KR20040003866A - Method for preparing of optically pure (R)-form or (S)-form tetrahydrofurfurylamine using heterogeneous catalysts - Google Patents
Method for preparing of optically pure (R)-form or (S)-form tetrahydrofurfurylamine using heterogeneous catalysts Download PDFInfo
- Publication number
- KR20040003866A KR20040003866A KR1020020038691A KR20020038691A KR20040003866A KR 20040003866 A KR20040003866 A KR 20040003866A KR 1020020038691 A KR1020020038691 A KR 1020020038691A KR 20020038691 A KR20020038691 A KR 20020038691A KR 20040003866 A KR20040003866 A KR 20040003866A
- Authority
- KR
- South Korea
- Prior art keywords
- tetrahydroperfurylamine
- tetrahydrofurannitrile
- reaction
- alcohol
- optically pure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000002638 heterogeneous catalyst Substances 0.000 title claims description 17
- ASNHGEVAWNWCRQ-UHFFFAOYSA-N 4-(hydroxymethyl)oxolane-2,3,4-triol Chemical compound OCC1(O)COC(O)C1O ASNHGEVAWNWCRQ-UHFFFAOYSA-N 0.000 title abstract description 38
- YNOGYQAEJGADFJ-UHFFFAOYSA-N oxolan-2-ylmethanamine Chemical compound NCC1CCCO1 YNOGYQAEJGADFJ-UHFFFAOYSA-N 0.000 title description 4
- 239000003054 catalyst Substances 0.000 claims abstract description 25
- 239000003960 organic solvent Substances 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- RZZIKHSWRWWPAN-RXMQYKEDSA-N (2r)-oxolane-2-carbonitrile Chemical compound N#C[C@H]1CCCO1 RZZIKHSWRWWPAN-RXMQYKEDSA-N 0.000 claims abstract description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 5
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 4
- 238000002360 preparation method Methods 0.000 claims abstract description 4
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 3
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 67
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Natural products CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 239000002904 solvent Substances 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 12
- 235000019441 ethanol Nutrition 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 8
- RZZIKHSWRWWPAN-YFKPBYRVSA-N (2s)-oxolane-2-carbonitrile Chemical compound N#C[C@@H]1CCCO1 RZZIKHSWRWWPAN-YFKPBYRVSA-N 0.000 claims description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 7
- 239000000376 reactant Substances 0.000 claims description 7
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 6
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 claims description 3
- 239000005695 Ammonium acetate Substances 0.000 claims description 3
- 229940043376 ammonium acetate Drugs 0.000 claims description 3
- 235000019257 ammonium acetate Nutrition 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910021536 Zeolite Inorganic materials 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- 239000002808 molecular sieve Substances 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 2
- 229910052698 phosphorus Inorganic materials 0.000 claims 2
- 239000011574 phosphorus Substances 0.000 claims 2
- YNOGYQAEJGADFJ-YFKPBYRVSA-N [(2s)-oxolan-2-yl]methanamine Chemical compound NC[C@@H]1CCCO1 YNOGYQAEJGADFJ-YFKPBYRVSA-N 0.000 claims 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 26
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000005984 hydrogenation reaction Methods 0.000 description 17
- RZZIKHSWRWWPAN-UHFFFAOYSA-N oxolane-2-carbonitrile Chemical compound N#CC1CCCO1 RZZIKHSWRWWPAN-UHFFFAOYSA-N 0.000 description 16
- 239000007795 chemical reaction product Substances 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 238000004821 distillation Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000619 316 stainless steel Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229960001270 d- tartaric acid Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- KMGUEILFFWDGFV-UHFFFAOYSA-N 2-benzoyl-2-benzoyloxy-3-hydroxybutanedioic acid Chemical compound C=1C=CC=CC=1C(=O)C(C(C(O)=O)O)(C(O)=O)OC(=O)C1=CC=CC=C1 KMGUEILFFWDGFV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- FEWJPZIEWOKRBE-LWMBPPNESA-N levotartaric acid Chemical compound OC(=O)[C@@H](O)[C@H](O)C(O)=O FEWJPZIEWOKRBE-LWMBPPNESA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- -1 nitrile compound Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229960001367 tartaric acid Drugs 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/04—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D307/10—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/14—Radicals substituted by nitrogen atoms not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B57/00—Separation of optically-active compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/04—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D307/18—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/24—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
본 발명은 불균일촉매를 이용한 광학적으로 순수한 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민의 제조방법에 관한 것으로, 좀 더 상세하게는 (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴을 불균일촉매를 이용한 수소화 반응으로 환원시켜 경제적이고, 친환경적인 공정을 통해서 광학적으로 순수한 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing optically pure (R) -form or (S) -form tetrahydroperfurylamine using a heterogeneous catalyst, and more particularly, to (R) -form or (S) -form 2 The present invention relates to a method for producing optically pure (R) -form or (S) -form tetrahydroperfurylamine through an economical and environmentally friendly process by reducing tetrahydrofurannitrile by hydrogenation using a heterogeneous catalyst.
(R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민은 광학활성 의약개발물질 및 기타 광학활성 화학제품 제조의 기초가 되는 원료이다.(R) -form or (S) -form tetrahydroperfurylamine is the raw material upon which optically active drug development materials and other optically active chemicals are manufactured.
종래 기술에서 광학적으로 순수한 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민의 제조방법의 대표적인 예는 다음과 같다.Representative examples of the method for preparing optically pure (R) -form or (S) -form tetrahydroperfurylamine in the prior art are as follows.
예를 들어, 미국 특허 제3,577,409호 및J. Org. Chem. 1981,46, 2798에는 퍼퓨랄로부터 쉽게 제조할 수 있는 라세믹 테트라히드로퍼퓨릴아민을 출발물질로 사용하고 D-타르타르산과 염을 형성시켜 화학적 광학분할 방법으로 높은 광학순도를 갖는 (R)-폼 테트라히드로퍼퓨릴아민을 제조하는 방법이 개시되어 있다. 그러나, 상기 방법은 높은 광학순도를 얻기 위하여 5회에 걸친 재결정 공정이 필요하므로 제조과정이 복잡하고 제조기간이 길어지는 문제가 있다. 또한, D-타르타르산과 반응하여 형성된 염으로부터 (R)-폼 테트라히드로퍼퓨릴아민을 분리하기 위해서는 염기성 수용액을 사용해야 하는데, 이 과정에서 물에 대한 용해도가 큰 아민을 추출해야 하므로 수율이 낮아지는 문제가 있다.See, eg, US Pat. No. 3,577,409 and J. Org. Chem . 1981, 46 , 2798 (R) -forms having high optical purity by chemical optical splitting method using racemic tetrahydroperfurylamine, which can be easily prepared from perfural, as a starting material and forming salts with D-tartaric acid. A method for preparing tetrahydroperfurylamine is disclosed. However, since the method requires five recrystallization steps to obtain high optical purity, the manufacturing process is complicated and the manufacturing time is long. In addition, in order to separate (R) -form tetrahydroperfurylamine from a salt formed by reaction with D-tartaric acid, a basic aqueous solution should be used. In this process, a yield is lowered because an amine having high solubility in water must be extracted. There is.
또한,J. Org. Chem. 1981, 46, 2110에는 L-타르타르산을 이용하여 (S)-폼 테트라히드로퍼퓨릴아민과 (R)-폼 테트라히드로퍼퓨릴아민을 동시에 제조하는 방법이 개시되어 있고, 영국특허 제1,031,916호에는 타르타르산 대신 디벤조일타르타르산을 사용하여 (R)-폼 테트라히드로퍼퓨릴아민을 제조하는 방법이 개시되어 있으나, 상기와 같이 재결정 과정과 물로부터 추출과정을 통해서 분리해야 하는 문제점이 있다.In addition, J. Org. Chem . 1981, 46, and 2110 disclose methods for simultaneously producing (S) -form tetrahydroperfurylamine and (R) -form tetrahydroperfurylamine using L-tartaric acid, and British Patent No. 1,031,916 discloses tartaric acid. Instead, a method of preparing (R) -form tetrahydroperfurylamine using dibenzoyltartaric acid has been disclosed. However, as described above, there is a problem of separation through recrystallization and extraction from water.
한편, 미국 특허 제4,129,580호에는 라살로시드라는 고가의 유기산을 이용하여 염을 형성시켜 화학적 광학분할 방법으로 (R)-폼 테트라히드로퍼퓨릴아민을 제조하는 방법이 개시되어 있으나, 사용하는 유기산이 고가일 뿐만 아니라 50% 정도의 광학순도를 갖는 (R)-폼 테트라히드로퍼퓨릴아민을 제조하므로 산업적 생산에 적용하기 어려운 문제점이 있다.Meanwhile, US Patent No. 4,129,580 discloses a method of preparing (R) -form tetrahydroperfurylamine by chemical optical splitting method by forming a salt using an expensive organic acid called lasaloside, but the organic acid used is In addition to being expensive, since (R) -form tetrahydrofurfurylamine having an optical purity of about 50% is manufactured, there is a problem that it is difficult to apply to industrial production.
전술한 바와 같이, 기존의 제조 공정들은 대부분 수차례의 재결정 방법을 통해서 광학순도를 향상시키거나, 또는 부반응물이 생성될 가능성이 높은 회분식 공정을 채택함으로써 생산성이 떨어지고, 폐기물이 다량 발생하거나 또는 제조공정이복잡하여 전체 수율이 낮기 때문에 대량생산이 불가능하고 공업적으로 적용하기에는 한계가 있다.As mentioned above, the existing manufacturing processes are mostly improved in optical purity through several recrystallization methods, or by adopting a batch process which is likely to generate side reactions, resulting in low productivity, large amount of waste, or manufacturing. Due to the complexity of the process, the overall yield is low, so mass production is impossible and there is a limit to industrial application.
이에 본 발명에서는 전술한 바와 같은 문제점을 해결하기 위하여 (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴을 출발물질로 사용하여 수소화 반응을 통해 높은 광학순도를 갖는 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민을 얻을 수 있는 연속반응 제조공정을 개발하고자 노력한 결과, 무기산화물 담체에 금속이 담지된 불균일촉매 및 유기 용매의 존재하에서, (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴을 고정층 연속 반응기로 수소화하여 광학적으로 순수한 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민을 고순도 및 고수율로 연속 제조할 수 있는 방법을 발견하였으며, 본 발명은 이에 기초하여 완성되었다.Accordingly, in the present invention, in order to solve the above problems, (R) -form or (S) -form 2-tetrahydrofurannitrile is used as a starting material and (R) -form having high optical purity through a hydrogenation reaction. Or an effort was made to develop a continuous reaction process for obtaining (S) -form tetrahydroperfurylamine, and as a result, in the presence of a heterogeneous catalyst and an organic solvent in which a metal is supported on an inorganic oxide carrier, (R) -form or (S A method of hydrogenation of) -form 2-tetrahydrofurannitrile in a fixed bed continuous reactor has been found to continuously produce optically pure (R) -form or (S) -form tetrahydroperfurylamine in high purity and high yield. The present invention has been completed based on this.
따라서, 본 발명의 목적은 산업적으로 활용 가능한 높은 광학순도를 갖는 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민을 경제적으로 제조하는 방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method for economically preparing (R) -form or (S) -form tetrahydroperfurylamine having high optical purity that is industrially available.
본 발명의 다른 목적은 간단하고 친환경적인 공정을 통해서 높은 광학순도를 갖는 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민을 효율적으로 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method for efficiently preparing (R) -form or (S) -form tetrahydroperfurylamine having high optical purity through a simple and environmentally friendly process.
상기 목적 및 다른 목적을 달성하기 위한 본 발명에 따른 광학적으로 순수한 (R)-테트라히드로퍼퓨릴아민의 제조방법은 불균일촉매 및 유기 용매의 존재하에서 하기 화학식 1a로 표시되는 (R)-2-테트라히드로퓨란니트릴을 반응온도 0∼200℃,반응압력 1∼1000psig, 시간당 중량공간속도(WHSV) 0.1∼10h-1인 반응조건하에서 고정층 반응기에 연속적으로 통과시켜 선택적으로 수소화하여 하기 화학식 2a로 표시되는 (R)-테트라히드로퍼퓨릴아민을 얻는다:The method for preparing optically pure (R) -tetrahydroperfurylamine according to the present invention for achieving the above and other objects is (R) -2-tetra represented by the following general formula (1a) in the presence of a heterogeneous catalyst and an organic solvent. Hydrofurannitrile is continuously hydrogenated through a fixed bed reactor under reaction conditions of reaction temperature of 0 to 200 ° C, reaction pressure of 1 to 1000 psig, and weight hourly space velocity (WHSV) of 0.1 to 10 h -1 to be selectively hydrogenated to be represented by the following Chemical Formula 2a. Obtain (R) -tetrahydroperfurylamine:
상기 목적 및 다른 목적을 달성하기 위한 본 발명에 따른 광학적으로 순수한 (S)-테트라히드로퍼퓨릴아민의 제조방법은 불균일촉매 및 유기 용매의 존재하에서 하기 화학식 1b로 표시되는 (S)-2-테트라히드로퓨란니트릴을 반응온도 0∼200℃, 반응압력 1∼1000psig, 시간당 중량공간속도(WHSV) 0.1∼10h-1인 반응조건하에서 고정층 반응기에 연속적으로 통과시켜 선택적으로 수소화하여 하기 화학식 2b로 표시되는 (S)-테트라히드로퍼퓨릴아민을 얻는다:The method for preparing optically pure (S) -tetrahydroperfurylamine according to the present invention for achieving the above and other objects is (S) -2-tetra represented by the following general formula (1b) in the presence of a heterogeneous catalyst and an organic solvent. Hydrofurannitrile is continuously hydrogenated through a fixed bed reactor under the reaction conditions of reaction temperature 0 ~ 200 ℃, reaction pressure 1 ~ 1000psig, weight hourly space velocity (WHSV) 0.1 ~ 10h -1 and selectively hydrogenated to be represented by the formula (2b) Obtain (S) -tetrahydroperfurylamine:
이하, 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Hereinafter, the present invention will be described in more detail.
전술한 바와 같이, 본 발명에서는 불균일촉매 및 유기 용매의 존재하에서 (R)-2-테트라히드로퓨란니트릴 또는 (S)-2-테트라히드로퓨란니트릴을 경제적이고 친환경적인 공정을 통해서 수소화 반응으로 환원시켜 광학적으로 순수한 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민을 제조하는 방법이 제공된다.As described above, in the present invention, in the presence of a heterogeneous catalyst and an organic solvent, (R) -2-tetrahydrofurannitrile or (S) -2-tetrahydrofurannitrile is reduced to a hydrogenation reaction through an economical and environmentally friendly process. A method of preparing optically pure (R) -form or (S) -form tetrahydroperfurylamine is provided.
일반적으로, 광학적으로 순수한 (R)-2-테트라히드로퓨란니트릴 또는 (S)-2-테트라히드로퓨란니트릴의 제조시, 반응조건 및 촉매의 종류에 따라 반응 생성물의 광학순도가 저하되거나, 또는 반응 부생성물인 이차아민 및 삼차아민이 생성될 수 있지만, 본 발명자들은 최적의 촉매계 및 반응조건을 선정하여 하기 반응식 1a 또는 하기 반응식 1b에서와 같은 반응이 주로 일어날 수 있도록 연구를 수행하였다.In general, in the preparation of optically pure (R) -2-tetrahydrofurannitrile or (S) -2-tetrahydrofurannitrile, the optical purity of the reaction product is lowered depending on the reaction conditions and the type of catalyst, or the reaction Secondary and tertiary amines, which are byproducts, may be produced, but the present inventors have selected an optimal catalyst system and reaction conditions so that the reaction such as in Scheme 1a or Scheme 1b can occur mainly.
그 결과, 본 발명에서는 종래의 제조방법과 달리 경제적이고 친환경적인 공정을 통해서 높은 광학순도를 갖는 반응생성물을 얻을 수 있는 방법을 개발하였다. 따라서, 본 발명에서는 (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴을 금속을 담체에 담지시킨 촉매가 충진된 고정층 반응기에 연속으로 통과시키면서 수소화하는 공정을 통해서 종래기술에 따른 회분식 반응인, 재결정법에 의한 광학순도 향상방법에 비해, 고수율로 반응생성물을 얻을 수 있어 생산성이 월등히 높고, 폐기물이 최소화되어 친환경적이며, 촉매의 재생과 연속사용이 가능하여 경제적일 뿐만 아니라, 촉매를 필터로 제거하는 등의 복잡한 후처리 공정이 필요 없는 단순한 제조공정을 적용하여 광학순도가 높은 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민을 연속으로 얻을 수 있다.As a result, the present invention has developed a method for obtaining a reaction product having a high optical purity through an economical and environmentally friendly process, unlike the conventional manufacturing method. Therefore, in the present invention, a batch according to the prior art through the process of hydrogenating (R) -form or (S) -form 2-tetrahydrofurannitrile while continuously passing through a fixed bed reactor filled with a catalyst supported on a metal. Compared to the optical purity improvement method by the recrystallization method, the reaction product can be obtained in high yield, and the productivity is high, the waste is minimized, it is eco-friendly, and the catalyst can be recycled and used continuously. It is possible to obtain (R) -form or (S) -form tetrahydroperfurylamine with high optical purity continuously by applying a simple manufacturing process that does not require a complicated post-treatment step such as removing a filter.
본 발명의 (R)-테트라히드로퍼퓨릴아민의 제조방법은 불균일촉매 및 유기 용매의 존재하에서 하기 화학식 1a로 표시되는 (R)-2-테트라히드로퓨란니트릴을 반응온도 0∼200℃, 반응압력 1∼1000psig, 시간당 중량공간속도(WHSV) 0.1∼10h-1인 반응조건하에서 고정층 반응기에 연속적으로 통과시켜 선택적으로 수소화하여 하기 화학식 2a로 표시되는 (R)-테트라히드로퍼퓨릴아민을 얻는다:Method for producing (R) -tetrahydroperfurylamine of the present invention is a reaction temperature of 0 ~ 200 ℃, reaction pressure of (R) -2-tetrahydrofurannitrile represented by the formula (1a) in the presence of a heterogeneous catalyst and an organic solvent Under a reaction condition of 1 to 1000 psig, hourly space-weighted velocity (WHSV) of 0.1 to 10 h −1 , continuously passing through a fixed bed reactor to selectively hydrogenate to obtain (R) -tetrahydroperfurylamine represented by the following formula (2a):
화학식 1aFormula 1a
화학식 2aFormula 2a
또한, 본 발명의 (S)-테트라히드로퍼퓨릴아민의 제조방법은 불균일촉매 및 유기 용매의 존재하에서 하기 화학식 1b로 표시되는 (S)-2-테트라히드로퓨란니트릴을 반응온도 0∼200℃, 반응압력 1∼1000psig, 시간당 중량공간속도(WHSV) 0.1∼10h-1인 반응조건하에서 고정층 반응기에 연속적으로 통과시켜 선택적으로 수소화하여 하기 화학식 2b로 표시되는 (S)-테트라히드로퍼퓨릴아민을 얻는다:In addition, the method for producing (S) -tetrahydroperfurylamine of the present invention is (S) -2-tetrahydrofurannitrile represented by the following general formula (1b) in the presence of a heterogeneous catalyst and an organic solvent, the reaction temperature of 0 ~ 200 ℃, Under the reaction conditions of 1 to 1000 psig of reaction pressure and 0.1 to 10 h -1 weight hourly space velocity (WHSV), the mixture was continuously hydrogenated to obtain (S) -tetrahydroperfurylamine represented by the following Chemical Formula 2b. :
화학식 1bFormula 1b
화학식 2bFormula 2b
한편, 상기 수소화 반응에 사용되는 불균일촉매는 금속 전구체 또는 금속을 무기 산화물 담체에 담지시켜 사용하며, 상기 금속으로는 니켈(Ni), 루테늄(Ru),팔라듐(Pd), 백금(Pt), 및 로듐(Rh)으로 이루어진 군으로부터 선택된 하나, 또는 이러한 금속들을 혼합하여 사용할 수 있으며, 이중에서도 니켈(Ni)이 가장 바람직하다. 또한, 상기 담체로는 알루미나(alumina), 실리카(silica), 실리카-알루미나(silica-alumina), 지르코니아(zirconia), 티타니아(titania), 제올라이트(zeolite), 또는 분자체(molecular sieve)와 같은 무기 산화물을 사용할 수 있으며, 이중에서도 알루미나가 가장 바람직하다. 한편, 상기 담체 입자의 형태는 원(circular)형, 실린더(cylindrical)형, 과립(granular)형, 또는 어떠한 형태의 것을 사용하여도 무방하나, 적당한 기계적 성질을 갖기 위해서는 원형 또는 실린더형의 펠리트(pellet) 형태로 성형된 것이 좋다.On the other hand, the heterogeneous catalyst used in the hydrogenation reaction is used by supporting a metal precursor or metal on an inorganic oxide carrier, the metal is nickel (Ni), ruthenium (Ru), palladium (Pd), platinum (Pt), and One selected from the group consisting of rhodium (Rh), or a mixture of these metals may be used, of which nickel (Ni) is most preferred. In addition, the carrier may be an inorganic material such as alumina, silica, silica-alumina, zirconia, titania, zeolite, or molecular sieve. Oxides can be used, of which alumina is most preferred. On the other hand, the carrier particles may be in the form of a circular, cylindrical, granular, or any type, but have a circular or cylindrical pellet to have suitable mechanical properties. Molded in the form of pellets is preferred.
이때, 상기 금속의 함량은 촉매 전체에 대하여 1∼50중량%로 유지하는 것이 좋으며, 더욱 바람직하기로는 5∼40중량%가 좋고, 만약 상기 금속의 함량이 1중량% 미만이면 수소화 반응 활성이 감소하며, 50중량%를 초과하면 금속의 높은 가격으로 인해 공정의 경제성이 낮아지는 단점이 있다.At this time, the content of the metal is preferably maintained at 1 to 50% by weight based on the total catalyst, more preferably 5 to 40% by weight, if the content of the metal is less than 1% by weight of the hydrogenation reaction activity is reduced And, if it exceeds 50% by weight has a disadvantage of lowering the economics of the process due to the high price of the metal.
상기 금속을 담체에 담지시키는 방법으로는 초기습식함침법(Incipient wetness impregnation), 과량수함침법(Excess water impregnation), 스프레이법 또는 물리적인 혼합 등의 방법을 모두 사용할 수 있다.As a method of supporting the metal on the carrier, any of methods such as incipient wetness impregnation, excess water impregnation, spraying, or physical mixing may be used.
한편, 상기 수소화 반응시, 특정한 용매를 사용하여야 하는데, 상기 용매는 상기 (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴을 잘 녹일 수 있어 반응기로 원활하게 공급할 수 있게 하고, 발열 반응인 수소화 반응에 의해 발생된 반응열을 쉽게 제거하는 역할도 하며, 반응물인 (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴 및 수소와 반응하지 않아야 한다. 따라서, 본 발명에서는 이러한 수소화 반응에 적절한 용매로서 메틸알코올(methyl alcohol), 에틸알코올(ethyl alcohol), 노르말프로필알코올(n-propyl alcohol), 이소프로필알코올(i-propyl alcohol), 노르말부틸알코올(n-butyl alcohol), 2차-부틸알코올(sec-butyl alcohol), 3차-부틸알코올(tert-butyl alcohol) 등을 사용할 수 있으며, 가장 바람직하기로는 에틸알코올(ethyl alcohol)을 사용하는 것이 좋다. 이때, 상기 용매의 사용시 용액중의 (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴의 함량은 1∼50중량%, 바람직하기로는 2∼40중량%로 유지하는 것이 좋다.Meanwhile, in the hydrogenation reaction, a specific solvent should be used, and the solvent can dissolve the (R) -form or (S) -form 2-tetrahydrofurannitrile well so that it can be smoothly supplied to the reactor, and exothermic. It also serves to easily remove the heat of reaction generated by the hydrogenation reaction, which is a reaction, and must not react with the reactants (R) -form or (S) -form 2-tetrahydrofurannitrile and hydrogen. Therefore, in the present invention, a suitable solvent for such a hydrogenation reaction, methyl alcohol (methyl alcohol), ethyl alcohol (ethyl alcohol), normal propyl alcohol (n-propyl alcohol), isopropyl alcohol (i-propyl alcohol), normal butyl alcohol ( n-butyl alcohol), secondary-butyl alcohol (sec-butyl alcohol), tert-butyl alcohol (tert-butyl alcohol) and the like can be used, and most preferably ethyl alcohol (ethyl alcohol) is preferably used. . At this time, the content of the (R) -form or (S) -form 2-tetrahydrofurannitrile in the solution when the solvent is used is preferably maintained at 1 to 50% by weight, preferably 2 to 40% by weight.
또한, 니트릴 화합물의 수소화 반응 과정에서 생성 가능한 부반응물인 이차아민 또는 삼차아민의 생성량을 감소시켜 반응선택도를 향상시키도록 알카리성 반응계를 만들기 위하여, 상기 유기 용매에 적절한 첨가제로서 암모니아(ammonia), 메틸아민(methylamine), 디메틸아민(dimethylamine), 암모늄클로라이드(ammoniumcloride), 및 암모늄아세테이트 (ammonium acetate) 등을 첨가하여 사용할 수 있으며, 가장 바람직하기로는 암모니아(ammonia)를 사용하는 것이 좋다. 이때, 상기 용매중의 암모니아의 함량은 0.1∼10중량%, 바람직하기로는 1∼5중량%로 유지하는 것이 좋고, 상기 암모니아의 함량이 0.1중량% 미만이면 수소화 반응의 활성 및 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민의 선택도가 감소하며 10중량%를 초과하면 전환율 저하로 인해 공정의 반응 수율이 낮아지는 단점이 있다.In addition, in order to make an alkaline reaction system to improve the reaction selectivity by reducing the amount of secondary or tertiary amines that can be generated during the hydrogenation reaction of the nitrile compound, ammonia, methyl as an appropriate additive to the organic solvent Amines (methylamine), dimethylamine (dimethylamine), ammonium chloride (ammoniumcloride), and ammonium acetate (ammonium acetate) may be added and used, most preferably ammonia (ammonia) is preferably used. At this time, the content of ammonia in the solvent is preferably maintained at 0.1 to 10% by weight, preferably 1 to 5% by weight. If the content of the ammonia is less than 0.1% by weight, the activity of the hydrogenation reaction and the (R) -form Alternatively, if the selectivity of the (S) -form tetrahydrofurfurylamine is reduced and exceeds 10% by weight, the reaction yield of the process is lowered due to the decrease in conversion rate.
또한, 본 발명에서는 고정층 반응기를 이용한 연속공정을 이용함으로써 종래의 방법에 비해 반응공간시간 대비 더 높은 수율로 반응생성물을 얻을 수 있고, 추가적인 처리과정 없이 촉매를 반복적으로 재사용할 수 있어 경제적이며, 촉매를 필터로 제거해야 하는 번거러움이 없어 반응후의 공정을 대폭 단순화할 수 있는 방법이 제공된다. 상기 고정층 반응계에 있어서, 반응기의 형태나 반응물의 투입 및 흐름 방향에 제한은 없으나, 반응물간의 접촉이 원활하게 일어나게 하기 위하여 반응물인 탄화수소와 수소가 함께 반응기의 상부에서 하부로 흐르며 반응물을 반응기 전체에 골고루 분산시킬 수 있는 설비를 갖춘 트리클-배드(trickle-bed) 형태의 반응기를 사용하는 것이 가장 좋다.In addition, in the present invention, by using a continuous process using a fixed bed reactor, it is possible to obtain a reaction product with a higher yield than the reaction time compared to the conventional method, and it is economical because the catalyst can be repeatedly reused without further processing. There is no need to remove the filter by a filter, which provides a method for greatly simplifying the post-reaction process. In the fixed bed reaction system, there is no limitation in the form of the reactor or the direction of the input and flow of the reactants, but in order for the contact between the reactants to occur smoothly, the reactants hydrocarbon and hydrogen flow together from the top of the reactor to the bottom and the reactants are evenly distributed throughout the reactor. It is best to use a trickle-bed reactor with facilities to disperse.
한편, 상기 고정층 반응기에서 수행되는 수소화에 의한 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민의 제조반응은 반응온도 0∼200℃, 수소분압 1∼1000psig, 시간당 중량공간속도(WHSV) 0.1∼10h-1의 반응조건하에서 수행되며, 바람직하기로는 각각 5∼100℃, 1∼800psig, WHSV 0.2∼10h-1의 반응조건하에서 수행되는 것이 좋으며, 더욱 바람직하기로는 각각 10∼100℃, 15∼500psig, WHSV 0.5∼5h-1의 반응조건하에서 수행되는 것이 좋다.On the other hand, the production reaction of the (R) -form or (S) -form tetrahydrofurfurylamine by hydrogenation carried out in the fixed bed reactor is the reaction temperature 0 ~ 200 ℃, hydrogen partial pressure 1 ~ 1000psig, weight hourly space velocity (WHSV ) Is preferably carried out under the reaction conditions of 0.1 to 10 h -1 , preferably 5 to 100 ° C, 1 to 800 psig, and the reaction conditions of WHSV 0.2 to 10 h -1 , and more preferably 10 to 100 ° C, respectively. , 15 to 500 psig, WHSV 0.5 to 5 h -1 is preferably carried out under the reaction conditions.
특히, 상기 반응온도가 200℃를 초과하면 원료물질의 라세미화로 인하여 원하는 광학순도를 얻을 수 없으며, 0℃ 미만이면 반응이 일어나지 않는다. 따라서, 상기 반응조건이 상기와 같은 범위를 벗어날 경우 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민의 수소화 반응성이 저하되어 제조수율이 낮아지고 광학순도가 저하되어, 본 발명에서 제시하는 불균일촉매를 이용한 연속 제조공정의 장점이 사라지게된다.In particular, when the reaction temperature exceeds 200 ℃ can not obtain the desired optical purity due to the racemization of the raw material, if the reaction temperature is less than 0 ℃ does not occur. Therefore, when the reaction conditions deviate from the above range, the hydrogenation reactivity of (R) -form or (S) -form tetrahydroperfurylamine is lowered, so that the production yield is lowered and the optical purity is lowered. The advantages of the continuous manufacturing process using heterogeneous catalysts are lost.
또한, (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴을 수소화에 의해 완전히 전환시키기 위해서는 상기 (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴 대비 수소의 몰비가 2.0 이상인 것이 좋고, 그 이상의 수치에 대해서는 제한이 없지만, 공정의 경제성을 감안하여 상기 (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴 대비 수소의 몰 비율은 2.0∼10 사이로 유지되는 것이 좋다. 이때, 상기 반응에 사용되지 않고 반응기를 통과한 수소는 재 압축되어 반응기로 순환된다.In addition, in order to completely convert the (R) -form or (S) -form 2-tetrahydrofurannitrile by hydrogenation, the molar ratio of hydrogen to the (R) -form or (S) -form 2-tetrahydrofurannitrile is Although it is preferable that it is 2.0 or more and there is no restriction | limiting about the numerical value beyond that, in consideration of process economics, the molar ratio of hydrogen to said (R) -form or (S) -form 2-tetrahydrofurannitrile is maintained between 2.0-10. It is good. At this time, hydrogen not used in the reaction and passed through the reactor is recompressed and circulated to the reactor.
한편, 상기 반응기로부터 유출되는 반응생성물은 용매를 회수하기 위한 장치로 보내지며, 여기서 적어도 일부의 용매가 나머지 반응 생성물과 분리된다. 이러한 회수 장치는 증류탑 또는 플래시 증류기(flash vaporizer) 등 어떠한 형태의 장치를 사용하여도 무방하다. 또한, 상기 용매 회수장치의 하단부에서 유출되는 생성물, 또는 농축물은 진공증류 장치로 이송된다.On the other hand, the reaction product flowing out of the reactor is sent to a device for recovering the solvent, where at least some solvent is separated from the rest of the reaction product. Such a recovery device may use any type of device such as a distillation column or a flash vaporizer. In addition, the product, or the concentrate flowing out from the lower end of the solvent recovery device is transferred to a vacuum distillation apparatus.
전술한 바와 같이, 본 발명에 따르면, 무기산화물 담체에 금속이 담지된 불균일촉매, 및 유기 용매의 존재하에서, (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴을 고정층 연속 반응기로 수소화하여 경제적이고 친환경적인 공정을 통해서 광학적으로 순수한 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민을 고순도 및 고수율로 연속 제조할 수 있다.As described above, according to the present invention, (R) -form or (S) -form 2-tetrahydrofurannitrile in a fixed bed continuous reactor in the presence of a heterogeneous catalyst having a metal supported on an inorganic oxide carrier, and an organic solvent. Through hydrogenation and economical and environmentally friendly processes, optically pure (R)-or (S) -form tetrahydroperfurylamine can be continuously produced in high purity and high yield.
이하 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하기로 하지만, 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited thereto.
실시예 1∼4Examples 1-4
(R)-폼 테트라히드로퍼퓨릴아민의 연속제조 반응Continuous Production Reaction of (R) -form Tetrahydroperfurylamine
니켈(Ni/Al2O3)촉매 10g을 316 스테인레스 재질의 연속고압반응 반응기에 충진하였다. 그 다음, 상기 반응기내의 촉매를 수소 분위기에서 분당 2℃의 승온속도로 300℃까지 상승시킨 후 6시간 동안 환원과정을 실시한 다음, 상기 반응기를 냉각하고 내부를 질소로 불어내었다. 그 다음, 상기 반응기 내부의 온도를 15℃에서 수소를 100sccm으로 흘려주었다. 그 다음, 수소의 주입량을 반응에 필요한 것보다 2배로 증가시키고, 10중량%가 되도록 (R)-폼 2-테트라히드로퓨란니트릴을 에탄올에 녹여 연속반응기로 주입하였다. 이때 반응물의 주입량 및 반응기 내부의 반응조건 변화에 따른 반응결과를 하기 표 1에 나타내었다. 반응생성물은 매 4시간마다 채취하여 가스크로마토그라프(50m×0.2㎜×0.5m, HP-5 컬럼)의 FID로 분석하였다.10 g of a nickel (Ni / Al 2 O 3 ) catalyst was charged in a continuous high pressure reactor made of 316 stainless steel. Then, the catalyst in the reactor was raised to 300 ° C. at a temperature increase rate of 2 ° C. per minute in a hydrogen atmosphere, followed by a reduction process for 6 hours, and then the reactor was cooled and blown with nitrogen. Then, hydrogen was flowed at 100 ° C. at 15 ° C. in the reactor. Then, the injection amount of hydrogen was doubled than necessary for the reaction, and (R) -form 2-tetrahydrofurannitrile was dissolved in ethanol to be 10% by weight and injected into the continuous reactor. At this time, the reaction results according to the injection amount of the reactants and the reaction conditions inside the reactor are shown in Table 1 below. The reaction product was collected every 4 hours and analyzed by FID of gas chromatograph (50m × 0.2mm × 0.5m, HP-5 column).
1)촉매 제조회사 : CRI Kataleuna 1) Catalyst Manufacturer: CRI Kataleuna
2)(R)-폼 테트라히드로퍼퓨릴아민의 반응 선택도 2) Reaction Selectivity of (R) -form Tetrahydroperfurylamine
3)(R)-폼 테트라히드로퍼퓨릴아민의 광학순도 3) Optical Purity of (R) -form Tetrahydroperfurylamine
실시예 5Example 5
(S)-폼 테트라히드로퍼퓨릴아민의 연속제조 반응Continuous Production Reaction of (S) -form Tetrahydroperfurylamine
니켈(Ni/Al2O3)촉매(CRI Kataleuna) 10g을 316 스테인레스 재질의 연속고압반응 반응기에 충진하였다. 그 다음, 상기 반응기내의 촉매를 수소 분위기에서 분당 2℃의 승온속도로 300℃까지 상승시킨 후 6시간 동안 환원과정을 실시한 다음, 상기 반응기를 냉각하고 내부를 질소로 불어내었다. 그 다음, 상기 반응기 내부의 온도를 15℃에서 수소를 100sccm으로 흘려주었다. 그 다음, 수소의 주입량을 반응에 필요한 것보다 2배로 증가시키고, 10중량%가 되도록 (S)-폼 2-테트라히드로퓨란니트릴을 에탄올에 녹여 연속반응기로 주입하였다. 이때, 반응온도 15℃, 압력 154psig, WHSV 1.0h-1의 반응조건하에서 전환율 100%, 선택도 91%, 광학순도 99.5%의 (S)-폼 테트라히드로퍼퓨릴아민을 얻었다. 반응생성물은 가스크로마토그라프(50m×0.2㎜×0.5m, HP-5 컬럼)의 FID 로 분석하였다.10 g of a nickel (Ni / Al 2 O 3 ) catalyst (CRI Kataleuna) was charged to a continuous high pressure reactor made of 316 stainless steel. Then, the catalyst in the reactor was raised to 300 ° C. at a temperature increase rate of 2 ° C. per minute in a hydrogen atmosphere, followed by a reduction process for 6 hours, and then the reactor was cooled and blown with nitrogen. Then, hydrogen was flowed at 100 ° C. at 15 ° C. in the reactor. Then, the amount of hydrogen injected was increased twice as much as necessary for the reaction, and (S) -form 2-tetrahydrofurannitrile was dissolved in ethanol to be 10% by weight and injected into a continuous reactor. At this time, (S) -form tetrahydroperfurylamine of 100% of conversion, 91% of selectivity, and 99.5% of optical purity was obtained under reaction conditions of a reaction temperature of 15 ° C., a pressure of 154 psig, and a WHSV 1.0 h −1 . The reaction product was analyzed by FID of gas chromatograph (50m × 0.2mm × 0.5m, HP-5 column).
실시예 6∼9Examples 6-9
(S)-폼 2-테트라히드로퓨란니트릴의 수소화를 메탄올을 용매로 사용하여 온도 15℃, 수소압력 150psig, 시간당 중량공간속도(WHSV) 1.0h-1의 조건하에서 실시예 1에 예시된 방법으로 수행하였으며, 이때 사용한 촉매종류에 따른 반응결과를 하기 표 2에 나타내었다. 상기 촉매들은 상업적으로 시판되는 촉매 및 본 발명에 의해 제조된 촉매들이다.The hydrogenation of (S) -form 2-tetrahydrofurannitrile was carried out using methanol as a solvent in the method illustrated in Example 1 under the conditions of temperature 15 ° C., hydrogen pressure 150 psig, weight hourly space velocity (WHSV) 1.0 h −1 . The reaction results according to the type of catalyst used were shown in Table 2 below. The catalysts are commercially available catalysts and catalysts prepared by the present invention.
1)(S)-폼 테트라히드로퍼퓨릴아민의 반응 선택도 1) Reaction Selectivity of (S) -form Tetrahydroperfurylamine
2)(S)-폼 테트라히드로퍼퓨릴아민의 광학순도 2) Optical Purity of (S) -form Tetrahydroperfurylamine
실시예 10∼13Examples 10-13
(S)-폼 2-테트라히드로퓨란니트릴의 수소화를 에탄올을 용매로 사용하여 온도 15℃, 수소압력 150psig, 시간당 중량공간속도(WHSV) 1.0h-1의 조건하에서 실시예 1에 예시된 방법으로 수행하였으며, 이때 사용한 첨가제 종류에 따른 반응결과를 하기 표 3에 나타내었다.The hydrogenation of (S) -form 2-tetrahydrofurannitrile was carried out by the method illustrated in Example 1 under the conditions of temperature 15 ° C., hydrogen pressure 150 psig, and weight hourly space velocity (WHSV) 1.0 h −1 using ethanol as a solvent. The reaction results according to the type of additive used were shown in Table 3 below.
실시예 14Example 14
(S)-테트라히드로퍼퓨릴아민의 연속반응 및 분리회수Continuous reaction and recovery of (S) -tetrahydroperfurylamine
실시예 1에서와 같은 방법으로 니켈(Ni/Al2O3) 촉매 50g을 사용하여 상기에 예시된 반응기와 유사한 반응기에서 반응을 수행하였다. 반응이 진행되는 동안 압력은 150psig로 유지하였으며, 동일한 조건에서 100시간 동안 반응을 진행시킨 후, 순도 89중량%의 (S)-테트라히드로퍼퓨릴아민의 함유하고 있는 용액 5리터를 얻었으며, 이로부터 (S)-테트라히드로퍼퓨릴아민을 회수하기 위하여 상기 용액을 감압증류 장치가 설치되어 있는 10리터 용량의 유리반응기에 주입하였다. 상기 유리 반응기의 온도를 분당 5℃의 승온 속도로 55℃, 100mbar에서 감압증류하여 용액중의 에탄올을 약 90%를 증발시킨 다음, 유리 반응기의 온도를 분당 5℃의 승온속도로 90℃, 1mbar에서 감압증류하여 광학순도 99.4%, 전체수율 80%, 화학순도 99.2%의 (S)-테트라히드로퍼퓨릴아민을 얻었다.The reaction was carried out in a reactor similar to the reactor illustrated above using 50 g of nickel (Ni / Al 2 O 3 ) catalyst in the same manner as in Example 1. The pressure was maintained at 150 psig during the reaction, and after the reaction was conducted for 100 hours under the same conditions, 5 liters of a solution containing 89% by weight of (S) -tetrahydroperfurylamine was obtained. The solution was injected into a 10 liter glass reactor equipped with a reduced pressure distillation unit to recover (S) -tetrahydroperfurylamine. The glass reactor was distilled under reduced pressure at 55 ° C. and 100 mbar at a temperature increase rate of 5 ° C. per minute to evaporate about 90% of the ethanol in the solution, and then the temperature of the glass reactor at 90 ° C. and 1 mbar at a temperature increase rate of 5 ° C. per minute. Distillation under reduced pressure was carried out to obtain (S) -tetrahydroperfurylamine having an optical purity of 99.4%, a total yield of 80%, and a chemical purity of 99.2%.
실시예 15Example 15
(R)-테트라히드로퍼퓨릴아민의 연속반응 및 분리회수Continuous reaction and recovery of (R) -tetrahydroperfurylamine
실시예 5에서와 같은 방법으로 니켈(Ni/Al2O3) 촉매 50g을 사용하여 상기에 예시된 반응기와 유사한 반응기에서 반응을 수행하였다. 반응이 진행되는 동안 압력은 150psig로 유지하였으며, 동일한 조건에서 100시간 동안 반응을 진행시킨 후, 순도 89중량%의 (R)-테트라히드로퍼퓨릴아민의 함유하고 있는 용액 5리터를 얻었으며, 이로부터 (R)-테트라히드로퍼퓨릴아민을 회수하기 위하여 상기 용액을 감압증류 장치가 설치되어 있는 10리터 용량의 유리반응기에 주입하였다. 상기 유리 반응기의 온도를 분당 5℃의 승온 속도로 55℃, 100mbar에서 감압증류하여 용액중의 메탄올을 약 90%를 증발시킨 다음, 유리 반응기의 온도를 분당 5℃의 승온속도로 90℃, 1mbar에서 감압증류하여 광학순도 99.4%, 전체수율 80%, 화학순도 99.2%의(R)-테트라히드로퍼퓨릴아민을 얻었다.The reaction was carried out in a reactor similar to the reactor illustrated above using 50 g of nickel (Ni / Al 2 O 3 ) catalyst in the same manner as in Example 5. The pressure was maintained at 150 psig during the reaction, and after the reaction was conducted for 100 hours under the same conditions, 5 liters of a solution containing 89% by weight of (R) -tetrahydroperfurylamine was obtained. The solution was poured into a 10 liter glass reactor equipped with a reduced pressure distillation unit to recover (R) -tetrahydroperfurylamine from. The glass reactor was distilled under reduced pressure at 55 ° C. and 100 mbar at a temperature increase rate of 5 ° C. per minute to evaporate about 90% of the methanol in the solution, and then the temperature of the glass reactor at 90 ° C. and 1 mbar at a temperature increase rate of 5 ° C. per minute. Distillation under reduced pressure was carried out to obtain (R) -tetrahydroperfurylamine having an optical purity of 99.4%, a total yield of 80%, and a chemical purity of 99.2%.
전술한 바와 같이, 본 발명에 따르면, 금속을 담체에 담지시킨 불균일촉매의 존재하에서 종래 화학적 광학분할기술에서 사용한 라세믹 테트라히드로퍼퓨릴아민 대신 상기 (R)-폼 또는 (S)-폼 2-테트라히드로퓨란니트릴을 수소화하여 광학순도가 높고 순수한 (R)-폼 또는 (S)-폼 테트라히드로퍼퓨릴아민을 고수율로 제공할 수 있다. 또한, 본 발명의 제조방법은 비교적 간단하고 친환경적인 공정이며, 생산성 향상으로 경제적이기 때문에 공업적으로 대량생산이 가능하여 산업적인 부가가치가 매우 높아 산업분야에 폭넓게 이용될 수 있을 것으로 기대된다.As described above, according to the present invention, the (R) -form or (S) -form 2- is substituted for the racemic tetrahydroperfurylamine used in the conventional chemical optical splitting technique in the presence of a heterogeneous catalyst on which a metal is supported on a carrier. Tetrahydrofurannitrile can be hydrogenated to provide high optical purity and pure (R) -form or (S) -form tetrahydroperfurylamine in high yield. In addition, the manufacturing method of the present invention is a relatively simple and environmentally friendly process, it is expected to be widely used in the industrial field because the industrial added value is very high because the industrial mass production is possible because it is economical to improve productivity.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020038691A KR100774628B1 (en) | 2002-07-04 | 2002-07-04 | Method for preparing optically pure (R) -form or (S) -form tetrahydroperfurylamine using heterogeneous catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020038691A KR100774628B1 (en) | 2002-07-04 | 2002-07-04 | Method for preparing optically pure (R) -form or (S) -form tetrahydroperfurylamine using heterogeneous catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040003866A true KR20040003866A (en) | 2004-01-13 |
KR100774628B1 KR100774628B1 (en) | 2007-11-08 |
Family
ID=37314840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020038691A Expired - Fee Related KR100774628B1 (en) | 2002-07-04 | 2002-07-04 | Method for preparing optically pure (R) -form or (S) -form tetrahydroperfurylamine using heterogeneous catalyst |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100774628B1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60146885A (en) * | 1984-01-06 | 1985-08-02 | Mitsubishi Petrochem Co Ltd | Production of furfurylamine and/or tetrahydrofurfurylamine |
JPS61134384A (en) * | 1984-12-03 | 1986-06-21 | Mitsubishi Petrochem Co Ltd | Production method of furfurylamine |
JPS61137872A (en) * | 1984-12-07 | 1986-06-25 | Mitsubishi Petrochem Co Ltd | Catalytic hydrogenation method of furfurylamine and/or tetrahydrofurfurylamine |
JPS63264474A (en) * | 1986-12-23 | 1988-11-01 | Ube Ind Ltd | α-(N-furfuryl)-aminobutyric acid ester and its production method |
-
2002
- 2002-07-04 KR KR1020020038691A patent/KR100774628B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100774628B1 (en) | 2007-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20010073035A (en) | Improved Method for Simultaneous Preparation of 6-Aminocapronitrile and Hexamethylene Diamine | |
KR100362788B1 (en) | Novel process for preparing a ketimine | |
EP0968185B1 (en) | Process to continuously prepare an aqueous mixture of (e)-caprolactam and (e)-caprolactam precursors | |
JP2002528430A (en) | Production of amines | |
KR20010071989A (en) | Improved Method For Simultaneous Production Of 6-Aminocapronitrile And Hexamethylenediamine | |
KR100774627B1 (en) | Method for preparing optically pure (R) -form or (S) -form tetrahydroperfuryl alcohol using heterogeneous catalyst | |
KR100774628B1 (en) | Method for preparing optically pure (R) -form or (S) -form tetrahydroperfurylamine using heterogeneous catalyst | |
JP2683622B2 (en) | Method for producing 4-hydroxy-2,2,6,6-tetramethylpiperidine | |
KR100645665B1 (en) | Continuous production method of (S) -beta-hydroxy-gamma-butyrolactone | |
EP1558597B1 (en) | Continuous process for the production of optically pure (s)-beta hydroxy-gamma-butyrolactone | |
EP1059284B1 (en) | Racemization of optically active alkoxyamines | |
JP4709352B2 (en) | Method for purifying 3-aminopropanol | |
KR100710543B1 (en) | Continuous production process of pure (S) -beta-hydroxy-gamma-butyrolactone with high optical purity | |
KR100651353B1 (en) | Process for continuously preparing venlafaxine intermediates in high yield | |
EP1582511B1 (en) | Process for preparing secondary alcohol | |
KR100651394B1 (en) | Method for preparing isophthalaldehyde | |
KR100730460B1 (en) | Continuous production method of 2-amino-2-methyl-1,3-propanediol using heterogeneous catalyst | |
KR101847161B1 (en) | Process for the preparation of optically pure substituted (S)-cyclohexylamino acid derivatives | |
KR100502425B1 (en) | Method for preparing 4-amino-1-butanol | |
US7790931B2 (en) | Process for preparing tetrafluorobenzene carbaldehyde alkyl acetal | |
KR100710558B1 (en) | Continuous production method of optically pure (S) -4-hydroxy-2-pyrrolidone | |
KR20080022210A (en) | Method for producing tetrafluorobenzene carbaldehyde alkylacetal | |
WO2019020488A1 (en) | Process for the preparation of a 3-amino-1,2-propandiol and derivatives thereof | |
JPH0820574A (en) | Production of 3-methylpiperidine | |
JP2008088071A (en) | Method for producing 2-cyclopentylcyclopentanone compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20020704 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20050823 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20020704 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060926 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20070521 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20060926 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
J201 | Request for trial against refusal decision | ||
PJ0201 | Trial against decision of rejection |
Patent event date: 20070620 Comment text: Request for Trial against Decision on Refusal Patent event code: PJ02012R01D Patent event date: 20070521 Comment text: Decision to Refuse Application Patent event code: PJ02011S01I Appeal kind category: Appeal against decision to decline refusal Decision date: 20070802 Appeal identifier: 2007101006675 Request date: 20070620 |
|
AMND | Amendment | ||
PB0901 | Examination by re-examination before a trial |
Comment text: Amendment to Specification, etc. Patent event date: 20070719 Patent event code: PB09011R02I Comment text: Request for Trial against Decision on Refusal Patent event date: 20070620 Patent event code: PB09011R01I |
|
B701 | Decision to grant | ||
PB0701 | Decision of registration after re-examination before a trial |
Patent event date: 20070802 Comment text: Decision to Grant Registration Patent event code: PB07012S01D Patent event date: 20070727 Comment text: Transfer of Trial File for Re-examination before a Trial Patent event code: PB07011S01I |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20071101 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20071101 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |