[go: up one dir, main page]

KR20030097164A - An animal fee additive comprising δ-aminolevulinic acid - Google Patents

An animal fee additive comprising δ-aminolevulinic acid Download PDF

Info

Publication number
KR20030097164A
KR20030097164A KR1020020034350A KR20020034350A KR20030097164A KR 20030097164 A KR20030097164 A KR 20030097164A KR 1020020034350 A KR1020020034350 A KR 1020020034350A KR 20020034350 A KR20020034350 A KR 20020034350A KR 20030097164 A KR20030097164 A KR 20030097164A
Authority
KR
South Korea
Prior art keywords
feed
ppm
ala
livestock
acid
Prior art date
Application number
KR1020020034350A
Other languages
Korean (ko)
Other versions
KR100459918B1 (en
Inventor
김형락
김재호
오명주
서호찬
김종오
변대석
Original Assignee
(주)엔바이로젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엔바이로젠 filed Critical (주)엔바이로젠
Priority to KR10-2002-0034350A priority Critical patent/KR100459918B1/en
Publication of KR20030097164A publication Critical patent/KR20030097164A/en
Application granted granted Critical
Publication of KR100459918B1 publication Critical patent/KR100459918B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

본 발명은 델타아미노레불린산을 함유하는 가축사료 첨가제에 관한 것으로, 델타아미노레불린산을 통상의 가축사료에 첨가함으로써 가축의 자가 면역력을 증진시키고 사료효율을 향상시키며 특히, 이유자돈의 사료에 첨가할 경우 일당증체량과 사료효율을 증대시켜 혈액중의 철분, 헤모글로빈, 적혈구 및 백혈구의 수치가 증가하고 이유자돈에서 높은 발생율을 선보이는 병원성 대장균에 의한 설사증을 효과적으로 예방하고 치료할 수 있으며, 젖소 사료에 첨가하는 경우 젖소의 유량을 증대시키고 우유중의 체세포를 감소시켜 우유의 등급을 향상시킬 수 있으며, 양계 사료에 첨가하여 사육하는 경우 산란계의 생존율을 향상시키고 각종 질병에 대한 자가 면역력을 극대화하여 산란계의 생산성을 높일 수 있어 축산업 및 사료산업상 매우 뛰어난 효과가 있다.The present invention relates to a livestock feed additive containing deltaaminolevulinic acid. By adding deltaaminolevulinic acid to a conventional livestock feed, it enhances the autoimmunity of the livestock and improves the feed efficiency. Increasing daily weight gain and feed efficiency increase the levels of iron, hemoglobin, erythrocytes and leukocytes in the blood, and effectively prevent and treat diarrhea caused by Escherichia coli, which shows high incidence in weaning pigs. Increasing the flow rate of cows and reducing somatic cells in milk can improve the grade of milk, and when added to poultry feed, improves the survival rate of laying hens and maximizes autoimmunity against various diseases to increase productivity of laying hens. Very effective in livestock and feed industry A.

Description

델타아미노레불린산을 함유하는 가축사료 첨가제{An animal fee additive comprising δ-aminolevulinic acid}An animal fee additive comprising δ-aminolevulinic acid

본 발명은 델타아미노레불린산을 함유하는 가축사료 첨가제에 관한 것이다. 더욱 상세하게는, 본 발명은 형질전환된 미생물의 대사산물인 델타아미노레불린산을 함유함으로써 가축들의 신진대사를 향상시키고 자가 면역력 및 항스트레스 효과를 증진시키며 사료효율을 높이는 효과가 있는 가축사료 첨가제에 관한 것이다.The present invention relates to a livestock feed additive containing deltaaminolevulinic acid. More specifically, the present invention is a livestock feed additive having the effect of improving the metabolism of animals, enhance the autoimmunity and anti-stress effect and feed efficiency by containing delta aminolevulinic acid which is a metabolite of transformed microorganism It is about.

고등생물의 생체 내에서 헴(heme)의 생합성은 4개의 세포질성 효소(cytoplasmic enzyme)과 4개의 미토콘드리아성 효소(mitochodrial enzyme)에 의하여 합성이 된다. ALA (5-아미노레불린산; 5-aminolevulinic acid)의 합성은 헴(heme) 합성의 첫 번째 제한단계(limiting step)으로 ALAS에 의하여 숙시닐코에이(succinylCoA) 와 글리신(glycine)의 축합 반응을 통하여 진행이 된다. (C4 pathway). ALA의 생합성은 적혈구 세포(erythroid cell)과 비적혈구 세포(non-erythroid cell) 사이에는 큰 차이가 있는데 특히 비적혈구 세포(non-erythroid cell)에서의 헴(heme) 합성은 ALA의 가용성(availability)에 의하여 결정이 된다. 간 담낭에서 약 20%의 헴(heme)은 담즙 색소(bile pigment)(빌리루빈;bilirubin)로 전환이 되고 약 80%는 헴단백질(hemoprotein)으로 전환이 된다(Grandchamp et al., 1981). 헴(heme)은 또한 갑상선 호르몬(thyroid hormone)의 합성에 중요한 티로페록시다제(thyroperoxidase)의 세포내부의 소통(intracellular trafficking)에 중요한 역할을 하는 것으로 밝혀졌다. 간(단일의 적혈구 세포; mon erythroid cell)에서 합성된 헴(heme)의 약 65%는 시토크롬 피450(cytochrome P450)의 합성에 이용이 되고 약 15%는 카탈라제(catalase), 페록시다제(peroxidase), 포스포디에스터라제(phosphodiesterase), 산화질소 합성(nitric oxide synthase), 트립토판 피롤라제(tryptophan pyrrolase), 구아닐레이트 시클라제(guanylate cyclase)와 같은 헴단백질(hemoprotein)의 합성에 이용이 된다. 헴(heme)을 함유하는 단백질들은 호기적 호흡, 에너지 생산, 산화적 대사, 성장 및 분화와 같은 여러 가지 생명현상에 있어서 중요한 역할을 한다(Badway et al., 1980;Pinnix IB et al., 1994).Heme biosynthesis in higher organisms is synthesized by four cytoplasmic enzymes and four mitochodrial enzymes. Synthesis of ALA (5-aminolevulinic acid) is the first limiting step of heme synthesis and condensation of succinylCoA and glycine by ALAS. Progress through. (C4 pathway). Biosynthesis of ALA differs significantly between erythroid cells and non-erythroid cells, especially heme synthesis in non-erythroid cells. It is decided by. In the hepatic gallbladder, about 20% of heme is converted to bile pigment (bilirubin) and about 80% to hemoprotein (Grandchamp et al., 1981). Heme has also been shown to play an important role in intracellular trafficking of thyroperoxidase, which is important for the synthesis of thyroid hormones. About 65% of the heme synthesized in the liver (mon erythroid cell) is used for the synthesis of cytochrome P450 and about 15% is catalase and peroxidase. ), Hemoproteins such as phosphodiesterase, nitric oxide synthase, tryptophan pyrrolase, guanylate cyclase do. Heme-containing proteins play an important role in many life phenomena such as aerobic respiration, energy production, oxidative metabolism, growth and differentiation (Badway et al., 1980; Pinnix IB et al., 1994 ).

생체내의 헴(heme)의 합성에 의한 영향은 크게 두 가지 관점에서 설명을 할 수 있다. 첫째, 먼저 적혈구 세포(erythroid cell)의 활성화 및 이의 RBC로의 성숙을 통하여 생체내의 신진대사 비율(metabolic rate)의 향상을 기대할 수 있다. 이를 통하여 사료의 이용, 흡수율의 향상과 대사속도의 향상을 기대할 수 있는 효과는 생체의 산소 수송(oxygen transport), 신진대사(metabolism) 및 영양소 수송(nutrient transport)의 향상 등 생리적인 효과를 기대할 수 있다. 이로부터 가축을 전반적으로 건강한 상태로 유지시켜주며 대사의 활성화를 통하여 질병 저항력 및 성장률의 향상 효과를 기대할 수 있다. 유사한 효과로써 일반 가축사료 및 영양보조제로 철의 흡수율을 높이기 위하여 도축 혈액으로부터 헴(heme) 철의 상품화가 되어 있다. 둘째, ALA의 세포내 흡수에 의한 비적혈구성 세포(non-erythroid cell)에서의 헴(heme)의 영향이 질병의 치료 및 예방 효과에 보다 직접적인 영향을 미치는 것으로 판단이 된다(Wagener, et al., 1997).The effects of the synthesis of heme in vivo can be largely explained from two perspectives. First, it can be expected to improve the metabolic rate in vivo through the activation of erythroid cells and maturation into RBCs. Through this, the use of feed, the absorption rate and the metabolic rate can be expected to increase the physiological effects such as oxygen transport, metabolism and nutrient transport of the living body can be expected. have. From this, it is possible to keep the livestock in a healthy state overall and improve the disease resistance and growth rate through the activation of metabolism. Similar effects have resulted in the commercialization of heme iron from slaughter blood in order to increase the absorption of iron with general livestock feed and nutritional supplements. Second, the effect of heme on non-erythroid cells due to intracellular uptake of ALA is considered to have a more direct effect on the treatment and prevention of disease (Wagener, et al. , 1997).

1950년대 동물 사료에 소량의 항생제를 첨가함으로써 단위 동물의 성장률과 사료효율을 향상시키는 결과가 보고되고 있다. 항생제는 사료 첨가제로서 일반적으로 사용되나, 생육과 사료 전환비의 개선에 미치는 이들 항생제의 작용 기작은 충분히 이해되지는 않고 있다. 이러한 부류의 사료 첨가제에 대한 일반용어는 생육 촉진제이며, 생육 촉진제로써 버지니아마이신, 틸로신, 플라보마이신, 아보파르신 등이 널리 사용되고 있다.The addition of small amounts of antibiotics to animal feed in the 1950s has been reported to improve unit growth and feed efficiency. Antibiotics are commonly used as feed additives, but the mechanism of action of these antibiotics on improving growth and feed conversion costs is not fully understood. Common terms for this class of feed additives are growth promoters, and Virginia mycin, tyrosine, flavomycin, and avoparcin are widely used as growth promoters.

항생제에 대한 병원성 박테리아의 내성은 사람은 물론 가축에서도 빠르게 증가하고 있다. 이는 박테리아 감염에 걸린 인축의 치료를 어렵게 만들며, 새로운 종류의 항생제 개발을 요구한다. 여러 전문가들은 각종 항생제에 대한 내성의 가속화가 동물 사료에서 항생제의 광범위한 사용의 원인으로 추정하고 있다. 이로 인해 스웨덴에서는 동물 사료에서 생육 촉진제로서 모든 항생제의 사용을 금지 시켰고 덴마크에서는 아보파르신과 같은 특정 항생제의 사용을 금지시켰다. 다른 나라에서도 소비자와 건강 보호 단체의 압력으로 인해 가축에 있어서 항생제 사용이 제한되고 있는 실정이다. 이러한 폐단을 없애기 위해 사료 산업은 가축의 내병성을 향상시키고, 사료효율과 생육 촉진 효과를 지닌 천연물의 개발에 관심을 가져왔다. 그예로써, 키토산, 베타글루칸 등이 축산산업에서 널리 사용되고 있는 천연 사료 첨가물이다.Resistance of pathogenic bacteria to antibiotics is increasing rapidly in both humans and livestock. This makes it difficult to treat humans with bacterial infections and requires the development of a new class of antibiotics. Experts estimate that accelerated resistance to various antibiotics may be responsible for the widespread use of antibiotics in animal feed. Because of this, Sweden has banned the use of all antibiotics as growth promoters in animal feed and Denmark has banned the use of certain antibiotics, such as avoparsin. In other countries, the use of antibiotics in livestock is under pressure from consumer and health care organizations. In order to eliminate these shortcomings, the feed industry has been interested in developing natural products with improved livestock resistance, feed efficiency and growth promoting effects. For example, chitosan, beta glucan and the like are natural feed additives widely used in the livestock industry.

병원성 대장균에 의한 돼지의 설사증은 주로 어린 돼지에서 다발하며, 발병률이 높고, 한번 설사증에 걸린 돼지는 치료가 되더라도, 위축돈으로 남게 되어 양돈농가에 끼치는 경제적 피해는 매우 크다. 이러한 대장균성 설사증은 주로 병원성대장균의 감염을 통하여 발생된다. 설사를 일으키는 병원성 대장균은 일반 비병원성 대장균과는 다르다. 병원성 대장균은 돼지의 경구를 통하여 감염된 후 소장점막에 부착하여 증식하며, 장독소를 생성하고, 생성된 독소는 장관내의 삼투압을 변화시켜서 설사를 일으키게 된다. 대장균에 감염되어 설사를 나타내는 돼지는 수분의 손실에 의한 탈수증상을 보이며, 심한 경우에는 죽게 된다. 전 세계적으로 대장균 설사증의 예방을 위하여 백신을 사용하고 있으며, 현재까지도 이 방법이 가장 광범위하게 사용되고 있다. 백신을 이용한 대장균증의 예방은 분만전의 어미 돼지에게 백신을 접종하여, 어미돼지의 몸에 항체를 만들게 한 다음, 분만 후에 초유를 통하여 항체를 새끼돼지에게 전달함으로서 이루어진다. 최근에는 이러한 설사증을 일으키는 병원성 대장균 설사증의 효과적인 예방 및 치료의 목적으로 특이항체를 포함한 난황의 건조분말을 이용한 경구용 사료첨가제가 개발되어 보고되고 있다.Pig diarrhea caused by Escherichia coli is mainly caused in young pigs, and the incidence rate is high, and once diarrhea is treated, even if treated, it remains as atrophy, and the economic damage to pig farms is very great. E. coli diarrhea occurs mainly through the infection of Escherichia coli. Escherichia coli, which causes diarrhea, is different from non-pathogenic Escherichia coli. Escherichia coli is infected through the oral cavity of pigs, attaches to the small intestine mucosa, proliferates, produces enteric toxins, and changes the osmotic pressure in the intestine, causing diarrhea. Pigs infected with E. coli and diarrhea show dehydration due to loss of water, and in severe cases die. Vaccines are used worldwide to prevent E. coli diarrhea, and this method is still the most widely used. Prevention of E. coli by vaccine is achieved by inoculating a mother pig before delivery, making antibodies to the mother's body, and then delivering the antibody to the piglets through colostrum after delivery. Recently, oral feed additives using dry powder of yolk containing specific antibodies have been reported for the purpose of effective prevention and treatment of Escherichia coli diarrhea causing such diarrhea.

계란의 가격 경쟁력과 품질향상에 필요한 경제성 제고 및 식품 위생상의 품질안정성 향상을 위하여 국내외 산란계 산업에 있어서 안전한 기능성을 갖는 사료첨가물을 요구하고 있는 실정이다. 산란계 산업에 있어서, 가축은 점차적으로 대형화 추세로 변화하고 있으며, 경제성을 고려한 한정된 공간에서 밀집사육은 점점 높아지고 있다. 이로 인해 밀집사육에 의해 가축들의 사료 효율과 생산성 향상은 중요한 실정이다. 생산성 저하는 영양상태의 불균형, 영양효율 불균형, 사육환경 조건 등과 같은 사육 조건 등의 여러 요인들로 의해서 더욱 문제시 될 수 있다. 또한 소비자의 식품위생에 문제가 되고 있는 약제의 사용은 잔류로 인해 점차적으로 사용을 감소하여야 하며, 결국에는 식품으로써 안전한 대체소재의 개발이 필요하다.In order to improve the economic feasibility required for price competitiveness and quality improvement of eggs and to improve the quality stability of food hygiene, feed additives having safe functionality in domestic and overseas laying industry are required. In the laying hen industry, livestock is gradually increasing in size, and dense breeding is getting higher in limited space considering economics. For this reason, it is important to improve the feed efficiency and productivity of livestock by means of dense breeding. Poor productivity can be more problematic due to several factors, such as nutritional imbalances, nutritional efficiency imbalances, and breeding conditions such as environmental conditions. In addition, the use of drugs, which are a problem for the food hygiene of consumers, should gradually reduce their use due to residues, and eventually, the development of safe substitutes as foods is necessary.

이러한 천연물소재 대체물질은 기존에 사용되는 약제를 투여하는 대신 자연면역력을 증강시켜 질병 방어력을 향상시키고 섭취하는 사료의 영양분과 함께 최대한으로 흡수가 촉진되어 신진대사에 원활하게 작용함으로써 산란계의 폐사율을 줄이고 산란율을 향상시킬 수 있다.Instead of administering conventional medicines, these natural materials substitutes enhance natural immunity to improve disease defense and promote maximum absorption along with nutrients from feeds that are consumed, thus reducing the mortality of laying hens. The scattering rate can be improved.

본 발명자들은 상기와 같은 점을 감안하여 델타아미노레불린산이 거식세포를 증식시킴으로써 자가 면역력을 증진시키고 혈중 철분을 증대시킴으로써 사료효율을 향상시킴을 확인하고, 상기 델타아미노레불린산을 이유자돈의 사료에 첨가하여 일정량씩 급이하여 사육함으로써 일당증체량과 사료효율을 증대시켜 혈액중의 철분, 헤모글로빈, 적혈구 및 백혈구의 수치가 증가하고 이유자돈에서 높은 발생율을 선보이는 병원성 대장균에 의한 설사증을 효과적으로 예방하고 치료할 수 있음을 확인한 뒤, 젖소 사료에 첨가하여 사육함으로써 젖소의 유량을 증대시키고 우유중의 체세포를 감소시켜 우유의 등급을 향상시킴을 확인하고, 양계 사료에 첨가하여 사육함으로써 산란계의 생존율을 향상시키고 각종 질병에 대한 자가 면역력을 극대화하여 산란계의 생산성을 높임을 확인함으로써 본 발명을 완성하였다.In view of the above, the present inventors have confirmed that deltaaminolevulinic acid improves feed efficiency by promoting autoimmunity by increasing macrophages and increasing iron in blood, and adding the deltaaminolevulinic acid to the feed of weaning piglets. It can increase and increase the daily weight gain and feed efficiency by raising the feed by a certain amount, and effectively prevent and treat diarrhea caused by Escherichia coli, which increases the levels of iron, hemoglobin, erythrocytes and leukocytes in blood and shows high incidence in weaning piglets. After confirming, it is confirmed that the milk feed is increased by increasing the flow rate of cows and reducing the somatic cells in the milk to improve the grade of the milk.In addition, it is added to the poultry feed to improve the survival rate of laying hens and to various diseases. Spawning by maximizing autoimmunity against By the increase of the productivity confirmed and completed the present invention.

따라서, 본 발명의 목적은 델타아미노레불린산을 함유하는 가축사료 첨가제를 제공함에 있다.Accordingly, it is an object of the present invention to provide a livestock feed additive containing deltaaminolevulinic acid.

본 발명의 상기 목적은 델타아미노레불린산이 거식세포를 증식시킴으로써 자가 면역력을 증진시키고 혈중철분을 증대시킴으로써 사료효율을 향상시킴을 확인하고, 상기 델타아미노레불린산을 이유자돈의 사료에 첨가하여 일정량씩 급이하여 사육함으로써 일당증체량과 사료효율을 증대시켜 혈액중의 철분, 헤모글로빈, 적혈구 및 백혈구의 수치가 증가하고 이유자돈에서 높은 발생율을 선보이는 병원성 대장균에 의한 설사증을 효과적으로 예방하고 치료할 수 있음을 확인한 뒤, 젖소 사료에 첨가하여 사육함으로써 젖소의 유량을 증대시키고 우유중의 체세포를 감소시켜 우유의 등급을 향상시킴을 확인하고, 양계 사료에 첨가하여 사육함으로써 산란계의 생존율을 향상시키고 각종 질병에 대한 자가 면역력을 극대화하여 산란계의 생산성을 높임을 확인함으로써 달성하였다.The object of the present invention is to confirm that deltaaminolevulinic acid improves feed efficiency by promoting autoimmunity by increasing macrophages and increasing blood iron, and adding the deltaaminolevulinic acid to the feed of weaning pigs by a predetermined amount. By raising the feed per day to increase the daily weight gain and feed efficiency to increase the levels of iron, hemoglobin, red blood cells and leukocytes in the blood and confirmed that it can effectively prevent and treat diarrhea caused by Escherichia coli, which shows a high incidence in weaning pigs. It is confirmed that it increases milk flow rate and decreases somatic cells in milk to improve milk grade by adding to the feed of cows, and improves the survival rate of laying hens and raises the autoimmunity against various diseases by adding to the poultry feed. Increased productivity of laying hens by maximizing Check was achieved by.

이하 본 발명의 구성을 설명한다.Hereinafter, the configuration of the present invention.

도 1은 델타아미노레불린산을 거식세포의 배지에 첨가함에 따른 거식세포의 증식효과를 나타낸 그래프이다.1 is a graph showing the proliferation effect of macrophages by adding deltaaminolevulinic acid to the medium of macrophages.

도 2는 젖소 사료에 10 ppm의 델타아미노레불린산을 첨가하여 4주 동안 사육한 후 젖소의 유량을 측정한 결과를 나타낸 그래프이다.Figure 2 is a graph showing the results of measuring the flow rate of cows after breeding for 4 weeks by adding 10 ppm deltaaminolevulinic acid to the cow's feed.

도 3은 젖소 사료에 1.0 ppm의 델타아미노레불린산을 첨가하여 4주 동안 사육한 후 젖소의 유량을 측정한 결과를 나타낸 그래프이다.Figure 3 is a graph showing the results of measuring the flow rate of cows after breeding for 4 weeks by adding 1.0 ppm of deltaaminolevulinic acid to the cow's feed.

도 4는 젖소 사료에 0.1 ppm의 델타아미노레불린산을 첨가하여 4주 동안 사육한 후 젖소의 유량을 측정한 결과를 나타낸 그래프이다.Figure 4 is a graph showing the results of measuring the flow rate of cows after breeding for 4 weeks by adding 0.1 ppm of deltaaminolevulinic acid to the cow's feed.

도 5는 젖소 사료에 10 ppm의 델타아미노레불린산을 첨가하여 4주 동안 사육한 후 우유중의 체세포 변화를 측정한 결과를 나타낸 그래프이다.5 is a graph showing the results of measuring somatic changes in milk after 4 weeks of breeding by adding 10 ppm of deltaaminolevulinic acid to cow's feed.

도 6은 젖소 사료에 1.0 ppm의 델타아미노레불린산을 첨가하여 4주 동안 사육한 후 우유중의 체세포 변화를 측정한 결과를 나타낸 그래프이다.Figure 6 is a graph showing the results of measuring somatic changes in milk after 4 weeks of breeding by adding 1.0 ppm of deltaaminolevulinic acid to cow feed.

도 7은 젖소 사료에 0.1 ppm의 델타아미노레불린산을 첨가하여 4주 동안 사육한 후 우유중의 체세포 변화를 측정한 결과를 나타낸 그래프이다.Figure 7 is a graph showing the results of measuring somatic changes in milk after 4 weeks of breeding by adding 0.1 ppm of deltaaminolevulinic acid to the cow's feed.

본 발명은 델타아미노레불린산을 거식세포 배지에 첨가하여 거식세포 증식에 미치는 효과를 측정하는 단계; 생쥐에게 델타아미노레불린산을 급이하여 사육한 뒤 혈중 철분이 증가됨을 확인하는 단계; 이유자돈의 사료에 상기 델타아미노레불린산 0.1∼10 ppm을 첨가함에 따른 일당증체량과 사료효율을 측정하는 단계; 이유자돈의 사료에 상기 델타아미노레불린산 0.1∼10 ppm을 첨가함에 따른 이유자돈의 혈액 중의 적혈구, 백혈구, 림프구, 철분 및 헤모글로빈의 함량을 측정하는 단계; 양계의 사료에 상기 델타아미노레불린산 0.1∼10 ppm을 첨가함에 따른 산란율을 측정하는 단계; 양계의 사료에 상기 델타아미노레불린산 0.1∼10 ppm을 첨가함에 따른 폐사율을 측정하는 단계; 양계의 사료에 상기 델타아미노레불린산 0.1∼10 ppm을 첨가함에 따른 난의 중량을 측정하는 단계; 양계의 사료에 상기 델타아미노레불린산 0.1∼10 ppm을 첨가함에 따른 파란율 및 계란의 품질을 측정하는 단계; 젖소 사료에 상기 델타아미노레불린산 0.1∼10 ppm을 첨가하여 사육함에 따른 젖소의 유량을 측정하는 단계; 젖소 사료에 상기 델타아미노레불린산 0.1∼10 ppm을 첨가하여 사육함에 따른 우유 중의 체세포변화를 측정하는 단계로 구성된다.The present invention comprises the steps of adding deltaaminolevulinic acid to the macrophage medium to determine the effect on the macrophage proliferation; Confirming that iron is increased after feeding and feeding deltaaminolevulinic acid to mice; Measuring daily gain and feed efficiency by adding 0.1-10 ppm of deltaaminolevulinic acid to the feed of weaned piglets; Measuring the contents of erythrocytes, leukocytes, lymphocytes, iron and hemoglobin in the blood of weaning piglets by adding 0.1-10 ppm of deltaaminolevulinic acid to the feed of weaning piglets; Measuring the scattering rate by adding 0.1-10 ppm of the deltaaminolevulinic acid to the feed of the poultry; Measuring mortality by adding 0.1-10 ppm of the deltaaminolevulinic acid to the feed of poultry; Measuring the weight of the egg by adding 0.1 to 10 ppm of the deltaaminolevulinic acid to the feed of the poultry; Measuring blue quality and egg quality by adding 0.1-10 ppm of deltaaminolevulinic acid to the feed of poultry; Measuring the flow rate of cows by raising 0.1-10 ppm of the deltaaminolevulinic acid to the cow's feed; It is composed of the step of measuring the somatic changes in milk by raising 0.1-10 ppm of the deltaaminolevulinic acid to the cow's feed.

본 발명의 델타아미노레불린산은 분말, 액상 또는 델타아미노레불린산이 함유된 발효산물의 형태로 사료에 첨가되어질 수 있다.Deltaaminolevulinic acid of the present invention may be added to the feed in the form of powder, liquid or fermentation product containing deltaaminolevulinic acid.

이하 본 발명을 하기 위한 실시예에 의해 상세히 설명하고자 하나 하기 실시예는 본 발명을 예시하기 위한 것일 뿐이며 발명의 범위를 한정하는 것은 아니다.The following examples are intended to illustrate the present invention in detail, but the following examples are only for illustrating the present invention and are not intended to limit the scope of the invention.

실시예 1 : 델타아미노레불린산의 거식세포 증식에 미치는 영향Example 1 Effect of Delta-Aminolevulinic Acid on Macrophage Proliferation

다양한 농도의 델타아미노레불린산(ALA)을 거식세포의 배지에 첨가하여 거식세포의 증식에 미치는 영향을 조사하였다. 세포배양용 배지에 1.0 uM에서 0.1 pM의 농도로 ALA를 첨가하여 첨가후 1 일과 3 일후의 세포수를 헤마토크릿트로 계수하였다. 그 결과 첨가된 ALA의 모든 농도대에서 대조군에 비하여 거식세포 증식효과가 나타났다. 이러한 결과는 사료중에 첨가된 ALA에 의하여 거식세포가 증가함으로써 동물의 면역력을 증가시키는 요인으로 판단된다.Various effects of deltaaminolevulinic acid (ALA) were added to the medium of macrophage to investigate the effect on the proliferation of macrophages. ALA was added to the cell culture medium at a concentration of 1.0 uM to 0.1 pM, and the number of cells 1 and 3 days after the addition was counted by hematocrit. As a result, all the concentrations of added ALA showed a macrophage proliferation effect compared to the control. This result is considered to be a factor that increases the immunity of the animal by the increase of macrophages by ALA added to the feed.

실시예 2 : 델타아미노레불산의 혈중 철분 증대 효과Example 2 Effect of Delta Amino Acid on Blood Iron Increase

4주령된 생쥐 48마리를 1주일 동안 대조사료로 적응시킨 후 사료에 대하여0.1, 1.0 및 10 ppm의 ALA를 첨가하여 2주동안 사육하였다. 사육후 혈액을 채취하여 혈액중 유리철분과 총철분을 분석한 결과를 표1에 나타내었다. 표 1에 나타난바와 같이 ALA 첨가에 의하여 혈중 철분이 현격하게 증가된을 알 수 있었으며, 이러한 결과는 산소전달을 가속화시켜 사료효울을 향상시키는 것으로 확인되었다.Forty-four week-old mice were acclimated for one week and then bred for two weeks with 0.1, 1.0 and 10 ppm of ALA added to the feed. Blood was collected after breeding and the results of analysis of free iron and total iron in blood are shown in Table 1. As shown in Table 1, it was found that iron iron was significantly increased by the addition of ALA, and this result was confirmed to improve the feed efficiency by accelerating oxygen delivery.

ALA에 의한 혈중 철분 증대 효과ALA increases blood iron effect 철분 종류Iron type 대조군Control 0.1 ppm0.1 ppm 1.0 ppm1.0 ppm 10 ppm10 ppm Fe2+(㎍/g)Fe 2+ (μg / g) 24±224 ± 2 29±229 ± 2 32±332 ± 3 28±228 ± 2 총철분(㎍/g)Total iron (㎍ / g) 121±13121 ± 13 160±20160 ± 20 164±21164 ± 21 143±17143 ± 17

실시예 3 : 델타아미노레불린산의 급이에 의한 이유자돈의 증체량 및 사료효율Example 3: Weight gain and feed efficiency of weaning piglets by feeding of deltaaminolevulinic acid

생후 20일차의 이유자돈 140두로 각각의 대조구 및 시험구를 20두씩 나누어 사료에 대하여 ALA를 0.1, 1.0, 2 및 10 ppm씩 첨가하여 20일동안 사육하였다. 사육중 10일차에 각 시험구의 일당 증체량, 일일사료섭취량 및 사료효율을 측정한 결과를 표 3에 나타내었다. 표 3에 나타난바와 같이 ALA 첨가에 의하여 증체량, 사료섭취량이 증가하였다. 이러한 결과는 ALA가 사료첨가제로써 사용할 경우 이유자돈의 생육을 증진시키는 효과가 있음을 입증한다.Each control and test were divided into 140 heads of 20 weaning pigs on the 20th day of life, and ALA was added in 0.1, 1.0, 2, and 10 ppm of feed. Table 3 shows the results of daily weight gain, daily feed intake, and feed efficiency of each test plot during breeding. As shown in Table 3, the weight gain and feed intake increased by the addition of ALA. These results demonstrate that ALA has the effect of enhancing the growth of weaning piglets when used as feed additive.

사육 10일까지는 ALA 첨가에 의하여 증체량은 항생제 첨가군보다 다소 낮게 나타났으나, 사료섭취율과 사료효율은 항생제 첨가군보다 증가하였으며, 항생제가첨가된 기존의 사료에 ALA를 첨가함으로써 증체량은 현격하게 증가하였다. 이러한 결과는 항생제와 ALA를 병용할 경우 항생제의 생육촉진제로써의 기능을 상승시킴을 알수 있다.Until 10 days of breeding, the weight gain was slightly lower than that of antibiotics, but the feed intake and feed efficiency were higher than those of antibiotics, and the weight gain was significantly increased by adding ALA to the conventional diets. It was. These results suggest that the combination of antibiotics and ALA increases the function of antibiotics as growth promoters.

그리고 20일간의 ALA 처리에 의하여 일당증체량, 일당사료섭취량 및 사료효율은 항생체 처리군보다 높게 나타났으며, 특히 항생제와 ALA를 동시에 처리함으로써 항생제의 생육촉진효과는 더욱 높게 나타났다.The daily weight gain, daily feed intake and feed efficiency were higher than those of the antibiotic treatment group after 20 days of ALA treatment. Especially, the antibiotic growth rate was higher by simultaneously treating antibiotics and ALA.

ALA 급여에 의한 이유자돈의 증체량 및 사료효율Weight gain and feed efficiency of weaning pigs by ALA 처리기간Processing period 항목Item 대조구Control ALA0.1 ppmALA0.1 ppm ALA1 ppmALA1 ppm ALA2 ppmALA2 ppm ALA10 ppmALA10 ppm ALA+항생제ALA + Antibiotics 항생제무처리군Antibiotic-free group 항생제처리군a) Antibiotic treatment group a) 0~10일0-10 days 일체증체량(g)Integral weight gain (g) 140140 220220 165165 182182 170170 175175 253253 일당사료섭취량(g)Daily feed intake (g) 258258 329329 284284 325325 295295 304304 344344 사료효율Feed efficiency 0.540.54 0.670.67 0.550.55 0.560.56 0.580.58 0.580.58 0.740.74 10~20일10-20 days 일체증체량(g)Integral weight gain (g) 249249 268268 278278 313313 342342 340340 374374 일당사료섭취량(g)Daily feed intake (g) 378378 403403 385385 418418 411411 415415 421421 사료효율Feed efficiency 0.660.66 0.670.67 0.680.68 0.750.75 0.830.83 0.820.82 0.890.89

[주] a) 아프라마이신(apramycin) + 옥시테트라시클린(oxyetetracycline) (100g/톤) 첨가A) Addition of apramycin + oxyetetracycline (100 g / ton)

실시예 4 : 델타아미노레불린산의 급이에 의한 이유자돈의 혈액 중의 함량 변화Example 4 Changes in the Content of Weaned Piglets in Blood by Feeding Deltaaminolevulinic Acid

상기 실시예 3과 동일한 실험으로 20일간 이유자돈에 ALA를 급이한 후에 혈액을 채취하여 적혈구용적률(HCT; hematocrit), 적혈구(RBC; red blood cell), 백혈구(WBC; white blood cell) 및 림프구(lymphocyte)를 분석한 결과를 표3에 나타내었다. ALA 첨가에 의하여 HCT, RBC 및 WBC는 약간 증가하였으며, lymphocyte는 상당량 증가하는 것을 알 수 있었다.In the same experiment as in Example 3, blood was collected after feeding ALA to weaning pigs for 20 days, and then red blood cells (HCT; hematocrit), red blood cells (RBC; red blood cells), white blood cells (WBC; white blood cells) and lymphocytes ( lymphocytes) are shown in Table 3. HCT, RBC and WBC were slightly increased and lymphocytes were significantly increased by ALA addition.

ALA 급이에 의한 이유자돈의 혈액 중의 함량 변화Changes in the Blood Content of Weaning Piglets by ALA Feeding 항목Item 대조구Control ALA0.1 ppmALA0.1 ppm ALA1 ppmALA1 ppm ALA2 ppmALA2 ppm ALA10 ppmALA10 ppm ALA+항생제처리a ALA + Antibiotic Treatment a SESE 항생제무처리군Antibiotic-free group 항생제처리군a) Antibiotic treatment group a) HCT(%)HCT (%) 29.75c 29.75 c 30.85b 30.85 b 30.2130.21 32.09ab 32.09 ab 32.29a 32.29 a 32.4532.45 32.60a 32.60 a 0.610.61 RBC(×106/min)RBC (× 10 6 / min) 5.17b 5.17 b 5.44ab 5.44 ab 5.245.24 5.33ab 5.33 ab 5.52a 5.52 a 5.545.54 5.60a 5.60 a 0.080.08 WBC(×103/min)WBC (× 10 3 / min) 21.15b 21.15 b 22.98ab 22.98 ab 22.1422.14 22.94ab 22.94 ab 23.34a 23.34 a 23.6523.65 23.67a 23.67 a 0.840.84 림프구(%)Lymphocyte (%) 47.61b 47.61 b 50.71ab 50.71 ab 52.3552.35 58.35ab 58.35 ab 58.34a 58.34 a 58.9558.95 58.64a 58.64 a 2.452.45

[주] a) 아프라마이신(apramycin) + 옥시테트라시클린(oxyetetracycline) (100g/톤) 첨가A) Addition of apramycin + oxyetetracycline (100 g / ton)

실시예 5 : 델타아미노레불린산의 급이에 의한 이유자돈의 혈액 중의 함량 변화Example 5 Change in the Content of Weaned Piglets in Blood by Feeding Deltaaminolevulinic Acid

상기 실시예 3과 동일한 실험으로 20일간 이유자돈에 ALA를 급이한 후에 혈액을 채취하여 총단백질(total protein), 철분(iron), 총철결합능(TIBC; total iron-binding capacity) 및 헤모글로빈 양을 분석한 결과를 표4에 나타내었다. ALA첨가에 의하여 HCT, RBC 및 WBC가 약간 증가하였으며 림프구는 상당히 증가하는 것을 알 수 있었다.In the same experiment as Example 3, ALA was fed to the weaning pigs for 20 days, and then blood was collected to analyze total protein, iron, total iron-binding capacity (TIBC) and hemoglobin. One result is shown in Table 4. The addition of ALA slightly increased HCT, RBC and WBC, and the lymphocytes were significantly increased.

ALA 급이에 의한 이유자돈의 혈중 단백질, 철분 및 헤모글로빈의 변화Changes in Serum Proteins, Iron and Hemoglobin in Weaning Piglets by ALA Feeding 항목Item 대조구Control ALA0.1 ppmALA0.1 ppm ALA1.0 ppmALA1.0 ppm ALA2 ppmALA2 ppm ALA10 ppmALA10 ppm PE-1+항생제처리a PE-1 + Antibiotic Treatment a SESE 항생제무처리군Antibiotic-free group 항생제처리군a) Antibiotic treatment group a) 총단백질(g/dL)Total protein (g / dL) 5.24b 5.24 b 5.36b 5.36 b 5.485.48 5.84ab 5.84 ab 6.04a 6.04 a 6.126.12 6.28a 6.28 a 0.210.21 철분(㎍/dL)Iron (µg / dL) 66.25c 66.25 c 75.21b 75.21 b 72.572.5 83.74a 83.74 a 84.23a 84.23 a 84.2084.20 86.23a 86.23 a 4.154.15 TIBC(㎍/dL)TIBC (μg / dL) 503.30a 503.30 a 508.00c 508.00 c 505.40505.40 527.25b 527.25 b 547.85ab 547.85 ab 546.40546.40 566.61a 566.61 a 8.758.75 Hb(g/dL)Hb (g / dL) 8.60b 8.60 b 8.86b 8.86 b 8.808.80 9.06ab 9.06 ab 9.67a 9.67 a 9.609.60 9.40a 9.40 a 0.140.14

[주] a) 아프라마이신(apramycin) + 옥시테트라시클린(oxyetetracycline) (100g/톤) 첨가A) Addition of apramycin + oxyetetracycline (100 g / ton)

실시예 6 : 델타아미노레불린산의 급이에 의한 산란율 비교Example 6 Comparison of Scattering Rate by Feeding Deltaaminolevulinic Acid

경기도 양계장의 산란계 10,000수를 택하여 다양한 농도의 ALA를 사료에 첨가하여 산란율을 측정하였다. 2001년 6월부터 9월까지의 산란율을 측정한 결과를 표 5에 나타내었다. 표 5에 나타난바와 같이 사료에 ALA를 첨가함으로써 산란율이 향상되는 것으로 나타났다.Scattering rate was measured by adding 10,000 concentrations of laying hens in a poultry farm in Gyeonggi-do. Table 5 shows the results of the scattering rates measured from June to September 2001. As shown in Table 5, the addition of ALA to the feed was shown to improve egg production.

ALA 급이에 의한 산란율 비교Comparison of scattering rate by ALA feeding 기간term 대조구Control ALA 0.1 ppmALA 0.1 ppm ALA 1.0 ppmALA 1.0 ppm ALA 10 ppmALA 10 ppm 마리수Marisu 산란개수Scattering Count 마리수Marisu 산란개수Scattering Count 마리수Marisu 산란개수Scattering Count 마리수Marisu 산란개수Scattering Count 6월June 180180 138.5138.5 173173 137.6137.6 181181 146.5146.5 174174 144.7144.7 7월In July 172172 133.3133.3 165165 136.4136.4 160160 137.8137.8 164164 142.9142.9 8월August 165165 120.8120.8 162162 132.8132.8 150150 128.2128.2 160160 138.5138.5 9월September 165165 119.8119.8 160160 133.2133.2 152152 126.4126.4 154154 129.4129.4 평균Average 128.1128.1 135.2135.2 134.7134.7 138.9138.9

실시예 7 : 델타아미노레불린산의 급이에 의한 폐사율 비교Example 7 Comparison of Mortality by Feeding Deltaaminolevulinic Acid

경기도 양계장의 산란계 10,000수를 택하여 사료의 중량비로 0.1, 1.0 및 10 ppm의 ALA를 사료에 첨가하여 산란계의 폐사율을 측정하였다. 2001년 6월부터 9월까지의 산란계의 폐사율을 측정한 결과를 표 6에 나타내었다. 표 6에 나타난바와 같이 사료에 ALA를 첨가함으로써 산란계의 폐사율이 현저히 저하되는 것으로 나타났으며, 이는 ALA에 의한 산란계의 면역 증강효과 때문인 것으로 판단된다.The mortality of laying hens was measured by adding 10,000, 000, and 10 ppm of ALA to the feed at a weight ratio of feed. Table 6 shows the mortality rates of laying hens from June to September 2001. As shown in Table 6, the mortality of laying hens was significantly reduced by adding ALA to the feed, which may be due to the immune enhancing effect of laying hens.

ALA 급이에 의한 폐사율 비교Mortality comparison by ALA feeding 기간term 대조구Control ALA 첨가구ALA addition port 0.1 ppm0.1 ppm 1.0 ppm1.0 ppm 10 ppm10 ppm 6월June 0.490.49 0.470.47 0.410.41 0.410.41 7월In July 0.470.47 0.420.42 0.380.38 0.360.36 8월August 0.720.72 0.460.46 0.430.43 0.400.40 9월September 0.710.71 0.610.61 0.520.52 0.480.48 평균Average 0.600.60 0.490.49 0.430.43 0.410.41

실시예 8 : 델타아미노레불린산의 급이에 의한 난의 중량 비교Example 8 Comparison of Weight of Eggs by Feeding Deltaaminolevulinic Acid

산란계 10,000수에 대하여 사료의 중량비로 1.0 ppm의 ALA를 사료에 첨가하여 산란계를 사육하면서 50개의 난을 무작위로 택하여 난의 중량을 측정하여 평균치로 환산하였다. 2001년 6월부터 9월까지의 란의 중량을 측정한 결과를 표 7에 나타내었다. 표 7에 나타난바와 같이 사료에 ALA를 첨가함으로써 난의 중량은 4.8-6.7% 가량 증가하였다.Amount of 1.0 ppm of ALA was added to the feed with respect to 10,000 laying hens, and 50 eggs were randomly selected while laying the hens. Table 7 shows the results of measuring the weight of the columns from June to September 2001. As shown in Table 7, the weight of eggs increased by 4.8-6.7% by adding ALA to the feed.

ALA 급여에 의한 난의 중량 비교Weight comparison of eggs by ALA salary 기간term 대조구Control 1.0 ppm ALA 첨가구1.0 ppm ALA addition 증가율(%)% Increase 마리수Marisu 난중(g)Egg weight (g) 마리수Marisu 난중(g)Egg weight (g) 6월June 181181 8383 181181 8989 6.76.7 7월In July 172172 7979 160160 8383 4.84.8 8월August 165165 7474 150150 7878 5.15.1 9월September 165165 7474 152152 7878 5.15.1 평균Average 7878 8282 5.45.4

실시예 9 : 델타아미노레불린산의 급이에 의한 계란의 품질 비교Example 9 Comparison of Egg Quality by Feeding Deltaaminolevulinic Acid

산란계 10,000수에 대하여 사료의 중량비로 1.0 ppm의 ALA를 사료에 첨가하여 산란계를 사육하면서 10개의 난을 무작위로 택하여 난의 품질을 측정하여 평균치로 환산하였다. 2001년 6월부터 9월까지의 란의 품질을 측정한 결과를 표 8에 나타내었다. 표 8에 나타난바와 같이 사료에 ALA를 첨가함으로써 난의 판란율은 현저히 감소하였으며, 이는 운송 또는 저장중 계란의 파란을 억제함으로써 상품성을 향상시키는 결과로 해석될 수 있다.1.0 ppm of ALA was added to the feed at a weight ratio of 10,000 laying hens, and ten eggs were randomly selected while raising the laying hens. Table 8 shows the results of measuring the quality of the eggs from June to September 2001. As shown in Table 8, the addition of ALA to feed reduced egg yield significantly, which could be interpreted as a result of improving the commerciality by suppressing the egg blue during transportation or storage.

ALA 급여에 의한 계란의 품질 비교Comparison of Egg Quality by ALA Salary 기간term 대조구Control 1.0 ppm ALA 첨가구1.0 ppm ALA addition 파란율(%)Blue ratio (%) 호프 단위(Hough unit)Hough unit 파란율(%)Blue ratio (%) 호프 단위(Hough unit)Hough unit 1주1 week 2.22.2 61.161.1 1.71.7 66.666.6 2주2 weeks 2.32.3 60.360.3 1.61.6 63.763.7 3주3 weeks 2.52.5 61.261.2 1.61.6 67.567.5 4주4 Weeks 2.52.5 62.462.4 1.51.5 70.270.2 평균Average 2.62.6 61.361.3 1.61.6 67.067.0

실시예 10 : 델타아미노레불린산의 급이에 의한 젖소의 유량 변화Example 10 Changes in Milk Flow Rate due to Feeding Deltaaminolevulinic Acid

젖소 사료의 중량비로 0.1, 1.0 및 10 ppm의 농도로 사료에 첨가하여 사육한 뒤 유량을 측정하였다. 도 2는 사료에 대하여 10 ppm의 ALA를, 도 3은 사료에 대하여 1.0 ppm의 ALA를 그리고 도 3은 사료에 대하여 0.1 ppm의 ALA를 첨가하여 4주 동안 사육한 결과를 나타낸다.The flow rate was measured after the feed was added to the feed at a concentration of 0.1, 1.0 and 10 ppm by weight of cows feed. FIG. 2 shows the results of four weeks of breeding with 10 ppm ALA for feed, 1.0 ppm ALA for feed and 0.1 ppm ALA for feed.

실시예 11 : 델타아미노레불린산의 급이에 의한 우유중 체세포 변화Example 11 Changes of Somatic Cells in Milk by Feeding Deltaaminolevulinic Acid

젖소 사료의 중량비로 0.1, 1.0 및 10 ppm의 농도로 사료에 첨가하여 사육한 뒤 우유중의 체세포수를 측정하였다. 도 5는 사료에 대하여 10 ppm의 ALA를, 도 6은 사료에 대하여 1.0 ppm의 ALA를 그리고 도 7은 사료에 대하여 0.1 ppm의 ALA를 첨가하여 4주 동안 사육한 결과를 나타낸다.The somatic cell count in milk was measured after adding to the feed at a concentration of 0.1, 1.0 and 10 ppm by weight of cow's feed. FIG. 5 shows the results of four weeks of breeding by adding 10 ppm ALA for feed, 1.0 ppm ALA for feed, and 0.1 ppm ALA for feed.

이상, 상기 실시예를 통하여 설명한 바와 같이 본 발명의 델타아미노레불린산을 함유하는 가축사료 첨가제는 가축들의 신진대사를 향상시키고 자가 면역력 및 항스트레스 효과를 증진시킴으로써 젖소의 사료효율을 높이고 유량을 증대시키며 우유중의 체세포를 감소시켜 우유의 등급을 향상시키고, 산란계의 생존율을 향상시키고 각종 질병에 대해 자가 면역력을 극대화하여 산란계의 생산성을 높일뿐만 아니라 이유자돈의 일당증체량과 사료효율을 증대시켜 혈액중의 철분, 헤모글로빈, 적혈구 및 백혈구의 수치가 증가하고 이유자돈에서 높은 발생률을 선보이는 병원성 대장균에 의한 설사증을 효과적으로 예방하고 치료할 수 있는 효과가 있으므로 축산업 및 사료산업상 매우 유용한 발명인 것이다.As described above, the animal feed additive containing deltaaminolevulinic acid of the present invention improves the metabolism of livestock and enhances autoimmunity and antistress effect, thereby increasing the feed efficiency of cows and increasing the flow rate. It improves the grade of milk by reducing somatic cells in milk, improves the survival rate of laying hens, maximizes autoimmunity against various diseases, not only increases productivity of laying hens, but also increases daily weight and feed efficiency of weaning piglets. Since iron, hemoglobin, erythrocytes and leukocytes are increased and effective in preventing and treating diarrhea caused by Escherichia coli, which shows a high incidence in weaning pigs, it is a very useful invention for livestock and feed industry.

Claims (2)

델타아미노레불린산을 전체 사료 100에 대하여 0.1 내지 10 ppm(w/w) 함유함을 특징으로 하는 가축사료 첨가제.Animal feed additive, characterized in that it contains 0.1 to 10 ppm (w / w) of deltaaminolevulinic acid based on 100 of the total feed. 제 1항에 있어서, 상기 델타아미노레불린산은 분말, 액상 또는 델타아미노레불린산이 함유된 발효산물 중의 어느 한 형태임을 특징으로 하는 가축사료 첨가제.The animal feed additive according to claim 1, wherein the deltaaminolevulinic acid is in the form of powder, liquid or fermentation product containing deltaaminolevulinic acid.
KR10-2002-0034350A 2002-06-19 2002-06-19 A livestock feed additive comprising δ-aminolevulinic acid for enhancing viability of livestock KR100459918B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0034350A KR100459918B1 (en) 2002-06-19 2002-06-19 A livestock feed additive comprising δ-aminolevulinic acid for enhancing viability of livestock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0034350A KR100459918B1 (en) 2002-06-19 2002-06-19 A livestock feed additive comprising δ-aminolevulinic acid for enhancing viability of livestock

Publications (2)

Publication Number Publication Date
KR20030097164A true KR20030097164A (en) 2003-12-31
KR100459918B1 KR100459918B1 (en) 2004-12-03

Family

ID=32387729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0034350A KR100459918B1 (en) 2002-06-19 2002-06-19 A livestock feed additive comprising δ-aminolevulinic acid for enhancing viability of livestock

Country Status (1)

Country Link
KR (1) KR100459918B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259837A (en) * 2006-03-30 2007-10-11 Ehime Prefecture Egg shell quality-improving agent
EP1785132A4 (en) * 2004-09-02 2013-02-13 Cosmo Oil Co Ltd AGENTS FOR IMPROVING CONSTITUTIONAL FUNCTIONS
KR101234611B1 (en) * 2009-01-13 2013-02-19 (주)세와비전 Eco-friendly composite feed additives for livestock and feed including the same
JP2020130001A (en) * 2019-02-15 2020-08-31 ネオファーマジャパン株式会社 Protein content enhancer in milk of lactating cows
CN112075546A (en) * 2020-09-28 2020-12-15 北京挑战农业科技有限公司 Feed additive for improving oxygen-gaining capability of poultry and application thereof
CN116549429A (en) * 2023-07-06 2023-08-08 北京挑战生物技术有限公司 Application of 5-aminolevulinic acid in preparation of products for preventing and treating porcine reproductive and respiratory syndrome
CN118947816A (en) * 2024-10-16 2024-11-15 北京挑战生物技术有限公司 Application of 5-aminolevulinic acid in preparing products for preventing and treating porcine epidemic diarrhea

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123944B1 (en) * 2008-10-09 2012-03-23 주식회사 이지바이오 시스템 Stock feed composition containing blend of 5-aminolevulinic acid and fermented kitosan as active ingredient
KR102052134B1 (en) 2017-05-18 2020-01-08 고려대학교 산학협력단 Recombinant Microorganism Having Enhanced Productivity of Heme, Coproporphyrin III and Uroporphyrin III and Method of Producing Heme, Coproporphyrin III and Uroporphyrin III Using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079262A (en) * 1989-07-28 1992-01-07 Queen's University At Kingston Method of detection and treatment of malignant and non-malignant lesions utilizing 5-aminolevulinic acid
US5368841A (en) * 1993-02-11 1994-11-29 The General Hospital Corporation Photodynamic therapy for the destruction of the synovium in the treatment of rheumatoid arthritis and the inflammatory arthritides
DE4320871C2 (en) * 1993-06-24 1995-05-04 Beiersdorf Ag Cosmetic and dermatological preparations containing delta-aminolevulinic acid
KR100365151B1 (en) * 2000-05-08 2003-02-11 김형락 Novel use of delta-aminolevulinic acid for the prevention and treatment of infection by pathogenic microorganism

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785132A4 (en) * 2004-09-02 2013-02-13 Cosmo Oil Co Ltd AGENTS FOR IMPROVING CONSTITUTIONAL FUNCTIONS
US8790712B2 (en) * 2004-09-02 2014-07-29 Cosmo Oil Co., Ltd. Constitutional function-improving agents
NO336392B1 (en) * 2004-09-02 2015-08-10 Cosmo Oil Co Ltd Means to improve immunological function
JP2007259837A (en) * 2006-03-30 2007-10-11 Ehime Prefecture Egg shell quality-improving agent
KR101234611B1 (en) * 2009-01-13 2013-02-19 (주)세와비전 Eco-friendly composite feed additives for livestock and feed including the same
JP2020130001A (en) * 2019-02-15 2020-08-31 ネオファーマジャパン株式会社 Protein content enhancer in milk of lactating cows
CN112075546A (en) * 2020-09-28 2020-12-15 北京挑战农业科技有限公司 Feed additive for improving oxygen-gaining capability of poultry and application thereof
CN116549429A (en) * 2023-07-06 2023-08-08 北京挑战生物技术有限公司 Application of 5-aminolevulinic acid in preparation of products for preventing and treating porcine reproductive and respiratory syndrome
CN116549429B (en) * 2023-07-06 2023-09-15 北京挑战生物技术有限公司 Application of 5-aminolevulinic acid in preparation of products for preventing and treating porcine reproductive and respiratory syndrome
CN118947816A (en) * 2024-10-16 2024-11-15 北京挑战生物技术有限公司 Application of 5-aminolevulinic acid in preparing products for preventing and treating porcine epidemic diarrhea

Also Published As

Publication number Publication date
KR100459918B1 (en) 2004-12-03

Similar Documents

Publication Publication Date Title
McDowell Recent advances in minerals and vitamins on nutrition of lactating cows
Kegley et al. Bill E. Kunkle interdisciplinary beef symposium: impact of mineral and vitamin status on beef cattle immune function and health
Pechová et al. Zinc supplementation and somatic cell count in milk of dairy cows
CA2274291C (en) Carnitine-supplemented diets for gestating and lactating swine
KR100459918B1 (en) A livestock feed additive comprising δ-aminolevulinic acid for enhancing viability of livestock
Iegorov et al. Probiotic feed additives in fattening of agricultural animals
Masek et al. The influence of live yeast cells (Saccharomyces cerevisiae) on the performance of grazing dairy sheep in late lactation
EP0063490B1 (en) Lactation improvement method
Egeli et al. Evaluation of the efficacy of perorally administered glutamic acid‐chelated iron and iron‐dextran injected subcutaneously in duroc and norwegian landrace piglets
Zier et al. Use of pet food-grade poultry by-product meal as an alternate protein source in weanling pig diets
JPH11514205A (en) Feed or drinking water additives to improve stress resistance and immunity of useful animals
Mikulec et al. Influence of live yeast cells (Saccharomyces cerevisiae) supplementation to the diet of fattening lambs on growth performance and rumen bacterial number
Hadjipanayiotou et al. Feeding dairy ewes and goats and growing lambs and kids mixtures of protein supplements
Mordenti et al. The European perspective on organic chromium in animal nutrition.
Yastrebova et al. Expediency of" FITOS" BAA Nutritional Intervention in the Diet of Laying Hens
ES2396052T3 (en) Improvement of the reproductive function in mammals
Amarakoon Regulation of oxidative stress in weaned piglets challenged with Escherichia coli
Eskandary et al. The effect of different feeding times of microencapsulated sodium butyrate in whole milk and starter feed on growth and health of Holstein dairy calves
Burke et al. The potential of sulla in pasture-based systems
JPS60172259A (en) Growth promoting feed additive and use thereof in growing domestic animal
CN108719184A (en) A kind of method of meat goat growth accelerator rumen bypass supplementary feeding
Kwon et al. PSIV-15 Effects of dietary supplementation of carbohydrase on growth performance and health status of growing-finishing pigs
Hafez et al. Effect of yeast culture on growth performance and carcass characteristics of Damascus kids
RU2158517C1 (en) Physiologically active agent for farm animals and poultry, method of preparation thereof, feed additive, and method of feeding animals and poultry
JPH10165109A (en) Feed composition and feed

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20020619

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20020817

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20020619

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20040723

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20041030

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20041124

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20041125

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20071126

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20081124

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20091125

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20100924

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20111222

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20121024

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20121024

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20131025

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20131025

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20141117

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20141117

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20150904

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20150904

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20160921

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20180910

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20180910

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20200910

Start annual number: 17

End annual number: 17

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20220905