S) -4-benzyl-3-((R) -2-benzyloxymethyl-4-methyl-pentanoyl) -oxazolidin-2-one (d)
질소 분위기하에서, 건조된 디클로로메탄 (350 ml)중의 화합물 c (25 g, 90.79 mmol) 용액을 0℃까지 냉각하고 1M 티타늄클로리드 (99.9 ml, 99.87 mmol)를 첨가하였다. 5분 후 트리에틸아민 (14.11 ml, 101.69 mmol)을 가하여 0℃에서 1시간 교반하고 벤질 클로로메틸에테르 (28.4 g, 181.6 mmol)를 첨가한 후 0℃에서 3시간, 실온에서 12시간 교반하였다. 반응 혼합액을 포화 NH4Cl 용액으로 처리하고 유기층을 분리하여 물 및 포화 NaCl로 세척하고 마그네슘설페이트로 건조, 농축한 후 실리카겔 크로마토그라피로 정제하여 오일 형태의 표제 화합물 (28.8 g, 80.2%) 을 얻었다.Under nitrogen atmosphere, a solution of compound c (25 g, 90.79 mmol) in dried dichloromethane (350 ml) was cooled to 0 ° C. and 1M titanium chloride (99.9 ml, 99.87 mmol) was added. After 5 minutes, triethylamine (14.11 ml, 101.69 mmol) was added and stirred at 0 ° C. for 1 hour, benzyl chloromethyl ether (28.4 g, 181.6 mmol) was added, followed by stirring at 0 ° C. for 3 hours and at room temperature for 12 hours. The reaction mixture was treated with saturated NH 4 Cl solution, the organic layer was separated, washed with water and saturated NaCl, dried over magnesium sulfate, concentrated and purified by silica gel chromatography to obtain the title compound (28.8 g, 80.2%) in oil form. .
1H-NMR(CDCl3): δ 7.32-7.16 (m, 10H), 4.73-4.68 (m, 1H), 4.54 (d, 2H), 4.38-4.36 (m, 1H), 4.19-4.08 (m, 2H), 3.77-3.62 (m, 2H), 3.22 (dd, 1H), 2.66-2.58 (m, 1H), 1.71-1.54 (m, 2H), 1.38-1.29 (m, 1H), 0.90 (dd, 6H). 1 H-NMR (CDCl 3 ): δ 7.32-7.16 (m, 10H), 4.73-4.68 (m, 1H), 4.54 (d, 2H), 4.38-4.36 (m, 1H), 4.19-4.08 (m, 2H), 3.77-3.62 (m, 2H), 3.22 (dd, 1H), 2.66-2.58 (m, 1H), 1.71-1.54 (m, 2H), 1.38-1.29 (m, 1H), 0.90 (dd, 6H).
단계 3: (R)-2-벤질옥시메틸-4-메틸-펜탄산 (e)Step 3: (R) -2-benzyloxymethyl-4-methyl-pentanoic acid (e)
질소 분위기하에서 화합물 d (26.85 g, 67.89 mmol)를 테트라히드로퓨란/물 (4/1, 420 ml) 혼합용액에 녹이고 0℃로 냉각하고 30%-과산화수소 (56 ml, 271.56 mmol)와 리튬히드록시드 (4.55 g, 110.22 mmol)를 첨가한 후 3시간 교반하였다. 물 (200 ml)에 녹인 Na2SO3 (34.3 g) 용액으로 처리하고 감압농축 후 디클로로메탄으로 세척하고 수용액 층을 2N 염산 수용액으로 PH=2.5까지 조절하였다. 수용액 층을 에틸아세테이트로 추출하고 마그네슘설페이트로 건조, 농축하여 오일 형태의 표제 화합물 (15 g, 93.7%)을 얻었다.In a nitrogen atmosphere, compound d (26.85 g, 67.89 mmol) was dissolved in a tetrahydrofuran / water (4/1, 420 ml) mixed solution, cooled to 0 ° C., 30% hydrogen peroxide (56 ml, 271.56 mmol) and lithium hydroxide. Seed (4.55 g, 110.22 mmol) was added and stirred for 3 hours. Treated with Na 2 SO 3 (34.3 g) solution dissolved in water (200 ml), concentrated under reduced pressure, washed with dichloromethane, and the aqueous layer was adjusted to PH = 2.5 with 2N aqueous hydrochloric acid solution. The aqueous layer was extracted with ethyl acetate, dried over magnesium sulfate and concentrated to give the title compound (15 g, 93.7%) in the form of an oil.
1H-NMR(CDCl3): δ 7.36-7.25(m, 5H), 4.54 (s, 2H), 3.66-3.51 (m, 2H), 2.85-2.78 (m, 1H), 1.67-1.53 (m, 2H), 1.36-1.20 (m, 1H), 0.91 (dd, 6H). 1 H-NMR (CDCl 3 ): δ 7.36-7.25 (m, 5H), 4.54 (s, 2H), 3.66-3.51 (m, 2H), 2.85-2.78 (m, 1H), 1.67-1.53 (m, 2H), 1.36-1.20 (m, 1H), 0.91 (dd, 6H).
단계 4: (R)-2-히드록시메틸-4-메틸-펜탄산 (f)Step 4: (R) -2-hydroxymethyl-4-methyl-pentanoic acid (f)
에틸알콜 (500 ml)중의 화합물 e (14 g, 59.24 mmol) 용액에 10% Pd/C (2 g) 을 첨가하고 실온에서 20시간 교반하였다. 셀라이트하에 여과하고 농축하여 오일 형태의 표제 화합물 (8.6 g, 99.3%)을 얻었다.To a solution of compound e (14 g, 59.24 mmol) in ethyl alcohol (500 ml) was added 10% Pd / C (2 g) and stirred at room temperature for 20 hours. Filtration under celite and concentration gave the title compound (8.6 g, 99.3%) in oil form.
1H-NMR(CDCl3): δ 6.68 (s, 1.6H), 3.76 (d, 2H), 2.74-2.65 (m, 1H), 1.73-1.54 (m, 2H), 1.37-1.23 (m, 1H), 0.93 (dd, 6H). 1 H-NMR (CDCl 3 ): δ 6.68 (s, 1.6H), 3.76 (d, 2H), 2.74-2.65 (m, 1H), 1.73-1.54 (m, 2H), 1.37-1.23 (m, 1H ), 0.93 (dd, 6H).
단계 5: (R)-2-히드록시메틸-4-메틸-펜탄산 벤질옥시 아미드 (g)Step 5: (R) -2-hydroxymethyl-4-methyl-pentanoic acid benzyloxy amide (g)
디클로로메탄 (200 ml)에 화합물 f (8g, 54.72 mmol)를 녹이고 0℃로 냉각하여 O-벤질히드록실아민 (9.17 g, 57.44 mmol), 디메틸아미노피리딘 (DMAP, 13.37 g, 109.44 mmol), 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드 히드로클로라이드 (EDCI, 11.01 g, 57.43 mmol)을 첨가한 후 실온에서 24시간 동안 교반하였다. 반응혼합액에 1N 염산 용액 (220 ml)를 가하고 디클로로메탄으로 추출하여 물 및 포화 NaCl 용액으로 세척하고 마그네슘설페이트로 건조, 농축하여 흰색의 결정성 고체로 표제 화합물 (11 g, 80%)을 얻었다.Compound f (8 g, 54.72 mmol) was dissolved in dichloromethane (200 ml) and cooled to 0 ° C. to O-benzylhydroxylamine (9.17 g, 57.44 mmol), dimethylaminopyridine (DMAP, 13.37 g, 109.44 mmol), 1 -Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDCI, 11.01 g, 57.43 mmol) was added and stirred at room temperature for 24 hours. 1N hydrochloric acid solution (220 ml) was added to the reaction mixture, extracted with dichloromethane, washed with water and saturated NaCl solution, dried over magnesium sulfate, and concentrated to give the title compound (11 g, 80%) as a white crystalline solid.
1H-NMR(CD3OD): δ 7.44-7.32 (m, 5H), 4.86 (s, 2H), 3.66-3.43 (m, 2H), 3.31-3.29 (m, 1H), 2.23-2.24 (m, 1H), 1.52-1.38 (m, 2H), 1.18-1.11 (m, 1H) 0.85 (t, 6H). 1 H-NMR (CD 3 OD): δ 7.44-7.32 (m, 5H), 4.86 (s, 2H), 3.66-3.43 (m, 2H), 3.31-3.29 (m, 1H), 2.23-2.24 (m , 1H), 1.52-1.38 (m, 2H), 1.18-1.11 (m, 1H) 0.85 (t, 6H).
단계 6: (R)-1-벤질옥시-3-이소부틸-아제티딘-2-온 (h)Step 6: (R) -1-benzyloxy-3-isobutyl-azetidin-2-one (h)
질소 분위기하에서, 건조된 테트라히드로퓨란 (400 ml)에 화합물 g (11 g, 43.77 mmol)을 녹이고 0℃로 냉각하여 트리페닐포스핀 (13.77 g, 52.5 mmol), 디에틸아조디카르복시레이트 (DEAD, 9.15 g, 52.5 mmol)을 첨가하고 실온에서 18시간 교반하였다. 반응혼합액에 물 (400 ml)를 가하고 에틸아세테이트로 추출하고 포화 NaCl 용액으로 세척하고 마그네슘설페이트로 건조, 농축 후 실리카겔 크로마토그라피로 정제하여 오일 형태의 표제 화합물 (8.7 g, 85.2%)을 얻었다.In a nitrogen atmosphere, compound g (11 g, 43.77 mmol) was dissolved in dried tetrahydrofuran (400 ml) and cooled to 0 ° C. to triphenylphosphine (13.77 g, 52.5 mmol), diethylazodicarboxylate (DEAD , 9.15 g, 52.5 mmol) was added and stirred at room temperature for 18 hours. Water (400 ml) was added to the reaction mixture, extracted with ethyl acetate, washed with saturated NaCl solution, dried over magnesium sulfate, concentrated and purified by silica gel chromatography to obtain the title compound (8.7 g, 85.2%) in the form of an oil.
1H-NMR(CDCl3): δ 7.43-7.36 (m, 5H), 4.98 (s, 2H), 3.37 (t, 1H), 2.91-2.81 (m, 2H), 1.73-1.57 (m, 2H), 1.34-1.23 (m, 1H), 0.86 (dd, 6H). 1 H-NMR (CDCl 3 ): δ 7.43-7.36 (m, 5H), 4.98 (s, 2H), 3.37 (t, 1H), 2.91-2.81 (m, 2H), 1.73-1.57 (m, 2H) , 1.34-1.23 (m, 1 H), 0.86 (dd, 6 H).
단계 7: (R)-2-(벤질옥시아미노-메틸)-4-메틸-펜탄산 (i)Step 7: (R) -2- (benzyloxyamino-methyl) -4-methyl-pentanoic acid (i)
테트라히드로퓨란/물/메틸알콜 (3/1/1, 400 ml)중의 화합물 h (8 g, 34.29 mmol) 용액에 리튬히드록시드 (14.39 g, 342.9 mmol)을 첨가한 후 실온에서 18시간 교반하였다. 물 (200 ml)로 처리하고 3N 염산용액으로 pH=2.5까지 조절하여 감압농축 후 에틸아세테이트로 추출하고 마그네슘설페이트로 건조, 농축하여 오일 형태의 표제 화합물 (8.5 g, 98.7%)을 얻었다.To a solution of compound h (8 g, 34.29 mmol) in tetrahydrofuran / water / methyl alcohol (3/1/1, 400 ml) was added lithium hydroxide (14.39 g, 342.9 mmol) and stirred at room temperature for 18 hours. It was. Treated with water (200 ml), adjusted to pH = 2.5 with 3N hydrochloric acid solution, concentrated under reduced pressure, extracted with ethyl acetate, dried over magnesium sulfate and concentrated to give the title compound (8.5 g, 98.7%) in the form of an oil.
1H-NMR(CDCl3): δ 7.38-7.27 (m, 5H), 4.72 (d, 2H), 3.15-3.03 (m, 2H), 2.85-2.76 (m, 1H), 1.71-1.58 ( m, 2H), 1.35-1.25 (m, 1H), 0.90 (t, 6H). 1 H-NMR (CDCl 3 ): δ 7.38-7.27 (m, 5H), 4.72 (d, 2H), 3.15-3.03 (m, 2H), 2.85-2.76 (m, 1H), 1.71-1.58 (m, 2H), 1.35-1.25 (m, 1H), 0.90 (t, 6H).
단계 8: (R)-2-(벤질옥시아미노-메틸)-4-메틸-펜탄산 ((S)-1-메틸카르바모일-2-페닐-에틸)-아미드 (j)Step 8: (R) -2- (benzyloxyamino-methyl) -4-methyl-pentanoic acid ((S) -1-methylcarbamoyl-2-phenyl-ethyl) -amide (j)
화합물 i (500 mg, 1.989 mmol)을 디메틸포름아미드 (8 ml)에 녹이고 0℃로 냉각하여 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드 히드로클로라이드 (EDCI, 457.7 mg, 2.387 mmol), 1-히드록시벤조트리아졸 (HOBt, 322.6 mg, 2.387 mmol), N-메틸모포린 (NMM, 0.437 ml, 3.978 mmol)를 첨가하고 45분 동안 교반하였다. 이 반응액에 L-아미노산-알킬아미드 (R3=벤질, R4=메틸, 1.5 eq)를 첨가하고 실온에서 24시간 교반 후 에틸아세테이트로 묽히고 1N 염산용액, 포화 NaHCO3, 물, 포화 NaCl로 각각 세척한 다음 마그네슘설페이트로 건조, 농축 후 실리카겔 크로마토그라피로 정제하여 흰색의 결정성 고체로 표제 화합물 (600 mg, 60.0%)을 얻었다.Compound i (500 mg, 1.989 mmol) was dissolved in dimethylformamide (8 ml) and cooled to 0 ° C. to 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDCI, 457.7 mg, 2.387 mmol ), 1-hydroxybenzotriazole (HOBt, 322.6 mg, 2.387 mmol), N-methylmorpholine (NMM, 0.437 ml, 3.978 mmol) was added and stirred for 45 minutes. L-amino acid-alkylamide (R 3 = benzyl, R 4 = methyl, 1.5 eq) was added to the reaction solution, stirred at room temperature for 24 hours, diluted with ethyl acetate, 1N hydrochloric acid solution, saturated NaHCO 3 , water, and saturated NaCl. After washing each with, dried over magnesium sulfate, concentrated and purified by silica gel chromatography to give the title compound (600 mg, 60.0%) as a white crystalline solid.
1H-NMR(CDCl3): δ 7.36-7.16 (m, 5H), 6.51 (d, 0.7H), 6.03 (s, 0.7H), 5.41 (s, 0.7H), 4.63-4.56 (m, 3H), 3.12-2.78 (m, 4H), 2.7 (d, 3H), 2.57-2.48 (m, 1H), 1.57-1.44 (m, 2H), 1.13-1.09 (m, 1H), 0.84 (dd, 6H). 1 H-NMR (CDCl 3 ): δ 7.36-7.16 (m, 5H), 6.51 (d, 0.7H), 6.03 (s, 0.7H), 5.41 (s, 0.7H), 4.63-4.56 (m, 3H ), 3.12-2.78 (m, 4H), 2.7 (d, 3H), 2.57-2.48 (m, 1H), 1.57-1.44 (m, 2H), 1.13-1.09 (m, 1H), 0.84 (dd, 6H) ).
단계 9: (R)-2-[(벤질옥시-포르밀-아미노)-메틸]-4-메틸-펜탄산 ((S)-1-메틸카르바모일-2-페닐-에틸)-아미드 (k)Step 9: (R) -2-[(benzyloxy-formyl-amino) -methyl] -4-methyl-pentanoic acid ((S) -1-methylcarbamoyl-2-phenyl-ethyl) -amide ( k)
디클로로메탄 (2 ml)중의 화합물 j (100 mg, 0.265 mmol) 용액을 0℃로 냉각하고 포름산 (1.3 ml)와 아세틱안히드리드 (0.26 ml, 2.81 mmol)를 첨가 후 0℃에서 3시간 교반하고 감압하에 농축하였다. 다시 디클로로메탄으로 묽히고 포화 NaCl 로 세척한 다음 마그네슘설페이트로 건조, 농축 후 실리카겔 크로마토그라피로 정제하여 흰색의 결정성 고체로 표제 화합물 (96 mg, 89.7%)을 얻었다.The solution of compound j (100 mg, 0.265 mmol) in dichloromethane (2 ml) was cooled to 0 ° C., formic acid (1.3 ml) and acetic anhydride (0.26 ml, 2.81 mmol) were added, followed by stirring at 0 ° C. for 3 hours. Concentrated under reduced pressure. Diluted again with dichloromethane, washed with saturated NaCl, dried over magnesium sulfate, concentrated and purified by silica gel chromatography to obtain the title compound (96 mg, 89.7%) as a white crystalline solid.
1H-NMR(CDCl3): δ 7.99 (s, 0.8H), 7.36-7.08 (m,10H), 6.26 (s, 1H), 5.85 (s, 0.7H), 4.72 (s, 1.4H), 4.51-4.49 (m, 1H), 3.82-3.61 (m, 2H), 2.99-2.54 (m, 2H), 2.67-2.60 (m, 4H), 1.55-1.35 (m, 2H), 1.25-1.15 (m, 1H), 0.86-0.83 (m, 6H). 1 H-NMR (CDCl 3 ): δ 7.99 (s, 0.8H), 7.36-7.08 (m, 10H), 6.26 (s, 1H), 5.85 (s, 0.7H), 4.72 (s, 1.4H), 4.51-4.49 (m, 1H), 3.82-3.61 (m, 2H), 2.99-2.54 (m, 2H), 2.67-2.60 (m, 4H), 1.55-1.35 (m, 2H), 1.25-1.15 (m , 1H), 0.86-0.83 (m, 6H).
단계 10: (R)-2-[(포르밀-히드록시-아미노)-메틸]-4-메틸-펜탄산 ((S)-1-메틸카르바모일-2-페닐-에틸)-아미드 (l)Step 10: (R) -2-[(Formyl-hydroxy-amino) -methyl] -4-methyl-pentanoic acid ((S) -1-methylcarbamoyl-2-phenyl-ethyl) -amide ( l)
에틸알콜 (3 ml)중의 화합물 k (60 mg, 0.148 mmol) 용액에 10% Pd/C (10 mg)을 첨가하고 실온에서 4시간 교반하였다. 셀라이트하에 여과하고 농축 후 실리카겔 크로마토그라피로 정제하여 흰색 또는 엷은 핑크색의 결정성 고체로 표제 화합물 (30 mg, 65%)을 얻었다.To a solution of compound k (60 mg, 0.148 mmol) in ethyl alcohol (3 ml) was added 10% Pd / C (10 mg) and stirred at room temperature for 4 hours. Filtration under celite, concentration and purification by silica gel chromatography gave the title compound (30 mg, 65%) as a white or pale pink crystalline solid.
1H-NMR (CD3OD): δ 8.13 (s, 0.42H), 7.79 (s, 0.48H), 7.29-7.19 (m, 5H), 4.53-4.48 (m, 1H), 3.68-3.29 (m, 2H), 3.06-2.75 (m, 3H), 2.63 (d, 3H), 1.49-1.23 (m, 2H), 1.20-1.08 (m, 1H), 0.91-0.80 (m, 6H). 1 H-NMR (CD 3 OD): δ 8.13 (s, 0.42H), 7.79 (s, 0.48H), 7.29-7.19 (m, 5H), 4.53-4.48 (m, 1H), 3.68-3.29 (m , 2H), 3.06-2.75 (m, 3H), 2.63 (d, 3H), 1.49-1.23 (m, 2H), 1.20-1.08 (m, 1H), 0.91-0.80 (m, 6H).
제조실시예 1. (S)-2-[(R)-2-벤질-3-(포르밀-히드록시-아미노)-프로피오닐아미노]- 3,3 N-트리메틸-부티르아미드Preparation Example 1. (S) -2-[(R) -2-Benzyl-3- (formyl-hydroxy-amino) -propionylamino] -3,3 N-trimethyl-butyrylamide
상기 일반절차에 따라 (R)-2-벤질-3-벤질옥시아미노-프로피온산 및 (S)-2-아미노-3,3 N-트리메틸-부티르아미드 염산염으로부터 표제 화합물을 제조하였다.The title compound was prepared from (R) -2-benzyl-3-benzyloxyamino-propionic acid and (S) -2-amino-3,3 N-trimethyl-butyamide hydrochloride according to the above general procedure.
1H-NMR(CDCl3): δ 8.41 (s, 0.4H), 7.83 (s, 0.6H), 7.29-7.19 (m, 5H), 6.65 (d, 0.4H), 6.55 (d, 0.6H), 4.91-4.83 (m, 1H), 4.03-3.95 (m, 0.4H), 3.84-3.74 (m, 0.6H), 3.62-3.43 (m, 1H), 3.16 (s, 1H), 3.13 (s, 2H), 2.89-2.79 (m, 0.6H), 2.76-2.71 (m, 0.4), 1.69-1.34 (m, 1.8), 1.29-1.20 (m, 1.2H), 1.01-0.95 (m, 9H). 1 H-NMR (CDCl 3 ): δ 8.41 (s, 0.4H), 7.83 (s, 0.6H), 7.29-7.19 (m, 5H), 6.65 (d, 0.4H), 6.55 (d, 0.6H) , 4.91-4.83 (m, 1H), 4.03-3.95 (m, 0.4H), 3.84-3.74 (m, 0.6H), 3.62-3.43 (m, 1H), 3.16 (s, 1H), 3.13 (s, 2H), 2.89-2.79 (m, 0.6H), 2.76-2.71 (m, 0.4), 1.69-1.34 (m, 1.8), 1.29-1.20 (m, 1.2H), 1.01-0.95 (m, 9H).
제조실시예 2. (2R,3S)-2-벤질-N-((S)-2,2-디메틸-1-메틸카르바모일-프로필)-3-(포르밀-히드록시-아미노)-부티르아미드Preparation Example 2. (2R, 3S) -2-Benzyl-N-((S) -2,2-dimethyl-1-methylcarbamoyl-propyl) -3- (formyl-hydroxy-amino)- Butyramide
상기 일반절차에 따라 (2R,3S)-2-벤질-3-벤질옥시아미노-부티르산 및 (S)-2-아미노-3,3 N-트리메틸-부티르아미드 염산염으로부터 표제 화합물을 제조하였다. The title compound was prepared from (2R, 3S) -2-benzyl-3-benzyloxyamino-butyric acid and (S) -2-amino-3,3 N-trimethyl-butyamide hydrochloride according to the above general procedure.
1H-NMR(CDCl3): δ 8.44 (s, 0.4H), 7.81 (s, 0.6H), 7.27-7.19 (m, 5H), 6.59 (d, 0.4H), 6.49 (d, 0.6H), 4.90-4.83 (m, 1H), 4.01-3.95 (m, 0.4H), 3.81-3.74 (m, 0.6H), 3.15 (m, 1H), 3.09 (s, 2H), 2.92-2.79 (m, 0.6H), 2.76-2.71 (m, 0.4), 1.70-1.34 (m, 1.8), 1.30-1.20 (m, 1.2H), 1.16-1.12 (m, 3H), 1.01-0.95 (m, 9H). 1 H-NMR (CDCl 3 ): δ 8.44 (s, 0.4H), 7.81 (s, 0.6H), 7.27-7.19 (m, 5H), 6.59 (d, 0.4H), 6.49 (d, 0.6H) , 4.90-4.83 (m, 1H), 4.01-3.95 (m, 0.4H), 3.81-3.74 (m, 0.6H), 3.15 (m, 1H), 3.09 (s, 2H), 2.92-2.79 (m, 0.6H), 2.76-2.71 (m, 0.4), 1.70-1.34 (m, 1.8), 1.30-1.20 (m, 1.2H), 1.16-1.12 (m, 3H), 1.01-0.95 (m, 9H).
제조실시예 3. (2R,3S)-2-벤질-3-(포르밀-히드록시-아미노)-펜탄산 ((S)-2,2-디메틸-1-메틸카르바모일-프로필)-아미드Preparation Example 3. (2R, 3S) -2-Benzyl-3- (formyl-hydroxy-amino) -pentanoic acid ((S) -2,2-dimethyl-1-methylcarbamoyl-propyl)- amides
상기 일반절차에 따라 (2R,3S)-2-벤질-3-벤질옥시아미노-펜탄산 및 (S)-2-아미노-3,3 N-트리메틸-부티르아미드 염산염으로부터 표제 화합물을 제조하였다.The title compound was prepared from (2R, 3S) -2-benzyl-3-benzyloxyamino-pentanoic acid and (S) -2-amino-3,3 N-trimethyl-butyramide hydrochloride according to the above general procedure.
1H-NMR(CDCl3): δ 8.42 (s, 0.4H), 7.80 (s, 0.6H), 7.28-7.16 (m, 5H), 6.64 (d, 0.4H), 6.54 (d, 0.6H), 4.89-4.83 (m, 1H), 4.02-3.95 (m, 0.4H), 3.83-3.74 (m, 0.6H), 3.18 (m, 1H), 3.12 (s, 2H), 2.89-2.79 (m, 0.6H), 2.75-2.71 (m, 0.4), 1.69-1.34 (m, 1.8), 1.28-1.20 (m, 1.2H), 1.16-1.12 (m, 2H), 1.01-0.95 (m, 12H). 1 H-NMR (CDCl 3 ): δ 8.42 (s, 0.4H), 7.80 (s, 0.6H), 7.28-7.16 (m, 5H), 6.64 (d, 0.4H), 6.54 (d, 0.6H) , 4.89-4.83 (m, 1H), 4.02-3.95 (m, 0.4H), 3.83-3.74 (m, 0.6H), 3.18 (m, 1H), 3.12 (s, 2H), 2.89-2.79 (m, 0.6H), 2.75-2.71 (m, 0.4), 1.69-1.34 (m, 1.8), 1.28-1.20 (m, 1.2H), 1.16-1.12 (m, 2H), 1.01-0.95 (m, 12H).
제조실시예 4. (R)-2-[(포르밀-히드록시-아미노)-메틸]-4-메틸-펜탄산 ((S)-2,2-디메틸-1-메틸카르바모일-프로필)-아미드Preparation Example 4. (R) -2-[(Formyl-hydroxy-amino) -methyl] -4-methyl-pentanoic acid ((S) -2,2-dimethyl-1-methylcarbamoyl-propyl )-amides
상기 일반절차에 따라 (R)-2-(벤질옥시아미노-메틸)-4-메틸-펜탄산 및 (S)-2-아미노-3,3 N-트리메틸-부티르아미드 염산염으로부터 표제 화합물을 제조하였다.According to the above general procedure to prepare the title compound from (R) -2- (benzyloxyamino-methyl) -4-methyl-pentanoic acid and (S) -2-amino-3,3 N-trimethyl-butyamide hydrochloride It was.
1H-NMR(CDCl3): δ 8.47 (s, 0.4H), 7.89 (s, 0.6H), 6.66 (d, 0.4H), 6.51 (d, 0.6H), 4.90-4.85 (m, 1H), 4.01-3.95 (m, 0.4H), 3.83-3.74 (m, 0.6H), 3.64-3.43 (m, 1H), 3.17 (s, 1H), 3.13 (s, 2H), 2.89-2.79 (m, 0.6H), 2.76-2.71 (m, 0.4), 1.69-1.34 (m, 1.8), 1.29-1.20 (m, 1.2H), 1.01-0.95 (m, 9H), 0.93-0.88 (m, 6H). 1 H-NMR (CDCl 3 ): δ 8.47 (s, 0.4H), 7.89 (s, 0.6H), 6.66 (d, 0.4H), 6.51 (d, 0.6H), 4.90-4.85 (m, 1H) , 4.01-3.95 (m, 0.4H), 3.83-3.74 (m, 0.6H), 3.64-3.43 (m, 1H), 3.17 (s, 1H), 3.13 (s, 2H), 2.89-2.79 (m, 0.6H), 2.76-2.71 (m, 0.4), 1.69-1.34 (m, 1.8), 1.29-1.20 (m, 1.2H), 1.01-0.95 (m, 9H), 0.93-0.88 (m, 6H).
제조실시예 5. (S)-2-[(R)-2-벤질-3-(포르밀-히드록시-아미노)-프로피오닐아미노]-4-메틸-펜탄산 메틸아미드Preparation Example 5. (S) -2-[(R) -2-Benzyl-3- (formyl-hydroxy-amino) -propionylamino] -4-methyl-pentanoic acid methylamide
상기 일반절차에 따라 (R)-2-벤질-3-벤질옥시아미노-프로피온산 및 (S)-2-아미노-4-메틸-펜탄산 메틸아미드 염산염으로부터 표제 화합물을 제조하였다.The title compound was prepared from (R) -2-benzyl-3-benzyloxyamino-propionic acid and (S) -2-amino-4-methyl-pentanoic acid methylamide hydrochloride according to the above general procedure.
1H-NMR(CDCl3): δ 8.39 (s, 0.4H), 7.81 (s, 0.6H), 7.28-7.18 (m, 5H), 6.63 (d, 0.4H), 6.45 (d, 0.6H), 4.90-4.81 (m, 1H), 4.03-3.94 (m, 0.4H), 3.82-3.74 (m, 0.6H), 3.61-3.43 (m, 1H), 3.15 (s, 1H), 3.13 (s, 2H), 2.87-2.79 (m, 0.6H), 2.74-2.71 (m, 0.4), 1.67-1.34 (m, 1.8), 1.25-1.20 (m, 1.2H), 1.02-0.95 (m, 9H). 1 H-NMR (CDCl 3 ): δ 8.39 (s, 0.4H), 7.81 (s, 0.6H), 7.28-7.18 (m, 5H), 6.63 (d, 0.4H), 6.45 (d, 0.6H) , 4.90-4.81 (m, 1H), 4.03-3.94 (m, 0.4H), 3.82-3.74 (m, 0.6H), 3.61-3.43 (m, 1H), 3.15 (s, 1H), 3.13 (s, 2H), 2.87-2.79 (m, 0.6H), 2.74-2.71 (m, 0.4), 1.67-1.34 (m, 1.8), 1.25-1.20 (m, 1.2H), 1.02-0.95 (m, 9H).
제조실시예 6. (R)-2-벤질-3-(포르밀-히드록시-아미노)-N-((S)-1-메틸카르바모일-2-페닐-에틸)프로피온아미드Preparation Example 6. (R) -2-Benzyl-3- (formyl-hydroxy-amino) -N-((S) -1-methylcarbamoyl-2-phenyl-ethyl) propionamide
상기 일반절차에 따라 (R)-2-벤질-3-벤질옥시아미노-프로피온산 및 (S)-2-아미노-N-메틸-3-페닐-프로피온아미드 염산염으로부터 표제 화합물을 제조하였다.The title compound was prepared from (R) -2-benzyl-3-benzyloxyamino-propionic acid and (S) -2-amino-N-methyl-3-phenyl-propionamide hydrochloride according to the above general procedure.
1H-NMR (CD3OD): δ 8.15 (s, 0.42H), 7.82 (s, 0.48H), 7.31-7.18 (m, 10H), 4.55-4.47 (m, 1H), 3.67-3.31 (m, 2H), 3.04-2.75 (m, 3H), 2.62 (d, 3H), 1.48-1.25 (m, 1H), 1.20-1.08 (m, 1H). 1 H-NMR (CD 3 OD): δ 8.15 (s, 0.42H), 7.82 (s, 0.48H), 7.31-7.18 (m, 10H), 4.55-4.47 (m, 1H), 3.67-3.31 (m , 2H), 3.04-2.75 (m, 3H), 2.62 (d, 3H), 1.48-1.25 (m, 1H), 1.20-1.08 (m, 1H).
제조실시예 7. (R)-2-[(포르밀-히드록시-아미노)-메틸]-4-메틸-펜탄산 ((S)-1-메틸카르바모일-2-페닐-에틸)-아미드Preparation Example 7. (R) -2-[(Formyl-hydroxy-amino) -methyl] -4-methyl-pentanoic acid ((S) -1-methylcarbamoyl-2-phenyl-ethyl)- amides
상기 일반절차에 따라 (R)-2-(벤질옥시아미노-메틸)-4-메틸-펜탄산 및 (S)-2-아미노-N-메틸-3-페닐-프로피온아미드 염산염으로부터 표제 화합물을 제조하였다.The title compound is prepared from (R) -2- (benzyloxyamino-methyl) -4-methyl-pentanoic acid and (S) -2-amino-N-methyl-3-phenyl-propionamide hydrochloride according to the above general procedure. It was.
1H-NMR (CD3OD): δ 8.13 (s, 0.42H), 7.79 (s, 0.48H), 7.29-7.19 (m, 5H), 4.53-4.48 (m, 1H), 3.68-3.29 (m, 2H), 3.06-2.75 (m, 3H), 2.63 (d, 3H), 1.49-1.23 (m, 2H), 1.20-1.08 (m, 1H), 0.91-0.80 (m, 6H). 1 H-NMR (CD 3 OD): δ 8.13 (s, 0.42H), 7.79 (s, 0.48H), 7.29-7.19 (m, 5H), 4.53-4.48 (m, 1H), 3.68-3.29 (m , 2H), 3.06-2.75 (m, 3H), 2.63 (d, 3H), 1.49-1.23 (m, 2H), 1.20-1.08 (m, 1H), 0.91-0.80 (m, 6H).
[활성시험][Activity test]
시험예 1: MMP 효소의 제조Test Example 1 Preparation of MMP Enzyme
MMP-14 촉매 도메인을 얻기 위하여, 전사개시 메티오닌 (methionine), MMP-14의 촉매도메인 및 힌지 도메인 (hinge domain, Tyr112-Ile318), 그리고 6개의 히스티딘 표지 (tag)를 갖는 재조합 단백질을 대장균 (E. coli BL21(DE3))에서 봉입체 (inclusion body) 형태로 발현시켰다 (참조: 이승택 등, 대한민국 출원번호 10-2001-9899; Koo et al., Mol. Cells 13:118-124, 2002). 봉입체 (inclusion body)를 6M 요소 (urea)를 포함하는 완충 용액에 녹여 Ni2+-NTA 수지 친화성 컬럼 (resin affinity column, Qiagen, Germany)을 사용하여 정제하였다. 정제한 단백질을 희석 (dilution) 방법으로 되접힘 (refolding)하였고, 되접힘 과정 중에 자기촉매 절단 (autocatalytic cleavage)에 의하여 힌지 도메인 및 히스티딘 표지의 절단으로 활성을 갖는 22.2 kDa의 MMP-14 촉매 도메인 (catalytic domain)을 얻었다 (참조: 이승택 등, 대한민국 특허 등록번호 10-0456257; Koo et al., Mol. Cells 13:118-124 (2002)).In order to obtain the MMP-14 catalytic domain, transcription initiation methionine (methionine), MMP-14 catalytic domains and the hinge domain (hinge domain, Tyr112-Ile318) of, and Escherichia coli (E a recombinant protein having six histidine marker (tag) coli BL21 (DE3)) in the form of inclusion bodies (Lee Seung-taek et al., Republic of Korea Application No. 10-2001-9899; Koo et al., Mol. Cells 13: 118-124, 2002). Inclusion bodies were dissolved in a buffer solution containing 6M urea and purified using a Ni 2+ -NTA resin affinity column (resin affinity column, Qiagen, Germany). The purified protein was refolded by dilution method, and 22.2 kDa MMP-14 catalytic domain having activity by cleavage of the hinge domain and histidine label by autocatalytic cleavage during the refolding process ( catalytic domain) (Lee Seung-taek et al., Korean Patent Registration No. 10-0456257; Koo et al., Mol. Cells 13: 118-124 (2002)).
MMP-3 촉매도메인을 얻기 위하여 전사개시 메티오닌 및 MMP-3의 촉매도메인 (Phe100-Pro273)을 갖는 재조합 단백질을 대장균에서 봉입체 형태로 발현시켰다 (참조: Ye et al., Biochemistry 31:11231-11235 (1992)). 봉입체를 6 M 요소를 포함하는 완충 용액에 녹여 희석 (dilution)하는 방법 (Koo et al., Mol. Cells 13:118-124, 2002)으로 되접힘 (refolding)하여 활성을 갖는 21.8 kDa의 MMP-3 촉매 도메인 (catalytic domain)을 얻었다. In order to obtain the MMP-3 catalytic domain, a recombinant protein having a transcription initiation methionine and a catalytic domain of MMP-3 (Phe100-Pro273) was expressed in inclusion body in E. coli (see Ye et al., Biochemistry 31: 11231-11235 ( 1992). 21.8 kDa MMP- having active activity by refolding the inclusion body in a buffer solution containing 6 M urea and diluting it (Koo et al., Mol. Cells 13: 118-124, 2002). Three catalytic domains were obtained.
MMP-1 촉매도메인을 얻기 위하여 전사개시 메티오닌, MMP-1의 pro 도메인, 촉매도메인, 힌지 도메인(Gly261-Ala277)의 일부 및 히스티딘 표지를 갖는 재조합 단백질을 대장균에서 봉입체 형태로 발현시켰다. 봉입체를 6 M 요소를 포함하는 완충 용액에 녹여 희석하는 방법 (Koo et al., Mol. Cells 13:118-124, 2002)으로 되접힘 (refolding)하여 30 kDa의 soluble MMP-1 pro, 촉매 및 hinge 도메인 (pro-catalytic-hinge domains)을 얻었고, 사용 전에 1 mM APMA를 처리하여 활성을 갖는 20.5 kDa의 MMP-1 촉매 도메인 (catalytic domain)으로 전환하여 사용하였다. In order to obtain the MMP-1 catalytic domain, a recombinant protein having a transcription initiation methionine, a pro domain of MMP-1, a catalytic domain, a portion of the hinge domain (Gly261-Ala277), and a histidine label was expressed in inclusion body in E. coli. 30 kDa soluble MMP-1 pro, catalyst and refolded by diluting the inclusion body in a buffer solution containing 6 M urea (Koo et al., Mol. Cells 13: 118-124, 2002). Hin-domain (pro-catalytic-hinge domains) were obtained and converted to 20.5 kDa MMP-1 catalytic domain with activity by treatment with 1 mM APMA prior to use.
ProMMP-2와 proMMP-9은 baculovirus system을 이용하여 곤충세포 (Sf9)에서 발현하였다. proMMP-2 또는 proMMP-9을 포함하는 세포 배양액을 젤라틴-세파로우즈 친화 크로마토그래피 (gelatin-Sepharose affinity column chromatography)를 수행하여 정제하였다 (Jo et al., J. Biochem. Mol. Biol. 32:60-66, 1999). proMMP-2 및 proMMP-9는 사용 전에 1 mM APMA를 처리하여 활성을 갖는 MMP-2와 MMP-9로 전환하여 사용하였다. ProMMP-2 and proMMP-9 were expressed in insect cells (Sf9) using baculovirus system. Cell cultures containing proMMP-2 or proMMP-9 were purified by gelatin-Sepharose affinity column chromatography (Jo et al., J. Biochem. Mol. Biol. 32: 60-66, 1999). proMMP-2 and proMMP-9 were converted to MMP-2 and MMP-9 which had activity by treating 1 mM APMA before use.
시험예 2: fluorogenic oligopeptide를 기질로 사용하여 화합물의 MMP 저해능 분석Test Example 2: Analysis of MMP Inhibitory Activity of Compounds Using Fluorogenic Oligopeptide as Substrate
화합물들이 MMP의 활성을 저해하는지를 분석하기 위하여, MMP-1, MMP-2, MMP-3, MMP-9 및MMP-14를 대상으로 화합물의 존재시에 각 MMP의 촉매 활성 정도를 fluorogenic oligopeptide 절단 분석법으로 측정하였다 (참조: Yamamoto et al., J. Med. Chem. 41:1209-1217, 1998). MMP-1, MMP-2 및 MMP-14의 촉매 활성 정도는 (7-methoxycoumarin-4-yl)-acetyl-Pro-Leu-Gly-Leu-(3-[2,4 dinitrophenyl]-L-2,3 diaminopropionyl)-Ala-Arg-NH2 (1 mM; M1895, Bachem California Inc., USA)을 기질로 사용하였고, MMP-3와 MMP-9의 촉매 활성 정도는 (7-methoxycoumarin-4-yl)-acetyl-Arg-Pro-Tyr-Ala-Nva-Trp-Met-Lys-(3-[2,4-dinitro-phenyl]-L-2,3-diaminopropionyl)-NH2 (1 mM; M2105, Bachem California Inc., USA)을 기질로 사용하였다. MMP 분석 완충용액 (50 mM Tris/HCl, pH 7.5, 150 mM NaCl, 5 mM CaCl2, 0.5 mM Zncl2)에 활성화된 10 nM의 MMP, 농도별 화합물 (100% DMSO에 용해된 화합물 10 μl), 1 μl의 fluorogenic oligopeptide를 넣어 100 μl 의 반응 혼합액을 제조하고, 37℃에서 30분간 반응시켰다. 반응 혼합액에 100 μl의 0.2 M의 초산나트륨 (pH 4.0)을 첨가하여 반응을 정지시킨 후, 형광검출기 (Kontron SFM25 fluorometer, Italy)를 사용하여 328 nm에서 excitation 시켰을 때 393 nm에서 emission되는 형광을 측정하였다. 일반적으로 각 MMP 별 저해능을 분석하기 위하여 화합물 10 nM, 30 nM, 100 nM, 300 nM, 1 μM 등의 농도에서 duplicate로 3회 수행하였다. 대조물질로는 히드록사믹 산 유도체이면서 대부분의 MMP를 저해하는 BB-94를 사용하였다. In order to analyze whether compounds inhibit MMP activity, fluorogenic oligopeptide cleavage assays were performed on MMP-1, MMP-2, MMP-3, MMP-9 and MMP-14 to determine the degree of catalytic activity of each MMP in the presence of the compound. (Yamamoto et al., J. Med. Chem. 41: 1209-1217, 1998). The catalytic activity of MMP-1, MMP-2 and MMP-14 was (7-methoxycoumarin-4-yl) -acetyl-Pro-Leu-Gly-Leu- (3- [2,4 dinitrophenyl] -L-2, 3 diaminopropionyl) -Ala-Arg-NH 2 (1 mM; M1895, Bachem California Inc., USA) was used as a substrate, and the catalytic activity of MMP-3 and MMP-9 was (7-methoxycoumarin-4-yl) -acetyl-Arg-Pro-Tyr-Ala-Nva-Trp-Met-Lys- (3- [2,4-dinitro-phenyl] -L-2,3-diaminopropionyl) -NH 2 (1 mM; M2105, Bachem California Inc., USA) was used as the substrate. 10 nM MMP, concentration-specific compound (10 μl dissolved in 100% DMSO) activated in MMP assay buffer (50 mM Tris / HCl, pH 7.5, 150 mM NaCl, 5 mM CaCl 2 , 0.5 mM Zncl 2 ) 1 μl of fluorogenic oligopeptide was added to prepare 100 μl of a reaction mixture, which was reacted at 37 ° C. for 30 minutes. After stopping the reaction by adding 100 μl of 0.2 M sodium acetate (pH 4.0) to the reaction mixture, the fluorescence emitted at 393 nm was measured by excitation at 328 nm using a fluorescence detector (Kontron SFM25 fluorometer, Italy). It was. In general, in order to analyze the inhibitory ability of each MMP, the compound was performed three times in duplicate at concentrations of 10 nM, 30 nM, 100 nM, 300 nM, 1 μM, and the like. As a control, BB-94, which is a hydroxyxamic acid derivative and inhibits most MMPs, was used.
시험예 3: 화합물에서 RTest Example 3: R in Compound 1One , R, R 22 및 R And R 33 에 따른 MMP 저해 효과 MMP inhibitory effect
ZBG으로는 N-포르밀 히드록실아민을 갖고, R1, R2 및 R3의 종류에 따른 각 화합물들의 MMP 저해 효과를 분석하였다 (표 1). 각 side chain의 비교는 R1은 수소 (-H), R2는 벤질 (-CH2C6H5), R3는 t-부틸 (-C(CH3)3)을 갖는 제조실시예 1의 화합물을 기본 화합물로 하여 상대적인 비교를 수행하였다. ZBG had N-formyl hydroxylamine and analyzed the MMP inhibitory effects of the compounds according to the types of R 1 , R 2 and R 3 (Table 1). Comparison of each side chain is R 1 is hydrogen (-H), R 2 is benzyl (-CH 2 C 6 H 5 ), R 3 is t-butyl (-C (CH 3 ) 3 ) Preparation Example 1 Relative comparisons were made using the compound as a base compound.
첫째, R1 위치에 수소를 갖는 제조실시예 1을 기준으로, 작은 side chain (-CH3)을 갖는 제조실시예 2와 큰 side chain (-CH2CH3)을 갖는 제조실시예 3을 비교함으로써, side chain의 크기에 따른 MMP 저해능을 분석하였다. MMP 종류에 따라 R1에 따른 영향이 달랐으나, 젤라티나제 계열의 MMP-2와 MMP-9의 경우에는 R1의 크기가 커짐에 따라 저해능이 다소 감소하였다. First, on the basis of Preparation Example 1 having hydrogen at the R 1 position, Preparation Example 2 having a small side chain (-CH 3 ) and Preparation Example 3 having a large side chain (-CH 2 CH 3 ) were compared. By doing so, we analyzed the MMP inhibition according to the size of the side chain. The effect of R 1 was different depending on the type of MMP. However, in the case of gelatinase-based MMP-2 and MMP-9, as the size of R 1 increased, the inhibitory ability decreased slightly.
둘째, R2 위치에 벤질을 갖는 제조실시예 1 화합물을 기준으로, t-부틸을 갖는 제조실시예 4의 MMP 저해능을 비교 분석하였다. 분석에 사용된 모든 MMP들에서 iso-부틸 (-CH2CH(CH3)2)은 벤질 (-CH2C6H5)에 비하여 우수한 저해능을 보였으며, 젤라티나제 계열의 MMP-2와 MMP-9에서는 약 20배 정도로 우수한 것으로 관찰되었다. Second, based on the compound of Preparation Example 1 having benzyl at the R 2 position, the MMP inhibitory ability of Preparation Example 4 having t-butyl was analyzed. In all MMPs used for analysis, iso-butyl (-CH 2 CH (CH 3 ) 2 ) showed better inhibition than benzyl (-CH 2 C 6 H 5 ) and gelatinase-based MMP-2. MMP-9 was observed to be about 20 times better.
셋째, R3 위치에 t-부틸 (-C(CH3)3)을 갖는 제조실시예 1의 화합물을 기준으로, iso-부틸 (-CH2CH(CH3)2)을 갖는 제조실시예 5 화합물과 벤질 (-CH2C6H5)을 갖는 제조실시예 6 화합물의 MMP 저해능을 비교 분석하였다. MMP 종류에 따라 R3에 따른 영향이 달랐으나, 젤라티나제 계열인 MMP-2와 MMP-9의 경우에는 벤질, t-부틸, iso-부틸의 순서로 저해능이 우수한 것으로 관찰되었다. Third, Production Example 5 having iso-butyl (-CH 2 CH (CH 3 ) 2 ) based on the compound of Preparation Example 1 having t-butyl (-C (CH 3 ) 3 ) at the R 3 position The MMP inhibitory ability of the compound of Preparation Example 6 compound with the compound and benzyl (-CH 2 C 6 H 5 ) was analyzed. The effect of R 3 was different depending on the type of MMP. However, in the case of gelatinase-based MMP-2 and MMP-9, benzyl, t-butyl, and iso-butyl were shown to have excellent inhibition.
N-포르밀 히드록실아민 유도체 화합물인 제조실시예 1~제조실시예 6 화합물의 분석 결과, MMP-2와 MMP-9에 대한 제조실시예 4 화합물의 IC50는 BB-94보다 약 2배 정도 컸고, MMP-1에 대하여 제조실시예 4 화합물이 BB-94보다 IC50가 10배 정도 큰 것으로 분석되었다. 그러나, 제조실시예 4 화합물은 BB-94에 비하여 MMP-2와 MMP-9 및 MMP-1에 대한 상대적 선택성이 매우 우수하였다.As a result of analyzing the compounds of Preparation Examples 1 to 6, which are N-formyl hydroxylamine derivative compounds, IC 50 of the Preparation Example 4 compound for MMP-2 and MMP-9 was about 2 times higher than that of BB-94. was great, with respect to MMP-1 Preparation example 4 the compound was analyzed to be greater than the IC 50 BB-94 to 10 times. However, Preparation Example 4 compound was very good relative selectivity to MMP-2, MMP-9 and MMP-1 compared to BB-94.
그러나, 표 1의 R1, R2 및 R3에 따른 MMP 저해 효과의 분석 결과에서, 젤라티나제 계열의 MMP인 MMP-2와 MMP-9는 R1은 수소, R2는 iso-부틸, R3는 벤질이 있을 때 가장 효율적으로 저해될 것으로 예상되었다. 예상한 바와 같이, MMP-2에 대하여 제조실시예 7 화합물의 IC50 (7.4 nM)는 제조실시예 4 화합물의 IC50 (18 nM)에 비하여 1/2 이하로 감소하였고, MMP-9에 대한 제조실시예 7 화합물의 IC50 (40 nM)는 제조실시예 4 화합물의 IC50 (48 nM)에 비하여 다소 감소하였으나, MMP-1에 대한 제조실시예 7 화합물의 IC50 (43 nM)는 제조실시예 4 화합물의 IC50 (25 nM)에 2배 가까이 증가하였다. 따라서, 새로이 합성한 제조실시예 7 화합물은 제조실시예 4 화합물에 비하여 MMP-2와 MMP-9에 대한 저해능이 증가하였으며 MMP-1에 대한 저해능은 감소하였다. 또한, MMP-2에 대한 제조실시예 7 화합물의 IC50 (7.4 nM)는 BB-94의 IC50 (8.9 nM)와 유사한 수준이었고, MMP-9에 대한 제조실시예 7 화합물의 IC50 (40 nM)는 BB-94의 IC50 (24.5 nM)에 비하여 2배 이하였으나, MMP-1에 대한 제조실시예 7 화합물의 IC50 (43 nM)는 BB-94의 IC50 (2.5 nM)에 비하여 17배 이상이었다. 따라서, 제조실시예 7 화합물은 BB-94에 비하여 젤라티나제 계열의 MMP (MMP-2와 MMP-9)에 대한 저해능은 유사한 수준이나, MMP-3과 MMP-14 뿐 아니라 MMP-1에 대한 저해능은 매우 낮았다. 이 결과들을 종합하여 볼 때, 제조실시예 7 화합물은 젤라티나제 계열의 MMP에 대한 선택적 저해능이 매우 우수한 것으로 판단되었다.However, in the analysis results of the MMP inhibitory effect according to R 1 , R 2 and R 3 in Table 1, MMP-2 and MMP-9, which are gelatinase-based MMPs, R 1 is hydrogen, R 2 iso-butyl, R 3 was expected to be most efficiently inhibited in the presence of benzyl. As expected, for MMP-2 the IC 50 (7.4 nM) of the compound of Preparation Example 7 decreased to less than 1/2 compared to the IC 50 (18 nM) of the compound of Preparation Example 4, and for MMP-9 The IC 50 (40 nM) of the compound of Preparation Example 7 slightly decreased compared to the IC 50 (48 nM) of the compound of Preparation Example 4, but the IC 50 (43 nM) of the compound of Preparation Example 7 for MMP-1 was prepared. Example 4 The compound's IC 50 (25 nM) was nearly doubled. Therefore, the newly synthesized Preparation Example 7 compound increased the inhibitory activity against MMP-2 and MMP-9 and decreased the MMP-1 inhibition compared to the Preparation Example 4 compound. In addition, the IC 50 (7.4 nM) of the compound of Preparation Example 7 for MMP-2 was at a level similar to the IC 50 (8.9 nM) of BB-94, and the IC 50 of the compound of Preparation Example 7 for MMP-9 (40 nM) was less than twice the IC 50 (24.5 nM) of BB-94, but the IC 50 (43 nM) of the compound of Preparation Example 7 for MMP-1 compared to the IC 50 (2.5 nM) of BB-94 It was 17 times more. Thus, the compound of Preparation Example 7 has a similar level of inhibition to gelatinase-based MMPs (MMP-2 and MMP-9) compared to BB-94, but also to MMP-1 as well as MMP-3 and MMP-14. Inhibition was very low. Based on these results, Preparation Example 7 compound was judged to have a very good selective inhibition of gelatinase-based MMP.
표 1. 제조실시예 화합물의 R1, R2, R3에 따른 MMP 저해 효과Table 1. MMP Inhibitory Effects of R 1 , R 2 , and R 3 on Preparation Compounds
시험예 4: 제조실시예 4 및 제조실시예 7 화합물에 의한 세포 독성 분석Test Example 4 Cytotoxicity Analysis by Preparation Example 4 and Preparation Example 7 Compound
제조실시예 4 및 제조실시예 7 화합물에 대한 세포 독성을 분석하기 위하여, 폐섬유종양 세포 (HT-1080)에 화합물을 처리한 후 세포 수의 변화를 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 분석으로 조사하였다 (Hansen et al., J. Immunol. Methods 119:203 210, 1989). 96 well dish에 HT-1080 세포 (104 cell/well)를 넣고 10% FBS를 포함하는 DMEM 배지에서 24시간 동안 배양한 후, 제조실시예 4 및 제조실시예 7 화합물과 대조물질인 BB-94를 농도별 (10, 30 및 100 μM)과 10% FBS를 포함하는 DMEM 배지로 24시간 동안 추가로 배양하였다. 배양 후 50 μl의 5 mg/ml MTT를 각 well에 처리하고 어두운 곳에서 3시간 동안 배양하였다. 용액을 제거하고 살아 있는 세포에 의해 생성된 formazan을 100% DMSO로 용해시킨 후, 흡광도 565 nm에서 측정하였다. MTT 분석 결과에서 알 수 있듯이, 제조실시예 4 및 제조실시예 7 화합물은 BB-94에 비하여 HT-1080 세포의 성장에 미치는 영향이 매우 작아, 세포 독성이 적은 것으로 확인되었다 (도 1).In order to analyze the cytotoxicity of the compounds of Preparation Example 4 and Preparation Example 7, after treatment with the compound to the pulmonary fibrous tumor cells (HT-1080), the change in the number of cells was changed to 3- (4,5-dimethyl thiazol-2 -yl) -2,5-diphenyl tetrazolium bromide (MTT) analysis (Hansen et al., J. Immunol. Methods 119: 203 210, 1989). HT-1080 cells (10 4 cell / well) were put in a 96 well dish and incubated in DMEM medium containing 10% FBS for 24 hours, and then Preparation Example 4 and Preparation Example 7 compounds and control BB-94 Was further incubated for 24 hours in DMEM medium containing concentrations (10, 30 and 100 μM) and 10% FBS. After incubation, 50 μl of 5 mg / ml MTT was treated in each well and incubated for 3 hours in a dark place. The solution was removed and the formazan produced by the living cells was lysed with 100% DMSO and the absorbance was measured at 565 nm. As can be seen from the results of the MTT assay, Preparation Example 4 and Preparation Example 7 compound was found to have a very small effect on the growth of HT-1080 cells, compared to BB-94, was less cytotoxic (Fig. 1).
시험예 5: 제조실시예 4 및 제조실시예 7 화합물에 의한 폐섬유종양 세포의 침윤성 저해 분석 Experimental Example 5: Invasion inhibition assay of pulmonary fibrous tumor cells by Preparation Example 4 and Preparation Example 7 compound
암세포의 침윤성 (invasion ability)은 암 전이 과정에서 필수적이며, 특히 기저막 분해를 동반하는 과정에서 MMP-2와 MMP-9이 중요한 역할을 하는 것으로 알려져 있다 (참조: Murphy and Crabbe, Methods Enzymol. 248:470 484, 1995). 따라서, 세포 수준에서 MMP 저해제의 암전이 억제 효과를 분석하기 위하여, 제조실시예 4, 제조실시예 7 화합물 및 BB-94에 의한 폐섬유종양 세포 (HT-1080)의 침윤성 억제 정도를 chemoinvasion 측정법으로 분석하였다. 8 μm pore를 갖는 Transwell (Corning, USA)의 필터 아랫면에 10 μl의 1 μg/μl 젤라틴을 코팅하여 말린 후 85 μl의 0.35 μg/μl Matrigel (BD science, USA)을 필터 윗면에 코팅하여 말려 두었다. 10% FBS를 포함하는 DMEM 배지에서 subconfluent하게 자란 HT-1080 세포에 serum-free DMEM 배지로 24시간 동안 배양하였다. 세포를 trypsin-EDTA로 분리하여 serum-free DMEM 배지로 세척한 후 같은 배지로 2.5 X 105 cell/ml가 되도록 현탁하였다. 세포를 200 μl씩 분주한 뒤 제조실시예 4, 제조실시예 7 화합물 및 BB-94를 농도별 (최종농도 0, 10, 30 및 100 μM)로 가한 후 상온에서 1시간 동안 반응시켰다. 상부 chamber에 제조실시예 4, 제조실시예 7 화합물 및 BB-94를 반응시킨 현탁액을 넣고, 하부 chamber에는 10% FBS를 포함하는 DMEM 배지를 넣은 후 24시간 동안 배양하였다. Transwell을 100% 메탄올에 2분간 담가서 세포를 고정한 후 hematoxylin (Fisher Scientific, USA)과 eosin-Y (Sigma, USA)로 염색하였다. 필터의 윗면에 남아있는 세포들을 면봉으로 제거한 뒤, 아랫면에 있는 침윤한 세포의 수를 세어서 제조실시예 4, 제조실시예 7 화합물 및 BB-94가 세포 침윤에 미친 영향을 분석하였다. Invasion ability of cancer cells is essential in the process of cancer metastasis, and MMP-2 and MMP-9 are known to play an important role, especially in the process of basal membrane degradation (Murphy and Crabbe, Methods Enzymol. 248: 470 484, 1995). Therefore, in order to analyze the cancer metastasis inhibitory effect of the MMP inhibitor at the cellular level, the degree of invasion inhibition of pulmonary fibrous tumor cells (HT-1080) by Preparation Example 4, Preparation Example 7 compound and BB-94 by chemoinvasion measurement method Analyzed. 10 μl of 1 μg / μl gelatin was coated and dried on the bottom of the filter of Transwell (Corning, USA) with 8 μm pore and 85 μl of 0.35 μg / μl Matrigel (BD science, USA) was coated on the top of the filter and dried . HT-1080 cells grown subconfluent in DMEM medium containing 10% FBS were incubated with serum-free DMEM medium for 24 hours. The cells were separated by trypsin-EDTA, washed with serum-free DMEM medium, and suspended in 2.5 × 10 5 cells / ml with the same medium. After dividing the cells by 200 μl, Preparation Example 4, Preparation Example 7 compound and BB-94 were added according to concentrations (
도 2에서 보는 바와 같이, 제조실시예 4, 제조실시예 7 화합물 및 BB-94는 농도 의존적으로 HT-1080 세포의 침윤을 억제하였다. 제조실시예 4 화합물은 BB-94보다는 다소 약하게, 제조실시예 7 화합물은 BB-94보다 우수하게 암세포의 침윤성을 감소시켰으며, 침윤성의 50%를 저해하는 농도는 제조실시예 4 화합물의 경우 47.6 uM, 제조실시예 7 화합물의 경우 17.8 uM, BB-94의 경우 33.4 uM 이었다. 따라서, 제조실시예 7 화합물은 물론 제조실시예 4 화합물도 세포수준에서 MMP 저해를 통하여 암세포의 침윤을 억제할 것으로 예상되었다. As shown in Figure 2, Preparation Example 4, Preparation Example 7 compound and BB-94 inhibited the infiltration of HT-1080 cells in a concentration-dependent manner. Preparation Example 4 Compound was somewhat weaker than BB-94, Preparation Example 7 Compound was better than BB-94 and reduced the invasiveness of cancer cells, the concentration inhibiting 50% of invasiveness was 47.6 for Preparation Example 4 compound uM, Preparation Example 7 It was 17.8 uM for the compound and 33.4 uM for the BB-94. Therefore, Preparation Example 7 compounds as well as Preparation Example 4 compounds were expected to inhibit cancer cell infiltration through MMP inhibition at the cellular level.
시험예 6: 제조실시예 4와 제조실시예 7 화합물에 의한 제대혈관내피세포 (HUVEC) 의 혈관형성 억제 분석 Test Example 6 Analysis of Angiogenesis Inhibition of Umbilical Cord Blood Endothelial Cells (HUVEC) by Preparation Example 4 and Preparation Example 7 Compounds
암 성장 및 전이 등의 과정에 새로운 혈관형성은 필수적인 것으로 알려져 있다 (참조: Jain, Science 307:58-62, 2005). 제대혈관내피세포 (HUVEC)는 기저막과 유사한 Matrigel 상에서 배양하면 MMP-의존적인 양상으로 혈관 구조를 형성한다 (Grant et al., Cell 58:933-43, 1989; Wang and Keiser, Biochem. Biophys. Res. Commun. 272:900-905, 2000). 따라서, 제조실시예 4, 제조실시예 7 화합물 및 BB-94에 의한 제대혈관내피세포 (HUVEC)의 혈관형성 억제 정도를 분석하였다. HUVEC은 2% 젤라틴으로 코팅된 배양 접시에 20% FBS, 3 ng/ml basic FGF (Upstate, USA), 5 U/ml heparin (Sigma, USA)을 포함하는 M199 배지 (Gibco, USA)로 배양하였다. Subconfluent한 HUVEC을 1% FBS를 포함하는 M199 배지로 교체한 뒤 4시간 동안 depletion 시켰다. 세포를 trypsin-EDTA로 분리하여 1% FBS를 포함하는 M199 배지로 세척한 후 같은 배지로 5 X 105 cell/ml이 되도록 현탁하였다. 24 well dish의 각 well에 250 μl의 10 mg/ml Matrigel (BD Biosciences, Bedford, USA)을 넣어 굳힌 후, 500 μl의 1% FBS를 포함하는 M199 배지에 5 X 105 cell HUVEC에 아무것도 첨가하지 않거나(음성 대조군), 10 ng/ml VEGF를 첨가하거나 (양성 대조군), 10 ng/ml VEGF와 MMP inhibitor (농도 별로 BB-94, 제조실시예 4 또는 제조실시예 7 화합물)를 첨가하여 (실험군) 18시간 동안 배양하였다. 배양 후 현미경으로 40 X 배율로 사진을 찍어 관찰하였다. New angiogenesis is known to be essential for processes such as cancer growth and metastasis (Jain, Science 307: 58-62, 2005). Umbilical cord vascular endothelial cells (HUVECs) form vascular structures in an MMP-dependent pattern when cultured on a basement-like Matrigel (Grant et al., Cell 58: 933-43, 1989; Wang and Keiser, Biochem. Biophys. Res. Commun. 272: 900-905, 2000). Therefore, the degree of inhibition of angiogenesis of umbilical cord endothelial cells (HUVEC) by Preparation Example 4, Preparation Example 7 compounds and BB-94 was analyzed. HUVEC was incubated in M199 medium (Gibco, USA) containing 20% FBS, 3 ng / ml basic FGF (Upstate, USA), 5 U / ml heparin (Sigma, USA) in a culture dish coated with 2% gelatin. . Subconfluent HUVECs were replaced with M199 medium containing 1% FBS, followed by depletion for 4 hours. The cells were separated by trypsin-EDTA, washed with M199 medium containing 1% FBS, and then suspended in 5 × 10 5 cells / ml with the same medium. Add 250 μl of 10 mg / ml Matrigel (BD Biosciences, Bedford, USA) to each well of a 24 well dish and solidify, then add nothing to 5
도 3에서 보는 바와 같이, Matrigel 상에서 첨가물 없이 배양된 HUVEC은 소 량의 혈관형성을 보여주었으나, 10 ng/ml VEGF를 처리한 HUVEC은 두꺼운 혈관구조가 관찰되었다. VEGF와 제조실시예 4, 제조실시예 7 화합물 또는 BB-94를 동시에 처리한 HUVEC은 농도 의존적으로 혈관형성이 저해됨을 관찰할 수 있었다. 또한, 젤라티나제 계열의 MMP를 저해하는 능력과 같은 순서로, 혈관형성을 억제하는 효과도 제조실시예 7, BB-94, 제조실시예 4의 순서인 것으로 확인되었다. 따라서, 본 특허에서 발명한 젤라티나제 계열을 선택적으로 저해하는 MMP 저해제는 혈관형성 억제를 통한 암전이 억제 효과도 우수할 것으로 예상되었다. As shown in FIG. 3, HUVECs cultured without additives on Matrigel showed a small amount of angiogenesis, whereas HUVECs treated with 10 ng / ml VEGF showed a thick vascular structure. It was observed that HUVEC treated with VEGF and Preparation Example 4, Preparation Example 7 compound or BB-94 at the same time inhibited angiogenesis in a concentration-dependent manner. In addition, it was confirmed that the effect of inhibiting angiogenesis was in the order of Preparation Example 7, BB-94, and Preparation Example 4 in the same order as the ability to inhibit gelatinase MMP. Therefore, the MMP inhibitor that selectively inhibits the gelatinase family of the present invention was expected to be excellent in inhibiting cancer metastasis through angiogenesis inhibition.
상기에서 기술한 바와 같이 상세히 설명하고 입증하였듯이, 본 발명은 MMP-2 (gelatinase A) 및 MMP-9 (gelatinase B)의 젤라티나제 계열의 MMP 작용을 선택적으로 억제하며, 폐섬유종양 세포 (HT-1080)의 침윤과 제대혈관내피세포 (HUVEC)의 tube formation을 억제하는 효과가 우수한 N-포르밀 히드록실아민 유도체 화합물, 그의 이성질체 및 이들의 약학적으로 허용되는 염과 전기 물질들의 제조방법을 제공한다. 본 발명의 N-포르밀 히드록실아민 유도체 화합물은 시험관내(in vitro) 조건에서 MMP의 활성을 선택적으로 억제하는 바, 전기 N-포르밀 히드록실아민 유도체를 유효성분으로 하는 MMP 억제제는 MMP의 과발현 및 과도한 활성화에 의해서 유발되는 각종질병의 예방 및 치료에 유용하게 사용될 수 있을 것이다.As described and demonstrated in detail as described above, the present invention selectively inhibits the MMP action of gelatinase family of MMP-2 (gelatinase A) and MMP-9 (gelatinase B), pulmonary fibrous tumor cells (HT N-formyl hydroxylamine derivative compounds, isomers thereof, and pharmaceutically acceptable salts and electric materials, which are excellent in inhibiting invasion and tube formation of umbilical vascular endothelial cells (HUVEC). to provide. The N-formyl hydroxylamine derivative compound of the present invention selectively inhibits the activity of MMP under in vitro conditions. Therefore, the MMP inhibitor comprising the N-formyl hydroxylamine derivative as an active ingredient is an MMP inhibitor. It may be useful for the prevention and treatment of various diseases caused by overexpression and excessive activation.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050039006A KR20060116552A (en) | 2005-05-10 | 2005-05-10 | N-formylhydroxylamine derivatives as matrix metalloproteinase inhibitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050039006A KR20060116552A (en) | 2005-05-10 | 2005-05-10 | N-formylhydroxylamine derivatives as matrix metalloproteinase inhibitors |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20060116552A true KR20060116552A (en) | 2006-11-15 |
Family
ID=37653493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050039006A Ceased KR20060116552A (en) | 2005-05-10 | 2005-05-10 | N-formylhydroxylamine derivatives as matrix metalloproteinase inhibitors |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20060116552A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6037472A (en) * | 1993-11-04 | 2000-03-14 | Syntex (U.S.A.) Inc. | Matrix metalloprotease inhibitors |
JP2000514043A (en) * | 1996-06-27 | 2000-10-24 | フアルマシア・エ・アツプジヨン・エツセ・ピー・アー | Matrix metalloproteinase inhibitors |
-
2005
- 2005-05-10 KR KR1020050039006A patent/KR20060116552A/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6037472A (en) * | 1993-11-04 | 2000-03-14 | Syntex (U.S.A.) Inc. | Matrix metalloprotease inhibitors |
JP2000514043A (en) * | 1996-06-27 | 2000-10-24 | フアルマシア・エ・アツプジヨン・エツセ・ピー・アー | Matrix metalloproteinase inhibitors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2236829T3 (en) | BETA-SULFONIL HYDROXAMIC ACIDS AS INHIBITORS OF THE METALOPROTEINS OF THE MATRIX. | |
AP733A (en) | Arylsulfonylamino hydroxamic acid derivatives. | |
JP4177483B2 (en) | Sulfonylaminocarboxylic acid | |
USH1992H1 (en) | Metalloproteinase inhibitors, pharmaceutical compositions containing them, and their pharmaceutical uses | |
AU679474B2 (en) | Carboxy-peptidyl derivatives as antidegenerative active agents | |
RU2193556C2 (en) | Cyclic thio-substituted derivatives of acylamino acid amide and method of their synthesis | |
US6576664B1 (en) | Inhibitors of aggrecanase and matrix metalloproteinases for the treatment of arthritis | |
JP4653100B2 (en) | N-sulfonylated amino acid derivatives and their use as matriptase inhibitors | |
US5747535A (en) | Selective thrombin inhibitors | |
KR20010005940A (en) | Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses | |
HUP0202199A2 (en) | Alkenyl- and alkynyl-containing metalloprotease inhibitors | |
GB2282598A (en) | Substituted cyclic derivatives as novel antidegenerative agents | |
CA2628159A1 (en) | (2,5-dioxoimidazolidin-1-yl)-n-hydroxy-acetamides as metalloproteinase inhibitors | |
Takahashi et al. | Novel matrix metalloproteinase inhibitors: Generation of lead compounds by the in silico fragment-based approach | |
Nakatani et al. | Design and synthesis of novel metalloproteinase inhibitors | |
CA2364864C (en) | New metalloprotease inhibitors, the procedure for preparing them and the pharmaceutical compounds containing them | |
Cheng et al. | Synthesis of new sulfonyl pyrrolidine derivatives as matrix metalloproteinase inhibitors | |
KR20060116552A (en) | N-formylhydroxylamine derivatives as matrix metalloproteinase inhibitors | |
KR100377718B1 (en) | Process for alkylating hindered sulfonamides useful in the production of matrix metalloproteinase inhibitors | |
US5684152A (en) | Preparation of carboxyalkyl derivatives as inhibitors of matrix metalloproteinases | |
EP2448931B1 (en) | Benzenesulfonamide compounds, method for synthesizing same, and use thereof in medicine | |
JP2001515061A (en) | 3-Aryl-succinamide-hydroxamic acid, production method thereof and pharmaceutical agent | |
WO2002088115A1 (en) | Novel sulfonamide derivatives, intermediate thereof, its preparation methods, and pharmaceutical composition comprising the same | |
Shang et al. | Novel 3-phenylpropane-1, 2-diamine derivates as inhibitors of aminopeptidase N (APN) | |
KR20020038951A (en) | Beta disubstituted metalloprotease inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20050510 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060731 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20070131 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20070411 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20070131 Comment text: Notification of reason for refusal Patent event code: PE06011S01I Patent event date: 20060731 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |