KR20030021278A - Preparing method for soluble microemulsion polymer of poly(aniline-co-oanthranilic acid), the microemulsion polymer prepared thereby and steel or metal products having the same - Google Patents
Preparing method for soluble microemulsion polymer of poly(aniline-co-oanthranilic acid), the microemulsion polymer prepared thereby and steel or metal products having the same Download PDFInfo
- Publication number
- KR20030021278A KR20030021278A KR1020010054298A KR20010054298A KR20030021278A KR 20030021278 A KR20030021278 A KR 20030021278A KR 1020010054298 A KR1020010054298 A KR 1020010054298A KR 20010054298 A KR20010054298 A KR 20010054298A KR 20030021278 A KR20030021278 A KR 20030021278A
- Authority
- KR
- South Korea
- Prior art keywords
- acid
- aniline
- microemulsion
- anthranilic acid
- poly
- Prior art date
Links
- 239000004530 micro-emulsion Substances 0.000 title claims abstract description 40
- 229920000642 polymer Polymers 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 19
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 15
- 239000002253 acid Substances 0.000 title claims abstract description 15
- 239000010959 steel Substances 0.000 title claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 9
- 239000002184 metal Substances 0.000 title claims abstract description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims abstract description 92
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000003960 organic solvent Substances 0.000 claims abstract description 44
- 239000007800 oxidant agent Substances 0.000 claims abstract description 33
- 230000001590 oxidative effect Effects 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000004094 surface-active agent Substances 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 10
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 9
- 239000008096 xylene Substances 0.000 claims description 9
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- -1 FeCl 3 Chemical compound 0.000 claims description 6
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 claims description 5
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical group CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 claims description 5
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 claims description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 4
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 claims description 2
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 claims description 2
- WNKQDGLSQUASME-UHFFFAOYSA-N 4-sulfophthalic acid Chemical compound OC(=O)C1=CC=C(S(O)(=O)=O)C=C1C(O)=O WNKQDGLSQUASME-UHFFFAOYSA-N 0.000 claims description 2
- 229910020366 ClO 4 Inorganic materials 0.000 claims description 2
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 claims description 2
- 229940092714 benzenesulfonic acid Drugs 0.000 claims description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 2
- DENRZWYUOJLTMF-UHFFFAOYSA-N diethyl sulfate Chemical compound CCOS(=O)(=O)OCC DENRZWYUOJLTMF-UHFFFAOYSA-N 0.000 claims description 2
- 229940008406 diethyl sulfate Drugs 0.000 claims description 2
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 claims description 2
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- TYRGSDXYMNTMML-UHFFFAOYSA-N propyl hydrogen sulfate Chemical compound CCCOS(O)(=O)=O TYRGSDXYMNTMML-UHFFFAOYSA-N 0.000 claims 1
- 229920001940 conductive polymer Polymers 0.000 abstract description 15
- 238000000576 coating method Methods 0.000 abstract description 13
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 38
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 12
- 229920000767 polyaniline Polymers 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 239000012046 mixed solvent Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000000693 micelle Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- RJFAYQIBOAGBLC-BYPYZUCNSA-N Selenium-L-methionine Chemical compound C[Se]CC[C@H](N)C(O)=O RJFAYQIBOAGBLC-BYPYZUCNSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000015250 liver sausages Nutrition 0.000 description 1
- 238000012703 microemulsion polymerization Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
- C08G73/026—Wholly aromatic polyamines
- C08G73/0266—Polyanilines or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/02—Polyamines
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
본 발명은 가용성 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체 제조방법, 이로부터 제조된 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체 및 이러한 마이크로에멀션 중합체가 적용된 철강 또는 금속 제품에 관한 것으로,The present invention relates to a process for preparing a soluble poly (aniline-co-anthranic acid) microemulsion polymer, to a poly (aniline-co-anthranilic acid) microemulsion polymer prepared therefrom and to a steel or metal product to which such microemulsion polymer is applied.
[화학식 1][Formula 1]
의 안트라닐산과 아닐린을 1:99-99:1의 몰중량%로 혼합하고 이것을 -10~80℃에서 유기용매에 1-10중량%로 용해시키는 단계;Mixing anthranilic acid with aniline in a molar weight ratio of 1: 99-99: 1 and dissolving it in 1-10 wt% in an organic solvent at -10 to 80 ° C;
상기 혼합물을 계면활성제를 이용하여 미셀이 형성된 마이크로 에멀션 용액으로 제조하는 단계; 및Preparing the mixture into a micelle-formed microemulsion solution using a surfactant; And
산화제를 상기 마이크로 에멀션 용액내의 안트라닐산과 아닐린의 혼합물대 상기 산화제가 1:5~5:1의 몰비가 되도록 -10~50℃에서 0.01~10ml/min의 유속으로 점진적으로 첨가하는 단계;Gradually adding an oxidant at a flow rate of 0.01 to 10 ml / min at -10 to 50 ° C. such that a mixture of anthranilic acid and aniline in the microemulsion solution to the molar ratio of 1: 5 to 5: 1;
로 이루어진 가용성 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체 제조방법이 제공된다.There is provided a method for preparing a soluble poly (aniline-co-antranylic acid) micro emulsion polymer.
또한, 상기 방법에 의해 제조된 가용성 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체 및 이러한 중합체가 적용된 철강 또는 금속 제품이 제공된다.There is also provided a soluble poly (aniline-co-anthranilic acid) micro emulsion polymer prepared by the process and steel or metal products to which such polymers have been applied.
본 발명에 따라 새로운 강판 코팅물질로서 사용할 수 있는 마이크로 에멀션 형태의 전도성 고분자 중합체를 제조할 수 있으며, 이것은 현재의 크로메이트 강판 코팅물질을 대체할 수 있다.According to the present invention it is possible to produce conductive polymers in the form of microemulsions which can be used as new steel sheet coatings, which can replace current chromate steel sheet coatings.
Description
본 발명은 가용성 폴리(아닐린-공-안트라닐산)(poly(aniline-co-oanthranilic acid) 마이크로 에멀션 중합체 제조방법, 이로부터 제조된 마이크로에멀션 중합체 및 이러한 마이크로에멀션 중합체가 적용된 철강 또는 금속 제품에 관한 것으로, 보다 상세하게는 수 용해성이 우수하고 도핑방법이 개선되며 크로메이트 피막을 대체할 수 있는 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체 제조방법, 이로부터 제조된 마이크로에멀션 중합체 및 이러한 마이크로에멀션 중합체가 적용된 철강 또는 금속 제품에 관한 것이다.The present invention relates to a process for preparing poly (aniline-co-oanthranilic acid) microemulsion polymers, microemulsion polymers prepared therefrom and steel or metal products to which such microemulsion polymers are applied. More specifically, a method of preparing a poly (aniline-co-anthranilic acid) microemulsion polymer which is excellent in water solubility, an improved doping method, and which can replace a chromate coating, a microemulsion polymer prepared therefrom and such a microemulsion polymer To steel or metal products applied.
폴리아닐린은 여러가지 응용 가능한 전기적인 전도성 고분자이다. 폴리아세틸렌, 폴리티오펜 및 폴리피놀 등의 전도성 고분자들 중에서 폴리아닐린은 대기중에서 안정성과 아닐린의 전기적 특성이 주쇄의 산화상태에 의해서 조절할 수 있기때문에 많이 연구되고 있다. 그러나 폴리아닐린도 다른 전도성 고분자와 마찬가지로 용해도가 매우 저하되는 단점이 있다. 그래서 연구된 것이 폴리안트라닐산과 같은 곁가지를 갖는 폴리아닐린이다. 그러나, 이 폴리아닐린 역시 유기용매에는 잘 용해되지만 물에는 용해되지 않는 단점이 있다. 수용성 전도성 고분자는 환경친화적이고, 철판의 크로메이트 도금을 대체할 수 있는 등 여러가지 응용에 사용될 수 있다.Polyaniline is an electrically conductive polymer for various applications. Among the conductive polymers such as polyacetylene, polythiophene, and polypinol, polyaniline has been studied a lot because of its stability in air and the electrical properties of aniline can be controlled by the oxidation state of the main chain. However, polyaniline, like other conductive polymers, has a disadvantage in that solubility is very low. So what has been studied is polyaniline with a side branch like polyanthranilic acid. However, this polyaniline also has a disadvantage in that it is well soluble in organic solvents but not in water. The water-soluble conductive polymer is environmentally friendly and can be used in various applications such as being able to replace chromate plating of iron sheets.
냉연강판은 부식방지, 내구성 향상 및 후가공성 향상을 위하여 강판 표면을 주로 아연, 니켈, 아연-니켈 합금, 주석 등으로 도금하고 크로메이트로 후처리하고 있다. 그러나, 이들 도금 및 크롬처리에 사용되는 물질의 유해성 및 환경오염이 심각한 문제로 제기되고 있는 가운데, 이들을 보완하거나 대체할 수 있는 환경친화적인 표면처리 물질과 표면처리 청청기술의 필요성이 절실하게 요구되고 있다. 전도성 고분자는 유기계 물질로서 환경친화적이고 전도성을 가짐으로써 크로메이트 코팅을 대체할 수 있을 뿐만 아니라 도금층과 상호보완적으로 사용이 가능할 것으로 기대된다. 그러나, 이러한 전도성 고분자는 대부분의 용매에 용해되지 않기때문에, 그 응용 가능성이 매우 적다. 따라서 이러한 전도성 고분자에 특정 작용기를 부착시켜 가용성을 향상시킬 수 있는 물질을 개발하는 것이 필요하다.Cold rolled steel plate is mainly plated with zinc, nickel, zinc-nickel alloy, tin, etc., and is post-treated with chromate to prevent corrosion, improve durability, and improve workability. However, the hazards and environmental pollution of the materials used for these plating and chromium treatments are serious problems, and there is an urgent need for environmentally friendly surface treatment materials and surface treatment chemistry techniques that can supplement or replace them. have. The conductive polymer is an organic material, which is environmentally friendly and has conductivity, and is expected to replace the chromate coating as well as to be used complementarily with the plating layer. However, since such conductive polymers do not dissolve in most solvents, their application possibilities are very small. Therefore, it is necessary to develop a material capable of improving solubility by attaching specific functional groups to such conductive polymers.
일반적으로 폴리아닐린의 합성은 수용액 상태에서 화학적인 산화 중합에 의해 이루어진다. 이러한 방법은 아닐린, 산, 산화제 및 저온(약 5℃) 조건에서 몇시간이후에 침전된 폴리아닐린을 얻는다. 이렇게 합성된 폴리아닐린은 대부분 무정형이고, 가공하기 어렵고, 대부분의 유기용매나 물에 용해되지 않는다. 그러나, 에멀젼방법으로 제조된 폴리아닐린은 이와는 달리 물에 용해되는 특성을 갖는다. 에멀션 중합은 계면활성제를 임계 미셀 농도이상으로 가하면 약 10~1000개의 계면활성제가 모여서 미셀을 형성한다. 이렇게 형성된 미셀은 라디칼과의 반응으로 중합반응을 이룬다. 여기서 폴리아닐린의 에멀션 중합은 아닐린, 산 및 산화제를 물과 혼합하고 크실렌, 클로로포름 및 톨루엔과 같은 비극성 혹은 약한 극성의 액체를 이용하여 중합된다. 이렇게 제조된 중합체는 수용성 상태로 다른 과정없이 적용처에 사용될 수 있다.In general, the synthesis of polyaniline is accomplished by chemical oxidative polymerization in an aqueous solution. This method yields polyaniline precipitated after several hours under aniline, acid, oxidizing agent and low temperature (about 5 ° C.) conditions. The polyaniline thus synthesized is mostly amorphous, difficult to process, and insoluble in most organic solvents or water. However, polyaniline prepared by the emulsion method has the property of dissolving in water differently. In emulsion polymerization, when the surfactant is added above the critical micelle concentration, about 10 to 1000 surfactants are collected to form micelles. The micelles thus formed are polymerized by reaction with radicals. The emulsion polymerization of polyaniline is here polymerized with aniline, acid and oxidant mixed with water and using nonpolar or weak polar liquids such as xylene, chloroform and toluene. The polymers thus prepared can be used in applications in water-soluble state without any other process.
이에 본 발명의 목적은 아닐린과 안트라닐산 단량체를 원료로 하여 물에 용해된 상태의 폴리아닐린과 폴리안트라닐산계의 마이크로에멀션 중합체 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for producing a microemulsion polymer of polyaniline and polyanthranilic acid dissolved in water using aniline and anthranilic acid monomer as raw materials.
본 발명의 다른 목적은 상기 방법에 의해 제조된 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체를 제공하는 것이다.Another object of the present invention is to provide a poly (aniline-co-anthranlic acid) micro emulsion polymer prepared by the above method.
본 발명의 또 다른 목적은 상기 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체가 적용된 철강 또는 금속 제품을 제공하는 것이다.It is a further object of the present invention to provide a steel or metal product to which the poly (aniline-co-anthranilic acid) microemulsion polymer is applied.
본 발명의 일견지에 의하면,According to one aspect of the invention,
의 안트라닐산과 아닐린을 1:99-99:1의 몰중량%로 혼합하고 이것을 -10~80℃에서 유기용매에 1-10중량%로 용해시키는 단계;Mixing anthranilic acid with aniline in a molar weight ratio of 1: 99-99: 1 and dissolving it in 1-10 wt% in an organic solvent at -10 to 80 ° C;
상기 혼합물을 계면활성제를 이용하여 미셀이 형성된 마이크로 에멀션 용액으로 제조하는 단계; 및Preparing the mixture into a micelle-formed microemulsion solution using a surfactant; And
산화제를 상기 마이크로 에멀션 용액내의 안트라닐산과 아닐린의 혼합물대 상기 산화제가 1:5~5:1의 몰비가 되도록 -10~50℃에서 0.01~10ml/min의 유속으로 점진적으로 첨가하는 단계;Gradually adding an oxidant at a flow rate of 0.01 to 10 ml / min at -10 to 50 ° C. such that a mixture of anthranilic acid and aniline in the microemulsion solution to the molar ratio of 1: 5 to 5: 1;
로 이루어진 가용성 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체 제조방법이 제공된다.There is provided a method for preparing a soluble poly (aniline-co-antranylic acid) micro emulsion polymer.
본 발명의 제 2견지에 의하면,According to the second aspect of the present invention,
상기 방법에 의해 제조된 분자량이 1,000-2,500,000인 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체가 제공된다.A poly (aniline-co-anthranilic acid) micro emulsion polymer having a molecular weight of 1,000-2,500,000 prepared by the above method is provided.
본 발명의 제 3견지에 의하면,According to the third aspect of the present invention,
상기 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체가 적용된 철강 또는 금속 제품이 제공된다.Provided is a steel or metal product to which the poly (aniline-co-anthranilic acid) microemulsion polymer is applied.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
우선, 화학식 1의 안트라닐산과 아닐린의 혼합물을 -10~80℃에서 유기용매에 용해시키고, 계면활성제를 이용하여 이를 안정화시킨다.First, a mixture of anthranilic acid and aniline of formula 1 is dissolved in an organic solvent at -10 to 80 ° C, and stabilized by using a surfactant.
상기 안트라닐산대 아닐린의 혼합비는 1:99-99:1의 몰중량%비로 하며, 바람직하게는 10:90-80:20의 몰중량%비로 혼합한다. 안트라닐산대 아닐린의 혼합비가 상기 범위를 벗어나는 경우 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체의 물성이 약간 저하되는 경향이 있으며 또한 반응이 오래 걸리며 분자량과 수득률이 낮아 상기 범위의 혼합비로 안트라닐산과 아닐린을 공단량체로 혼합하여 중합한다.The mixing ratio of the anthranilic acid to aniline is 1: 99-99: 1 molar weight% ratio, preferably 10: 90-80: 20 molar weight% ratio. If the mixing ratio of anthranilic acid to aniline is out of the above range, the physical properties of the poly (aniline-co-anthranylic acid) microemulsion polymer tend to be slightly lowered, and the reaction is long, and the molecular weight and yield are low. Acid and aniline are mixed with a comonomer to polymerize.
그 다음 이러한 안트라닐산과 아닐린의 혼합물을 유기용매에 용해시키되, 이때 용해시 상기 혼합용매의 온도는 -10~80℃로 한다. 만일 -10℃미만이면 안트라닐산과 아닐린이 용해되지 않으며 80℃이상인 경우 분자량이 낮아져 고분자 중합체를 얻을 수 없다. 분자량이 낮은 중합체는 강판에 적용되는 전도성 고분자 물질로 적합하지않아 바람직하지않다. 본 발명의 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체는 강판에 적용되는 전도성 고분자 물질로 사용되기에 적합하며 일반적으로 고분자 범위로 알려진 1,000-2,500,000의 분자량을 갖는다.Then, the mixture of anthranilic acid and aniline is dissolved in an organic solvent, wherein the temperature of the mixed solvent is -10 to 80 ° C. If the temperature is less than -10 ° C, the anthranilic acid and aniline are not dissolved. If the temperature is over 80 ° C, the molecular weight is lowered to obtain a polymer. Low molecular weight polymers are undesirable because they are not suitable as conductive polymeric materials for steel sheets. The poly (aniline-co-anthranilic acid) microemulsion polymers of the present invention are suitable for use as conductive polymer materials applied to steel sheets and have a molecular weight of 1,000-2,500,000, commonly known as the polymer range.
또한, 상기 안트라닐산과 아닐린의 혼합물을 유기용매에 혼합시, 유기용매에 물이 혼합된 유기용매가 사용될 수 있으며, 이 경우 물과 유기용매의 혼합용매에서물대 유기용매의 혼합비는 1:50-50:1범위일 수 있다. 이와 같이 물과 유기용매의 혼합비를 한정한 이유는 만일 물대 유기용매의 혼합비가 1:50미만인 경우 물의 양이 너무적어 안트라닐산이 용해되기에 충분치못하며, 50:1이상인 경우 유기용매의 양이 너무적어져 아닐린이 용해되지않기때문이다. 이러한 혼합비는 아닐린은 유기용매에 잘 용해되며 안트라닐산은 물에 잘 용해되는 경향이 있기때문에 아닐린의 비율이 높을 수록 유기용매의 비율이 높아지며 안트라닐산의 비율이 높을 수록 물의 비율이 높아진다. 상기 유기용매는 아닐린을 용해시킬 수 있는 어떠한 유기용매도 가능하며 예를 들어 클로로포름, 메틸렌클로라이드, 테트라하이드로퓨란, 알코올, 크실렌, 엔메틸피롤로디온 및 디메틸술폭시드를 포함한다.In addition, when the mixture of anthranilic acid and aniline is mixed with an organic solvent, an organic solvent in which water is mixed with an organic solvent may be used, in which case the mixing ratio of water to organic solvent in the mixed solvent of water and organic solvent is 1: 50-. 50: 1 range. The reason for limiting the mixing ratio of water and organic solvent is that if the mixing ratio of water to organic solvent is less than 1:50, the amount of water is too small to dissolve the anthranilic acid. This is due to the lack of aniline dissolution. Since the aniline is well dissolved in the organic solvent and anthranilic acid tends to be well dissolved in water, the higher the ratio of the aniline, the higher the ratio of the organic solvent, and the higher the ratio of the anthranilic acid, the higher the water ratio. The organic solvent may be any organic solvent capable of dissolving aniline and includes, for example, chloroform, methylene chloride, tetrahydrofuran, alcohol, xylene, enmethylpyrrolodione and dimethyl sulfoxide.
또한, 상기 아닐린과 안트라닐산의 혼합물을 유기용매에 용해시킬때 상기 아닐린과 안트라닐산의 혼합물은 상기 아닐린과 안트라닐산의 혼합물과, 유기용매의 총 중량을 기준으로 1-10중량%로 혼합된다. 만일 상기 아닐린과 안트라닐산의 혼합물이 1중량%미만으로 혼합되는 경우 단량체의 양이 너무 적어져 이후 중합 공정시간이 너무 길어지게되며, 10중량%이상으로 혼합되는 경우 상기 유기용매내에 충분히 용해되지 않을 수 있다.In addition, when dissolving the mixture of aniline and anthranilic acid in an organic solvent, the mixture of aniline and anthranilic acid is mixed at 1-10% by weight based on the total weight of the organic solvent and the mixture of the aniline and anthranilic acid. If the mixture of aniline and anthranilic acid is less than 1% by weight, the amount of monomer is too small, and the polymerization process time is too long, and when mixed with more than 10% by weight, it may not be sufficiently dissolved in the organic solvent. Can be.
그 다음, 상기 유기용매에 용해된 아닐린과 안트라닐산의 혼합물을 계면활성제를 이용하여 미셀이 형성된 마이크로 에멀션 용액으로 형성한다. 본 발명에 사용되는 계면활성제는 도데실벤젠술폰산, 캠포술폰산, 소디움도데실벤젠술페이트, 술포살리실산, 톨루엔술폰산, 벤젠술폰산, 술페믹산, 나프탈렌술폰산, 디메틸술페이트, 디에틸술페이트, 디프로필술페이트, 디(2-에틸헥실)술폭시네이트, 4-술포프탈산, 말론산 및 트윈시리즈로 구성된 그룹으로부터 선택될 수 있다. 상기 계면활성제는 바람직하게 총중량의 0.1-10중량%로 혼합한다. 만일 상기 계면활성제가 0.1중량%미만 또는 10중량%이상으로 혼합되는 경우, 에멀션 용액의 안정화가 이루어지지 않을 수 있다.Then, a mixture of aniline and anthranilic acid dissolved in the organic solvent is formed into a microemulsion solution in which micelles are formed using a surfactant. Surfactants used in the present invention are dodecylbenzenesulfonic acid, camphorsulfonic acid, sodium dodecylbenzenesulfate, sulfosalicylic acid, toluenesulfonic acid, benzenesulfonic acid, sulfemic acid, naphthalenesulfonic acid, dimethylsulfate, diethylsulfate, dipropylsulfate Pate, di (2-ethylhexyl) sulfoxynate, 4-sulfophthalic acid, malonic acid and twinseries. The surfactant is preferably mixed at 0.1-10% by weight of the total weight. If the surfactant is less than 0.1% by weight or 10% by weight or more, the emulsion solution may not be stabilized.
한편, 이와 별도로 합성 촉매인 산화제를 용매에 용해시켜 준비한다. 바람직하게는 -10~50℃의 물에 또는 물과 유기용매의 혼합용매에 용해시켜 준비한다. 또한, 본 발명에 사용되는 산화제는 암모늄퍼술페이트, FeCl3, CuCl2, Cu(BF4)2, Cu(ClO4)2및 K2Cr2O7로 구성된 그룹으로부터 선택될 수 있으며, 물과 유기용매의 혼합용매에 1-10 중량%로 용해시켜 준비하는 것이 바람직하며, 그 이유는 이러한 범위내에서 상기 산화제가 완전히 용해될 수 있기 때문이다. 그리고 상기 산화제는 또한 상기 마이크로 에멀션 용액내의 안트라닐산과 아닐린의 혼합물대 산화제의 몰비로 1:5-5:1로 하는 것이 바람직하다. 만일 상기 산화제의 혼합량이 상기 범위를 벗어나는 경우, 이후 상기 마이크로 에멀션 용액내의 안트라닐산과 아닐린의 단량체가 중합되는 중합 공정시간이 너무 길어지게되는 문제가 있다. 그리고, 이러한 산화제를 사용하는 경우 상기 단량체와 산화제의 반응시간은 상기 단량체(들)가 물과 유기용매의 혼합용매에 완전히 용해되면 연노란색을 나타내게 되는 색변화에 의해 결정된다. 또한 이때 사용되는 용매는 반응의 확률을 높이고 신속한 반응 및 보다 높은 분자량을 갖도록 하기위해 일반적인 아닐린 계통의 물질을 중합하는 경우에 사용하는 양보다 약 20%정도 적게 사용한다. 그리고, 여기서 상기 산화제를 준비할 때 용매의 온도를 -10~50℃로 하는 것이 바람직한 이유는 만일 -10℃미만이면 안트라닐산과 아닐린의 중합이 이루어지지 않으며 50℃이상인 경우 분자량이 낮아져 고분자 중합체를 얻을 수 없기 때문이다. 그리고, 만일 상기 산화제가 물과 유기용매의 혼합용매에 용해되는 경우, 물대 유기용매의 혼합비는 1:50-50:1이 바람직하며, 그 이유는 물대 유기용매의 혼합비가 1:50미만인 경우 물의 양이 너무적어 안트라닐산이 용해되기에 충분치못하며, 50:1이상인 경우 유기용매의 양이 너무적어져 아닐린이 용해되지않기때문이다.On the other hand, separately prepared by dissolving an oxidant which is a synthesis catalyst in a solvent. Preferably prepared by dissolving in water of -10 ~ 50 ℃ or mixed solvent of water and organic solvent. In addition, the oxidizing agent used in the present invention may be selected from the group consisting of ammonium persulfate, FeCl 3 , CuCl 2 , Cu (BF 4 ) 2 , Cu (ClO 4 ) 2 and K 2 Cr 2 O 7 , It is preferable to prepare by dissolving 1-10% by weight in a mixed solvent of an organic solvent, because the oxidant can be completely dissolved within this range. And the oxidant is also preferably 1: 5-5: 1 in a molar ratio of the mixture of anthranilic acid and aniline to the oxidant in the microemulsion solution. If the amount of the oxidizing agent is out of the range, there is a problem that the polymerization process time for the polymerization of the monomer of anthranilic acid and aniline in the microemulsion solution is too long. In the case of using such an oxidizing agent, the reaction time of the monomer and the oxidizing agent is determined by the color change that becomes light yellow when the monomer (s) is completely dissolved in a mixed solvent of water and an organic solvent. In addition, the solvent used at this time is about 20% less than the amount used to polymerize the general aniline-based material in order to increase the probability of the reaction and to have a rapid reaction and a higher molecular weight. In addition, when preparing the oxidizing agent, it is preferable that the temperature of the solvent be -10 to 50 ° C. If the temperature is less than -10 ° C, the polymerization of anthranilic acid and aniline does not occur. Because you can not get. In addition, if the oxidizing agent is dissolved in a mixed solvent of water and an organic solvent, the mixing ratio of water to organic solvent is preferably 1: 50-50: 1, because the mixing ratio of water to organic solvent is less than 1:50. The amount is so small that it is not enough to dissolve anthranilic acid, and if it is 50: 1 or more, the amount of organic solvent is too small to dissolve aniline.
상기한 바와 같이 준비된 미셀이 형성된 마이크로 에멀션 용액에 상기 산화제가 포함된 용액을 점진적으로 서서히 첨가한다. 이때 산화제 용액을 첨가함에 따라 발열반응이 일어나기때문에, 이러한 발열반응에 의하여 반응물의 온도가 급격히 상승하여 발생할 수 있는 부반응의 가능성을 방지하기위하여 0.01-10ml/min의 느린 유속으로 산화제 용액을 상기 마이크로 에멀션 용액에 첨가하는 것이 바람직하다. 만일 상기 산화제가 포함된 용액의 첨가 속도가 0.01ml/min미만으로 첨가되는 경우 첨가속도가 너무 느려져 시간이 오래 걸리며 10ml/min이상의 속도로 첨가되는 경우 반응물의 온도가 급격히 상승하여 부반응이 일어날 수 있다.The solution containing the oxidant is gradually added to the microemulsion solution in which the micelle is prepared as described above. At this time, since the exothermic reaction occurs as the oxidant solution is added, the microemulsion of the oxidant solution at a slow flow rate of 0.01-10 ml / min in order to prevent the possibility of side reactions that may occur due to the rapid rise of the temperature of the reactants by the exothermic reaction. Preference is given to adding to the solution. If the addition rate of the solution containing the oxidizing agent is added to less than 0.01ml / min, the addition rate is too slow and takes a long time and when added at a rate of 10ml / min or more may cause side reactions to rise rapidly. .
그 다음, 상기 산화제가 첨가된 안트라닐산과 아닐린의 혼합액(상기 마이크로 에멀션 용액)을 -10~50℃에서 5-48시간동안 중합반응시킨다. 중합반응온도가 -10℃미만이면 중합이 이루어지지 않고 50℃이상이면 분자량이 낮아지는 문제가 있어 10~50℃가 적절하며, 중합반응시간이 5시간미만이면 반응이 완전히 종료되지 않아 분자량이 낮아지며 48시간이상인 경우 반응이 완전히 종료되어 더 이상의 변화가 없으므로 5-48시간의 중합반응시간이 적절하다.Then, the mixed solution of the anthranilic acid and aniline (the micro emulsion solution) to which the oxidant is added is polymerized at -10 to 50 ° C for 5 to 48 hours. If the polymerization temperature is less than -10 ℃ polymerization does not occur, if the 50 ℃ or more there is a problem that the molecular weight is lowered, 10 ~ 50 ℃ is appropriate, if the polymerization time is less than 5 hours the reaction is not completely terminated, the molecular weight is lowered In the case of 48 hours or more, the reaction is completely terminated and there is no change, so the polymerization time of 5-48 hours is appropriate.
본 발명에 따라 제조된 가용성 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체는 일반적으로 고분자 범위인 1,000-2,500,000의 분자량을 가지며, 고유점성이 0.01-3.00dL/g이며, 전기전도도는 10-6~10S/cm이며 그리고 열안정성은 최소 200℃정도로서 부식방지, 유기용매와의 가용성, 우수한 열안정성 및 필름제조의 용이성을 필요로하는 강판 또는 금속제품에서 크로메이트 피막을 환경친화적으로 대체하기에 적합하다.Soluble poly (aniline-co-anthranilic acid) microemulsion polymers prepared according to the present invention generally have a molecular weight of 1,000-2,500,000 in the polymer range, intrinsic viscosity of 0.01-3.00dL / g, and electrical conductivity of 10-6 ~ 10S / cm and thermal stability of at least 200 ℃, suitable for environmentally friendly replacement of chromate coatings on steel or metal products requiring corrosion protection, solubility with organic solvents, good thermal stability and ease of film making .
상기한 바와 같이 본 발명은 새로운 강판 코팅 물질로서 사용할 수 있는 특성을 나타내는 새로운 전도성 고분자 중합체 물질을 제공하며, 본 발명의 중합체는 고유점도, 내식성, 유기용매와의 가용성 및 열안정성이 우수하여 부식방지제로서 다른 코팅이나 도금 적용처에 사용가능하다.As described above, the present invention provides a new conductive polymer material exhibiting properties that can be used as a new steel sheet coating material, and the polymer of the present invention is excellent in intrinsic viscosity, corrosion resistance, solubility with organic solvents, and thermal stability. It can be used for other coating or plating applications.
이하, 실시예를 통해 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.
실시예 1Example 1
아닐린 2g(0.021몰)과 안트라닐산 3g(0.022몰)을 50ml 유기용매(크실렌:에탄올=1:1)에 상온에서 용해시켰다. 도데실벤젠술폰산 14g(0.043몰)을 물 200ml에 용해시킨다음 상기 아닐린과 안트라닐산의 혼합용액에 첨가하였다. 그 다음 상기 용액을 분쇄기를 이용하여 15000rpm으로 20분동안 혼합하여 유기용매층과 물층을 분산시켰다. 혼합된 용액을 다시 둥근 플라스크에 옮긴다음, 교반기에 넣고 800rpm으로 교반하였다. 이때 온도는 0℃로 유지시켰다. 별도로 산화제인 암모늄퍼술페이트 9.8g(0.042몰)을 10ml 물에 0℃에서 용해하였다. 산화제가 포함된 용액을 상기 아닐린과 안트라닐산이 포함된 용액에 자석 교반기로 교반하면서 0.01-1ml/min의 유속으로 첨가한 후 24시간 방치하였다. 그 결과물은 흰색에서 청색을 거쳐 녹색으로 변하였다.2 g (0.021 mol) of aniline and 3 g (0.022 mol) of anthranilic acid were dissolved in a 50 ml organic solvent (xylene: ethanol = 1: 1) at room temperature. 14 g (0.043 mol) of dodecylbenzenesulfonic acid was dissolved in 200 ml of water, and then added to the mixed solution of aniline and anthranilic acid. The solution was then mixed for 20 minutes at 15000 rpm using a grinder to disperse the organic solvent layer and the water layer. The mixed solution was again transferred to a round flask, then put into a stirrer and stirred at 800 rpm. At this time, the temperature was maintained at 0 ℃. Separately, 9.8 g (0.042 mol) of ammonium persulfate, an oxidizing agent, was dissolved in 10 ml of water at 0 ° C. The solution containing the oxidant was added to the solution containing aniline and anthranilic acid at a flow rate of 0.01-1 ml / min while stirring with a magnetic stirrer and left for 24 hours. The result changed from white to blue to green.
반응 종결된 후, 메탄올 300ml에 상기 용액을 침전시킨 다음, 감압플라스크를 이용하여 여과한 후 진공오븐에서 실온으로 12시간동안 건조시켰다. 그 결과물로 매우 짙은 갈색의 물질을 얻었으며, 이를 핵자기 공명 스펙트럼(NMR)을 이용하여 생성물을 확인하였다. 상기 녹색으로 변한 에멀션 용액은 전도성 고분자 물질로 서 유리판 혹은 철판에 코팅하는데 적용될 수 있다.After completion of the reaction, the solution was precipitated in 300 ml of methanol, filtered using a vacuum flask, and dried in a vacuum oven at room temperature for 12 hours. The result was a very dark brown material, which was identified using nuclear magnetic resonance spectra (NMR). The emulsion solution turned green may be applied to the glass plate or iron plate coating as a conductive polymer material.
실시예 2Example 2
아닐린 2g(0.021몰)과 안트라닐산 3g(0.022몰)을 50ml 유기용매(크실렌:에탄올=1:1)에 상온에서 용해시켰다. 캠포술폰산 9.9g(0.043몰)과 소디움도데실술페이트 12.4g을 물 200ml에 용해시킨다음 상기 아닐린과 안트라닐산의 혼합용액에 첨가하였다. 그 다음 상기 용액을 분쇄기를 이용하여 15000rpm으로 20분동안 혼합하여 유기용매층과 물층을 분산시켰다. 혼합된 용액을 다시 둥근 플라스크에 옮긴다음, 교반기에 넣고 800rpm으로 교반하였다. 이때 온도는 0℃로 유지시켰다. 별도로 산화제인 암모늄퍼술페이트 9.8g(0.042몰)을 10ml 물에 0℃에서 용해하였다. 산화제가 포함된 용액을 상기 아닐린과 안트라닐산이 포함된 용액에 자석 교반기로 교반하면서 0.01-1ml/min의 유속으로 첨가한 후 24시간 방치하였다. 그 결과물은 흰색에서 청색을 거쳐 녹색으로 변하였다.2 g (0.021 mol) of aniline and 3 g (0.022 mol) of anthranilic acid were dissolved in a 50 ml organic solvent (xylene: ethanol = 1: 1) at room temperature. 9.9 g (0.043 mol) of camphorsulfonic acid and 12.4 g of sodium dodecyl sulfate were dissolved in 200 ml of water, and then added to the mixed solution of aniline and anthranilic acid. The solution was then mixed for 20 minutes at 15000 rpm using a grinder to disperse the organic solvent layer and the water layer. The mixed solution was again transferred to a round flask, then put into a stirrer and stirred at 800 rpm. At this time, the temperature was maintained at 0 ℃. Separately, 9.8 g (0.042 mol) of ammonium persulfate, an oxidizing agent, was dissolved in 10 ml of water at 0 ° C. The solution containing the oxidant was added to the solution containing aniline and anthranilic acid at a flow rate of 0.01-1 ml / min while stirring with a magnetic stirrer and left for 24 hours. The result changed from white to blue to green.
반응 종결된 후, 메탄올 300ml에 상기 용액을 침전시킨 다음, 감압플라스크를 이용하여 여과한 후 진공오븐에서 실온으로 12시간동안 건조시켰다. 그 결과물로 매우 짙은 갈색의 물질을 얻었으며, 이를 핵자기 공명 스펙트럼(NMR)을 이용하여 생성물을 확인하였다. 상기 녹색으로 변한 에멀션 용액은 전도성 고분자 물질로 서 유리판 혹은 철판에 코팅하는데 적용될 수 있다.After completion of the reaction, the solution was precipitated in 300 ml of methanol, filtered using a vacuum flask, and dried in a vacuum oven at room temperature for 12 hours. The result was a very dark brown material, which was identified using nuclear magnetic resonance spectra (NMR). The emulsion solution turned green may be applied to the glass plate or iron plate coating as a conductive polymer material.
비교예 1Comparative Example 1
아닐린 5g(0.054몰)을 50ml 유기용매(크실렌:에탄올=1:1)에 상온에서 용해시켰다. 도데실벤젠술폰산 17.6g(0.054몰)을 물 200ml에 용해시킨다음 상기 아닐린 용액에 첨가하였다. 그 다음 상기 용액을 분쇄기를 이용하여 15000rpm으로 20분동안 혼합하여 유기용매층과 물층을 분산시켰다. 혼합된 용액을 다시 둥근 플라스크에 옮긴다음, 교반기에 넣고 800rpm으로 교반하였다. 이때 온도는 0℃로 유지시켰다. 별도로 산화제인 암모늄퍼술페이트 9.8g(0.042몰)을 10ml 물에 0℃에서 용해하였다. 산화제가 포함된 용액을 아닐린이 포함된 용액에 자석 교반기로 교반하면서 0.01-1ml/min의 유속으로 첨가한 후 24시간 방치하였다. 그 결과물은 흰색에서 청색을 거쳐 녹색으로 변하였다.5 g (0.054 mol) of aniline was dissolved in 50 ml of an organic solvent (xylene: ethanol = 1: 1) at room temperature. 17.6 g (0.054 mol) of dodecylbenzenesulfonic acid was dissolved in 200 ml of water and then added to the aniline solution. The solution was then mixed for 20 minutes at 15000 rpm using a grinder to disperse the organic solvent layer and the water layer. The mixed solution was again transferred to a round flask, then put into a stirrer and stirred at 800 rpm. At this time, the temperature was maintained at 0 ℃. Separately, 9.8 g (0.042 mol) of ammonium persulfate, an oxidizing agent, was dissolved in 10 ml of water at 0 ° C. The solution containing the oxidant was added to the solution containing aniline at a flow rate of 0.01-1 ml / min while stirring with a magnetic stirrer and left for 24 hours. The result changed from white to blue to green.
반응 종결된 후, 메탄올 300ml에 상기 용액을 침전시킨 다음, 감압플라스크를 이용하여 여과한 후 진공오븐에서 실온으로 12시간동안 건조시켰다. 그 결과물로 매우 짙은 갈색의 물질을 얻었으며, 이를 핵자기 공명 스펙트럼(NMR)을 이용하여 생성물을 확인하였다.After completion of the reaction, the solution was precipitated in 300 ml of methanol, filtered using a vacuum flask, and dried in a vacuum oven at room temperature for 12 hours. The result was a very dark brown material, which was identified using nuclear magnetic resonance spectra (NMR).
비교예 2Comparative Example 2
안트라닐산 7.4g(0.054몰)을 50ml 유기용매(크실렌:에탄올=1:1)에 상온에서 용해시켰다. 도데실벤젠술폰산 17.6g(0.054몰)을 물 200ml에 용해시킨다음 상기 안트라닐산 용액에 첨가하였다. 그 다음 상기 용액을 분쇄기를 이용하여 15000rpm으로 20분동안 혼합하여 유기용매층과 물층을 분산시켰다. 혼합된 용액을 다시 둥근 플라스크에 옮긴다음, 교반기에 넣고 800rpm으로 교반하였다. 이때 온도는 0℃로 유지시켰다. 별도로 산화제인 암모늄퍼술페이트 9.8g(0.042몰)을 10ml 물에 0℃에서 용해하였다. 산화제가 포함된 용액을 상기 안트라닐산이 포함된 용액에 자석 교반기로 교반하면서 0.01-1ml/min의 유속으로 첨가한 후 24시간 방치하였다. 그 결과물은 흰색에서 청색을 거쳐 녹색으로 변하였다.7.4 g (0.054 mol) of anthranilic acid was dissolved in 50 ml of an organic solvent (xylene: ethanol = 1: 1) at room temperature. 17.6 g (0.054 mol) of dodecylbenzenesulfonic acid was dissolved in 200 ml of water and added to the anthranilic acid solution. The solution was then mixed for 20 minutes at 15000 rpm using a grinder to disperse the organic solvent layer and the water layer. The mixed solution was again transferred to a round flask, then put into a stirrer and stirred at 800 rpm. At this time, the temperature was maintained at 0 ℃. Separately, 9.8 g (0.042 mol) of ammonium persulfate, an oxidizing agent, was dissolved in 10 ml of water at 0 ° C. The solution containing the oxidant was added to the solution containing anthranilic acid at a flow rate of 0.01-1 ml / min while stirring with a magnetic stirrer and left for 24 hours. The result changed from white to blue to green.
반응 종결된 후, 메탄올 300ml에 상기 용액을 침전시킨 다음, 감압플라스크를 이용하여 여과한 후 진공오븐에서 실온으로 12시간동안 건조시켰다. 그 결과물로 매우 짙은 갈색의 물질을 얻었으며, 이를 핵자기 공명 스펙트럼(NMR)을 이용하여 생성물을 확인하였다.After completion of the reaction, the solution was precipitated in 300 ml of methanol, filtered using a vacuum flask, and dried in a vacuum oven at room temperature for 12 hours. The result was a very dark brown material, which was identified using nuclear magnetic resonance spectra (NMR).
비교예 3Comparative Example 3
아닐린 5g(0.054몰)을 50ml 유기용매(크실렌:에탄올=1:1)에 상온에서 용해시켰다. 캠포술폰산 12.5g(0.054몰)과 소디움도데실술페이트 15.6g(0.054몰)을 물 200ml에 용해시킨다음 상기 아닐린 용액에 첨가하였다. 그 다음 상기 용액을 분쇄기를 이용하여 15000rpm으로 20분동안 혼합하여 유기용매층과 물층을 분산시켰다. 혼합된 용액을 다시 둥근 플라스크에 옮긴다음, 교반기에 넣고 800rpm으로 교반하였다. 이때 온도는 0℃로 유지시켰다. 별도로 산화제인 암모늄퍼술페이트 9.8g(0.042몰)을 10ml 물에 0℃에서 용해하였다. 산화제가 포함된 용액을 아닐린이 포함된 용액에 자석 교반기로 교반하면서 0.01-1ml/min의 유속으로 첨가한 후 24시간 방치하였다. 그 결과물은 흰색에서 청색을 거쳐 녹색으로 변하였다.5 g (0.054 mol) of aniline was dissolved in 50 ml of an organic solvent (xylene: ethanol = 1: 1) at room temperature. 12.5 g (0.054 mol) of camphorsulfonic acid and 15.6 g (0.054 mol) of sodium dodecyl sulfate were dissolved in 200 ml of water and added to the aniline solution. The solution was then mixed for 20 minutes at 15000 rpm using a grinder to disperse the organic solvent layer and the water layer. The mixed solution was again transferred to a round flask, then put into a stirrer and stirred at 800 rpm. At this time, the temperature was maintained at 0 ℃. Separately, 9.8 g (0.042 mol) of ammonium persulfate, an oxidizing agent, was dissolved in 10 ml of water at 0 ° C. The solution containing the oxidant was added to the solution containing aniline at a flow rate of 0.01-1 ml / min while stirring with a magnetic stirrer and left for 24 hours. The result changed from white to blue to green.
반응 종결된 후, 메탄올 300ml에 상기 용액을 침전시킨 다음, 감압플라스크를 이용하여 여과한 후 진공오븐에서 실온으로 12시간동안 건조시켰다. 그 결과물로 매우 짙은 갈색의 물질을 얻었으며, 이를 핵자기 공명 스펙트럼(NMR)을 이용하여 생성물을 확인하였다.After completion of the reaction, the solution was precipitated in 300 ml of methanol, filtered using a vacuum flask, and dried in a vacuum oven at room temperature for 12 hours. The result was a very dark brown material, which was identified using nuclear magnetic resonance spectra (NMR).
비교예 4Comparative Example 4
안트라닐산 7.4g(0.054몰)을 50ml 유기용매(크실렌:에탄올=1:1)에 상온에서 용해시켰다. 캠포술폰산 17.6g(0.054몰)과 소디움도데실술페이트 15.6g을 물 200ml에 용해시킨다음 상기 안트라닐산 용액에 첨가하였다. 그 다음 상기 용액을 분쇄기를 이용하여 15000rpm으로 20분동안 혼합하여 유기용매층과 물층을 분산시켰다. 혼합된 용액을 다시 둥근 플라스크에 옮긴다음, 교반기에 넣고 800rpm으로 교반하였다. 이때 온도는 0℃로 유지시켰다. 별도로 산화제인 암모늄퍼술페이트 9.8g(0.042몰)을 10ml 물에 0℃에서 용해하였다. 산화제가 포함된 용액을 상기 안트라닐산이 포함된 용액에 자석 교반기로 교반하면서 0.01-1ml/min의 유속으로 첨가한 후 24시간 방치하였다. 그 결과물은 흰색에서 청색을 거쳐 녹색으로 변하였다.7.4 g (0.054 mol) of anthranilic acid was dissolved in 50 ml of an organic solvent (xylene: ethanol = 1: 1) at room temperature. 17.6 g (0.054 mol) of camphorsulfonic acid and 15.6 g of sodium dodecyl sulfate were dissolved in 200 ml of water and added to the anthranilic acid solution. The solution was then mixed for 20 minutes at 15000 rpm using a grinder to disperse the organic solvent layer and the water layer. The mixed solution was again transferred to a round flask, then put into a stirrer and stirred at 800 rpm. At this time, the temperature was maintained at 0 ℃. Separately, 9.8 g (0.042 mol) of ammonium persulfate, an oxidizing agent, was dissolved in 10 ml of water at 0 ° C. The solution containing the oxidant was added to the solution containing anthranilic acid at a flow rate of 0.01-1 ml / min while stirring with a magnetic stirrer and left for 24 hours. The result changed from white to blue to green.
반응 종결된 후, 메탄올 300ml에 상기 용액을 침전시킨 다음, 감압플라스크를 이용하여 여과한 후 진공오븐에서 실온으로 12시간동안 건조시켰다. 그 결과물로 매우 짙은 갈색의 물질을 얻었으며, 이를 핵자기 공명 스펙트럼(NMR)을 이용하여 생성물을 확인하였다. 상기 녹색으로 변한 에멀션 용액은 전도성 고분자 물질로 서 유리판 혹은 철판에 코팅하는데 적용될 수 있다.After completion of the reaction, the solution was precipitated in 300 ml of methanol, filtered using a vacuum flask, and dried in a vacuum oven at room temperature for 12 hours. The result was a very dark brown material, which was identified using nuclear magnetic resonance spectra (NMR). The emulsion solution turned green may be applied to the glass plate or iron plate coating as a conductive polymer material.
일반적인 합성에 의해 제조된 폴리아닐린은 대부분의 용매에 녹지 않기때문에 코팅적용시 어렴움이 있으나, 본 발명의 방법으로 제조된 가용성 폴리(아닐린-공-안트라닐산) 마이크로 에멀션 중합체는 수용액층에 용해되어 있는 형태이므로 유리나 철판에 코팅적용시 용이하게 이루어질 것으로 예측할 수 있다.Polyaniline prepared by the general synthesis is insoluble in most solvents, so it is difficult to apply the coating, but the soluble poly (aniline-co-anthranilic acid) microemulsion polymer prepared by the method of the present invention is dissolved in an aqueous layer. Therefore, it can be expected to be easily made when coating the glass or iron plate.
본 발명에 따라 안트라닐산과 아닐린을 이용하여 마이크로 에멀션 중합방법으로 전도성 고분자 중합체를 제조할 수 있으며, 이러한 본 발명의 마이크로 에멀션 형태의 전도성 고분자 중합체는 새로운 강판 코팅물질로서 사용할 수 있어 현재의 크로메이트를 대체할 수 있다.According to the present invention, an anthranilic acid and aniline can be used to prepare a conductive polymer by a microemulsion polymerization method. The conductive polymer in the form of a microemulsion of the present invention can be used as a new steel plate coating material to replace the current chromate. can do.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010054298A KR100627470B1 (en) | 2001-09-05 | 2001-09-05 | Method for preparing soluble poly (aniline-co-anthranilic acid) microemulsion polymers, microemulsion polymers prepared therefrom and steel or metal products to which such microemulsion polymers are applied |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010054298A KR100627470B1 (en) | 2001-09-05 | 2001-09-05 | Method for preparing soluble poly (aniline-co-anthranilic acid) microemulsion polymers, microemulsion polymers prepared therefrom and steel or metal products to which such microemulsion polymers are applied |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030021278A true KR20030021278A (en) | 2003-03-15 |
KR100627470B1 KR100627470B1 (en) | 2006-09-22 |
Family
ID=27722509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010054298A KR100627470B1 (en) | 2001-09-05 | 2001-09-05 | Method for preparing soluble poly (aniline-co-anthranilic acid) microemulsion polymers, microemulsion polymers prepared therefrom and steel or metal products to which such microemulsion polymers are applied |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100627470B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004083283A1 (en) * | 2003-03-20 | 2004-09-30 | Dongjin Semichem Co. Ltd. | Method for preparing rod-shaped polyaniline nanoparticles having high conductivity using micro-emusion poly-merization |
CN1296411C (en) * | 2005-04-11 | 2007-01-24 | 重庆大学 | Method for preparing nano polyaniline |
CN103604682A (en) * | 2013-11-14 | 2014-02-26 | 内蒙古第一机械集团有限公司 | Test method for displaying macrostructures and defects of steel and iron materials |
-
2001
- 2001-09-05 KR KR1020010054298A patent/KR100627470B1/en not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004083283A1 (en) * | 2003-03-20 | 2004-09-30 | Dongjin Semichem Co. Ltd. | Method for preparing rod-shaped polyaniline nanoparticles having high conductivity using micro-emusion poly-merization |
KR100858839B1 (en) * | 2003-03-20 | 2008-09-17 | 주식회사 동진쎄미켐 | Method for preparing highly conductive rod-shaped polyaniline nanoparticles using cryogenic microemulsion polymerization |
CN1296411C (en) * | 2005-04-11 | 2007-01-24 | 重庆大学 | Method for preparing nano polyaniline |
CN103604682A (en) * | 2013-11-14 | 2014-02-26 | 内蒙古第一机械集团有限公司 | Test method for displaying macrostructures and defects of steel and iron materials |
CN103604682B (en) * | 2013-11-14 | 2016-05-18 | 内蒙古第一机械集团有限公司 | Show the test method of ferrous materials macrostructure and defect |
Also Published As
Publication number | Publication date |
---|---|
KR100627470B1 (en) | 2006-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1327645B1 (en) | Process for the production of neutral poly(ethylenedioxythiophene) and related poly(ethylenedioxythiophenes) | |
EP2239294B1 (en) | Soluble conductive polymer and method for preparing same | |
DeArmitt et al. | A novel N-substituted polyaniline derivative | |
EP1458783A2 (en) | Process for producing aryl-aryl coupled compounds | |
EP0863931A2 (en) | Poly(9,9'-spiro-bisfluorenes), the production and use of same | |
EP1132415A1 (en) | Polyaniline-containing solution and method for preparing the same | |
US7064178B2 (en) | Soluble self-orienting materials and conductive polymer compositions having the same | |
Rumbau et al. | A new bifunctional template for the enzymatic synthesis of conducting polyaniline | |
US7960499B2 (en) | Process for producing conductive polymer dispersion and conductive polymer dispersion | |
KR100627470B1 (en) | Method for preparing soluble poly (aniline-co-anthranilic acid) microemulsion polymers, microemulsion polymers prepared therefrom and steel or metal products to which such microemulsion polymers are applied | |
JP4269113B2 (en) | Aromatic amine derivatives and soluble conductive compounds | |
JP2008169255A (en) | Highly conductive polyaniline having excellent solubility and method for producing the same | |
Toyoshima et al. | Synthesis and properties of polythiophene derivatives with liquid crystalline substituents | |
CN102030984A (en) | Preparation method of water-soluble self-doped polyaniline (PANI) electrochromic material | |
KR980009325A (en) | Method for preparing electrically conductive polyaniline | |
KR100782733B1 (en) | Process for preparing soluble poly (aniline-co-anthranic acid) polymer, poly (aniline-co-anthranilic acid) polymer prepared therefrom and steel or metal product to which such polymer is applied | |
JP2002138137A (en) | Oxidizing agent for conductive polymer production | |
KR20020021457A (en) | A preparing method of soluble polyantranilic acid based polymer and polyantranilic acid based polymer prepared from this method | |
KR100554730B1 (en) | Method for preparing soluble polyaminobenzyl alcohol polymer and polyaminobenzyl alcohol polymer prepared therefrom | |
KR20190086560A (en) | Condensed heterocyclic compound and method for producing conductive polymer using the compound | |
KR100445287B1 (en) | Novel process of polyaniline | |
Gan et al. | Conductive IPN based on polyaniline and silicon‐crosslinked styrene‐isoprene‐styrene triblock copolymer | |
JP2001354765A (en) | Compensated sulfonated polyaniline and method for its preparation | |
JP3163426B2 (en) | Method for producing polyarylene thioether | |
JP3438047B2 (en) | Novel bispyrrolylazophenylene compound, method for producing the same, and polymer of the compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20010905 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20040329 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20010905 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20051129 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20060524 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20051129 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
J201 | Request for trial against refusal decision | ||
PJ0201 | Trial against decision of rejection |
Patent event date: 20060626 Comment text: Request for Trial against Decision on Refusal Patent event code: PJ02012R01D Patent event date: 20060524 Comment text: Decision to Refuse Application Patent event code: PJ02011S01I Appeal kind category: Appeal against decision to decline refusal Decision date: 20060829 Appeal identifier: 2006101005571 Request date: 20060626 |
|
AMND | Amendment | ||
PB0901 | Examination by re-examination before a trial |
Comment text: Amendment to Specification, etc. Patent event date: 20060726 Patent event code: PB09011R02I Comment text: Request for Trial against Decision on Refusal Patent event date: 20060626 Patent event code: PB09011R01I |
|
B701 | Decision to grant | ||
PB0701 | Decision of registration after re-examination before a trial |
Patent event date: 20060829 Comment text: Decision to Grant Registration Patent event code: PB07012S01D Patent event date: 20060807 Comment text: Transfer of Trial File for Re-examination before a Trial Patent event code: PB07011S01I |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20060915 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20060918 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |