KR20040101858A - GROWTH METHOD OF SiC NANOROD AND NANOWIRE USING SINGLE PRECURSOR AND CHEMICAL VAPOR DEPOSITION - Google Patents
GROWTH METHOD OF SiC NANOROD AND NANOWIRE USING SINGLE PRECURSOR AND CHEMICAL VAPOR DEPOSITION Download PDFInfo
- Publication number
- KR20040101858A KR20040101858A KR1020030033825A KR20030033825A KR20040101858A KR 20040101858 A KR20040101858 A KR 20040101858A KR 1020030033825 A KR1020030033825 A KR 1020030033825A KR 20030033825 A KR20030033825 A KR 20030033825A KR 20040101858 A KR20040101858 A KR 20040101858A
- Authority
- KR
- South Korea
- Prior art keywords
- silicon carbide
- substrate
- silicon
- single precursor
- nanowires
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02603—Nanowires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/52—Gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02601—Nanoparticles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
- H10D62/118—Nanostructure semiconductor bodies
- H10D62/119—Nanowire, nanosheet or nanotube semiconductor bodies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Cold Cathode And The Manufacture (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
본 발명은 규소, 흑연, 유리 등으로 이루어진 기판위에 상압과 저압 열화학 증착법을 이용하여 탄화규소 나노로드 및 나노와이어를 성장시키는 방법을 개시한다. 본 발명에 의한 성장 방법에서는 규소와 탄소가 함께 포함되어 있는 단일 전구체인 HMDS, 1,3-DSB, TMS, TPS 또는 MTS을 사용하여 탄화규소 나노로드를 성장시키는 것이 특징이며, 세부적으로는 니켈, 철, 코발트, 크롬, 란탄, 티타늄, 몰리브덴, 금 또는 그들이 포함된 화합물을 분산코팅형식으로 기판위에 코팅한 다음, 700 ~ 1000℃ 사이에서 열처리하여 표면에 미세한 크기로 응집시킨다. 그 후 앞서 나열한 단일전구체를 사용하여 열화학 증착시켜 탄화규소 나노로드 및 나노와이어를 성장시킨다.The present invention discloses a method for growing silicon carbide nanorods and nanowires using atmospheric pressure and low pressure thermochemical vapor deposition on a substrate made of silicon, graphite, glass, and the like. In the growth method according to the present invention, silicon carbide nanorods are grown by using HMDS, 1,3-DSB, TMS, TPS, or MTS, which is a single precursor containing silicon and carbon. Iron, cobalt, chromium, lanthanum, titanium, molybdenum, gold or a compound containing them are coated on the substrate in a dispersion coating, and then heat-treated between 700 and 1000 ° C. to agglomerate finely on the surface. Thereafter, thermochemical deposition using the single precursors listed above is used to grow silicon carbide nanorods and nanowires.
Description
본 발명은 탄화규소 나노로드 및 나노와이어를 전자부품에 사용하기 위하여 기존의 성장방법을 개선하여 기판 위에 성장시키는 방법에 관한 것으로, 구체적으로는 단일전구체를 사용하여 소자로 사용될 기판위에 열화학 증착법을 사용하여 600∼900℃의 온도에서 탄화규소 나노로드와 나노와이어를 성장시키는 방법에 관한것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of growing silicon carbide nanorods and nanowires on a substrate by improving an existing growth method for use in electronic components. Specifically, a thermochemical deposition method is used on a substrate to be used as a device using a single precursor. To grow a silicon carbide nanorods and nanowires at a temperature of 600 ~ 900 ℃.
탄화규소는 높은 전자 이동도와 우수한 전기적 특성을 가지고 있어 전자소자제작에 적합한 재료로 주목받고 있다. 특히 우수한 고온 강도와 높은 열전도도, 고온 내산화성을 지니고 있다.Silicon carbide has attracted attention as a material suitable for manufacturing electronic devices because of its high electron mobility and excellent electrical properties. In particular, it has excellent high temperature strength, high thermal conductivity and high temperature oxidation resistance.
최근에 대부분의 전자소자가 고직접화 되고 사용환경이 가혹해 짐에 따라서 규소를 기반으로 한 소자의 물리적 한계가 두각되고 있어 이를 대처할 소자용 재료중 하나로서 탄화규소가 거론되고 있다. 나노크기의 탄화규소는 주로 휘스커와 유사한 로드(rod)와 와이어(wire) 형태의 제조방법이 연구되었으며, 발광과 수광소자등에는 나노크기의 두께를 가지는 박막이나 나노크기의 입자들로 이루어진 나노결정 박막들이 사용되고 있다.Recently, as most electronic devices become more direct and the usage environment is severe, silicon carbide is being considered as one of the device materials to cope with the physical limitations of silicon-based devices. Nano-sized silicon carbide is mainly studied in the form of rods and wires similar to whiskers, and nanocrystals composed of thin films or nano-sized particles having nano-sized thicknesses in light emitting and light-receiving devices. Thin films are being used.
최근의 탄화규소 나노와이어의 강도를 나노빔을 사용하여 측정한 결과 거의 이론값에 이른다는 것이 밝혀졌다.Recent measurements of the strength of silicon carbide nanowires using nanobeams have shown that they almost reach theoretical values.
최근에 나노구조를 이용한 여러 전기소자 및 광학소자의 개발이 이루어지고 있으며 그 중 대표적인 예가 FED(Field Emission Display)이다. FED에 사용되는 전계발광체로서 초기에 규소나 몰리브덴을 전기화학적 식각공정에 의하여 가공하여 사용하였으나, 전계방출시 발생하는 고온에 의하여 열피로(thermal fatigue) 현상이 발생하였다. 따라서 FED의 수명이 현저하게 감소하였으며, 가공기술의 한계 때문에 화소가 다른 전계소자에 비하여 적었다.Recently, the development of various electric and optical devices using nanostructures has been made, and a representative example thereof is a field emission display (FED). Silicon and molybdenum were initially processed by electrochemical etching as an electroluminescent material used in the FED, but thermal fatigue occurred due to the high temperature generated during the field emission. Therefore, the lifetime of the FED is significantly reduced, and the pixels are smaller than those of other electric field devices due to the limitation of processing technology.
탄소 나노튜브의 합성기술이 발달하고, 우수한 전계방출특성이 밝혀지면서 탄소 나노튜브를 전계방출원으로 사용하려는 시도가 이루어져왔고, 부단한 연구에의하여 탄소 나노튜브를 전계방출원으로 사용한 FED의 시제품 시연이 이루어졌다. 그러나 탄소 나노튜브의 경우 전계방출특성은 우수하나 내구성이 약간 떨어지는 단점이 존재하였다. 따라서 탄소 나노튜브 이외의 FED용 전계방출원의 연구가 필요하였으며 그 중의 하나가 탄화규소 나노로드이다.As the synthesis technology of carbon nanotubes was developed, and excellent field emission characteristics were revealed, attempts were made to use carbon nanotubes as field emission sources, and uninterrupted research demonstrated the prototype of FED using carbon nanotubes as field emission sources. Was done. However, in the case of carbon nanotubes, the field emission characteristics were excellent but the durability was slightly decreased. Therefore, research on field emission sources for FED other than carbon nanotubes was required, and one of them is silicon carbide nanorods.
탄화규소 나노로드 및 나노와이어의 합성은 대부분 탄화규소 휘스커의 제조기술에서 유래되었으며, 탄소 나노튜브의 제조방법을 응용한 여러 방법이 도입되었다. 대표적인 제조방법으로는 아크방전을 이용한 방법과, 탄소 나노구조체를 모체로 하는 열탄화법이 있다.Synthesis of silicon carbide nanorods and nanowires was mostly derived from the manufacturing technology of silicon carbide whiskers, and various methods using the manufacturing method of carbon nanotubes were introduced. Representative methods include arc discharge and thermocarbonation based on carbon nanostructures.
아크 방전법은 진공분위기 중에서 탄화규소로 이루어진 양극과 냉각이 이루어지는 음극 사이에 고전압을 인가함으로서 양극에서 분해되어 나오는 탄화규소가 음극에서 급속히 냉각되면서 나노크기를 가지는 입자들을 얻는 방법이다.The arc discharge method is a method of obtaining nano-sized particles as the silicon carbide decomposed from the anode is rapidly cooled at the cathode by applying a high voltage between the anode made of silicon carbide and the cathode to be cooled in a vacuum atmosphere.
열탄화법은 크게 탄소 나노구조체를 변환시키는 방법과 촉매와 결합되어 있는 탄소입자를 휘발시키는 방법으로 나누어진다. 먼저 탄소 나노구조체를 변환시키는 방법은 탄소나노튜브나 나노크기를 가지는 탄소입자와 규소 산화물과 규소의 혼합물을 가열하여 발생하는 산화실리콘 증기를 반응시킴으로써 외벽에 탄화규소를 형성시키는 것이다. 촉매와 결합된 탄소를 휘발시키는 방법은 고온에서 촉매와 결합된 탄소와 규소를 휘발시켜 기체 상태에서 반응시켜 고체로 변화되면서 나노크기를 가지는 탄화규소를 생성한다.Thermocarbonization is largely divided into a method of converting carbon nanostructures and a method of volatilizing carbon particles bonded to a catalyst. First, a method of converting carbon nanostructures is to form silicon carbide on an outer wall by reacting silicon oxide vapor generated by heating a mixture of carbon nanotubes or nano-sized carbon particles with a silicon oxide and silicon. The method of volatilizing carbon combined with a catalyst volatilizes carbon and silicon combined with a catalyst at a high temperature to react in a gaseous state to produce a nano-sized silicon carbide.
이와 같은 종래 방법들의 단점은 1200 ~ 1800℃의 고온에서의 장시간 공정이 필수적이고, 생성된 탄화규소는 여러 가지 불순물을 함유하고 있다는 것이다. 또한전기소자나 전계방출 소자로 사용하기 위해서는 탄화규소 나노로드 또는 나노와이어를 세정공정과 고가의 분급공정을 거쳐서 분류한 후, 스크린 프린팅 기법을 사용하여 전자 소자용 기판에 접착하여야 한다.A disadvantage of these conventional methods is that a long time process at a high temperature of 1200 to 1800 ° C. is essential, and the resulting silicon carbide contains various impurities. In addition, in order to use as an electric device or a field emission device, silicon carbide nanorods or nanowires are classified through a cleaning process and an expensive classification process, and then bonded to an electronic device substrate using a screen printing technique.
따라서, 본 발명의 목적은 성장 온도를 낮춘 탄화규소 나노로드 또는 나노와이어 성장 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a silicon carbide nanorod or nanowire growth method with lowered growth temperature.
또한, 본 발명의 목적은 세정공정과 고가의 분급공정 없이 기판위에 탄화규소 나노로드 또는 나노와이어를 직접 성장시킴으로서 실제적으로 반도체 제조공정에 적용 가능케 하는 것이다.It is also an object of the present invention to grow silicon carbide nanorods or nanowires directly on a substrate without a cleaning process and an expensive classification process, thereby making it practically applicable to semiconductor manufacturing processes.
또한, 본 발명의 다른 목적은 저온에서 소자로 사용될 기판위에 탄화규소 나노로드 및 와이어를 성장시킴으로써 전계 발광소자 및 전자소자로서 사용 가능한 탄화규소 나노로드 및 나노와이어의 성장방법을 제공하는 것이다.Another object of the present invention is to provide a method for growing silicon carbide nanorods and nanowires which can be used as an electroluminescent device and an electronic device by growing silicon carbide nanorods and wires on a substrate to be used as an element at a low temperature.
도 1a는 니켈과 HMDS를 사용하여 성장시킨 탄화규소 나노로드를 보여주는 사진.1A is a photograph showing silicon carbide nanorods grown using nickel and HMDS.
도 1b는 철과 TMS를 사용하여 성장시킨 탄화규소 나노로드를 보여주는 사진.1b is a photograph showing silicon carbide nanorods grown using iron and TMS.
도 1c는 크롬과 HMDS를 사용하여 성장시킨 탄화규소 나노로드를 보여주는 사진.1C is a photograph showing silicon carbide nanorods grown using chromium and HMDS.
도 1d는 코발트와 HMDS를 사용하여 성장시킨 탄화규소 나노로드를 보여주는 사진.1D is a photograph showing silicon carbide nanorods grown using cobalt and HMDS.
상기와 같은 목적을 달성하기 위하여 본 발명은 기존 공정의 문제점인 고온공정을 규소와 탄소가 같이 포함되어있는 단일전구체를 사용하여 해결하였고, 열화학증착법을 통하여 기판위에 직접적으로 나노로드 및 나노와이어를 성장시킴으로써 성장공정을 간소화시킨다.In order to achieve the above object, the present invention solves the high temperature process, which is a problem of the existing process, using a single precursor containing silicon and carbon, and grows nanorods and nanowires directly on the substrate through thermochemical deposition. This simplifies the growth process.
구체적으로 본 발명은 니켈(Ni), 철(Fe), 코발트(Co), 크롬(Cr), 란탄(La), 티타늄(Ti), 몰리브덴(Mo), 금(Au) 혹은 이들의 화합물로 이루어진 현탁액을 사용하여 촉매를 기판 위에 접착시키고, 접착된 촉매층을 급속 열처리 공정을 통하여나노크기를 가진 입자들로 응집시키고, 규소와 탄소가 같이 포함되어있는 단일전구체를 사용하여 탄화규소 나노와이어 및 나노로드를 성장시키는 것을 포함하여 구성된다.Specifically, the present invention is made of nickel (Ni), iron (Fe), cobalt (Co), chromium (Cr), lanthanum (La), titanium (Ti), molybdenum (Mo), gold (Au) or a compound thereof A suspension is used to bond the catalyst onto the substrate, and the adhered catalyst layer is agglomerated into nano-size particles through a rapid heat treatment process, and silicon carbide nanowires and nanorods are formed using a single precursor containing silicon and carbon together. It comprises a growth.
바람직하게는 상기 단일전구체로는 HMDS(Hexamethyldisilane), 1,3-DSB(1,3-Disliabutane), TMS(Tetramethylsilane), TPS(Triprophylsilane), MTS(methyltrichlorosilane) 중 하나를 선택한다.Preferably, the single precursor is selected from HMDS (Hexamethyldisilane), 1,3-DSB (1,3-Disliabutane), TMS (Tetramethylsilane), TPS (Triprophylsilane), and MTS (methyltrichlorosilane).
기판 상에 촉매를 접착시키는 과정은 니켈(Ni), 철(Fe), 코발트(Co), 크롬(Cr), 란탄(La), 티타늄(Ti), 몰리브덴(Mo), 금(Au)이나 그 화합물을 분산코팅을 이용하여 기판 위에 촉매층을 코팅시킨다. 촉매로 사용될 금속 또는 그 화합물의 코팅을 돕고, 젖음성을 증가시키기 위하여 기판에 약간의 구멍이 있는 것이 바람직하다. 이 과정은 탄화규소가 성장하기 위해 촉매로 사용될 금속 또는 그 화합물을 소자로 사용될 실리콘 또는 유리 기판에 입히는 과정으로서 현탁액의 농도는 약 10∼50mol%가 바람직하다.The process of adhering the catalyst on the substrate includes nickel (Ni), iron (Fe), cobalt (Co), chromium (Cr), lanthanum (La), titanium (Ti), molybdenum (Mo), gold (Au) or its The compound is coated with a catalyst layer on the substrate using dispersion coating. It is desirable to have some pores in the substrate to aid in coating the metal or compound thereof to be used as a catalyst and to increase wettability. This process is a process of coating a metal or a compound to be used as a catalyst for growth of silicon carbide on a silicon or glass substrate to be used as an element, and the concentration of the suspension is preferably about 10 to 50 mol%.
다음 단계에서는 촉매로 사용될 금속 또는 그 혼합물이 부착된 기판을 급속 가열 후 열처리 하는 공정과, 응집된 촉매를 기반으로하여 탄화규소 나노로드 및 나노와이어를 성장시키는 증착공정으로 나뉘어진다.The next step is divided into a process of rapidly heating and heat-treating a substrate on which a metal or a mixture thereof is used as a catalyst and a deposition process of growing silicon carbide nanorods and nanowires based on the aggregated catalyst.
급속 가열후 열처리하는 목적은 일반적인 속도로 가열시 발생하는 결정입자의 성장을 최대한 억제하고 급속 열처리가 입자 사이에 미세한 균열을 만들고 이 균열의 벌어짐이 커짐에 따라서 미세한 크기의 원형으로 뭉치게 되어, 나노크기의 결정을 형성한다. 적용되는 승온속도는 분당 200℃ 이상이어야 하며, 승온속도가적을 때 분화되는 결정립들이 서로 성장하여 막형태를 이루게 되며. 촉매로서의 역할을 담당하지 못한다. 촉매의 열처리의 온도는 700∼1000℃ 사이로 결정되며, 열처리 온도는 기판위에 접착된 금속 및 그 화합물의 녹는점, 수소나 분위기 가스와의 반응온도에 따라 결정되는 것이 바람직하다.The purpose of heat treatment after rapid heating is to suppress the growth of crystal grains generated during heating at a normal rate as much as possible, and rapid heat treatment creates fine cracks between the particles, and as the cracks become larger, they are aggregated into a circle of fine size. Form crystals of size. The temperature increase rate applied should be more than 200 ℃ per minute, and when the temperature increase rate is low, the differentiating grains grow to form a film. It does not play a role as a catalyst. The temperature of the heat treatment of the catalyst is determined to be between 700 and 1000 ° C., and the heat treatment temperature is preferably determined according to the melting point of the metal and the compound adhered on the substrate and the reaction temperature with hydrogen or atmospheric gas.
열처리에 의하여 촉매의 응집화가 이루어진 후, 상압 또는 저압 열화학 증착장치를 사용하여 600∼900℃의 온도에서 탄화규소 나노로드를 성장시키게 된다.After the catalyst is agglomerated by heat treatment, the silicon carbide nanorods are grown at a temperature of 600 to 900 ° C. using an atmospheric pressure or a low pressure thermochemical vapor deposition apparatus.
나노로드 및 나노와이어 성장에 필요한 단일전구체는 대부분 액상의 형태를 가지고 있으므로, 항온조 안에서 0∼20℃의 일정온도를 유지시키며, 수소 가스나 아르곤 가스 등을 전달 가스로 사용하여 반응관에 흘려보낸다. 항온조 안의 온도는 각 단일전구체의 발화점, 기화점등의 화학적 특성을 고려하여 결정되는 것이 바람직하다.Since the single precursor required for the growth of nanorods and nanowires is mostly in the form of a liquid phase, it maintains a constant temperature of 0 to 20 ° C. in a thermostat and sends hydrogen gas or argon gas to the reaction tube using a delivery gas. The temperature in the thermostat is preferably determined in consideration of chemical properties such as the flash point and the vaporization point of each single precursor.
반응관 안에 너무 많은 양의 단일전구체 가스가 흘러 들어갈 경우 나노로드 및 와이어의 성장이 이루어지지 않는 경우가 존재하므로 유량을 조절하면서 다른 경로를 통하여 수소나 아르곤 가스 등을 희석가스로 흘려보낸다. 반응온도와 단일전구체 가스의 유량, 희석가스의 유량, 내부압력, 반응 시간 등의 변수는 경험적인 실험과 사용장비의 편의성과 안정성을 고려하여 결정하는 것이 바람직하다If too much single precursor gas flows into the reaction tube, nanorods and wires do not grow. Therefore, hydrogen or argon gas is flowed to the dilution gas through another path while controlling the flow rate. Variables such as the reaction temperature, the flow rate of the single precursor gas, the flow rate of the diluent gas, the internal pressure, and the reaction time should be determined in consideration of the empirical experiment and the convenience and stability of the equipment used.
본 발명에 따라 성장시킨 탄화규소 나노로드를 도 1a 내지 도 1d에 나타내었다. 도 1a는 니켈과 HMDS를 사용하여 성장시킨 탄화규소 나노로드이며, 도 1b는 철과 TMS를 사용하여 성장시킨 탄화규소 나노로드이며, 도 1c는 크롬과 HMDS를 사용하여 성장시킨 탄화규소 나노로드이며, 도 1d는 코발트와 HMDS를 사용하여 성장시킨 탄화규소 나노로드를 각각 보여준다.Silicon carbide nanorods grown according to the present invention are shown in FIGS. 1A-1D. FIG. 1A shows silicon carbide nanorods grown using nickel and HMDS, FIG. 1B shows silicon carbide nanorods grown using iron and TMS, and FIG. 1C shows silicon carbide nanorods grown using chromium and HMDS. 1D shows silicon carbide nanorods grown using cobalt and HMDS, respectively.
이상에서 설명한 바와 같이 본 발명에 따르면 성장 온도를 현저히 낮춘 탄화규소 나노로드 또는 나노와이어 제조가 가능하며, 특히 세정공정과 고가의 분급공정 없이 기판위에 탄화규소 나노로드 또는 나노와이어를 직접 성장시킬 수 있어 반도체 제조공정에 적용 가능하다. 또한, 전계 발광소자 및 전자소자로서 사용 가능한 탄화규소 나노로드 및 나노와이어의 성장방법을 제공할 수 있다.As described above, according to the present invention, it is possible to manufacture silicon carbide nanorods or nanowires with a significantly lower growth temperature, and in particular, silicon carbide nanorods or nanowires can be directly grown on a substrate without a cleaning process and an expensive classification process. Applicable to the semiconductor manufacturing process. In addition, it is possible to provide a method for growing silicon carbide nanorods and nanowires that can be used as electroluminescent devices and electronic devices.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030033825A KR100581005B1 (en) | 2003-05-27 | 2003-05-27 | Growth method of silicon carbide nanorods and nanowires using single precursor and thermochemical deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030033825A KR100581005B1 (en) | 2003-05-27 | 2003-05-27 | Growth method of silicon carbide nanorods and nanowires using single precursor and thermochemical deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040101858A true KR20040101858A (en) | 2004-12-03 |
KR100581005B1 KR100581005B1 (en) | 2006-05-17 |
Family
ID=37378489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030033825A Expired - Fee Related KR100581005B1 (en) | 2003-05-27 | 2003-05-27 | Growth method of silicon carbide nanorods and nanowires using single precursor and thermochemical deposition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100581005B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100661640B1 (en) * | 2004-09-03 | 2006-12-27 | 학교법인 포항공과대학교 | Method of manufacturing silicon carbide nanowires |
KR100666477B1 (en) * | 2005-06-16 | 2007-01-11 | 한국과학기술연구원 | Titanium oxide nanorods and preparation method thereof |
KR100702412B1 (en) * | 2004-07-19 | 2007-04-02 | 세이코 엡슨 가부시키가이샤 | Method for manufacturing a semiconductor device with a dispersion of semiconductor particles |
CN101850971A (en) * | 2010-06-04 | 2010-10-06 | 浙江理工大学 | A method for preparing high-yield SiC nanowires |
US8679949B2 (en) | 2010-04-02 | 2014-03-25 | Samsung Electronics Co., Ltd. | Silicon nanowire comprising high density metal nanoclusters and method of preparing the same |
US8698122B2 (en) | 2010-04-02 | 2014-04-15 | Samsung Electronics Co., Ltd. | Silicon nanowire comprising high density metal nanoclusters and method of preparing the same |
TWI488805B (en) * | 2009-04-16 | 2015-06-21 | Merck Patent Gmbh | Synthesis of silicon nanorods |
WO2019035663A1 (en) * | 2017-08-18 | 2019-02-21 | 한국기술교육대학교 산학협력단 | Method for producing graphene nanospheres |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101172604B1 (en) * | 2010-09-13 | 2012-08-08 | 고려대학교 산학협력단 | Metal compound nanostructure and method for fabricating the same |
KR101491206B1 (en) * | 2012-02-29 | 2015-02-06 | 세종대학교산학협력단 | Method of manufacturing Emitter for Field Emission and Field Emission Device manufactured by using the same |
-
2003
- 2003-05-27 KR KR1020030033825A patent/KR100581005B1/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100702412B1 (en) * | 2004-07-19 | 2007-04-02 | 세이코 엡슨 가부시키가이샤 | Method for manufacturing a semiconductor device with a dispersion of semiconductor particles |
KR100661640B1 (en) * | 2004-09-03 | 2006-12-27 | 학교법인 포항공과대학교 | Method of manufacturing silicon carbide nanowires |
KR100666477B1 (en) * | 2005-06-16 | 2007-01-11 | 한국과학기술연구원 | Titanium oxide nanorods and preparation method thereof |
TWI488805B (en) * | 2009-04-16 | 2015-06-21 | Merck Patent Gmbh | Synthesis of silicon nanorods |
US8679949B2 (en) | 2010-04-02 | 2014-03-25 | Samsung Electronics Co., Ltd. | Silicon nanowire comprising high density metal nanoclusters and method of preparing the same |
US8698122B2 (en) | 2010-04-02 | 2014-04-15 | Samsung Electronics Co., Ltd. | Silicon nanowire comprising high density metal nanoclusters and method of preparing the same |
CN101850971A (en) * | 2010-06-04 | 2010-10-06 | 浙江理工大学 | A method for preparing high-yield SiC nanowires |
WO2019035663A1 (en) * | 2017-08-18 | 2019-02-21 | 한국기술교육대학교 산학협력단 | Method for producing graphene nanospheres |
US11365123B2 (en) | 2017-08-18 | 2022-06-21 | Korea University Of Technology And Education Industry-University Cooperation Foundation | Method for producing graphene nanospheres |
Also Published As
Publication number | Publication date |
---|---|
KR100581005B1 (en) | 2006-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gole et al. | Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates | |
JP3819382B2 (en) | Carbon nanotube matrix and growth method thereof | |
CN1959896B (en) | Field emission of Nano carbon tube, and preparation method | |
CN100381360C (en) | Method of growing ZnO mono-dimension nanometer material directly on zine containing alloy material | |
KR100581005B1 (en) | Growth method of silicon carbide nanorods and nanowires using single precursor and thermochemical deposition | |
CN1978315A (en) | Method for preparing carbon nano tube array | |
CN102358938A (en) | New method for synthesizing patterned single-crystal tungsten oxide nanowire arrays with catalyst localization technology | |
JP2007186416A (en) | Manufacturing method of silicon wire | |
Han et al. | Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method | |
CN101314465A (en) | Preparation method of branched carbon nanotubes | |
Hsu et al. | Vertical single-crystal ZnO nanowires grown on ZnO: Ga/glass templates | |
CN100476047C (en) | A method for synthesizing single crystal β-Si3N4 nanowires using nano silicon filaments as a template | |
Tseng et al. | Low-temperature growth of ZnO nanowires | |
CN111906296A (en) | Preparation method of composite material with metal particles coated with graphene | |
CN108286043B (en) | Method for preparing β-Ga2O3 nanospheres by chemical vapor deposition | |
JP4016105B2 (en) | Manufacturing method of silicon nanowires | |
JP2005075720A (en) | SiC-COATED CARBON NANOTUBE, MANUFACTURING METHOD THEREFOR AND COMPOSITE MATERIAL THEREOF | |
JP4581381B2 (en) | Method for producing gallium oxide nanostructure | |
TW200406513A (en) | Method for producing graphite nanofiber, electron discharge source, and display device | |
Ishiyama et al. | Silicon nanowires grown by metal-catalyst-free VLS process | |
Kim et al. | Growth mechanism of needle-shaped ZnO nanostructures over NiO-coated Si substrates | |
CN100411980C (en) | Method for Controlling Growth Density of Carbon Nanotubes | |
Byeun et al. | The growth of one‐dimensional single‐crystalline AlN nanostructures by HVPE and their field emission properties | |
JP3834638B2 (en) | Method for producing boron nitride nanotubes filled with nickel or nickel silicide | |
CN1468804A (en) | A new process for preparing ordered arrays of one-dimensional nanowires and nanotubes by using high-temperature molten salt reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20030527 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20050726 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20060125 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20050726 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
PJ0201 | Trial against decision of rejection |
Patent event date: 20060215 Comment text: Request for Trial against Decision on Refusal Patent event code: PJ02012R01D Patent event date: 20060125 Comment text: Decision to Refuse Application Patent event code: PJ02011S01I Appeal kind category: Appeal against decision to decline refusal Decision date: 20060427 Appeal identifier: 2006101001362 Request date: 20060215 |
|
PB0901 | Examination by re-examination before a trial |
Comment text: Amendment to Specification, etc. Patent event date: 20060215 Patent event code: PB09011R02I Comment text: Request for Trial against Decision on Refusal Patent event date: 20060215 Patent event code: PB09011R01I Comment text: Amendment to Specification, etc. Patent event date: 20050914 Patent event code: PB09011R02I |
|
B701 | Decision to grant | ||
PB0701 | Decision of registration after re-examination before a trial |
Patent event date: 20060427 Comment text: Decision to Grant Registration Patent event code: PB07012S01D Patent event date: 20060405 Comment text: Transfer of Trial File for Re-examination before a Trial Patent event code: PB07011S01I |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20060510 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20060511 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20090424 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20100503 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20110502 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20120502 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130430 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20130430 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140421 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20140421 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20160409 |