KR200470486Y1 - Using a high-resolution multi-beam sonar system the direction of the side injectin for improving the resolution cell of the rtansducer arrangement - Google Patents
Using a high-resolution multi-beam sonar system the direction of the side injectin for improving the resolution cell of the rtansducer arrangement Download PDFInfo
- Publication number
- KR200470486Y1 KR200470486Y1 KR2020120000691U KR20120000691U KR200470486Y1 KR 200470486 Y1 KR200470486 Y1 KR 200470486Y1 KR 2020120000691 U KR2020120000691 U KR 2020120000691U KR 20120000691 U KR20120000691 U KR 20120000691U KR 200470486 Y1 KR200470486 Y1 KR 200470486Y1
- Authority
- KR
- South Korea
- Prior art keywords
- resolution
- cell
- improving
- signal processing
- beams
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005070 sampling Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 4
- 238000003672 processing method Methods 0.000 abstract 1
- 238000012163 sequencing technique Methods 0.000 abstract 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8902—Side-looking sonar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/521—Constructional features
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
본 고안은 수중에서 초음파를 송수신하여 해저 정보를 획득하는 측면주사 소 나의 진행방향(Along-Track) 해상도 향상을 위한 기법에 관한 것으로,
더욱 상세하게는 수중예인 체 양 측면에 장착되는 트랜스듀서 내부에 8개의 CELL을 63.5의 간격으로 분리하여 이를 조합해 다수의 수신 빔을 형성할 수 있도록 배치하고,
수신신호의 강도를 표현하기 위해 각 CELL , 의 간격으로 순차적으로 샘플링하여 신호처리 변수를 계수화하고 연산시간을 최소화하면서 수신되는 신호 강도와 수신 방향에 대한 3 개의 빔을 형성하는 다중 빔 신호처리 방법으로 Along-Track 해상도를 크게 향상시켜 고속 운용시 해저 면의 데이터를 효과적으로 획득할 수 있도록 하여 광범위한 지역의 탐사를 신속하게 수행하고 수중예인 체가 균형을 잃는 것을 방지하여 측면주사 소 나의 효율성을 극대화하도록 구현된 신호 처리 기법에 관한 것이다.The present invention relates to a technique for improving the Along-Track resolution of a side scanning source that transmits and receives ultrasonic waves underwater to obtain subsea information.
More specifically, 83.5 CELL 63.5 inside the transducer mounted on both sides of the underwater body. Separate them at intervals of and combine them to form multiple receive beams,
Each cell to express the strength of the received signal , It is a multi-beam signal processing method that forms three beams for received signal strength and receiving direction while sequencing signal processing variables by sequential sampling at intervals of time and minimizing computation time. The present invention relates to a signal processing technique implemented to maximize the efficiency of the side scan sonar by enabling the efficient acquisition of data from the sea bottom, enabling rapid exploration of a wide range of areas, and preventing the underwater towing from unbalanced.
Description
본 고안은 수중에서 초음파를 송수신하여 해저 정보를 획득하는 측면주사 소나의 진행방향(Along-Track) 해상도를 향상을 위한 트랜스듀서의 셀 배치구조에 관한것으로, 더욱 상세하게는 트렌스듀서 내부의 셀(CELL)을 각각 분리하여 배치하고, 각 CELL의 데이터를 일정한 주기로 순차적으로 샘플링하고 수신방향에 대한 다수의 빔을 형성하여, 측면주사 소나의 Along-Track 해상도를 향상시켜 고속 운용 시 높은 해상도의 영상 취득이 가능하도록 한 것이다.
The present invention relates to a cell arrangement structure of a transducer for improving the Along-Track resolution of a side scan sonar that transmits and receives ultrasonic waves underwater, and more specifically, to a cell inside the transducer ( CELL) are separated and arranged, and the data of each CELL is sequentially sampled at regular intervals, and a plurality of beams are formed in the receiving direction, thereby improving the Along-Track resolution of the side scan sonar, thereby acquiring a high resolution image at high speed. This would be possible.
측면주사 소나 시스템은 수중에서 초음파 음향신호를 송신하고 해저 면이나 물체에 반사되어 돌아오는 초음파 신호를 수신하여 디지털 신호처리를 통해 복원함으로써 영상 데이터를 획득한다.The lateral scanning sonar system acquires image data by transmitting ultrasonic sound signals underwater, receiving ultrasonic signals reflected back to the sea floor or an object, and reconstructing them through digital signal processing.
민간 업체, 국가 연구기관 등의 해저 지형 조사 및 수중의 목표물을 탐색하는 해양탐사 분야에서 광범위하게 활용되고 있다.It is widely used in marine exploration and exploration of underwater targets by private companies and national research institutes.
그러나 수중탐사 분야에 활용도가 높은 기존의 단일 빔 측면주사 소나 시스템은 선박의 속도가 증가함에 따라 Along-Track 해상도가 현저하게 저하되어 광범위한 지역을 탐사할 경우 데이터의 신뢰성과 효율성이 떨어지는 문제점이 있다.However, the existing single beam lateral scanning sonar system, which is widely used in the field of underwater exploration, has a problem that the resolution of Along Track decreases significantly as the speed of the ship increases, resulting in inferior reliability and efficiency of data when exploring a wide area.
또한, Along-Track 해상도를 유지하기 위해 저속으로 운용할 경우 조류나 파도 등 외부환경의 영향을 받아 수중예인 체가 균형을 잃어 데이터 왜곡현상이 발생하는 단점이 있다.
In addition, when operating at a low speed in order to maintain the Along-Track resolution, there is a disadvantage in that data distortion occurs because the underwater body loses balance due to the external environment such as tides or waves.
본 고안은 측면주사 소나 시스템의 Along-Track 해상도를 향상시켜 고속으로 운용 시에도 고해상도의 데이터를 획득할 수 있도록 설계하여 민간이나 국가 연구기관뿐만 아니라 선박속도를 빠른 해군 함정 등에서 수행하는 수중환경탐사에 폭넓게 활용되는 측면주사 소나의 효율성을 극대화하는데 그 목적이 있다.
The present invention is designed to acquire high resolution data even when operating at high speed by improving the Along-Track resolution of the side scan sonar system. The objective is to maximize the effectiveness of widely used side-scan sonar.
본 고안은 .상기의 과제를 해결하는 수단으로, 트랜스듀서 내부의 CELL을 각각 분리하고 이를 조합하여 다수의 수신 빔을 형성할 수 있도록 배치하고,The present invention is a means to solve the above problems, it is arranged to form a plurality of receiving beams by separating and combining the CELL inside the transducer, respectively,
전체CELL의 데이터를 일정한 주기로 순차적으로 샘플링하여 신호처리 변수를 계수화하고 연산시간을 최소화하면서 수신 신호 강도와 수신 방향에 대한 다수의 빔을 형성하여 Along-Track 해상도를 향상시켜 고속 운용시 고해상도의 데이터 취득이 가능하도록 구현하는 것이다.
By sequentially sampling the data of the entire cell at regular intervals, digitizing the signal processing variables and minimizing the computation time while forming multiple beams for the received signal strength and the receiving direction to improve the Along-Track resolution to improve the high resolution data at high speed. It is implemented to be able to acquire.
본 고안은 측면주사 소나의 Along-Track 해상도를 크게 향상시키므로, 최저 속도가 높은 대형선박, 함정 등의 다양한 선박에 장비를 설치하여 탐사를 수행할 수 있는 효과가 있으며, 광범위한 지역의 탐사를 신속하게 수행할 수 있어 측면주사 소 나의 효율성을 극대화하는 효과가 있는 것이다.This design greatly improves the Along-Track resolution of the side scan sonar, and it is effective to install equipment on various vessels such as large vessels and ships with the lowest speed, and to perform exploration in a wide area. It can be performed to maximize the efficiency of the side scanning sound.
또한, 고속운용에 의해 파도가 조류 등 외부 환경의 영향을 최소화하여 수중예인 체가 균형을 잃는 것을 방지하고 데이터 왜곡현상을 방지하는 효과가 있는 것이다.
In addition, by the high speed operation of the wave to minimize the influence of the external environment, such as algae, it is effective to prevent the underwater body from losing balance and to prevent data distortion.
도 1 은 본 고안의 개념도.
도 2 는 본 고안의 설계도.
도 3 은 본 고안의 사용예시도.1 is a conceptual diagram of the present invention.
2 is a schematic view of the present invention.
3 is an exemplary view of the use of the present invention.
트랜스듀서(1)는 내부를 8개의 CELL(2)로 각각 분리하여 구성하고 각 CELL의 간격을 63.5로 배치하여 이를 조합해 수신 빔(3)을 형성할 수 있도록 설계하며, 수신의 강도를 표현하기 위해 각 CELL의 데이터를 , 의 주기(4)로 순차적으로 샘플링하여 신호처리 변수를 계수화하고 연산시간을 최소화하면서 수신되는 신호 강도와 수신방향에 대한 3개의 수신 빔을 형성하여 Along-Track 해상도를 향상시켜 고속 운용 시 고해상도의 데이터를 효과적으로 취득할 수 있도록 한 것이다.The transducer (1) consists of 8 cells (2) inside each of them, and the gap of each cell is 63.5 It is designed to form a receiving beam (3) by combining them with each other, and the data of each cell to express the strength of the reception , By sequentially sampling at the period (4), digitizing the signal processing variables and minimizing the computation time, three receiving beams for the received signal strength and the receiving direction are formed to improve the Along-Track resolution to improve the high resolution during high-speed operation. This is to effectively acquire data.
첫 번째 센서의 위치를 라 할 때 각 센서에 들어오는 신호의 음원으로부터 위치는 다음과 같이 나타낼 수 있다.The position of the first sensor In this case, the position from the sound source of the signal coming into each sensor can be expressed as follows.
(수식 1 ) (Formula 1)
이때 한 CELL에서 Quadrature 기법을 적용하고 각 CELL 간 샘플링 주기(4)를 로 할 경우 기준 센서에 대한 n번째 센서의 샘플링 시간은 다음과 같이 나타낼 수 있다.In this case, the quadrature technique is applied in one cell, and the sampling period (4) In this case, the sampling time of the nth sensor with respect to the reference sensor can be expressed as follows.
(수식 2 ) (Formula 2)
수식 1 와 수식 2를 이용하여 n번 센서에 입사되는 신호는 다음과 같이 나타낼 수 있다.Using
(수식 3) (Formula 3)
상기한 수식 3으로부터 입력 신호에 을 곱하여 이를 주파수 영역에서 푸리에 변환하면 각 주파수의 센서 기준면에 해당하는 값을 얻을 수 있으며 이로부터 각 방향으로부터 입력되는 신호를 구분할 수 있다.From the
1 트랜스듀서
2 CELL
3 수신 빔
4 샘플링 주기
: lambda. 파장. (c : 속도, f : 주파수)
: 전체 샘플링 주기1 transducer
2 CELL
3 receive beam
4 sampling cycles
: lambda. wavelength. (c: speed, f: frequency)
: Full sampling cycle
Claims (2)
내부를 8개의 CELL로 각각 분리하며, 각각의 CELL 간격을 63.5λ로 배치하여 이를 조합해 3개의 수신 빔을 형성할 수 있도록 설계됨을 특징으로 하는 다중 빔을 이용한 고해상도 측면주사 소나 시스템의 진행방향 해상도 향상을 위한 트랜스듀서의 셀 배치구조.
In placing the cells of the transducer,
The interior resolution is divided into 8 cells and each cell gap is arranged at 63.5λ, and it is designed to combine to form 3 reception beams. Transducer cell layout for improvement.
각 CELL의 데이터를 , 의 간격으로 순차적으로 샘플링하여 신호처리 변수를 계수화하고 연산시간을 최소화하면서 수신되는 신호 강도와 수신방향에 대한 3개의 빔을 형성하여 Along-Track 해상도를 향상시켜 고속 운용시 데이터를 효과적으로 획득할 수 있도록 한 것을 특징으로 하는 다중 빔을 이용한 고해상도 측면주사 소나 시스템의 진행방향 해상도 향상을 위한 트랜스듀서의 셀 배치구조.
The method of claim 1, wherein
Data for each cell , By sequentially sampling at intervals of time, the signal processing variables are digitized, and three beams of received signal strength and receiving direction are formed while minimizing the computation time, thereby improving the Along-Track resolution to effectively acquire data at high speed. A cell arrangement structure of a transducer for improving the resolution of a moving direction of a high resolution lateral scan sonar system using multiple beams.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2020120000691U KR200470486Y1 (en) | 2012-01-30 | 2012-01-30 | Using a high-resolution multi-beam sonar system the direction of the side injectin for improving the resolution cell of the rtansducer arrangement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2020120000691U KR200470486Y1 (en) | 2012-01-30 | 2012-01-30 | Using a high-resolution multi-beam sonar system the direction of the side injectin for improving the resolution cell of the rtansducer arrangement |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130004759U KR20130004759U (en) | 2013-08-07 |
KR200470486Y1 true KR200470486Y1 (en) | 2014-01-02 |
Family
ID=51409697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR2020120000691U Expired - Lifetime KR200470486Y1 (en) | 2012-01-30 | 2012-01-30 | Using a high-resolution multi-beam sonar system the direction of the side injectin for improving the resolution cell of the rtansducer arrangement |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200470486Y1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101797442B1 (en) * | 2017-05-18 | 2017-11-15 | (주)다음기술단 | 2MHz Side Scan Sonar for Resolution Enhancement and Operation Method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101978186B1 (en) * | 2017-11-06 | 2019-05-14 | 소나테크 주식회사 | Method for Arranging Array Sensors of Towed Synthetic Aperture Sonar to Gain Interferometric Data |
CN113030982B (en) * | 2021-03-17 | 2021-11-09 | 中国科学院声学研究所 | Double-frequency ultra-high resolution sounding side-scan sonar system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56120967A (en) * | 1980-02-29 | 1981-09-22 | Marine Instr Co Ltd | Reception device for scanning sonar |
US4330876A (en) * | 1979-09-10 | 1982-05-18 | Plessey Overseas Limited | Sonar systems |
JPH08160126A (en) * | 1994-12-09 | 1996-06-21 | Nec Eng Ltd | Sonar receiver |
JPH09281233A (en) * | 1996-04-12 | 1997-10-31 | Nec Corp | Dictation processing method for sonar and sonar dictation device |
-
2012
- 2012-01-30 KR KR2020120000691U patent/KR200470486Y1/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4330876A (en) * | 1979-09-10 | 1982-05-18 | Plessey Overseas Limited | Sonar systems |
JPS56120967A (en) * | 1980-02-29 | 1981-09-22 | Marine Instr Co Ltd | Reception device for scanning sonar |
JPH08160126A (en) * | 1994-12-09 | 1996-06-21 | Nec Eng Ltd | Sonar receiver |
JPH09281233A (en) * | 1996-04-12 | 1997-10-31 | Nec Corp | Dictation processing method for sonar and sonar dictation device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101797442B1 (en) * | 2017-05-18 | 2017-11-15 | (주)다음기술단 | 2MHz Side Scan Sonar for Resolution Enhancement and Operation Method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20130004759U (en) | 2013-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Colbo et al. | A review of oceanographic applications of water column data from multibeam echosounders | |
EP3234635B1 (en) | Aspects of sonar systems or other acoustic imaging systems | |
US20160131759A1 (en) | Ctfm detection apparatus and underwater detection apparatus | |
WO2008105932A2 (en) | System and method for forward looking sonar | |
US20170315237A1 (en) | Sonar data compression | |
CN111308474A (en) | Towed deep-sea submarine shallow structure acoustic detection system and method | |
US20200333787A1 (en) | Marine surface drone and method for characterising an underwater environment implemented by such a drone | |
KR200470486Y1 (en) | Using a high-resolution multi-beam sonar system the direction of the side injectin for improving the resolution cell of the rtansducer arrangement | |
EP3018494A1 (en) | Ctfm detection apparatus and underwater detection apparatus | |
CN105629249A (en) | Multi-beam side-scan sonar device | |
CN103941260A (en) | Underwater acoustic video imaging device | |
Savini | Side-scan sonar as a tool for seafloor imagery: Examples from the Mediterranean Continental Margin | |
Liu et al. | A low-complexity real-time 3-D sonar imaging system with a cross array | |
Pinto et al. | Real-and synthetic-array signal processing of buried targets | |
Violante | Acoustic remote sensing for seabed archaeology | |
CN110794412A (en) | A Lightweight Buried Umbilical Cable Routing Detection System | |
CN205880213U (en) | Sonar equipment is swept to multi -beam side | |
Mori et al. | Relationship between spatial distribution of noise sources and target scatterings observed in the 2010 sea trial of ambient noise imaging | |
Li et al. | Study of multibeam synthetic aperture sonar line-by-line imaging algorithm | |
RU2576352C2 (en) | Towed device for measurement of acoustic characteristics of sea ground | |
Koyama et al. | Bathymetry by new designed interferometry sonar mounted on AUV | |
CN204028360U (en) | A kind of underwater sound video imaging apparatus | |
KR200466278Y1 (en) | multiple electron beam side scan sonar | |
Bjørnø | Developments in sonar technologies and their applications | |
Sreedev et al. | Effectiveness of indigenously developed Chirp imaging SONAR in ship wreck detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
UA0108 | Application for utility model registration |
Comment text: Application for Utility Model Registration Patent event code: UA01011R08D Patent event date: 20120130 |
|
UA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
UE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event code: UE09021S01D Patent event date: 20130315 |
|
UG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
UE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event code: UE09021S01D Patent event date: 20130902 |
|
E701 | Decision to grant or registration of patent right | ||
UE0701 | Decision of registration |
Patent event date: 20131128 Comment text: Decision to Grant Registration Patent event code: UE07011S01D |
|
REGI | Registration of establishment | ||
UR0701 | Registration of establishment |
Patent event date: 20131212 Patent event code: UR07011E01D Comment text: Registration of Establishment |
|
UR1002 | Payment of registration fee |
Start annual number: 1 End annual number: 3 Payment date: 20131212 |
|
UG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20161202 Year of fee payment: 4 |
|
UR1001 | Payment of annual fee |
Payment date: 20161202 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20171211 Year of fee payment: 5 |
|
UR1001 | Payment of annual fee |
Payment date: 20171211 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20181129 Year of fee payment: 6 |
|
UR1001 | Payment of annual fee |
Payment date: 20181129 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20191128 Year of fee payment: 7 |
|
UR1001 | Payment of annual fee |
Payment date: 20191128 Start annual number: 7 End annual number: 7 |
|
UR1001 | Payment of annual fee |
Payment date: 20201130 Start annual number: 8 End annual number: 8 |
|
UR1001 | Payment of annual fee |
Payment date: 20211129 Start annual number: 9 End annual number: 9 |
|
UC1801 | Expiration of term |
Termination category: Expiration of duration Termination date: 20220730 |