[go: up one dir, main page]

KR20040077038A - The treatment of residual fine particles from direct process manufacture of methylchlorosilane - Google Patents

The treatment of residual fine particles from direct process manufacture of methylchlorosilane

Info

Publication number
KR20040077038A
KR20040077038A KR1020030012421A KR20030012421A KR20040077038A KR 20040077038 A KR20040077038 A KR 20040077038A KR 1020030012421 A KR1020030012421 A KR 1020030012421A KR 20030012421 A KR20030012421 A KR 20030012421A KR 20040077038 A KR20040077038 A KR 20040077038A
Authority
KR
South Korea
Prior art keywords
fine powder
copper
acid
methylchlorosilane
filtrate
Prior art date
Application number
KR1020030012421A
Other languages
Korean (ko)
Inventor
이욱기
허원회
문신철
서진석
Original Assignee
주식회사 금강고려화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 금강고려화학 filed Critical 주식회사 금강고려화학
Priority to KR1020030012421A priority Critical patent/KR20040077038A/en
Publication of KR20040077038A publication Critical patent/KR20040077038A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 메틸클로로실란의 제조시 발생되는 미분의 처리방법에 관한 것으로, 더욱 상세하게는 금속규소와 염화메탄을 사용하여 메틸클로로실란을 합성하기 위한 직접법 반응에서 발생되는 구리함유 미분에 염산, 황산 또는 질산을 첨가하여 산처리 한 후 여과하여 고체 미분과 여액으로 분리하는 단계, 상기 여과된 고체 미분을 물 또는 산으로 세척하는 단계 및 상기 여액에 가성소다를 첨가하여 pH를 7 ∼ 11로 조절하여 수산화구리를 회수하는 단계를 통해 미분에서 구리를 효과적으로 제거하여 미분을 일반 폐기물로 처분하고, 제거된 여액등의 구리를 수산화구리로 회수하여 재사용 할 수 있는 메틸클로로실란의 제조시 발생되는 미분의 처리 방법에 관한 것이다.The present invention relates to a method for treating fine powder generated in the preparation of methylchlorosilane, and more particularly, to hydrochloric acid and sulfuric acid in a copper-containing fine powder generated in a direct method for synthesizing methylchlorosilane using metal silicon and methane chloride. Or acid treatment by addition of nitric acid, followed by filtration to separate the solid fine powder and the filtrate, washing the filtered solid fine powder with water or acid, and adding caustic soda to the filtrate to adjust the pH to 7-11. The process of recovering copper hydroxide effectively removes copper from the fine powder to dispose of the fine powder as general waste, and the processing of fine powder generated in the production of methylchlorosilane that recovers and reuses the removed copper such as copper hydroxide. It is about a method.

Description

메틸클로로실란의 제조시 발생되는 미분의 처리방법{The treatment of residual fine particles from direct process manufacture of methylchlorosilane}The treatment of residual fine particles from direct process manufacture of methylchlorosilane

본 발명은 메틸클로로실란의 제조시 발생되는 미분의 처리방법에 관한 것으로, 더욱 상세하게는 금속규소와 염화메탄을 사용하여 메틸클로로실란을 합성하기 위한 직접법 반응에서 발생되는 구리함유 미분에 염산, 황산 또는 질산을 첨가하여 산처리 한 후 여과하여 고체 미분과 여액으로 분리하는 단계, 상기 여과된 고체 미분을 물 또는 산으로 세척하는 단계 및 상기 여액에 가성소다를 첨가하여 pH를 7 ∼ 11로 조절하여 수산화구리를 회수하는 단계를 통해 미분에서 구리를 효과적으로 제거하여 미분을 일반 폐기물로 처분하고, 제거된 여액등의 구리를 수산화구리로 회수하여 재사용 할 수 있는 메틸클로로실란의 제조시 발생되는 미분의 처리 방법에 관한 것이다.The present invention relates to a method for treating fine powder generated in the preparation of methylchlorosilane, and more particularly, to hydrochloric acid and sulfuric acid in a copper-containing fine powder generated in a direct method for synthesizing methylchlorosilane using metal silicon and methane chloride. Or acid treatment by addition of nitric acid, followed by filtration to separate the solid fine powder and the filtrate, washing the filtered solid fine powder with water or acid, and adding caustic soda to the filtrate to adjust the pH to 7-11. The process of recovering copper hydroxide effectively removes copper from the fine powder to dispose of the fine powder as general waste, and the processing of fine powder generated in the production of methylchlorosilane that recovers and reuses the removed copper such as copper hydroxide. It is about a method.

메틸클로라이드와 금속 규소를 구리 촉매 하에서 반응시켜 메틸클로로실란을 제조하는 공정은 로쵸우 직접법으로 알려져 있으며 상업적으로 널리 사용되고 있는 방법이다. 직접법에서 생성되는 물질에는 디메틸디클로로실란, 메틸트리클로로실란, 메틸디클로로실란, 트리메틸클로로실란, 테트라클로로실란, 그리고 고비물 등이 있다. 반응 중 유동층 반응기에서 이탈된 촉매와 금속 규소의 미분은 선풍회전기에서 포집되며, 주기적으로 선풍회전기에서 제거되어야 한다. 이 미분의 성분 중 70 ∼ 85%는 규소가 차지하고, 약 14 ∼ 29%정도는 탄소와 구리를 주성분으로 하는 촉매 시스템에서 발생된 미분이다. 이 미분의 환경부 고시 폐기물공정시험방법에 의한 용출 시험 결과에서 기준에 미달되는 항목은 구리로서, 기준치를 약 20배 초과하고 있다. 따라서 이 미분은 특정 폐기물로 구분되며 이를 적법하게 폐기, 처분하기 위해서는 많은 비용을 들여 특정폐기물 관리업체에 의뢰하여 처리하여야 한다.A process for preparing methylchlorosilane by reacting methyl chloride and metal silicon under a copper catalyst is known as the Rochow direct method and is widely used commercially. Substances produced by the direct method include dimethyldichlorosilane, methyltrichlorosilane, methyldichlorosilane, trimethylchlorosilane, tetrachlorosilane, and fertilizers. The fines of the catalyst and metal silicon which have been removed from the fluidized bed reactor during the reaction are collected in the fan rotor and periodically removed from the fan rotor. 70 to 85% of the components of the fine powder are silicon, and about 14 to 29% are the fine powder generated in the catalyst system mainly composed of carbon and copper. The item which failed to meet the standard in the dissolution test result by the Ministry of Environment's notification of waste processing test method was copper, which exceeds the standard value by about 20 times. Therefore, this derivative is classified as a specific waste, and in order to dispose and dispose of it legally, it must be handled by requesting a specific waste management company.

처리비용을 줄이기 위해서 구리를 용출시킨 후, 미분은 반응에 재사용하고 용액에서 구리는 염화제일구리로 회수하는 방법(미합중국 특허 제 2,803,521호), 또는 산화구리로 회수하는 방법(미합중국 특허 제 4,758,352호)등이 있다. 그리고 다른 방법으로써, 유기물 또는 무기물과 함께 코팅한 후 일반폐기물로 매립하는 방법(미합중국 특허 제 4,892,694호), 열처리 한 다음 폐기하는 방법(미합중국 특허 제 5,274,158호) 등 여러 방법들이 알려져 있었다. 그러나, 구리가 제거된 미분을 재사용하는 경우에는 반응성이 떨어지기 때문에 새로운 금속 규소의 투입이 필요하다는 단점이 있었고, 유기물이나 무기물을 사용하여 미분과 반응시켜 용출되는 구리를 고형화시켜 일반폐기물로 매립하는 경우에는 구리를 모두 매립하기 때문에 경제적 손실이 있었다.After eluting the copper to reduce the processing cost, the fine powder is reused in the reaction and the copper is recovered from the solution with cuprous chloride (US Pat. No. 2,803,521), or with copper oxide (US Pat. No. 4,758,352). Etc. As another method, various methods have been known, such as coating with organic or inorganic materials and then embedding them into general waste (US Pat. No. 4,892,694), and heat treating and then discarding (US Pat. No. 5,274,158). However, when reusing finely ground finely divided copper, there is a disadvantage in that new metal silicon is required because of its low reactivity, and solidified eluted copper by reacting with finelyny using organic or inorganic materials to be landfilled as general waste. In this case, there was an economic loss because all the copper was buried.

따라서, 가장 효과적인 방법으로 미분에서 구리를 제거한 다음 미분은 저가에 일반폐기물로 폐기 처분하고, 제거된 구리는 몇 가지 방법을 통해 유용한 화합물로 전환시키는 방법이 가장 경제적이고 쉬운 방법이므로 이러한 방법의 개발이 필요한 실정이다.Therefore, the most effective method is to remove copper from the fine powder, which is then disposed of as fine waste at low cost and the removed copper is converted into useful compounds in several ways. It is necessary.

이에, 본 발명자들은 상기과 같은 문제점을 해결하기 위하여 금속규소와 염화메탄을 사용하여 메틸클로로실란을 합성하기 위한 직접법 반응에서 발생되는 구리함유 미분에 염산, 황산 또는 질산을 첨가하여 산처리 한 후 여과하여 고체 미분과 여액으로 분리하는 단계, 상기 여과된 고체 미분을 물 또는 산으로 세척하는 단계 및 상기 여액에 가성소다를 첨가하여 pH를 7 ∼ 11로 조절하여 수산화구리를 회수하는 단계를 통해 미분에서 구리를 효과적으로 제거하여 미분을 일반 폐기물로 처분하고, 제거된 여액중의 구리를 수산화구리로 회수하여 재사용 할 수 있음을 알게되어 본 발명을 완성하였다.In order to solve the above problems, the present inventors added hydrochloric acid, sulfuric acid or nitric acid to the copper-containing fine powder generated in the direct method for synthesizing methylchlorosilane using metal silicon chloride and methane, followed by acid treatment. Separating into solid fine powder and filtrate, washing the filtered solid fine powder with water or acid, and adding caustic soda to the filtrate to adjust the pH to 7-11 to recover copper hydroxide in fine powder The present invention was completed by effectively removing the fine powder as a general waste, and recovering and reusing copper in the removed filtrate with copper hydroxide.

따라서, 본 발명은 메틸클로로실란의 직접법 합성에서 발생되는 구리함유 미분을 산처리 하여 고체 미분과 여액으로 분리한 다음, 고체 미분은 일반폐기물로 폐기하고, 여액의 구리는 용액에서 회수하는 방법을 통해 메틸클로로실란의 제조시발생되는 미분을 처리하는 방법을 제공하는데 그 목적이 있다.Therefore, in the present invention, the copper-containing fine powder generated in the direct synthesis of methylchlorosilane is acid treated to separate the solid fine powder and the filtrate, and then the solid fine powder is disposed of as general waste, and the filtrate copper is recovered from the solution. It is an object of the present invention to provide a method for treating fine powder generated in the preparation of methylchlorosilane.

도 1은 본 발명의 미분의 처리방법을 개략적으로 나타낸 것이다.1 schematically shows a method of treating fine powder of the present invention.

본 발명은 1) 금속규소와 염화메탄을 사용하여 메틸클로로실란을 합성하기 위한 직접법 반응에서 발생되는 구리함유 미분에 염산, 황산 또는 질산 중에서 선택된 산을 미분에 대하여 0.5 ∼ 2 배 사용하여 산처리 한 후 여과하여 고체 미분과 여액으로 분리하는 단계; 2) 상기 1 단계의 여과된 고체 미분은 미분에 대하여 1 ∼ 3 배의 물 또는 산으로 세척하는 단계; 및 3) 상기 1 단계의 여액 및 2 단계의 세액의 혼합액에 가성소다를 첨가하여 pH를 7 ∼ 11로 조절하여 수산화구리로 회수하는 단계로 이루어진 미분의 처리방법을 그 특징으로 한다.In the present invention, 1) an acid treatment using 0.5-2 times the acid selected from hydrochloric acid, sulfuric acid or nitric acid in the copper-containing fine powder generated in the direct method for synthesizing methylchlorosilane using metal silicon and methane chloride is performed. After filtration to separate the solids into filtrate; 2) washing the filtered solid fine powder of step 1 with 1 to 3 times water or acid relative to fine powder; And 3) adding caustic soda to the mixed solution of the filtrate of step 1 and the washing solution of step 2 to adjust the pH to 7-11, and recovering it with copper hydroxide.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 금속 규소와 메틸클로라이드를 이용하여 메틸클로로실란을 제조한 후 선풍회전기에 포집된 미분의 처리방법, 즉 미분에서 구리를 효과적으로 제거하고, 고체 미분은 일반 폐기물로 처분하고, 제거된 구리를 수산화구리로 회수하는 방법에 관한 것이다.The present invention is to prepare a methylchlorosilane using the silicon silicon and methyl chloride, and then to process the fine powder collected in the fan rotor, that is, to effectively remove copper from the fine powder, the solid fine powder is disposed of as a general waste, the removed copper It relates to a method for recovering with copper hydroxide.

이와같은 본 발명의 미분의 처리방법을 도 1을 중심으로 더욱 상세히 설명하면 다음과 같다.Such a fine powder processing method of the present invention will be described in more detail with reference to FIG. 1 as follows.

먼저, 1 단계로 금속 규소와 염화메탄을 이용하여 메틸클로로실란을 제조한 후 선풍회전기에 포집된 미분에 염산, 황산 또는 질산 중에서 선택된 산을 미분에 대하여 0.5 ∼ 2 배 사용하여 산처리 한 후 여과하여 고체 미분과 여액인 구리용액으로 분리한다. 이러한 산처리 과정은 미분에 포함된 구리를 용출시키는 과정으로, 직접법 합성에서 발생된 미분을 질소 기체의 흐름하에 미분에 대하여 1 ∼ 2 배의 물이 포함된 반응기로 투입시키고 일정시간 교반하여 안정화시킨다. 그런 다음, 미분에 대하여 0.5 ∼ 1 배의 산을 서서히 가한다. 이때 사용하는 산으로는 상기의 염산, 질산 또는 황산을 사용할 수 있으며, 사용하는 산에 따라 염화제이구리 용액, 질산구리 용액, 황산구리 용액이 얻어질 수 있으며, 질산의 경우 질산 단독으로 사용하여도 일정량의 구리가 용출되어 나오지만, 염산과 황산을 사용할 경우에는 산화제로서 공기, 산소 또는 염소를 투입하여 주거나 과산화수소수를 미분에 대해 0.25배 추가 사용한다. 이 경우 산을 가한 다음 온도를 80 ∼ 100 ℃로 올리고, 공기 등의 산화제를 시간당 150 L씩 투입하면서 약 8시간 정도 반응시켜 구리를 2가 구리염으로써 용출해 낸다. 반응이 끝난 후, 상온으로 식혀 여과하여 고체 미분과 구리용액으로 분리한다. 여과과정을 더욱 상세히 설명하면 거름종이를 이용해 뷰흐너 깔대기에서 감압여과를 이용하여 고체 미분과 용액을 분리한다.First, methylchlorosilanes are prepared using metal silicon and methane chloride in one step, and the acid selected from hydrochloric acid, sulfuric acid, or nitric acid in the fine powder collected by the fan rotator is subjected to acid treatment using 0.5 to 2 times the fine powder, followed by filtration. The solid is separated into a fine powder and a filtrate copper solution. This acid treatment is a process of eluting copper contained in the fine powder. The fine powder generated in the direct method synthesis is introduced into a reactor containing 1 to 2 times water to the fine powder under a flow of nitrogen gas and stabilized by stirring for a predetermined time. . Then, 0.5 to 1 times the acid is slowly added to the fine powder. The acid used may be the above hydrochloric acid, nitric acid, or sulfuric acid. Depending on the acid used, a cupric chloride solution, a copper nitrate solution, and a copper sulfate solution may be obtained. In the case of nitric acid, a certain amount may be used even with nitric acid alone. Although copper is eluted out, when hydrochloric acid and sulfuric acid are used, air, oxygen or chlorine is added as an oxidizing agent or 0.25 times more hydrogen peroxide is used for fine powder. In this case, after adding an acid, the temperature is raised to 80 to 100 ° C., and an oxidizing agent such as air is added at 150 L per hour to react for about 8 hours to elute copper as a divalent copper salt. After the reaction, the mixture was cooled to room temperature and filtered to separate the solid into a fine powder and a copper solution. In more detail, the filtration process is carried out using a filter paper to separate the solid fines and the solution using decompression filtration in a Buchner funnel.

거름과정에서 걸러진 고체 미분은 다음 2 단계로 투입한 미분에 대하여 1 ∼ 3 배의 물 또는 묽은 산을 이용해 세척하여 미분을 일반폐기물로 처리한다. 세척액으로 산을 단독으로 사용할 경우 용출되는 구리의 양이 더 증가하기 때문에 이 경우는 다시 미분에 대하여 1 ∼ 2 배의 물을 사용하여 세척해야한다. 이 중 산을 이용해 구리를 미분에서 이탈시키고, 다시 물을 이용해 미분에서 산을 제거하는 경우 가장 바람직하다. 이러한 세척과정을 거친 고체 미분을 감압 상태를몇 분간 더 유지하면서 미분에서 수분을 최대한 제거시킨 다음, 130 ℃ 정도의 오븐에서 2시간 동안 건조시킨다. 이렇게 얻어진 미분의 용출 가능한 구리의 함량은 2.3 ∼ 2.7 ppm으로서 일반 폐기가 가능하다.The solid fine powder filtered out during the filtering process is washed with 1 to 3 times water or dilute acid with respect to the fine powder added in the next 2 steps, and the fine powder is treated as general waste. If acid is used alone as the washing liquid, the amount of copper eluted is further increased. In this case, it should be washed with 1 to 2 times the amount of fine powder again. Among them, it is most preferable to remove copper from the fine powder using an acid and to remove the acid from the fine powder using water again. After the washing process, the solid fine powder is removed as much as possible from the fine powder while maintaining the reduced pressure for a few more minutes, and then dried in an oven at 130 ° C. for 2 hours. The content of the elutable copper of the fine powder thus obtained is 2.3 to 2.7 ppm, which can be generally disposed of.

고체 미분과 별도로 상기 1 단계의 여액 및 2 단계의 세액의 혼합액인 구리용액에 가성소다를 첨가하여 pH를 7 ∼ 11로 조절하여 구리를 수산화구리로 회수하고, 나머지 용액은 일반 폐기물 처리를 하는 3 단계를 거친다. 상기 1 단계와 2 단계의 여액에서 얻어진 구리 함량은 ICP-AES(Inductively coupled plasma-Atomic emission spectroscopy)로 분석하며, 선풍회전기 미분의 총 구리함량과 비교하여 회수율을 계산하면 약 92 ∼ 98%의 회수율을 보인다. 상기와 같이 구리용액에 가성소다를 첨가하여 pH를 7 ∼ 11로 조절하면 수산화구리가 침전되며, 침전된 수산화구리는 여과과정을 거쳐 제거하고, 나머지 폐액은 구리함량이 0.5 ∼ 0.7 ppm으로 일반 폐기물 처리가 가능하다.Apart from the solid fine powder, caustic soda is added to the copper solution, which is a mixture of the first filtrate and the second filtrate, to adjust the pH to 7-11, to recover copper as copper hydroxide, and the remaining solution is treated with general waste. Go through the steps The copper content obtained in the first and second filtrates is analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the recovery rate is about 92 to 98% when the recovery rate is calculated in comparison with the total copper content of the pulverizer. Seems. As described above, when caustic soda is added to the copper solution to adjust the pH to 7-11, copper hydroxide is precipitated, and the precipitated copper hydroxide is removed by filtration, and the remaining waste liquid is 0.5 to 0.7 ppm of copper. Processing is possible.

이와 같이, 일반적인 직접법 합성 중 발생된 미분의 경우 구리의 함량이 높아서 특정 폐기물로서 처리를 해야 하므로 많은 비용이 소모되지만, 본 발명에 따른 미분의 처리방법은 구리를 제거한 후 미분을 일반 폐기물로서 처리할 수 있으며, 회수된 구리는 수산화구리로 회수하여 재사용이 가능며, 남은 용액 또한 일반 폐기물로서 처리가 가능함을 알 수 있었다.As described above, in the case of fine powder generated during the general direct method synthesis, the copper content is high, so it is required to treat it as a specific waste, but a lot of cost is consumed. It can be seen that the recovered copper can be recovered and reused with copper hydroxide, and the remaining solution can also be treated as general waste.

이하 본 발명을 실시예에 의거 더욱 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예 1Example 1

메틸클로로실란 합성 후 선풍회전기에 포집된 미분 200 g을 물 400 g이 들어있는 둥근 바닥 플라스크에 질소 분위기 하에서 조심스럽게 가하였다. 교반기를 이용해 분당 300 ∼ 400 회전의 속도로 교반하면서 공업용 진한 염산 100 g을 매우 천천히 가하였다. 반응기를 맨틀을 이용해 서서히 반응 온도인 80 ℃까지 가열하고, 반응 온도에 다다르면 공기 주입 관을 이용해 시간당 150 L의 유량으로 공기를 주입하였다. 온도를 유지하면서 8시간 동안 반응시켰다. 반응이 끝난 후 상온으로 식히고, 5종 B 거름종이(Advantec사)를 이용해 고체 미분과 액체를 분리하고, 분리된 고체 미분은 1 N 염산 300 g으로 세척하고, 다시 물 300 g을 이용해 고체 미분에 남아있는 산을 제거하였다. 그런 다음 130 ℃ 오븐에서 2시간 동안 건조시켰다. 분리된 용액은 2 M NaOH 용액을 이용해 pH를 7로 조절하고, 여기서 생긴 수산화구리 침전을 5종 B 거름종이를 이용해 분리해내었다.After the synthesis of methylchlorosilane, 200 g of the fine powder collected in the fan rotor was carefully added to a round bottom flask containing 400 g of water under nitrogen atmosphere. 100 g of industrial concentrated hydrochloric acid was added very slowly using a stirrer while stirring at a speed of 300 to 400 revolutions per minute. The reactor was slowly heated to a reaction temperature of 80 ° C. using a mantle, and when the reaction temperature was reached, air was injected at a flow rate of 150 L per hour using an air inlet tube. The reaction was carried out for 8 hours while maintaining the temperature. After the reaction was completed, the mixture was cooled to room temperature, and the solid fine powder and the liquid were separated using five kinds of B filter paper (Advantec Co., Ltd.), and the separated solid fine powder was washed with 300 g of 1 N hydrochloric acid, and again, the solid fine powder was washed with 300 g of water. The remaining acid was removed. It was then dried in an oven at 130 ° C. for 2 hours. The separated solution was adjusted to pH 7 using 2 M NaOH solution, and the copper hydroxide precipitate generated therefrom was separated using five B-filter papers.

최종적으로 얻어진 구리가 제거된 미분은 폐기물공정시험방법에 의한 용출시험(환경부 고시 제2000-41호에 의거)을 통해 구리의 용출량을 측정하였다.Finally, the obtained copper fine powder was measured by the dissolution test according to the waste process test method (according to the Ministry of Environment's notification No. 2000-41).

구리가 포함된 용액은 ICP-AES(Inductively coupled plasma-Atomic emission spectroscopy)를 통해 구리의 함량을 측정하고, 선풍회전기 미분에서 ICP-AES(Inductively coupled plasma-Atomic emission spectroscopy)를 통해 측정한 구리의 함량과 비교하여 회수율을 구하였다. 구리가 포함된 용액에 가성소다 처리 공정을 거치고 수산화구리가 제거된 폐액은 ICP-AES(Inductively coupled plasma-Atomic emission spectroscopy)나 AA(Atomic absorption)를 통해 구리의 함량을 측정하였다.The copper content is measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and the copper content measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) in the pulverizer. The recovery was obtained by comparing with. The solution containing copper was subjected to caustic soda treatment and copper hydroxide was removed, and the copper content was measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) or atomic absorption (AA).

상기 각 결과를 다음 표 1에 나타내었다.Each result is shown in Table 1 below.

실시예 2Example 2

실시예 1에서 진한 염산 대신 진한 질산 100 g을 사용하고, 공기는 주입하지 않았다.100 g of concentrated nitric acid was used instead of concentrated hydrochloric acid in Example 1, and no air was injected.

실시예 3Example 3

실시예 1에서 진한 염산 대신 진한 황산 100 g을 사용하였다.100 g of concentrated sulfuric acid was used instead of concentrated hydrochloric acid in Example 1.

실시예 4Example 4

실시예 1에서 공기는 주입하지 않고, 대신 35% 과산화수소수 50 g을 투입하였다.In Example 1, air was not injected, and 50 g of 35% hydrogen peroxide solution was added instead.

상기 실시예 1 ∼ 4의 실험조건 및 결과를 다음 표 1에 간략히 나타내었다.The experimental conditions and results of Examples 1 to 4 are briefly shown in Table 1 below.

산처리 과정Acid treatment process 구리 회수율(%)Copper recovery (%) 구리 용출량(ppm)Copper elution amount (ppm) 미분differential 폐액Waste 1One 염산+공기Hydrochloric acid + air 97.597.5 2.302.30 0.550.55 22 질산nitric acid 98.098.0 2.532.53 0.660.66 33 황산+공기Sulfuric acid + air 92.592.5 2.422.42 0.700.70 44 염산+H2O2 Hydrochloric acid + H 2 O 2 93.193.1 2.702.70 0.580.58

상술한 바와 같이, 본 발명은 종래 직접법 합성 중 발생된 미분에서 구리를 효과적으로 제거하여 미분을 일반 폐기물로 처리 가능하고, 제거된 구리를 수산화구리로 회수할 수 있어 미분을 효과적으로 처리할 수 있다.As described above, the present invention can effectively remove the copper from the fine powder generated during the conventional direct method synthesis to treat the fine powder as a general waste, it is possible to recover the removed copper as copper hydroxide can effectively process the fine powder.

Claims (2)

1) 금속규소와 염화메탄을 사용하여 메틸클로로실란을 합성하기 위한 직접법 반응에서 발생되는 구리함유 미분에 염산, 황산 또는 질산 중에서 선택된 산을 미분에 대하여 0.5 ∼ 2 배 사용하여 산처리 한 후 여과하여 고체 미분과 여액으로 분리하는 단계;1) Acid-treated with 0.5 to 2 times the acid selected from hydrochloric acid, sulfuric acid or nitric acid in the copper-containing fine powder generated in the direct method for the synthesis of methylchlorosilane using metal silicon and methane chloride, and filtered Separating into solid fines and filtrate; 2) 상기 1 단계의 여과된 고체 미분은 미분에 대하여 1 ∼ 3 배의 물 또는 산으로 세척하는 단계; 및2) washing the filtered solid fine powder of step 1 with 1 to 3 times water or acid relative to fine powder; And 3) 상기 1 단계의 여액 및 2 단계의 세액의 혼합액에 가성소다를 첨가하여 pH를 7 ∼ 11로 조절하여 수산화구리로 회수하는 단계로 이루어진 것을 특징으로 하는 미분의 처리방법3) adding caustic soda to the mixed solution of the filtrate of step 1 and the washing solution of step 2 to adjust the pH to 7-11 to recover with copper hydroxide; 제 1 항에 있어서, 상기 1 단계의 산처리 시 산화제로 공기, 과산화수소, 산소 및 염소 중에서 선택된 것을 추가적으로 첨가하는 것을 특징으로 하는 미분의 처리방법.The method of claim 1, wherein the acid treatment of the first step further comprises adding an air oxidant selected from air, hydrogen peroxide, oxygen, and chlorine.
KR1020030012421A 2003-02-27 2003-02-27 The treatment of residual fine particles from direct process manufacture of methylchlorosilane KR20040077038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030012421A KR20040077038A (en) 2003-02-27 2003-02-27 The treatment of residual fine particles from direct process manufacture of methylchlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030012421A KR20040077038A (en) 2003-02-27 2003-02-27 The treatment of residual fine particles from direct process manufacture of methylchlorosilane

Publications (1)

Publication Number Publication Date
KR20040077038A true KR20040077038A (en) 2004-09-04

Family

ID=37441061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030012421A KR20040077038A (en) 2003-02-27 2003-02-27 The treatment of residual fine particles from direct process manufacture of methylchlorosilane

Country Status (1)

Country Link
KR (1) KR20040077038A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301776C (en) * 2005-03-22 2007-02-28 温州市东瓯微孔过滤有限公司 Filtration and washing technology in preparing metal or non metal fine granular powder
CN1329292C (en) * 2005-11-11 2007-08-01 山东大学 Method for reactivating and regenerating waste silicon powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301776C (en) * 2005-03-22 2007-02-28 温州市东瓯微孔过滤有限公司 Filtration and washing technology in preparing metal or non metal fine granular powder
CN1329292C (en) * 2005-11-11 2007-08-01 山东大学 Method for reactivating and regenerating waste silicon powder

Similar Documents

Publication Publication Date Title
RU2302997C2 (en) Method of production of the high-purity ammonium dimolybdate (its versions)
EP0675077B1 (en) Method for recovering metal chlorides from silicon or ferrosilicon alloys which have been reacted with chlorinating agents
JP2006512484A (en) Recovery of metals from sulfide-based materials
US4203952A (en) Process for the removal of heavy metals and transition metals other than platinum from solution
CA2912132C (en) Method for arsenic oxidation and removal from process and waste solutions
WO2015122561A1 (en) Method for preparing bimetallic catalyst with high nitrate removal efficiency and nitrogen selectivity, and catalyst prepared thereby
JP2716050B2 (en) Production method of copper powder
KR20040077038A (en) The treatment of residual fine particles from direct process manufacture of methylchlorosilane
US4038071A (en) Process for the removal of mercury from aqueous solutions
JP4536257B2 (en) Method for producing sodium chloride aqueous solution
US6323357B1 (en) Process for the direct synthesis of organochlorosilanes using recovered CuCl catalyst
JPS585700B2 (en) Oyoekikarajiyukinzoku Oyobi Hakukin Igaino
JP4486215B2 (en) How to recover the pesticide
CN103011286B (en) Process for producing bismuth subcarbonate with crude bismuth oxide
JP2004502027A (en) Method for recovering copper from aqueous solutions containing iodinated organic compounds
CN113322382B (en) Treatment method for recovering nickel from nickel-containing sludge
WO2012156198A1 (en) Acidic mine water remediation
EP1333890B1 (en) Method for rendering inert dust residue containing silicon metal
CN118957288A (en) A treatment process for high-palladium anode mud
KR100206685B1 (en) Method for removing arsenic from soil contaminant and wastes
JP2002018396A (en) Treating method for filter cake of waste
JP2004300459A (en) Method for recovering metallic component in spent detoxifying agent
JPH1192840A (en) Refining of zirconium
WO2022056234A1 (en) Valorization of waste streams
CN117263229A (en) Method for preparing refined cuprous chloride from liquid-phase DMC catalyst waste mud

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20030227

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20080129

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20030227

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20090612

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20090930

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20090612

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I