KR200351862Y1 - Apparatus for deodorizing comprising microbial decomposition and adsorption - Google Patents
Apparatus for deodorizing comprising microbial decomposition and adsorption Download PDFInfo
- Publication number
- KR200351862Y1 KR200351862Y1 KR20-2004-0003521U KR20040003521U KR200351862Y1 KR 200351862 Y1 KR200351862 Y1 KR 200351862Y1 KR 20040003521 U KR20040003521 U KR 20040003521U KR 200351862 Y1 KR200351862 Y1 KR 200351862Y1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- activated carbon
- odor
- microorganisms
- culture tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 28
- 230000001877 deodorizing effect Effects 0.000 title claims description 12
- 230000000813 microbial effect Effects 0.000 title description 10
- 238000000354 decomposition reaction Methods 0.000 title description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 70
- 239000000126 substance Substances 0.000 claims abstract description 37
- 238000004332 deodorization Methods 0.000 claims abstract description 21
- 238000009629 microbiological culture Methods 0.000 claims abstract description 9
- 239000002023 wood Substances 0.000 claims abstract description 9
- 244000005700 microbiome Species 0.000 claims description 32
- 239000007921 spray Substances 0.000 claims description 7
- 238000011049 filling Methods 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 3
- 238000012856 packing Methods 0.000 abstract description 2
- 235000019645 odor Nutrition 0.000 description 41
- 238000000034 method Methods 0.000 description 25
- 239000007789 gas Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000010865 sewage Substances 0.000 description 10
- 239000010802 sludge Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 239000002351 wastewater Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 210000003608 fece Anatomy 0.000 description 4
- 244000144972 livestock Species 0.000 description 4
- 239000010871 livestock manure Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000009841 combustion method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 235000020774 essential nutrients Nutrition 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 230000009965 odorless effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- AUBUWLKOBLBPFS-UHFFFAOYSA-N azane methanethiol sulfane Chemical compound S.N.CS AUBUWLKOBLBPFS-UHFFFAOYSA-N 0.000 description 2
- 238000010170 biological method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000036632 reaction speed Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035943 smell Effects 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000008786 sensory perception of smell Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/01—Deodorant compositions
- A61L9/014—Deodorant compositions containing sorbent material, e.g. activated carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/58—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/84—Biological processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/304—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/306—Organic sulfur compounds, e.g. mercaptans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/406—Ammonia
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Treating Waste Gases (AREA)
Abstract
본 고안은 악취제거용 단일 반응조에 관한 것으로, 하단부터 순차적으로 미생물 배양조, 목칩이 충전된 생물학적 탈취층, 습기를 조절하기 위하여 패킹 제재를 충전한 완충층, 잔류하는 저농도의 악취물질을 물리적 흡착에 의해 제거하는 활성탄 흡착층으로 구성된 것을 특징으로 한다.The present invention relates to a single reaction tank for removing odor, and sequentially from the bottom, a microbial culture tank, a biological deodorization layer filled with wood chips, a buffer layer filled with a packing material to control moisture, and low concentration of odorous substances to physical adsorption. It is characterized by consisting of an activated carbon adsorption layer to be removed by.
Description
본 고안은 목칩을 담체로 사용하여 부착된 미생물로 하여금 악취가스를 제거하는 생물학적 처리방법과 가장 보편적으로 사용되고 있는 물리적 방법인 활성탄 흡착법이 결합된 악취제거 시스템에 관한 것으로, 보다 구체적으로는 생물학적 제거 효율을 극대화하기 위하여 먼저 반응기 하단에 미생물 배양조를 설치하고 순차적으로 목칩이 충전된 생물학적 탈취층, 이것과 이후의 활성탄 흡착층 사이에서 습기를 조절하기 위하여 패킹 제재인 (Packing material) 펄링(Pall ring)등이 충전되어 있는 완충층, 잔류하는 저농도의 악취물질을 물리적 흡착에 의해 제거하는 활성탄 흡착층 등이 단일반응조내에 다단으로 설치되어 있어 악취가스의 제거효율을 극대화시킬 수 있는 탈취 장치에 관한 것이다.The present invention relates to a odor removal system combined with a biological treatment method for removing odor gas by microorganisms attached by using a wood chip as a carrier and activated carbon adsorption method, which is the most commonly used physical method. In order to maximize the efficiency, the microbial culture tank is first installed at the bottom of the reactor, and the packing material pearl ring is used to control the moisture between the biological deodorization layer filled with wood chips, and the activated carbon adsorption layer thereafter. The present invention relates to a deodorizing apparatus capable of maximizing the removal efficiency of malodorous gas because a buffer layer filled with lamps and an activated carbon adsorption layer for removing residual odorous substances by physical adsorption are provided in multiple stages in a single reactor.
일반적으로 냄새는 크게 두 종류가 있는데 사람의 기분을 좋게 하는 것을 향기라 하고 불쾌하게 만드는 것을 악취라 한다. 후자의 경우 사람의 신경계통을 자극시켜 정신적, 육체적으로 피해를 주는 것을 말하며 대기환경 보존법 제2조(정의)에 의하면 "악취"란 황화수소, 머캅탄류, 아민류, 기타 자극성 있는 기체상 물질이 인간의 후각을 자극하여 불쾌감과 혐오감을 주는 냄새를 말한다고 규정하고 있다. 또한 우리나라에서는 암모니아, 메틸머캅탄, 황화수소, 황화메틸, 이황화메틸, 트리메틸아민, 아세트알데히드, 스티렌 등을 악취물질로 지정하고 있다.In general, there are two kinds of smells: scents that make people feel good and odors that make them unpleasant. In the latter case, it refers to stimulating the nervous system of a person, causing mental and physical damage. According to Article 2 (Definition) of the Air Quality Preservation Act, "odor" means hydrogen sulfide, mercaptans, amines, and other irritating gaseous substances. It is said to refer to the smell of irritating and disgusting by stimulating the sense of smell. In Korea, ammonia, methylmercaptan, hydrogen sulfide, methyl sulfide, methyl disulfide, trimethylamine, acetaldehyde and styrene are designated as odorous substances.
이러한 악취유발 물질은 발생원에 따라 매우 다양하며 정유공장, 화학공장, 분뇨 및 축산폐수처리장, 하수처리장, 도시 쓰레기 매립장 등은 도시의 주요 악취발생원으로 간주되고 있다. 특히 하수처리장, 축산·분뇨처리장 등과 같은 환경기초시설에서는 상기한 악취가 발생하여 주요한 민원의 대상이 되기 때문에 혐오시설로 간주되는 실정이지만 국민생활이나 해당지역 주민생활에 없어서는 안 되는 필수 시설로써 주요 문제점으로 대두되는 악취발생은 반드시 해결되어야 한다.These odor-causing substances vary greatly depending on the source, and refineries, chemical plants, manure and livestock wastewater treatment plants, sewage treatment plants, municipal waste landfills, etc. are regarded as the major odor sources of cities. In particular, environmental foundations such as sewage treatment plants, livestock and manure treatment plants are considered hateful facilities because of the above-mentioned odors and are subject to major complaints. Odor occurrences must be resolved.
종래의 악취처리방법은 크게 물리적, 화학적 그리고 생물학적 처리방법으로 분류되며 현재 주로 사용되고 있는 방법으로는 연소법, 세정흡수법, 산화법, 흡착법, 미생물 처리법 등이 있다.Conventional odor treatment methods are largely classified into physical, chemical and biological treatment methods, and currently used methods include combustion, cleaning absorption, oxidation, adsorption, and microbial treatment.
연소법은 가스 버너로 600에서 800℃ 사이에서 악취가스를 연소시켜 이산화탄소와 물로 분해시키는 직접연소법과 여기에 백금, 코발트 등의 촉매 그릴을 설치하여 300에서 400℃ 범위내에서 연소 산화 시키는 촉매연소법으로 나눌 수 있으며 거의 모든 가연성 악취물질 제거에 효율적이지만 연료비 또는 촉매 교체에 소요되는 유지비가 고가이며 운전관리에 소홀할 경우 질소산화물이 발생되고 폭발의 위험성이 있다.Combustion method is divided into direct combustion method that burns odorous gas at 600 ~ 800 ℃ by gas burner and decomposes it into carbon dioxide and water, and catalytic combustion method which burns and oxidizes within 300 to 400 ℃ by installing catalyst grill such as platinum and cobalt. Although it is effective in removing almost all combustible odorous substances, the maintenance cost for fuel or catalyst replacement is expensive, and if it is neglected in operation management, nitrogen oxide is generated and there is a risk of explosion.
수용성이 크거나 약액과 반응성이 높은 성분에 대하여 고성능을 가지고 있는 세정법은 수세법과 약액 세정법으로 구분되는데 악취 가스를 물이나 산, 알칼리 수용액으로 세척하여 중화, 산화, 환원 반응을 이용하여 탈취하는 방법이다. 본 방법은 비교적 설비가 간단하고 운전비용이 저렴하다는 장점을 가지고 있는 반면 적용범위가 좁고 복합취기의 처리가 곤란하며 약액 사용에 의한 시설물의 부식방지 대책이 필요함과 동시에 2차 오염원인 폐수가 발생한다는 단점이 있다.Washing methods that have high performance on components that have high water solubility or are highly reactive with chemicals are divided into water washing and chemicals.The method of deodorization using neutralization, oxidation, and reduction by washing malodorous gas with water, acid or alkaline aqueous solution. to be. This method has the advantages of relatively simple equipment and low operating cost, while the scope of application is narrow, the treatment of complex odor is difficult, and the anti-corrosion measures of the facilities by the use of chemical solution are needed, and the wastewater which is the secondary pollution source is generated. There are disadvantages.
한편 오존 산화법은 오존의 강력한 산화작용을 활용하여 악취성분을 산화시켜 제거하는 방법으로 전력량 소비가 적고 유지관리가 용이하여 대용량의 가스 제거에 비교적 효율적이지만 오존 단독으로는 적용범위가 적고 성능이 불충분하여 수세나 촉매 등의 기타 방법과 병용함으로써 고성능을 발휘할 수 있다는 단점이 있다.On the other hand, the ozone oxidation method is a method of oxidizing and removing odorous components by utilizing ozone's powerful oxidizing effect, which consumes less power and is easy to maintain, which is relatively efficient for removing large-capacity gas, but ozone alone has a small application range and insufficient performance. There is a disadvantage that high performance can be achieved by using in combination with other methods such as water washing and catalyst.
활성탄을 이용한 악취제거는 현재 보편적으로 널리 사용되고 있는 방법 중의 하나로 병원내부의 각종 약품이나 폐기물 냄새 흡착, 화학공장, 축산·분뇨 및 하수처리장의 악취제거 등 다양한 용도에 적용된다. 활성탄의 성질은 수분이 존재한 상태에서도 악취를 제거할 수 있으며 저농도 악취물질 제거에 특히 효율적이며 여러 성분이 혼합된 상태에서는 분자량이 클수록 흡착 능력이 크다. 연소법에 의한 탈취효과와 비교해 보면 이보다는 제거율이 감소하지만 최초 설치비가 저렴하고 운전방법이 용이하다는 이점이 있다. 반면 활성탄의 세공안에 각종 악취물질이 축적, 포화상태로 흡착되어서 더 이상 탈취효과가 없어 악취가 유출되기 시작하면 신탄으로 흡착탄을 교체해 주어야 하고 제거 대상 물질의 농도가 높을 경우 세척, 흡수, 냉각, 응축 등의 전처리 단계를 병행하여 농도를 저감시킨 다음 활성탄 흡착을 행해야 하는 단점이 있다.Odor removal using activated carbon is one of the most widely used methods currently applied to various applications such as odor adsorption of various chemicals and waste odors in a hospital, chemical plant, livestock, manure and sewage treatment plant. Activated carbon can remove odors even in the presence of water, and is particularly effective at removing low-odor odors. The higher the molecular weight, the greater the adsorption capacity. Compared with the deodorizing effect of the combustion method, the removal rate is reduced, but there is an advantage that the initial installation cost is low and the operation method is easy. On the other hand, when various odorous substances accumulate in the pores of activated carbon and are adsorbed in a saturated state, and no odor is released anymore, the odorous effluent starts to be replaced with fresh carbon.If the concentration of the substance to be removed is high, washing, absorption, cooling, There is a disadvantage in that the concentration of the pretreatment such as condensation is reduced in parallel and then activated carbon adsorption is performed.
생물학적 처리방법은 악취가 나무 부스러기나 토양을 통과할 때 미생물을 이용하여 흡착된 악취물질을 분해시키는 방법이다. 최근 미국, 일본 및 유럽 등지에서는 물리, 화학적 탈취방법보다 경제적이고 효율면에서도 안정적인 생물학적 방법으로 기술전환이 이루어지고 있는 실정이다. 특히 담체를 이용하여 미생물 밀도, 접촉면적, 접촉시간을 증가시켜 고효율의 탈취를 목적으로 하는 바이오필터 기술에대한 연구가 활발히 진행되었다. 생물탈취의 기본적 메커니즘은 악취물질의 용해반응, 미생물에 의한 흡수, 무취 혹은 저취기 물질로 변환시키는 과정 등의 3단계로 이루어진다. 일반적으로 악취제거에 관여하는 미생물의 생육조건이 적절히 조성되면 거의 모든 악취에 대한 제거능력이 우수하고 2차 오염물질이 발생되지 않는 반면 부지면적을 많이 차지하는 단점이 있다. 하지만 경제성면에서 월등하므로 반응속도 및 효율이 높은 공정개발이 절실히 요구되는 상황이다.Biological treatment is a method of decomposing odorous substances adsorbed using microorganisms when odor passes through wood chips or soil. Recently, in the US, Japan, and Europe, technology is being converted into a biological method that is more economical and more efficient in terms of efficiency than physical and chemical deodorization methods. In particular, research on biofilter technology aimed at high efficiency deodorization by increasing microbial density, contact area, and contact time using a carrier has been actively conducted. The basic mechanism of biodeodorization consists of three steps: dissolution of malodorous substances, absorption by microorganisms, and conversion into odorless or low odorous substances. In general, if the growth conditions of the microorganisms involved in the removal of odor is properly formulated, there is a disadvantage in that the removal ability of almost all odor is excellent and secondary pollutants are not generated, but occupy a lot of land area. However, due to its superior economics, the development of processes with high reaction speed and efficiency is urgently needed.
본 고안의 목적은 악취를 제거함에 있어 유용한 기술인 바이오 필터와 활성탄 흡착법을 상호보완적인 측면에서 효율적으로 조합하여 악취물질을 고효율로 제거할 수 있는 다단식 단일반응처리 장치를 제공하고자 하는 것이다.It is an object of the present invention to provide a multi-stage single reaction treatment apparatus capable of efficiently removing odorous substances by efficiently combining biofilters and activated carbon adsorption methods which are useful techniques for removing odors in a complementary aspect.
도 1은 본 고안에 의한 생분해와 흡착법이 결합된 악취 제거용 다단식 단일반응조의 개략적인 구성도이다.1 is a schematic configuration diagram of a multi-stage single reactor for removing odor combined with biodegradation and adsorption methods according to the present invention.
※ 도면의 주요부분에 대한 부호 설명※ Explanation of Signs of Major Parts of Drawings
1. 악취 유입 및 분배구 2. 미생물 배양조1. Odor inflow and distribution port 2. Microorganism culture tank
3. 생물학적 탈취층 4. 스프레이 노즐3. Biological deodorization layer 4. Spray nozzle
5. 완충층 6. 활성탄 흡착층5. Buffer layer 6. Activated carbon adsorption layer
7. 처리 가스 배출구 8. 시료 채취구7. Process gas outlet 8. Sample outlet
9. 미생물 이송관 10. 온도 조절용 히터9. Microbial transfer pipe 10. Heater for temperature control
11. 미생물 보충 및 오버 플로우(Overflow) 배출구11. Microbial Supplementation and Overflow Outlet
12. 충전물 투입 및 반출구 13. 공간부12. Filling and Unloading Filling 13. Space
14. 미생물 순환용 펌프 15. 층 분리용 부직포14. Pump for microbial circulation 15. Nonwoven fabric for separating layers
이와 같은 목적을 달성하기 위하여 도 1에 나타낸바와 같이 악취의 흐름을 상향식으로 하는 반응조 하단 부분에 악취 유입, 분배 및 미생물의 활성도 증대와 고농도 배양을 위한 미생물 배양조, 목칩이 충전된 생물학적 탈취층, 이것과 이후의 활성탄 흡착층 사이에서 습기를 조절하기 위하여 펄링 등이 충전되어 있는 완충층, 잔류하는 저농도의 악취물질을 물리적 흡착에 의해 제거하는 활성탄 흡착층, 그리고 마지막으로 반응조 상부에 가스 배출을 위한 공간부로 구성되도록 한다.In order to achieve this purpose, as shown in FIG. 1, a microbial culture tank for odor inflow, distribution, and microbial activity increase and high concentration cultivation in a lower portion of a reaction vessel having a flow of odor upward, a biological deodorization layer filled with wood chips, Between this and the activated carbon adsorption layer thereafter, a buffer layer filled with pearling, etc. to control moisture, an activated carbon adsorption layer for removing residual odorous substances by physical adsorption, and finally a space for gas discharge in the upper part of the reactor It is made up of wealth.
상기 미생물 배양조에는 동절기시 수온 하락에 의한 악취분해 미생물의 활성도 저감 방지를 위한 히터와 배양조 하부로부터 미생물을 목칩이 충전된 생물학적 탈취층 상부로 이송하기 위한 순환 펌프(Circulation pump)를 설치하고 고농도로 활성화된 미생물 및 수분 공급용 스프레이 노즐(Spray nozzle)을 상기층 상부에 설치한다. 또한 장치 내부의 압력손실 측정용 마노메타(Manometer)를 설치하고, 펄링과 활성탄의 분리는 경계지점에 부직포를 설치하는 것으로 한다.The microbial culture tank is installed with a heater for preventing the reduction of the activity of odor decomposition microorganisms due to water temperature drop during the winter season and a circulation pump (Circulation pump) for transferring the microorganism from the bottom of the culture tank to the biological deodorization layer filled with wood chips Activated microorganism and spray nozzle (Spray nozzle) for water supply is installed on the upper layer. In addition, a manometer for pressure loss measurement is installed inside the device, and a nonwoven fabric is installed at the boundary for separating the pearling and the activated carbon.
상기 악취분해 미생물 배양조의 슬러지(Sludge) 농도는 5,000-10,000 mg/L 범위로 유지하며 장기간의 운전에서는 슬러지 농도가 서서히 감소하고 pH가 하락하여 산성화되기 때문에 새로운 슬러지를 일정 주기로 첨가한다. 또한 악취분해 미생물의 성장에 필요한 영양원으로 글루코스, 인산염 등을 첨가하거나 유기물, 질소 및 인 등이 포함된 하수, 오·폐수를 일정량 첨가하는데 그 양이 과다할 경우 악취부하의 증대와 탈취효율의 저하를 초래할 수 있으므로 소량의 필요량만을 공급한다. 한편 악취가스의 유입, 분배과정에서 악취물질뿐만 아니라 공기 중의 산소가 공급되므로 상기 배양조의 용존산소량은 악취분해 미생물 배양에 필요한 만큼 충분히 유지된다.The sludge concentration of the malodor-decomposing microbial culture tank is maintained in the range of 5,000-10,000 mg / L, and new sludge is added at regular intervals because the sludge concentration gradually decreases and the pH decreases in the long term operation. In addition, glucose, phosphate, etc. are added to the growth of odor-degrading microorganisms, or a certain amount of sewage and wastewater containing organic matter, nitrogen, and phosphorus is added.If the amount is excessive, the increase of the odor load and the deodorization efficiency decrease. Supply only a small amount of the required amount, as this may cause On the other hand, since oxygen in the air is supplied as well as malodorous substances during inflow and distribution of malodorous gas, the dissolved oxygen amount of the culture tank is sufficiently maintained as necessary for the culture of malodorous microorganisms.
이와 같은 방법으로 배양조와 생물학적 탈취층에 부착된 미생물을 함께 이용하므로 탈취 효율이 증진되며 상기 배양조로부터 활성도가 높고 고농도로 존재하는 유용한 악취분해 미생물 및 수분을 간헐적 또는 지속적으로 생물학적 탈취층에 공급할 수 있어 처리효율을 제한된 공간에서 극대화시킬 수 있기 때문에 지금까지 생물학적 악취제거 시스템의 단점으로 대두되었던 넓은 부지의 소요에 따른 공간 활용면에서의 문제점을 해결할 수 있다.In this way, the use of microorganisms attached to the culture tank and the biological deodorization layer is used together to increase the deodorization efficiency and to supply the active deodorizing microorganisms and water which are highly active and present in high concentration to the biological deodorization layer intermittently or continuously. Since the treatment efficiency can be maximized in a limited space, it is possible to solve the problem of space utilization due to the requirement of a large site, which has been a disadvantage of the biological odor removal system.
이와 같은 방법으로 거의 모든 악취제거에 적용 가능하며 제거 능력이 뛰어나고 2차 오염물질을 발생시키지 않는다는 생물학적 처리방법의 장점을 부각시킴과 동시에 반응조 상부에 설치된 활성탄 흡착층의 효율 역시 극대화시킬 수 있다. 즉 상기의 배양조와 생물학적 탈취층에서 대부분의 악취물질이 제거되어 저농도화 되기 때문에 고농도의 악취제거에 부적합하나 저농도 악취물질 제거에 효율적이라는 활성탄 흡착법의 장점을 부각시킴으로써 처리효율을 극대화할 수 있으며 활성탄을 단독으로 사용하는 경우에 비해 교체 주기가 연장됨에 따라 유지관리에 소요되는 경제적 부담을 최소화시킬 수 있다.In this way, it can be applied to almost all odor removal, highlights the advantages of the biological treatment method of excellent removal ability and does not generate secondary pollutants and at the same time maximize the efficiency of the activated carbon adsorption layer installed on the reactor. In other words, most of the odorous substances are removed from the culture tank and the biological deodorizing layer so that they are low in concentration. Compared to using it alone, the replacement cycle can be extended to minimize the economic burden on maintenance.
따라서 본 장치는 고농도의 악취가 발생하는 하수, 오·폐수처리시설, 위생(분뇨)처리시설, 축산폐수처리시설 음식물 처리시설, 폐기물 처리시설 및 화학공장 등에 중점적으로 적용될 수 있다.Therefore, this device can be applied to sewage, sewage and wastewater treatment facilities, sanitation (manure) treatment facilities, livestock wastewater treatment facilities, food treatment facilities, waste treatment facilities, and chemical plants where high concentrations of odor are generated.
본 고안에서 다단식 단일반응조의 구성은 크게 4부분으로 나뉜다.In the present invention, the configuration of the multistage single reactor is largely divided into four parts.
우선 첫 번째 단계에서는 악취물질 제거에 관여하는 미생물의 활성도와 농도를 높이기 위한 배양조(2)가 반응조 하단부분에 위치한다. 즉 배양조 하부에 악취가스의 유입·분배구(1)가 위치하며 배양조의 슬러지 농도는 5,000에서 10,000 mg/L 범위내로 유지한다. 따라서 유입된 악취물질의 일부분은 미생물의 생물학적 대사작용에 의해 무취 혹은 저취기 물질로 전환된다. 이러한 과정에서 상기 배양조에서는 암모니아, 황화수소, 메틸머캅탄 등의 제거에 직접적으로 관여하는 미생물이 지속적이며 자연적으로 우점종으로 증식되게 된다. 이 때 주요한 영향인자로는 온도, pH, 필수 영양소, 용존 산소량 등이 된다. 일반적으로 악취분해 미생물은 미생물종에 따라 다소 차이가 있으나 15-35℃ 범위에서 가장 활성이 좋다고 알려져 있으므로 동절기시 수온이 저하될 경우 히터(10)를 가동시켜 적정 수온을 유지한다. 한편, 흡입팬에 의해 이송된 악취가스와 공기 중의 산소가 함께 유입되므로 배양조내에서 미생물 성장에 필요한 만큼의 용존산소량을 유지할 수 있다. 그 밖에 pH 조절을 위해 석회, 석회석, 알칼리 등을 첨가하거나 새로운 슬러지를 일정 주기로 첨가하며 미생물 성장에 요구되는 최소의 철, 칼슘, 인 등의 필수 영양소만을 보강하면 된다. 하·폐수의 공급이 가능한 경우에는 인위적으로 위에서 언급한 필수 영양소를 첨가하는 대신 소량의 하·폐수를 일정 주기로 투입하게 되면 제한된 공간(2)에서 최대한 활용할 수 있는 악취제거 미생물을 우점화시킬 수 있다.First, in the first step, a culture tank 2 for increasing the activity and concentration of microorganisms involved in removing odorous substances is located at the bottom of the reactor. That is, the inlet / distribution port 1 of malodorous gas is located in the lower part of the culture tank, and the sludge concentration of the culture tank is maintained within 5,000 to 10,000 mg / L. Thus, some of the odorous substances introduced are converted into odorless or low-odorous substances by biological metabolism of microorganisms. In this process, the microorganisms directly involved in the removal of ammonia, hydrogen sulfide, methyl mercaptan, etc. are continuously and naturally multiplying into dominant species. The main influence factors are temperature, pH, essential nutrients and dissolved oxygen. In general, the odor decomposition microorganisms are slightly different depending on the microbial species, but is known to be the most active in the 15-35 ℃ range, so if the water temperature is lowered during the winter to operate the heater 10 to maintain the proper water temperature. On the other hand, since the odor gas and oxygen in the air transferred by the suction fan is introduced together, it is possible to maintain the amount of dissolved oxygen necessary for the growth of microorganisms in the culture tank. In addition, it is necessary to add lime, limestone, alkali, or new sludge at regular intervals to adjust the pH, and to reinforce only the essential nutrients such as iron, calcium, and phosphorus required for microbial growth. When sewage and wastewater can be supplied, instead of artificially adding essential nutrients mentioned above, a small amount of sewage and wastewater can be introduced at regular intervals to predominate odor removal microorganisms that can be utilized in limited space (2). .
두 번째 단계에서는 악취를 생물학적으로 제거하기 위한 미생물 담체층(3)이 위치한다. 이러한 바이오 필터 처리법은 충전된 담체의 표면에 부착된 미생물의 분해작용을 이용하여 악취를 처리하는 방법으로써 기본적 메커니즘은 악취물질의 용해반응, 미생물에 의한 흡수, 무취 혹은 저취기 물질로의 변환 등 3단계로 구성된다. 본 고안과 일반적인 바이오 필터 처리법의 차이점은 상기 배양조(2)로부터 우점화된 악취제거 미생물과 수분을 내부순환 펌프(14)를 이용하여 생물학적 탈취층 상부에 설치된 스프레이 노즐(4)을 통해 간헐적 또는 지속적으로 충분히 공급하여 상대적으로 활성도가 높은 다량의 미생물을 담체에 부착시킬 수 있다는 점이다. 따라서 악취제거 효율 및 반응속도가 빨라짐에 따라 생물학적 탈취층의 높이를 최소화할 수 있다. 상기 생물학적 탈취층에 충전되는 담체의 선택에 있어 고려해야 할 사항은 미생물의 부착과 성장에 적합한 넓은 표면적, 충전층의 압력강화 최소화,즉 막힘현상 최소화, 그리고 층 전체에 대한 균등한 가스 흐름 유지 등이다. 본 고안에서는 상기 조건을 충족시키며 그 자체가 탄소원으로서의 역할도 가능한 목칩을 사용한다. 한편 담체 공극의 막힘현상이 발생하였을 경우에는 미생물 이송관(9)을 수조에 연결하여 스프레이 노즐(4)을 통해 고압의 물을 분사시켜 장치의 안정적인 운전을 도모한다.In the second step, a microbial carrier layer 3 for biologically removing odors is located. The biofilter treatment is a method of treating malodor by using the decomposition of microorganisms attached to the surface of a filled carrier. The basic mechanism is dissolution reaction of malodorous substance, absorption by microorganism, conversion to odorless or low odorous substance, etc. 3 It consists of steps. The difference between the present invention and the general biofilter treatment method is that the odor removing microorganisms and moisture predominant from the culture tank 2 are intermittently or sprayed through a spray nozzle 4 installed on the biological deodorization layer using the internal circulation pump 14. It is possible to attach a large amount of microorganisms having a relatively high activity to the carrier by supplying them continuously continuously. Therefore, as the odor removal efficiency and reaction speed is faster, the height of the biological deodorizing layer can be minimized. Considerations in the selection of carriers to be filled in the biological deodorizing layer include a large surface area suitable for the attachment and growth of microorganisms, minimizing pressure intensification of the packed bed, i.e. minimizing clogging, and maintaining a uniform gas flow throughout the bed. . The present invention uses wood chips that meet the above conditions and can also serve as carbon sources. On the other hand, when clogging of the carrier voids occurs, the microbial conveying pipe 9 is connected to the water tank to spray high pressure water through the spray nozzle 4 to ensure stable operation of the apparatus.
세 번째 단계에서는 생물학적 탈취층과 활성탄 흡착층 사이에서 습기 조절 등의 역할을 수행하도록 표면적 및 선속도 극대화를 위하여 공극율이 크며 물리, 화학적으로 안정한 펄링 등이 충전된 완충층(5)이 위치한다. 즉 활성탄은 혼합 가스 중에 수분이 많을 경우에는 수분만 흡착하나 수분이 적으면 악취물질을 원활히 흡착시킬 수 있기 때문에 이를 위하여 상기층을 활성탄 흡착층 하부에 설치하고 이 것과 활성탄의 경계 지점에 부직포(15)를 깔아 분리한다.In the third step, a buffer layer 5 filled with a large porosity and physically and chemically stable pearling is positioned to maximize surface area and linear velocity to perform moisture control between the biological deodorizing layer and the activated carbon adsorption layer. That is, activated carbon adsorbs only moisture when there is a lot of moisture in the mixed gas, but it can adsorb odorous substances when there is little moisture. Therefore, the layer is installed under the activated carbon adsorption layer, and a nonwoven fabric (15) )).
마지막으로 반응조 상부에는 활성탄 흡착층(6)을 두어 높은 악취제거 효율이 가능케 한다. 상기층에 유입되는 악취물질은 하부의 배양조와 생물학적 탈취층에서 대부분 제거되어 비교적 저농도화 되어 있기 때문에 특히 저농도 악취물질 제거에 효율적이라는 활성탄의 흡착 특징을 부각시킬 수 있다. 이와 같이 생물학적 탈취층이 고농도 악취물질에 대한 전처리 역할을 수행함에 따라 활성탄의 수명을 연장시킬 수 있다. 따라서 본 고안에서는 탈취를 목적으로 활성탄만을 단독으로 이용하였을 경우 활성탄 재생 및 교체에 따른 단점으로 빈번히 언급되는 부분인 경제성을 제고할 수 있게 된다.Finally, the activated carbon adsorption layer 6 is placed on the upper part of the reactor to enable high odor removal efficiency. Since the odorous substances introduced into the layer are mostly removed in the lower culture tank and the biological deodorization layer, the odorous substances can be highlighted, so that the adsorption characteristic of activated carbon is particularly effective in removing the low concentration odorous substances. As such, the biological deodorization layer may extend the life of activated carbon as it plays a role of pretreatment for a high concentration of odorous substances. Therefore, in the present invention, when only activated carbon is used alone for the purpose of deodorization, it is possible to improve economical efficiency, which is frequently referred to as a disadvantage due to regeneration and replacement of activated carbon.
그리고 배양조 상층부분에는 슬러지 교체, 영양소 또는 하·폐수 첨가 및 오버 플로우 조절을 위한 배출구(11)가 위치하고 각층마다 투입구, 반출구(12)를 설치하여 교체 작업을 수월하게 하였다.And the outlet 11 for the sludge replacement, nutrient or sewage and wastewater addition and overflow control is located in the upper part of the culture tank to facilitate the replacement work by installing the inlet, outlet 12 for each layer.
이하에서는 실시예를 통하여 본 고안의 구체적인 구성 및 작용을 설명하고자 한다.Hereinafter will be described the specific configuration and operation of the present invention through the embodiment.
실시예 1. 실험실 규모의 반응기 운전을 통한 악취제거효율 검토Example 1. Examination of odor removal efficiency through laboratory scale reactor operation
본 실험에서 사용된 반응기의 높이와 지름은 각각 100cm와 40cm이였으며 미생물 배양조, 생물학적 탈취층, 완충층, 그리고 활성탄 흡착층의 높이 비를 각각 4:1:1:1로 하였다. 그리고 미생물 배양조에는 하수처리장의 반송 슬러지를 투입하였고 각층에 목칩, 펄링, 활성탄을 충전하였다. 표 1에 나타낸 바와 같이 운전 시작 10일 경과 후에는 악취분해 미생물이 안정적으로 우점화되지 못 하고 활성도가 낮아 배양조와 생물학적 탈취층에서의 제거효율이 비교적 낮았던 반면 30일 후에는 미생물의 우점화 및 활성화에 의해 99% 이상의 악취물질이 생물학적 방법으로 제거되었으며 저농도의 잔류 악취물질은 활성탄 흡착층에서 완벽히 처리됨을 알 수 있다. 또한 각 층에서의 압력 변화를 측정한 결과 장시간 운전에 따른 압력손실이 거의 나타나지 않아 막힘 현상도 관찰되지 않았다.The height and diameter of the reactor used in this experiment were 100 cm and 40 cm, respectively, and the height ratios of the microbial culture tank, the biological deodorization layer, the buffer layer, and the activated carbon adsorption layer were 4: 1: 1: 1, respectively. In the microbial culture tank, the return sludge of the sewage treatment plant was added, and each layer was filled with wood chips, pearling, and activated carbon. As shown in Table 1, after 10 days of operation, odor decomposing microorganisms were not dominantly stable and their activities were low, so that the removal efficiency in culture tanks and biological deodorizing layers was relatively low, whereas after 30 days, dominance and activation of microorganisms By more than 99% of the malodorous material was removed by a biological method and low concentrations of residual malodorous substances can be seen that the complete treatment in the activated carbon adsorption layer. In addition, as a result of measuring the pressure change in each layer, the blockage phenomenon was not observed because there was almost no pressure loss due to long time operation.
이와 같이 배양조의 설치를 통해 악취분해 미생물의 우점화 과정에서 일부 유입 악취가 제거되었고 활성화된 미생물을 담체층에 공급함으로써 생물학적 탈취층의 효율을 극대화시킬 수 있음을 확인할 수 있었다. 이에 활성탄 수명이 연장되어 활성탄 교체에 따른 경제적 부담이 최소화된다.As described above, it was confirmed that some inflow odors were removed during the dominance of the malodor-decomposing microorganisms through the installation of the culture tank, and the activated microorganisms were supplied to the carrier layer to maximize the efficiency of the biological deodorization layer. As a result, the lifetime of activated carbon is extended, thereby minimizing the economic burden of replacing activated carbon.
표 1. 다단식 단일반응조에서의 대표적인 악취물질 농도 변화Table 1. Representative Changes in Odor Concentrations in a Multistage Single Reactor
이상에서와 같이 본 고안에 의해 개발된 악취제거장치는 악취제거 미생물의 배양조, 바이오 필터 형식의 생물학적 탈취층과 활성탄 흡착층 등을 단일반응조내에서 상호 보완적인 관계로 적절히 결합시킴으로써 다양한 악취물질을 고효율로 제거할 수 있다. 또한 기존의 바이오 필터와 활성탄 흡착법의 단점을 미생물 배양조를 설치함에 따라 최대한 보완하여 시스템의 경제성의 극대화 및 2차 오염물질의 발생을 최소화할 수 있다. 또한, 활성탄 수명이 연장되어 활성탄 교체에 따른 경제적 부담이 최소화된다.As described above, the odor removing device developed by the present invention combines various odorous substances by appropriately combining a culture tank of odor removing microorganisms, a biofilter-type biological deodorizing layer and an activated carbon adsorption layer in a complementary relationship in a single reaction tank. Can be removed with high efficiency In addition, it is possible to maximize the economics of the system and minimize the generation of secondary pollutants by supplementing the shortcomings of the existing biofilter and activated carbon adsorption tank as possible. In addition, the lifetime of activated carbon is extended to minimize the economic burden of activated carbon replacement.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20-2004-0003521U KR200351862Y1 (en) | 2004-02-12 | 2004-02-12 | Apparatus for deodorizing comprising microbial decomposition and adsorption |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20-2004-0003521U KR200351862Y1 (en) | 2004-02-12 | 2004-02-12 | Apparatus for deodorizing comprising microbial decomposition and adsorption |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040009214A Division KR20050081000A (en) | 2004-02-12 | 2004-02-12 | Apparatus for deodorizing and deodorizing method comprising microbial decomposition and adsorption |
Publications (1)
Publication Number | Publication Date |
---|---|
KR200351862Y1 true KR200351862Y1 (en) | 2004-05-31 |
Family
ID=49431056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20-2004-0003521U Expired - Fee Related KR200351862Y1 (en) | 2004-02-12 | 2004-02-12 | Apparatus for deodorizing comprising microbial decomposition and adsorption |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200351862Y1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102677578B1 (en) * | 2024-03-15 | 2024-06-25 | 신창엔텍 주식회사 | Dust removal device equipped with activated carbon treatment tower |
-
2004
- 2004-02-12 KR KR20-2004-0003521U patent/KR200351862Y1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102677578B1 (en) * | 2024-03-15 | 2024-06-25 | 신창엔텍 주식회사 | Dust removal device equipped with activated carbon treatment tower |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Van Groenestijn et al. | Recent developments in biological waste gas purification in Europe | |
KR100951307B1 (en) | Livestock facility odor treatment system | |
KR101024296B1 (en) | Biological deodorizer for removing high concentrations of complex odors and volatile organic compounds | |
Barbusiński et al. | Use of biological methods for removal of H2S from biogas in wastewater treatment plants–a review | |
KR101042489B1 (en) | Eco-Friendly Odor and Volatile Organic Compound Purifier | |
CN103623693B (en) | A kind of Efficient biological deodorization equipment | |
CN101011591A (en) | Method and apparatus for treating malodorous gas by using composite microorganism and nano composite carrier | |
CN104001421B (en) | A kind of employing pretreated compound bio deodorization process of bubble-free aeration and device | |
KR20080057808A (en) | Odor gas treatment device having biochemical odor gas treatment unit | |
CN202478818U (en) | Novel biological trickling filtering tower for decomposing organic odor | |
KR100490800B1 (en) | Compost Biofilter and Method for Removing Compost Odor Using the Same | |
KR200351862Y1 (en) | Apparatus for deodorizing comprising microbial decomposition and adsorption | |
CN102091530A (en) | A method of biological filtration and deodorization | |
KR100320742B1 (en) | Biological filter for deodorizing and removing volatile organic components | |
KR100267632B1 (en) | Method for removing volatile organic componets, hydrogen sulfide and ammonia gas employing biological filter system with immobilized microorganisms | |
JP2002079051A (en) | Method for deodorizing hydrogen sulfide containing gas | |
CN110743341A (en) | Odor deodorization system and deodorization method | |
KR20050081000A (en) | Apparatus for deodorizing and deodorizing method comprising microbial decomposition and adsorption | |
KR100749726B1 (en) | Odor Deodorizer | |
KR102094714B1 (en) | Vertical-type Carrier Deodorizer with Cleaning and Absorption Processing | |
Miller et al. | Application of biological deodorization methods in the aspect of sustainable development | |
JP2820824B2 (en) | Biological treatment of digestive gas | |
KR200403396Y1 (en) | The offensive odor treatment instrument by use of Biological Wet Scrubber-Chungi Environment Technologies | |
KR200346520Y1 (en) | Biological deodorization system for livestock manure liquid tank | |
KR100513268B1 (en) | Method and System of odor removal using distillery waste and earthworm cast |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
U107 | Dual application of utility model | ||
UA0107 | Dual application for utility model registration |
Comment text: Dual Application of Utility Model Registration Patent event date: 20040212 Patent event code: UA01011R07D |
|
REGI | Registration of establishment | ||
UR0701 | Registration of establishment |
Patent event date: 20040520 Patent event code: UR07011E01D Comment text: Registration of Establishment |
|
UR1002 | Payment of registration fee |
Start annual number: 1 End annual number: 1 Payment date: 20040213 |
|
UG1601 | Publication of registration | ||
UR1001 | Payment of annual fee |
Payment date: 20050519 Start annual number: 2 End annual number: 3 |
|
UR1001 | Payment of annual fee |
Payment date: 20070427 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20080519 Year of fee payment: 5 |
|
UR1001 | Payment of annual fee |
Payment date: 20080519 Start annual number: 5 End annual number: 5 |
|
LAPS | Lapse due to unpaid annual fee | ||
UC1903 | Unpaid annual fee |
Termination date: 20100410 Termination category: Default of registration fee |