KR20030034427A - Electrode, lithium battery adopting the same and method for manufacturing the same - Google Patents
Electrode, lithium battery adopting the same and method for manufacturing the same Download PDFInfo
- Publication number
- KR20030034427A KR20030034427A KR1020010065362A KR20010065362A KR20030034427A KR 20030034427 A KR20030034427 A KR 20030034427A KR 1020010065362 A KR1020010065362 A KR 1020010065362A KR 20010065362 A KR20010065362 A KR 20010065362A KR 20030034427 A KR20030034427 A KR 20030034427A
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- binder
- electrode plate
- lithium battery
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 31
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 9
- 239000011230 binding agent Substances 0.000 claims abstract description 51
- 239000011149 active material Substances 0.000 claims abstract description 27
- 239000002033 PVDF binder Substances 0.000 claims abstract description 19
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 15
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229920001577 copolymer Polymers 0.000 claims abstract description 5
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000002904 solvent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 9
- 239000007773 negative electrode material Substances 0.000 claims description 7
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910014689 LiMnO Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 239000006182 cathode active material Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 claims description 4
- 229910013290 LiNiO 2 Inorganic materials 0.000 claims description 4
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 4
- 239000006258 conductive agent Substances 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 229910021450 lithium metal oxide Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000002905 metal composite material Substances 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 3
- 230000008025 crystallization Effects 0.000 claims description 3
- 239000007774 positive electrode material Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 abstract description 7
- 230000008961 swelling Effects 0.000 abstract description 7
- 239000008151 electrolyte solution Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006257 cathode slurry Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
본 발명은 극판, 이를 채용한 리튬전지, 및 상기 극판 제조 방법에 관한 것으로, 보다 상세하게는 결정화도가 높은 결합제를 포함하여 전해액에 의한 스웰링(swelling) 현상이 억제된 극판, 이를 채용한 리튬 전지, 및 상기 극판 제조 방법에 관한 것이다.The present invention relates to a cathode plate, a lithium battery employing the same, and a method for manufacturing the electrode plate, and more particularly, a cathode plate containing a binder having a high degree of crystallinity, the swelling phenomenon of the electrolyte is suppressed, a lithium battery employing the same , And the electrode plate manufacturing method.
최근, 전자기기 특히 휴대용 전자기의 발달과 더불어, 이 전자기기의 구동전원으로 사용되는 이차전지도 눈부시게 발전되고 있다. 그중에서도 리튬이차전지는 높은 작동전압, 장수명, 고에너지 밀도 등과 같은 우수한 특성으로 말마암아 가장 주목받고 있는 전지 중의 하나이다.In recent years, with the development of electronic devices, in particular, portable electronic devices, secondary batteries used as driving power sources for these electronic devices have been remarkably developed. Among them, lithium secondary batteries are one of the most attracting attention due to their excellent characteristics such as high operating voltage, long life, high energy density and the like.
리튬이차전지에서 캐소드 활물질로는 리튬코발트 산화물(LiCoO2), 리튬니켈산화물(LiNiO2), 리튬망간산화물(LiMnO4) 등의 리튬복합산화물을 사용하고 있고, 애노드 활물질로는 리튬 금속이나 그 합금, 탄소재료 등이 사용되고 있다.Lithium secondary batteries use lithium composite oxides such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMnO 4 ) as cathode active materials, and lithium metal or alloys thereof as anode active materials. And carbon materials are used.
이들 활물질은 도전제 및 결합제와 혼합하여 전극 활물질용 조성물을 제조한 다음, 이를 집전체에 충진함으로써 전극을 제조하는데, 이때 상기 도전제는 활물질의 전기전도도를 보강해 주는 역할을 하며 결합제는 활물질간의 결착력을 증가시키고 정형한 전극의 치수안정성을 유지하는 역할을 한다.These active materials are mixed with a conductive agent and a binder to prepare a composition for an electrode active material, and then filled into a current collector to prepare an electrode, wherein the conductive agent serves to reinforce the electrical conductivity of the active material, and the binder is formed between the active materials. It increases the binding force and serves to maintain the dimensional stability of the shaped electrode.
이러한 결합제로 종래에는 분자량이 10만 정도의 폴리비닐리덴 플루오라이드를 사용하였다. 일반적으로 결합제의 분자량이 작을수록 많은 량의 결합제가 필요하게 된다. 그런데 애노드의 경우, 활물질간의 결착력을 양호한 형태로 유지하기 위해서 결합제는 약 8∼10% 정도를 사용해야 하므로 이로 인하여 활물질의 상대적인 함량이 줄어 들게 되어 고용량화 전지 개발에 문제점이 많다. 따라서 전지의 고용량화를 위해서는 결합제의 함량을 낮추어야 하고 이를 위해서는 고분자량의 결합제를 사용하는 것이 불가피하다.As such a binder, polyvinylidene fluoride having a molecular weight of about 100,000 has been conventionally used. In general, the smaller the molecular weight of the binder, the higher the amount of binder required. However, in the case of the anode, in order to maintain the binding force between the active materials in a good form, the binder should be used about 8 to 10% because of this the relative content of the active material is reduced, there are many problems in the development of high capacity battery. Therefore, in order to increase the capacity of the battery, it is necessary to lower the content of the binder and for this purpose, it is inevitable to use a high molecular weight binder.
한편, 결합제의 중요한 특성 중의 하나는 극판건조후의 결합제의 결정화도로서 이 결정화도는 극판제조시 코팅/압착/진공건조 등의 공정을 거치면서 변화하게 된다. 그런데 전극 내에 함유된 결합제의 결정화도가 낮아지면 전해액에 의해 스웰링되어 전해액 함침후 전극판과 세퍼레이터간의 박리 현상 등의 문제점이 발생된다.On the other hand, one of the important characteristics of the binder is the degree of crystallization of the binder after electrode plate drying, the degree of crystallinity is changed during the process of coating, pressing, vacuum drying, etc. during the manufacturing of the electrode plate. However, when the degree of crystallinity of the binder contained in the electrode is lowered, it is swelled by the electrolyte, and problems such as peeling phenomenon between the electrode plate and the separator after impregnation of the electrolyte are generated.
본 발명이 이루고자 하는 기술적 과제는 상술한 문제점을 해결하기 위하여 결정화도가 높은 결합제를 포함하는 극판을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide an electrode plate containing a high crystallinity binder in order to solve the above problems.
본 발명이 이루고자 하는 다른 기술적 과제는 상기 극판을 채용하여 전해액에 의한 스웰링(swelling) 현상이 억제된 리튬 전지를 제공하는 것이다,Another technical problem to be achieved by the present invention is to provide a lithium battery in which the swelling phenomenon by the electrolytic solution is suppressed by employing the electrode plate.
본 발명이 이루고자 하는 또 다른 기술적 과제는 상기 극판의 제조 방법을 제공하는 것이다.Another technical problem to be achieved by the present invention is to provide a method of manufacturing the electrode plate.
상기 기술적 과제를 달성하기 위하여 본 발명은,The present invention to achieve the above technical problem,
활물질 및 결합제를 함유하는 활물질 조성물을 포함하는 극판에 있어서,In the electrode plate containing an active material composition containing an active material and a binder,
상기 결합제는 폴리비닐리덴플루오라이드(PVDF), PVDF와 스티렌-부타디엔 러버(SBR)의 혼합물, 및 비닐레덴 플루오라이드와 헥사플루오로 프로필렌의 공중합체로 이루어진 군에서 선택된 하나 이상이고, 상기 결합제의 결정화도가 40% 내지 60%인 것을 특징으로 하는 극판을 제공한다.The binder is at least one selected from the group consisting of polyvinylidene fluoride (PVDF), a mixture of PVDF and styrene-butadiene rubber (SBR), and a copolymer of vinylidene fluoride and hexafluoro propylene, and the degree of crystallinity of the binder It provides a pole plate, characterized in that 40% to 60%.
상기 다른 기술적 과제를 달성하기 위하여 본 발명은,The present invention to achieve the above other technical problem,
양극활물질을 포함하는 양극, 음극활물질을 포함하는 음극, 및 이들 사이에 개재된 세퍼레이터를 포함하는 리튬 전지에 있어서,In a lithium battery comprising a positive electrode including a positive electrode active material, a negative electrode containing a negative electrode active material, and a separator interposed therebetween,
PVDF, PVDF와 SBR의 혼합물, 및 비닐레덴 플루오라이드와 헥사플루오로 프로필렌의 공중합체로 이루어진 군에서 선택된 하나 이상의 결합제를 더 포함하고, 상기 결합제의 결정화도가 40% 내지 60%인 것을 특징으로 하는 극판을 채용한 리튬전지를 제공한다.And further comprising at least one binder selected from the group consisting of PVDF, a mixture of PVDF and SBR, and a copolymer of vinylidene fluoride and hexafluoro propylene, wherein the binder has a crystallinity of 40% to 60%. It provides a lithium battery employing.
본 발명에 따른 극판 및 리튬 전지에 있어서, 상기 결합제 함량은 음극 극판 100 중량비 대비 4 내지 15 중량부인 것이 바람직하다.In the electrode plate and lithium battery according to the present invention, the binder content is preferably 4 to 15 parts by weight based on 100 parts by weight of the negative electrode plate.
본 발명에 따른 극판 및 리튬 전지에 있어서, 상기 활물질은 양극활물질로서 LiCoO2, LiMnO2, LiMn2O4, LiNiO2및 LiNiMxO2로 이루어진 군에서 선택된 어느 하나이상의 리튬 금속 산화물 또는 리튬 금속 복합 산화물을 포함하는 것이 바람직하다: 여기서 M은 Mn, Co, Al, Mg을, x의 범위는 0.05 ∼ 0.5를 나타낸다.In the electrode plate and lithium battery according to the present invention, the active material is at least one lithium metal oxide or lithium metal composite selected from the group consisting of LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 and LiNiM x O 2 as a cathode active material It is preferable to include an oxide: M represents Mn, Co, Al, Mg, and the range of x represents 0.05-0.5.
본 발명에 따른 극판 및 리튬 전지에 있어서, 상기 활물질은 음극활물질로서 결정질 또는 비정질의 카본 또는 그래파이트를 포함하는 것이 바람직하다.In the electrode plate and lithium battery according to the present invention, it is preferable that the active material contains crystalline or amorphous carbon or graphite as a negative electrode active material.
상기 또 다른 기술적 과제를 달성하기 위하여 본 발명은,The present invention to achieve the above another technical problem,
(a) 활물질, 결합제, 도전제, 및 용매를 사용하여 활물질 조성물을 제조하는 단계;(a) preparing an active material composition using an active material, a binder, a conductive agent, and a solvent;
(b) 상기 활물질 조성물을 집전체상에 코팅하여 건조한 후, 압연후, 135℃ 내지 145℃에서 1시간 내지 6 시간 동안 열처리하여 결정화도를 40% 내지 60%로 조절하는 단계를 포함하는 리튬전지용 극판 제조방법을 제공한다.(b) after coating and coating the active material composition on a current collector, followed by rolling, heat treatment at 135 ° C. to 145 ° C. for 1 to 6 hours to adjust the crystallinity to 40% to 60%. It provides a manufacturing method.
이와 같이 극판 내의 결합제의 결정화도를 40% 이상으로 조절함으로써 극판의 전해액에 의한 스웰링 현상을 억제시킬 수 있다.Thus, by adjusting the crystallinity degree of the binder in a pole plate to 40% or more, the swelling phenomenon by the electrolyte solution of a pole plate can be suppressed.
이하 본 발명의 극판, 이를 채용한 리튬 전지, 및 상기 극판 제조방법을 보다 상세히 설명한다.Hereinafter, the electrode plate of the present invention, a lithium battery employing the same, and the manufacturing method of the electrode plate will be described in more detail.
통상적인 리튬 전지에 사용되는 결합제는 무정형의 부분과 결정형의 부분이 혼재되어 존재한다. 일반적으로 결합제의 무정형 부분은 전해액에 의해 스웰링되어 전해액을 함습하는 특성을 갖는다. 그러나 이러한 무정형 부분이 많아지게 되면 극판내 활물질간의 접착력이 열화되어, 궁극적으로 활물질간 전기적 저항을 증가시키는 원인으로 작용하게 된다. 반면 결정형 부분이 많아지게 되면, 전해액의 함습성은 떨어지지만 스웰링 억제특성이 향상되어 극판의 변형 등을 최소화 시키게 되어전지성능을 향상시키게 된다. 따라서, 본 발명은 결정화도가 40 내지 60% 정도로 높은 결합제를 포함하는 리튬 전지용 극판을 제공한다.Binders used in conventional lithium batteries exist in a mixture of amorphous and crystalline portions. Generally, the amorphous portion of the binder has the property of being swelled by the electrolyte solution to moisten the electrolyte solution. However, when the amorphous portion increases, the adhesion between the active materials in the electrode plate is degraded, and ultimately, the electrical resistance between the active materials is increased. It causes the increase. On the other hand, when the crystalline portion is increased, the moisture content of the electrolyte is reduced, but the swelling suppression characteristics are improved to minimize deformation of the electrode plate, thereby improving battery performance. Accordingly, the present invention provides a lithium battery electrode plate containing a binder with a high degree of crystallinity of about 40 to 60%.
상기 결합제 함량은 음극 극판 100 중량부 대비 4 내지 15 중량부인 것이 바람직하다. 상기 함량이 4 중량비보다 적으면 활물질이 탈락되는 현상이 발생하여 바람직하지 못하고, 15 중량부보다 많으면 고용량화가 어려워 바람직하지 못하다.The binder content is preferably 4 to 15 parts by weight based on 100 parts by weight of the negative electrode plate. When the content is less than 4 parts by weight, the phenomenon that the active material is dropped occurs, which is not preferable. If the content is more than 15 parts by weight, high capacity is difficult, which is not preferable.
상기 활물질은 양극활물질로서 설퍼, LiCoO2, LiMnO2, LiMn2O4, LiNiO2및 LiNiMxO2로 이루어진 군에서 선택된 어느 하나 이상의 리튬 금속 산화물 또는 리튬 금속 복합 산화물을 포함할 수 있는데, 여기서 M은 Mn, Co, Al, Mg를 , x의 범위는 0.05∼0.5를 나타낸다. 상기 활물질은 음극활물질로서 결정질 또는 비정질의 카본 또는 그래파이트를 포함할 수 있다.The active material may include any one or more lithium metal oxides or lithium metal composite oxides selected from the group consisting of sulfur, LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2, and LiNiM × O 2 as a cathode active material. Represents Mn, Co, Al, Mg, and the range of x represents 0.05-0.5. The active material may include crystalline or amorphous carbon or graphite as a negative electrode active material.
이어서, 본 발명에 따른 결합제의 결정화도가 높은 극판을 제조하는 방법에 대하여 살펴본다. 전극의 결정화도는 코팅 후 열처리할 때의 열이력에 따라서 변화된다. 우선, 집전체상에 코팅된 활물질 조성물에서 용매 성분을 제거하기 위하여 용매의 비등점 이상으로 가열하여 용매를 증발시킨다. 이 비등점은 결합제의 유리 전이 온도보다 높다. 따라서 용매를 증발시킨 후, 결합제의 유리 전이 온도 부근까지 냉각시켜 결합제가 결정을 형성하도록 일정 시간 방치한다. 이러한 공정은 코팅시 일괄적으로 진행된다. PVDF의 결정화온도는 결합제 종류에 따라 다르지만 일반적으로 135℃ ~ 145℃부근에 존재하므로 코팅 건조로 온도 프로파일을 조절하여 초기엔 용매가 증발하는 조건으로 설정하고 최종건조로 통과단계에서 결정화온도보다약간 낮은 온도로 건조분위기를 조절하여 결정화도를 증가시킬수 있다.Next, a method of manufacturing the electrode plate with high crystallinity of the binder according to the present invention will be described. The crystallinity of the electrode changes according to the thermal history of the heat treatment after coating. First, the solvent is evaporated by heating above the boiling point of the solvent in order to remove the solvent component from the active material composition coated on the current collector. This boiling point is higher than the glass transition temperature of the binder. Thus, after evaporating the solvent, it is cooled to near the glass transition temperature of the binder and allowed to stand for a period of time for the binder to form crystals. This process is carried out in batches during coating. The crystallization temperature of PVDF varies depending on the type of binder, but it is generally located near 135 ℃ ~ 145 ℃, so that the temperature profile is controlled by coating drying and the solvent is initially evaporated. The degree of crystallinity can be increased by controlling the drying atmosphere with temperature.
이러한 코팅 공정후 극판밀도를 향상시키기 위해서 압연을 실시한다. 압연공정은 공정진행시 인가되는 스트레스를 제거하기 위해서 열간압연을 실시한다. 이때 생성된 결합제의 결정이 인가된 열에 의하여 감소되어 전반적으로 결정화도가 감소하게 된다.After this coating process, rolling is performed to improve the electrode plate density. The rolling process is hot rolling to remove the stress applied during the process. At this time, the crystal of the produced binder is reduced by the applied heat, thereby reducing the overall crystallinity.
따라서, 감소된 결정화도를 증가시키기 위해서는 별도로 진공건조 공정을 통해서 결정화도를 증가시킬수 있다. 이는 구체적으로 압연된 극판을 135 내지 145℃에서 1 내지 6시간 동안 열처리하여 결정화도를 조절한다. 고분자량 결합제의 경우 압착후 결정화도는 감소하고, 진공 건조후 결정화도는 상승한다. 따라서 상기 방법으로 전극을 제조하면 결합제의 결정화도가 40% 내지 60% 인 결합제를 채용하는 극판을 제조할 수 있다.Therefore, in order to increase the reduced crystallinity, it is possible to increase the crystallinity separately through a vacuum drying process. This is specifically heat treatment of the rolled electrode plate at 135 to 145 ℃ for 1 to 6 hours to control the crystallinity. In the case of a high molecular weight binder, the degree of crystallinity after compression decreases and the degree of crystallinity increases after vacuum drying. Therefore, when the electrode is manufactured by the above method, it is possible to produce an electrode plate employing a binder having a crystallinity of 40% to 60%.
마지막으로, 본 발명은 또한 결정화도가 40% 내지 60 %인 결합제를 포함하는 극판을 채용한 리튬전지를 제공한다. 상기 리튬 전지는 본 발명에 따라 제조된 극판을 이용하는 것을 제외하고는 통상적인 리튬 전지 제조 방법에 따라 제조 된다. 즉 본 발명에 따라 제조된 양극 극판과 음극 극판 사이에 세퍼레이터를 삽입하고 이를 와인딩하거나 스택킹하여 전극 구조체를 형성한 다음, 이를 전지 케이스에 넣고 전지를 조립한다.Finally, the present invention also provides a lithium battery employing an electrode plate comprising a binder having a crystallinity of 40% to 60%. The lithium battery is manufactured according to a conventional lithium battery manufacturing method except that the electrode plate manufactured according to the present invention is used. That is, a separator is inserted between the positive electrode plate and the negative electrode plate manufactured according to the present invention, and the electrode structure is formed by winding or stacking the separator.
이하 본 발명을 실시예를 통하여 보다 상세히 설명하되, 하기 실시예는 본 발명을 한정하지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples do not limit the present invention.
[실시예]EXAMPLE
음극활물질을 94 중량부, 결합제인 PVDF 6 중량부를, 용매인 N-메틸-2-피롤리돈 66 중량부에 분산시켜 음극 슬러리를 제조하였다.A negative electrode slurry was prepared by dispersing 94 parts by weight of the negative electrode active material and 6 parts by weight of PVDF as a binder and 66 parts by weight of N-methyl-2-pyrrolidone as a solvent.
이 슬러리를 두께 15 ㎛의구리 포일에 코팅하고, 145℃에서 3분 동안 상기 가열하여 용매를 증발시킨 다음, PVDF의 유리 전이 온도 부근, 즉 140℃까지 냉각시켰다. 이 온도에서 2 분간 방치하여 PVDF가 결정을 형성하게 한다음 결정화도를 측정하였다. 코팅후 압연하고 140℃에서 3시간동안 진공건조하였다.This slurry was coated on a copper foil having a thickness of 15 μm and heated at 145 ° C. for 3 minutes to evaporate the solvent and then cooled to near the glass transition temperature of PVDF, ie 140 ° C. It was left at this temperature for 2 minutes to allow PVDF to form crystals, and then the degree of crystallinity was measured. After coating it was rolled and vacuum dried at 140 ° C. for 3 hours.
실시예에 따라 제조된 결합제의 결정화도는 시차주사열량계(Differential Scanning Calorimetry, DSC)를 이용하여 측정된다. 음극 극판의 결정화도가 40% 이상의 경우 전해액에 의한 스웰링 현상이 억제되어 충전후 극판의 변형 및 불균일 충전 반응을 억제시킬 수 있고, 전해액 침지시에도 극판의 박리현상이 발생되지 않는다.The crystallinity of the binder prepared according to the Examples is measured using differential scanning calorimetry (DSC). When the degree of crystallinity of the negative electrode plate is 40% or more, the swelling phenomenon by the electrolyte solution is suppressed, so that deformation and non-uniform charging reaction of the electrode plate after filling can be suppressed, and even when the electrolyte solution is immersed, peeling of the electrode plate does not occur.
이어서, 양극활물질인 LiCoO296 중량부, 결합제인 PVDF 2 중량부를, 도전성 Carbon을 2 중량부, 용매인 N-메틸-2-피롤리돈 43 중량부에 분산시켜 양극 슬러리를 제조하였다.Subsequently, 96 parts by weight of LiCoO 2 as a cathode active material and 2 parts by weight of PVDF as a binder were dispersed in 2 parts by weight of conductive carbon and 43 parts by weight of N-methyl-2-pyrrolidone as a solvent to prepare a cathode slurry.
이 슬러리를 두께 10 ㎛의 알루미늄 포일에 코팅하고, 145℃에서 3분 동안가열하여 용매를 증발시킨 다음, PVDF의 유리 전이 온도 부근, 즉 140℃까지 냉각시켰다. 이 온도에서 2분간 방치하여 PVDF가 결정을 형성한 후 압연하였다.The slurry was coated on aluminum foil having a thickness of 10 μm, heated at 145 ° C. for 3 minutes to evaporate the solvent, and then cooled to near the glass transition temperature of PVDF, ie 140 ° C. It left for 2 minutes at this temperature, PVDF formed crystal, and rolled.
이와 같이 제조한 음극 극판과 양극 극판의 사이에 두께 20 ㎛의 폴리에틸렌 세퍼레이터(Cellgard사)을 배치하고, 이를 권취, 압축하여 원통형 캔에 삽입한 후, 유기전해액 2.9 g을 주입함으로써 리튬 2차 전지를 완성하였다.A lithium separator (Cellgard) having a thickness of 20 µm was disposed between the negative electrode plate and the positive electrode plate thus prepared, wound, compressed, and inserted into a cylindrical can, followed by injecting 2.9 g of an organic electrolyte solution to form a lithium secondary battery. Completed.
상술한 바와 같이 극판 내의 결합제의 결정화도를 40% 이상으로 조절함으로써 극판의 전해액에 의한 스웰링되는 현상을 억제시킬 수 있어서, 충전후 극판의 변형 및 불균일 충전반응을 억제시키고, 전반적으로 전지의 성능을 향상시킬 수 있으며, 전해액 침지시 애노드 극판의 박리 현상을 미연에 방지할 수 있다.As described above, by controlling the degree of crystallinity of the binder in the electrode plate to 40% or more, it is possible to suppress the swelling caused by the electrolyte of the electrode plate, thereby suppressing deformation and non-uniform charging reaction of the electrode plate after filling, and overall improving the performance of the battery. It is possible to improve, and it is possible to prevent the phenomenon of peeling of the anode electrode plate during electrolyte immersion.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010065362A KR20030034427A (en) | 2001-10-23 | 2001-10-23 | Electrode, lithium battery adopting the same and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010065362A KR20030034427A (en) | 2001-10-23 | 2001-10-23 | Electrode, lithium battery adopting the same and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030034427A true KR20030034427A (en) | 2003-05-09 |
Family
ID=29565939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010065362A Ceased KR20030034427A (en) | 2001-10-23 | 2001-10-23 | Electrode, lithium battery adopting the same and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030034427A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100495567B1 (en) * | 2002-08-14 | 2005-06-16 | 한국과학기술원 | Lithium/Sulfur Rechargeable Battery Comprising Electrode Composition Based on Vinylidene Fluoride Polymer as A Binder, and Preparation Method thereof |
WO2006062349A1 (en) * | 2004-12-07 | 2006-06-15 | Lg Chem, Ltd. | Surface-treated microporous membrane and electrochemical device prepared thereby |
WO2016053059A1 (en) * | 2014-10-02 | 2016-04-07 | 주식회사 엘지화학 | Positive electrode active material slurry comprising heterogeneous binders and positive electrode produced from same |
US11769901B2 (en) | 2019-07-03 | 2023-09-26 | Samsung Sdi Co., Ltd. | Separator for rechargeable battery, method of preparing the same and rechargeable lithium battery including the same |
WO2023204643A1 (en) * | 2022-04-20 | 2023-10-26 | 주식회사 엘지에너지솔루션 | Conductive material masterbatch and dry electrode prepared by using same |
US12294112B2 (en) | 2004-09-02 | 2025-05-06 | Lg Energy Solution, Ltd. | Organic/inorganic composite porous film and electrochemical device prepared thereby |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260370A (en) * | 1998-01-15 | 1999-09-24 | Alcatel Cit | Non-sintered nickel electrode |
JP2000123874A (en) * | 1998-10-16 | 2000-04-28 | Matsushita Electric Ind Co Ltd | Solid electrolyte molded body, electrode molded body and electrochemical element |
KR20010018563A (en) * | 1999-08-20 | 2001-03-05 | 김순택 | Composition comprising anode acitve material of lithium secondary battery and lithium secondary battery comprising anode manufactured using the same |
-
2001
- 2001-10-23 KR KR1020010065362A patent/KR20030034427A/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260370A (en) * | 1998-01-15 | 1999-09-24 | Alcatel Cit | Non-sintered nickel electrode |
JP2000123874A (en) * | 1998-10-16 | 2000-04-28 | Matsushita Electric Ind Co Ltd | Solid electrolyte molded body, electrode molded body and electrochemical element |
KR20010018563A (en) * | 1999-08-20 | 2001-03-05 | 김순택 | Composition comprising anode acitve material of lithium secondary battery and lithium secondary battery comprising anode manufactured using the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100495567B1 (en) * | 2002-08-14 | 2005-06-16 | 한국과학기술원 | Lithium/Sulfur Rechargeable Battery Comprising Electrode Composition Based on Vinylidene Fluoride Polymer as A Binder, and Preparation Method thereof |
US12294112B2 (en) | 2004-09-02 | 2025-05-06 | Lg Energy Solution, Ltd. | Organic/inorganic composite porous film and electrochemical device prepared thereby |
WO2006062349A1 (en) * | 2004-12-07 | 2006-06-15 | Lg Chem, Ltd. | Surface-treated microporous membrane and electrochemical device prepared thereby |
EP1834367A4 (en) * | 2004-12-07 | 2010-03-24 | Lg Chemical Ltd | Surface-treated microporous membrane and electrochemical device prepared thereby |
EP2544260A3 (en) * | 2004-12-07 | 2013-10-09 | LG Chemical Co. Ltd | Surface-treated microporous membrane and electrochemical device prepared thereby |
US8841031B2 (en) | 2004-12-07 | 2014-09-23 | Lg Chem, Ltd. | Surface-treated microporous membrane and electrochemical device prepared thereby |
WO2016053059A1 (en) * | 2014-10-02 | 2016-04-07 | 주식회사 엘지화학 | Positive electrode active material slurry comprising heterogeneous binders and positive electrode produced from same |
US10367200B2 (en) | 2014-10-02 | 2019-07-30 | Lg Chem, Ltd. | Positive electrode active material slurry including two types of binders and positive electrode prepared therefrom |
US11769901B2 (en) | 2019-07-03 | 2023-09-26 | Samsung Sdi Co., Ltd. | Separator for rechargeable battery, method of preparing the same and rechargeable lithium battery including the same |
WO2023204643A1 (en) * | 2022-04-20 | 2023-10-26 | 주식회사 엘지에너지솔루션 | Conductive material masterbatch and dry electrode prepared by using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1851814B1 (en) | Secondary battery of improved lithium ion mobility and cell capacity | |
KR100338032B1 (en) | Lithium-sulfur battery | |
US8585935B2 (en) | Composite for Li-ion cells and the preparation process thereof | |
EP3675248B1 (en) | Sulfur-carbon composite and lithium-sulfur battery including same | |
US20070072077A1 (en) | Lithium secondary battery, negative electrode therefor, and method of their manufacture | |
CN102449811A (en) | Lithium secondary battery having high energy density | |
KR20040013585A (en) | Positive electrode for lithium-sulfur battery, method of preparing same, and lithium-sulfur battery comprising same | |
JP2007042601A (en) | Carbon electrode, production method therefor and nonaqueous electrolyte secondary battery | |
CN114512718B (en) | Composite solid electrolyte, preparation method thereof and high-performance all-solid battery | |
WO2021179220A1 (en) | Anode pole piece, battery using same, and electronic device | |
JP2009266761A (en) | Nonaqueous electrolyte secondary battery and its manufacturing method | |
KR20220116144A (en) | Multifunctional Processed Particles for Secondary Batteries and Method for Manufacturing Same | |
JP2000011991A (en) | Organic electrolyte secondary battery | |
EP4131552B1 (en) | Electrolyte for lithium-sulfur battery and lithium-sulfur battery including same | |
US20220165999A1 (en) | Method of Producing Electrode for All-Solid-State Battery with Improved Adhesive Strength | |
JP2000285966A (en) | Lithium secondary battery and its manufacture | |
KR20030034427A (en) | Electrode, lithium battery adopting the same and method for manufacturing the same | |
KR20210023196A (en) | Three-dimensional porous-structured electrode and manufacturing method for the same | |
CN115528202B (en) | Composite current collector, preparation method thereof, electrode plate and battery | |
KR20230089021A (en) | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising the same | |
JP2012209023A (en) | Electrode group for electric battery and electric battery using the same | |
KR100432669B1 (en) | Negative active material for rechargeable lithium batteries and preparing for same | |
KR100398468B1 (en) | Sulfur positive electrode for lithium battery and it's fabrication method | |
US20230197966A1 (en) | Lithium-ion battery anode material and methods of making the same | |
US20230318020A1 (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20011023 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20030804 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20031118 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20030804 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |