[go: up one dir, main page]

KR20050102479A - Structure for improving superheat degree of refrigerant in heatpump - Google Patents

Structure for improving superheat degree of refrigerant in heatpump Download PDF

Info

Publication number
KR20050102479A
KR20050102479A KR1020040027883A KR20040027883A KR20050102479A KR 20050102479 A KR20050102479 A KR 20050102479A KR 1020040027883 A KR1020040027883 A KR 1020040027883A KR 20040027883 A KR20040027883 A KR 20040027883A KR 20050102479 A KR20050102479 A KR 20050102479A
Authority
KR
South Korea
Prior art keywords
refrigerant
heat exchanger
compressor
liquid refrigerant
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020040027883A
Other languages
Korean (ko)
Inventor
김영수
Original Assignee
주식회사 대우일렉트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대우일렉트로닉스 filed Critical 주식회사 대우일렉트로닉스
Priority to KR1020040027883A priority Critical patent/KR20050102479A/en
Priority to US11/111,035 priority patent/US7353664B2/en
Priority to EP05008786A priority patent/EP1589299A3/en
Priority to CNA200610140502XA priority patent/CN101004304A/en
Priority to CNB2005100660341A priority patent/CN100552327C/en
Publication of KR20050102479A publication Critical patent/KR20050102479A/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/8008Component parts, details or accessories; Auxiliary operations specially adapted for winding and joining
    • B29C53/8016Storing, feeding or applying winding materials, e.g. reels, thread guides, tensioners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

본 발명은 압축기와, 압축된 냉매를 냉난방 모드에 따라 응축 또는 증발시키는 실내외열교환기와, 모드에 따라 압축냉매의 흐름을 실내외열교환기로 역전환시키는 사방변과, 모드에 따라 액냉매의 압력을 선택적으로 저하시키는 팽창밸브와, 모드에 따라 선택적으로 개폐되어 액냉매의 흐름을 팽창밸브로 유도하는 체크밸브, 상기 압축기 입구측으로 액상냉매의 유입을 방지하는 어큐뮬레이터 및 상기 부품들이 상호 소통가능하게 설계되는 다수의 연결관을 포함하여 구성되는 히트펌프 사이클에 있어서, 상기 어큐뮬레이터의 입구측에 연결되는 연결관이 상기 실내열교환기를 연결하는 또 다른 연결관에 구비된 열교환부를 관통하도록 설치되어 상기 실외열교환기를 통과한 저온저압의 액체냉매가 상기 압축기로부터 토출된 고온고압의 기체냉매에 의해 기화되는 것을 특징으로 한다. The present invention provides a compressor, an indoor and outdoor heat exchanger for condensing or evaporating a compressed refrigerant according to a cooling and heating mode, a four-way valve for converting a compressed refrigerant flow into an indoor and outdoor heat exchanger according to a mode, and a pressure of a liquid refrigerant according to a mode. An expansion valve for reducing, a check valve selectively opening and closing according to a mode to induce the flow of the liquid refrigerant to the expansion valve, an accumulator for preventing the introduction of the liquid refrigerant to the compressor inlet side and a plurality of parts designed to communicate with each other In a heat pump cycle including a connection pipe, the connection pipe connected to the inlet side of the accumulator is installed to pass through the heat exchanger provided in another connection pipe connecting the indoor heat exchanger, the low temperature passed through the outdoor heat exchanger Low pressure liquid refrigerant is discharged to the high temperature and high pressure gas refrigerant discharged from the compressor. It is characterized by being vaporized by.

Description

히트펌프의 냉매과열도 개선구조{Structure for improving superheat degree of refrigerant in heatpump}Structure for improving superheat degree of refrigerant in heatpump

본 발명은 히트펌프에 관한 것으로서, 특히 실외열교환기를 통과한 저온저압의 액체냉매가 압축기로 유입되어 압축기가 손상되는 것을 방지하기 위해 어큐뮬레이터 흡입측 유입관이 압축기의 토출관을 관통하여 설치함으로써, 어큐뮬레이터 및 압축기로 액체냉매가 유입되는 것을 방지할 수 있는 히트펌프의 냉매과열도 개선구조에 관한 것이다. The present invention relates to a heat pump, and in particular, the accumulator suction side inlet pipe is installed through the discharge pipe of the compressor to prevent the low temperature and low pressure liquid refrigerant passing through the outdoor heat exchanger from entering the compressor. And it relates to a refrigerant overheating improvement structure of the heat pump that can prevent the liquid refrigerant flow into the compressor.

도 1은 종래 히트펌프의 구성을 개략적으로 도시한 도면이다. 1 is a view schematically showing a configuration of a conventional heat pump.

도시된 바와 같이, 히트펌프 시스템의 냉매 순환 사이클은, 난방의 경우 냉매가스를 고온고압의 상태로 응축 압력까지 압축하는 압축기(10)와, 상기 압축기(10)에서 압축된 냉매를 공랭식의 경우 공기에 의한 방열에 의하여 액상으로 응축하는 실내열교환기(20)와, 상기 응축기(20)에서 응축된 고온고압 상태의 액상 냉매를 교축작용에 의하여 저압상태의 기상냉매로 팽창시키는 팽창밸브(30)와, 그리고 상기 팽창밸브(30)에서 팽창된 냉매를 증발시키면서 냉매의 증발 잠열을 이용하여 송풍기에 의하여 송풍되는 공기를 열교환에 의하여 냉각함과 아울러 상기 압축기(10)로 냉매가스를 복귀시키는 실외열교환기(40) 및 상기 실외열교환기(40)에서 회수되는 냉매를 액체와 기체로 분리하여 기체냉매만을 상기 압축기(10)로 공급되도록 하는 어큐뮬레이터(50)로 구성되어 있다. As shown, the refrigerant circulation cycle of the heat pump system includes a compressor 10 for compressing the refrigerant gas to a condensation pressure in a state of high temperature and high pressure in the case of heating, and air in the case of air cooling in the refrigerant compressed in the compressor 10. An indoor heat exchanger (20) condensing into a liquid phase by heat radiation by the heat dissipation, and an expansion valve (30) for expanding a liquid refrigerant in a high temperature and high pressure state condensed by the condenser (20) into a gaseous refrigerant in a low pressure state by a throttling action; And an outdoor heat exchanger that cools the air blown by the blower by heat exchange while returning the refrigerant gas to the compressor 10 while evaporating the refrigerant expanded by the expansion valve 30 by using latent heat of evaporation of the refrigerant. And an accumulator 50 for separating the refrigerant recovered by the outdoor heat exchanger 40 into a liquid and a gas so that only the gas refrigerant is supplied to the compressor 10. It is.

한편, 공기조화기에서 어큐뮬레이터(50)는 상기와 같이 실외열교환기(40)로부터 증발된 냉매를 기체와 액체로 분리하여 기체 냉매만을 압축기로 유입되도록 하는 역할도 하지만, 액체 냉매가 압축기로 유입되는 것을 막음으로써 액체냉매의 압축에 의한 압축기(10)의 손상을 방지하기도 한다.Meanwhile, in the air conditioner, the accumulator 50 separates the refrigerant evaporated from the outdoor heat exchanger 40 into gas and liquid as described above, so that only the gas refrigerant is introduced into the compressor, but the liquid refrigerant is introduced into the compressor. It is also possible to prevent damage to the compressor 10 due to the compression of the liquid refrigerant.

이러한 히트펌프 시스템은, 냉매 순환 사이클 동안 상기 냉매가 기체→액체 및 액체→기체로 연속적으로 상태변화하며, 난방 및 냉방 운전의 전환을 사방변(60)으로 전환하는 시스템으로 히트펌프류는 난방열원으로서 고온의 열원을 만드는 시스템이다.This heat pump system is a system in which the refrigerant continuously changes state from gas to liquid and liquid to gas during a refrigerant circulation cycle, and switches heating and cooling operations to four sides 60. The heat pumps are used as heating heat sources. It is a system to make high temperature heat source.

하지만, 통상의 히트 펌프류는 고온의 열원을 생성시키기 어렵고, 고온의 열원을 생성시킨다 해도 간헐적으로 소량만을 생성하였다. 따라서 겨울철의 외기온도 저하시에는 그 성능이 급격히 저하되어 열원온도의 저하가 발생하고, 증발 압력 및 압축기 흡입 냉매의 비체적이 커져서 압축기의 토출 압력과의 비율인 압력비가 커져서 압축효율이 저하되며 과다한 토출 온도의 상승으로 압축기의 손상을 일으키는 원인이 된다. 특히, 높은 열원온도를 만들기 위하여 응축기의 압력이 높은 고온 고압으로 운전되므로 압축기의 과부하를 일으켜 손상의 원인이 된다.However, conventional heat pumps are difficult to generate a high temperature heat source, and even when a high temperature heat source is generated, only a small amount of intermittent heat is generated. Therefore, when the outside air temperature decreases in winter, the performance decreases rapidly and the heat source temperature decreases, and the evaporation pressure and the specific volume of the compressor suction refrigerant increase, so that the pressure ratio, which is the ratio of the discharge pressure of the compressor, increases, thereby reducing the compression efficiency and excessive discharge. An increase in temperature may cause damage to the compressor. In particular, since the pressure of the condenser is operated at a high temperature and high pressure in order to make a high heat source temperature, it causes an overload of the compressor, causing damage.

또한, 증발 압력 저하 및 응축압 상승이 급격한 성능저하 및 압축기의 운전동력이 증가하여 압축기의 손상을 발생시키며 에너지의 낭비가 심하며, 겨울철에 외기 온도의 저하시, 낮은 증발온도로 인한 비체적 및 효율 저하로 낮은 성능과 높은 에너지 손실이 발생하는 실정이며, 특히 통상적인 히트펌프 시스템에서는 외기 온도 저하시, 응축압과 증발압의 비인 압축비가 커서 압축기 효율의 저하 및 성능저하를 유발하는 단점이 있다.In addition, the evaporation pressure decreases and the condensation pressure rises rapidly, and the operating power of the compressor increases, causing damage to the compressor and wasting energy, and when the outside air temperature decreases in winter, specific volume and efficiency due to low evaporation temperature Low performance and high energy loss occur due to the degradation, and in particular, in a typical heat pump system, when the outside temperature decreases, the compression ratio, which is the ratio of the condensation pressure and the evaporation pressure, is large, leading to a decrease in compressor efficiency and performance degradation.

본 발명은 상기와 같은 점을 감안하여 안출된 것으로, 실외열교환기를 통과한 저온저압의 액체냉매가 압축기로 유입되어 압축기가 손상되는 것을 방지하기 위해 어큐뮬레이터 흡입측 유입관이 압축기의 토출관을 관통하여 설치함으로써, 어큐뮬레이터 및 압축기로 액체냉매가 유입되는 것을 방지할 수 있는 히트펌프의 냉매과열도 개선구조를 제공하는 데 그 목적이 있다. The present invention has been made in view of the above, in order to prevent the low-temperature low-pressure liquid refrigerant passing through the outdoor heat exchanger to the compressor to damage the compressor, the accumulator suction side inlet pipe is passed through the discharge pipe of the compressor It is an object of the present invention to provide a structure for improving the refrigerant superheat of the heat pump, which can prevent the liquid refrigerant from flowing into the accumulator and the compressor.

상기와 같은 목적을 달성하기 위하여, 본 발명에 따른 히트펌프의 냉매과열도 개선구조는 압축기와, 압축된 냉매를 냉난방 모드에 따라 응축 또는 증발시키는 실내외열교환기와, 모드에 따라 압축냉매의 흐름을 실내외열교환기로 역전환시키는 사방변과, 모드에 따라 액냉매의 압력을 선택적으로 저하시키는 팽창밸브와, 모드에 따라 선택적으로 개폐되어 액냉매의 흐름을 팽창밸브로 유도하는 체크밸브, 상기 압축기 입구측으로 액상냉매의 유입을 방지하는 어큐뮬레이터 및 상기 부품들이 상호 소통가능하게 설계되는 다수의 연결관을 포함하여 구성되는 히트펌프 사이클에 있어서, 상기 어큐뮬레이터의 입구측에 연결되는 연결관이 상기 실내열교환기를 연결하는 또 다른 연결관에 구비된 열교환부를 관통하도록 설치되어 상기 실외열교환기를 통과한 저온저압의 액체냉매가 상기 압축기로부터 토출된 고온고압의 기체냉매에 의해 기화되는 것을 특징으로 한다. In order to achieve the above object, the refrigerant superheat degree improvement structure of the heat pump according to the present invention is a compressor, an indoor and outdoor heat exchanger for condensing or evaporating the compressed refrigerant according to the cooling and heating mode, and the flow of the compressed refrigerant according to the mode indoor and outdoor An expansion valve for reversely switching to a heat exchanger, an expansion valve for selectively lowering the pressure of the liquid refrigerant according to the mode, a check valve selectively opening and closing according to the mode to direct the flow of the liquid refrigerant to the expansion valve, and a liquid phase toward the compressor inlet side In a heat pump cycle comprising an accumulator for preventing the introduction of refrigerant and a plurality of connecting tubes in which the components are designed to communicate with each other, a connecting tube connected to the inlet side of the accumulator connects the indoor heat exchanger. Is installed to penetrate the heat exchanger provided in the other connection pipe through the outdoor heat exchanger The liquid refrigerant of excessive low temperature and low pressure is evaporated by the high temperature and high pressure gas refrigerant discharged from the compressor.

바람직하게는, 상기 열교환부의 내부를 관통하는 연결관의 외주에는 다수의 방열핀이 구비되어 열교환이 더욱 원활하게 일어나도록 도와주는 것을 특징으로 한다. Preferably, a plurality of heat dissipation fins are provided on an outer circumference of the connection pipe penetrating the inside of the heat exchanger to help the heat exchange more smoothly.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 히트펌프의 냉매과열도 개선구조를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the refrigerant superheat degree improved structure of the heat pump according to an embodiment of the present invention.

도 2는 본 발명에 따른 히트펌프의 냉매과열도 개선구조를 도시한 도면이다. Figure 2 is a view showing a refrigerant superheat improved structure of the heat pump according to the present invention.

도시된 바와 같이, 본 발명은 압축기(10), 실내열교환기(20), 팽창밸브(30), 실외열교환기(40), 어큐뮬레이터(50), 사방변(60) 및 다수의 연결관을 포함한다. As shown, the present invention includes a compressor (10), an indoor heat exchanger (20), an expansion valve (30), an outdoor heat exchanger (40), an accumulator (50), four sides (60), and a plurality of connectors. do.

우선, 압축기(10)의 출구에서 제1연결관(1)을 통하여 사방변(60)에 연결하고, 상기 사방변(60)에서 제2연결관(2)을 통하여 실내열교환기(20)에 연결하고, 상기의 실내열교환기(20)에서 제3연결관(3)을 통하여 실외열교환기(40)에 연결한다. First, at the outlet of the compressor 10, the first connection pipe 1 is connected to the four sides 60, and the four sides 60 are connected to the indoor heat exchanger 20 through the second connection pipe 2. And the outdoor heat exchanger 40 through the third connecting pipe 3 in the indoor heat exchanger 20.

그리고, 상기의 제3연결관(3)에는 역류방지용 체크밸브(31)에 병렬로 연결되는 팽창밸브(30)를 설치하여 냉매의 흐르는 상태가 조절되도록 한다. In addition, the third connection pipe (3) is provided with an expansion valve (30) connected in parallel to the check valve (31) for preventing the backflow to control the flow of the refrigerant.

그리고, 상기 실외열교환기(40)에서 제4연결관(4)을 통하여 사방변(60)에 연결하고, 상기 사방변(60)에서 제5연결관(5)을 통하여 어큐뮬레이터(50) 및 압축기(10)의 입구에 연결하여 냉매가 순환하도록 한다. In addition, the outdoor heat exchanger 40 is connected to the four sides 60 through the fourth connecting pipe 4, and the accumulator 50 and the compressor through the fifth connecting pipe 5 at the four sides 60. It is connected to the inlet of the 10 to allow the refrigerant to circulate.

한편, 상기 실내열교환기(20)의 근접부에는 실내열교환기(20) 쪽으로 바람을 불어주도록 실내팬(미도시)을 설치하고, 상기 실외열교환기(40)의 근접부에는 실외열교환기(40) 쪽으로 바람을 불어주도록 실외팬(미도시)을 설치한다. Meanwhile, an indoor fan (not shown) is installed near the indoor heat exchanger 20 to blow wind toward the indoor heat exchanger 20, and an outdoor heat exchanger 40 is located near the outdoor heat exchanger 40. Install an outdoor fan (not shown) to blow wind toward).

또한, 상기 제2연결관(2)에는 다소직경이 큰 열교환부(110)가 구비되고, 상기 열교환부(110)에는 상기 제5연결관(5)이 관통하도록 설치되어 어큐뮬레이터(50)로 유입되던 저온저압의 액체냉매가 압축기(10)로부터 토출되는 고온고압의 기체냉매와 열교환하면서 증발되어 상기 실외열교환기(40)에서 증발되지 못한 채 상기 어큐뮬레이터(50)로 유입되는 액체냉매가 기화되도록 도와준다. In addition, the second connection pipe 2 is provided with a heat exchanger 110 having a somewhat larger diameter, and the heat exchanger 110 is installed to penetrate the fifth connection pipe 5 to flow into the accumulator 50. The low-temperature low-pressure liquid refrigerant is evaporated while exchanging heat with the high-temperature high-pressure gas refrigerant discharged from the compressor 10 to help vaporize the liquid refrigerant flowing into the accumulator 50 without being evaporated in the outdoor heat exchanger 40. give.

그리고, 상기 열교환부(110)의 내부를 관통하는 제5연결관(5)의 외주에는 다수의 방열핀(5a)이 구비되어 열교환이 더욱 원활하게 일어나도록 도와준다. In addition, a plurality of heat dissipation fins 5a are provided on the outer circumference of the fifth connection pipe 5 penetrating the inside of the heat exchange part 110 to help the heat exchange more smoothly.

이러한 구성의 본 발명에 따른 극저온용 히트펌프 사이클은 다음과 같은 작용을 한다.The cryogenic heat pump cycle according to the present invention in this configuration has the following function.

사용자가 동절기에 난방모드를 선택하면, 압축기(10)가 콘트롤러의 제어신호를 받아 작동하여 저온저압의 기체냉매를 고온고압의 기체냉매로 압축하여 제1연결관(1)을 통하여 사방변(60)으로 공급한다.When the user selects the heating mode in winter, the compressor 10 operates under the control signal of the controller to compress the low-temperature low-pressure gas refrigerant into a high-temperature high-pressure gas refrigerant to the four sides (60) through the first connecting pipe (1). ).

상기의 사방변(60)에서 제2연결관(2)을 통하여 실내열교환기(20)로 공급되는 고온고압의 냉매는 내부에서 응축되면서 외부로 열을 발생하게 되므로 실내팬으로 인해 실내열교환기(20)에서 발생되는 열을 전달받은 공기가 실내의 온도를 높여주는 작용이 계속 이루어지게 되므로 난방이 이루어지게 된다.Since the refrigerant of the high temperature and high pressure supplied to the indoor heat exchanger 20 through the second connection pipe 2 from the four sides 60 generates heat to the outside while condensing inside, the indoor heat exchanger due to the indoor fan ( Since the air received from the heat generated in 20) increases the indoor temperature, heating is performed.

상기의 실내열교환기(20)를 통과한 고온고압의 냉매는 제3연결관(3)을 거쳐 실외열교환기(40)로 이동하게 된다.The high temperature and high pressure refrigerant passing through the indoor heat exchanger 20 is moved to the outdoor heat exchanger 40 through the third connecting pipe 3.

그리고 상기의 실외열교환기(40)로 이동하는 냉매는 팽창밸브(30)를 경유하는 중에 팽창을 하여 저온저압의 액체냉매로 된다.The refrigerant moving to the outdoor heat exchanger 40 expands while passing through the expansion valve 30 to become a low temperature low pressure liquid refrigerant.

이후, 상기 저온저압의 액체냉매가 실외열교환기(40)로 공급되어 저온저압의 기체냉매로 되도록 한다.Thereafter, the low temperature low pressure liquid refrigerant is supplied to the outdoor heat exchanger 40 to be a low temperature low pressure gas refrigerant.

그리고, 상기 고온고압의 기체냉매는 제4연결관(4)과 사방변(60) 및 제5연결관(5)을 거쳐 어큐뮬레이터(50) 및 압축기(10)로 순환되는 과정을 반복함으로써 난방이 지속적으로 이루어지게 된다.In addition, the high-temperature, high-pressure gas refrigerant is heated by repeating the cycle circulated to the accumulator 50 and the compressor 10 through the fourth connecting pipe 4, the four sides 60 and the fifth connecting pipe (5). It will be done continuously.

한편, 상기 제5연결관(5)이 상기 고온고압의 기체냉매가 흐르는 제2연결관(2)에 구비된 열교환부(110)를 관통하여 설치되기 때문에 제5연결관(5)을 통해 흐르는 저온저압의 액체냉매는 상기 열교환부(110)에서 기화되어 기체냉매 상태로 상기 어큐뮬레이터(50)로 공급된다. 따라서, 액체냉매가 어큐뮬레이터(50) 및 압축기(10)로 흡입되는 것을 원천적으로 방지하기 때문에 압축기(10)가 파손되는 현상이 방지된다. On the other hand, since the fifth connecting pipe (5) is installed through the heat exchange unit 110 provided in the second connecting pipe (2) through which the high-temperature, high-pressure gas refrigerant flows through the fifth connecting pipe (5) The low temperature and low pressure liquid refrigerant is vaporized in the heat exchange part 110 and supplied to the accumulator 50 in a gas refrigerant state. Therefore, since the liquid refrigerant is prevented from being sucked into the accumulator 50 and the compressor 10 at the source, the phenomenon in which the compressor 10 is broken is prevented.

즉, 실외열교환기(40)로부터 발생된 저온저압의 액체냉매를 압축기(10)를 통해 토출된 고온고압의 기체냉매에 의해 기화시킴으로써, 동절기에 압축기(10)의 효율을 현저히 배가시킬 수 있다. That is, by vaporizing the low temperature low pressure liquid refrigerant generated from the outdoor heat exchanger 40 by the high temperature high pressure gas refrigerant discharged through the compressor 10, the efficiency of the compressor 10 can be remarkably doubled in winter.

상기된 바와 같은 본 발명에 따른 히트펌프의 냉매과열도 개선구조는 실외의 온도가 낮은 경우에도 히트펌프가 정상적으로 작동할 수 있고, 실외열교환기에서 이송되는 저온, 저압의 액체냉매가 어큐뮬레이터 및 압축기로 유입되는 것을 원천적으로 방지하여 압축기의 손상을 방지하는 효과가 있다. Refrigerant overheating improved structure of the heat pump according to the present invention as described above, the heat pump can operate normally even when the outdoor temperature is low, low-temperature, low-pressure liquid refrigerant transferred from the outdoor heat exchanger to the accumulator and the compressor There is an effect to prevent damage to the compressor by preventing the inlet at the source.

이상에서는, 본 발명을 특정의 바람직한 실시예에 대해서 도시하고 설명하였다. 그러나, 본 발명은 상술한 실시예에만 한정되는 것은 아니며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이하의 특허청구범위에 기재된 본 발명의 기술적 사상의 요지를 벗어남이 없이 얼마든지 다양하게 변경실시할 수 있을 것이다.In the above, the present invention has been illustrated and described with respect to certain preferred embodiments. However, the present invention is not limited only to the above-described embodiments, and those skilled in the art to which the present invention pertains may vary without departing from the spirit of the technical idea of the present invention described in the claims below. It may be changed.

도 1은 종래 히트펌프의 구성을 개략적으로 도시한 도면.1 is a view schematically showing a configuration of a conventional heat pump.

도 2는 본 발명에 따른 히트펌프의 냉매과열도 개선구조를 도시한 도면.2 is a view showing a refrigerant superheat improved structure of the heat pump according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10: 압축기 20: 실내열교환기10: compressor 20: indoor heat exchanger

30: 팽창밸브 31: 체크밸브30: expansion valve 31: check valve

40: 실외열교환기 50: 어큐뮬레이터40: outdoor heat exchanger 50: accumulator

60: 사방변 1,2,3,4,5: 다수의 연결관60: four sides 1,2,3,4,5: multiple connectors

5a: 방열핀 110: 열교환부5a: heat sink fin 110: heat exchanger

Claims (2)

압축기와, 압축된 냉매를 냉난방 모드에 따라 응축 또는 증발시키는 실내외열교환기와, 모드에 따라 압축냉매의 흐름을 실내외열교환기로 역전환시키는 사방변과, 모드에 따라 액냉매의 압력을 선택적으로 저하시키는 팽창밸브와, 모드에 따라 선택적으로 개폐되어 액냉매의 흐름을 팽창밸브로 유도하는 체크밸브, 상기 압축기 입구측으로 액상냉매의 유입을 방지하는 어큐뮬레이터 및 상기 부품들이 상호 소통가능하게 설계되는 다수의 연결관을 포함하여 구성되는 히트펌프 사이클에 있어서, A compressor, an indoor / external heat exchanger that condenses or evaporates the compressed refrigerant according to a cooling and heating mode, a four-sided valve that reverses the flow of the compressed refrigerant to an indoor / external heat exchanger depending on the mode, and an expansion that selectively reduces the pressure of the liquid refrigerant depending on the mode. A check valve for selectively opening and closing the valve according to the mode and directing the flow of the liquid refrigerant to the expansion valve, an accumulator for preventing the introduction of the liquid refrigerant to the compressor inlet, and a plurality of connecting pipes in which the parts are designed to communicate with each other. In the heat pump cycle comprising: 상기 어큐뮬레이터의 입구측에 연결되는 연결관이 상기 실내열교환기를 연결하는 또 다른 연결관에 구비된 열교환부를 관통하도록 설치되어 상기 실외열교환기를 통과한 저온저압의 액체냉매가 상기 압축기로부터 토출된 고온고압의 기체냉매에 의해 기화되는 것을 특징으로 하는 히트펌프의 냉매과열도 개선구조.The connecting pipe connected to the inlet side of the accumulator passes through the heat exchange part provided in another connecting pipe connecting the indoor heat exchanger, so that the low temperature and low pressure liquid refrigerant passing through the outdoor heat exchanger is discharged from the compressor. Refrigerant superheat improvement structure of the heat pump, characterized in that the vaporization by gas refrigerant. 제 1항에 있어서, The method of claim 1, 상기 열교환부의 내부를 관통하는 연결관의 외주에는 다수의 방열핀이 구비되어 열교환이 더욱 원활하게 일어나도록 도와주는 것을 특징으로 하는 히트펌프의 냉매과열도 개선구조. The outer periphery of the connection pipe penetrating the inside of the heat exchanger is provided with a plurality of heat dissipation fins to improve the refrigerant superheat of the heat pump, characterized in that to help the heat exchange occurs more smoothly.
KR1020040027883A 2004-04-22 2004-04-22 Structure for improving superheat degree of refrigerant in heatpump Ceased KR20050102479A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020040027883A KR20050102479A (en) 2004-04-22 2004-04-22 Structure for improving superheat degree of refrigerant in heatpump
US11/111,035 US7353664B2 (en) 2004-04-22 2005-04-21 Heat pump and compressor discharge pressure controlling apparatus for the same
EP05008786A EP1589299A3 (en) 2004-04-22 2005-04-21 Heat pump and compressor discharge pressure controlling apparatus for the same
CNA200610140502XA CN101004304A (en) 2004-04-22 2005-04-22 Heat pump and compressor discharge pressure controlling apparatus for the same
CNB2005100660341A CN100552327C (en) 2004-04-22 2005-04-22 Heat pump and heat pump compressor discharge pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040027883A KR20050102479A (en) 2004-04-22 2004-04-22 Structure for improving superheat degree of refrigerant in heatpump

Publications (1)

Publication Number Publication Date
KR20050102479A true KR20050102479A (en) 2005-10-26

Family

ID=35346220

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040027883A Ceased KR20050102479A (en) 2004-04-22 2004-04-22 Structure for improving superheat degree of refrigerant in heatpump

Country Status (2)

Country Link
KR (1) KR20050102479A (en)
CN (2) CN101004304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813052B1 (en) * 2006-11-13 2008-03-14 엘지전자 주식회사 Air conditioner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012012493A2 (en) 2010-07-23 2012-01-26 Carrier Corporation Ejector cycle
JP6831209B2 (en) * 2016-10-27 2021-02-17 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP6972316B2 (en) * 2018-04-13 2021-11-24 三菱電機株式会社 Air conditioner
CN109093962A (en) * 2018-07-24 2018-12-28 安徽继宏环保科技有限公司 A kind of construction wall fast injection molding mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813052B1 (en) * 2006-11-13 2008-03-14 엘지전자 주식회사 Air conditioner

Also Published As

Publication number Publication date
CN101004304A (en) 2007-07-25
CN100552327C (en) 2009-10-21
CN1690595A (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP5025605B2 (en) Refrigeration cycle apparatus and air conditioner
JP2001255023A (en) Effective increasing method for vapor compression freezing cycle and high efficiency freezing system
KR101449899B1 (en) Economizer, Heat Pump and Cooling-heating System using thereof
KR20100059170A (en) Heat pump storage system
KR20100046365A (en) Heat pump system
KR20100059176A (en) Heat storage system
KR20050072299A (en) Cooling and heating air conditioning system
KR20100005734U (en) Heat pump storage system
JP2004003804A (en) Vapor compression type refrigerating machine
KR20050102479A (en) Structure for improving superheat degree of refrigerant in heatpump
KR20100005736U (en) Heat pump system
KR20100005735U (en) storage system
KR100554566B1 (en) Cryogenic Heat Pump Cycles
KR100304583B1 (en) Heat pump unit with injection cycle
KR100248719B1 (en) Cooling cycle and heating cycle
KR20050043089A (en) Heat pump
KR100613502B1 (en) Heat Pump Air Conditioners
KR200300275Y1 (en) refrigeration system
KR20100005738U (en) Hot water heat pump system
JP2004116930A (en) Gas heat pump type air conditioner
KR100534212B1 (en) A heating and cooling system for bypass of a combined circuit
KR200371335Y1 (en) Air conditioner having Dryer for Defrost
KR100473712B1 (en) Refrigeration cycle
KR20060065885A (en) Air conditioner
KR100574418B1 (en) Heat pump system

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20040422

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20051020

Patent event code: PE09021S01D

PG1501 Laying open of application
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20060210

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20051020

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I