KR20020053190A - Method for forming diffusion barrier layer in semiconductor process - Google Patents
Method for forming diffusion barrier layer in semiconductor process Download PDFInfo
- Publication number
- KR20020053190A KR20020053190A KR1020000082545A KR20000082545A KR20020053190A KR 20020053190 A KR20020053190 A KR 20020053190A KR 1020000082545 A KR1020000082545 A KR 1020000082545A KR 20000082545 A KR20000082545 A KR 20000082545A KR 20020053190 A KR20020053190 A KR 20020053190A
- Authority
- KR
- South Korea
- Prior art keywords
- diffusion barrier
- aluminum
- forming
- manufacturing process
- semiconductor manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 66
- 230000004888 barrier function Effects 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 21
- 229910052802 copper Inorganic materials 0.000 abstract description 20
- 239000010949 copper Substances 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 11
- 239000010408 film Substances 0.000 description 21
- 239000010409 thin film Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- 229910007991 Si-N Inorganic materials 0.000 description 2
- 229910006294 Si—N Inorganic materials 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76855—After-treatment introducing at least one additional element into the layer
- H01L21/76856—After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 발명은 반도체 제조 공정에 있어서 구리 배선 공정의 확산 방지막 형성 방법에 관한 것으로, 확산 방지막에 알루미늄 산화물을 충진시킴으로써 구리의 확산 방지 효과를 향상시켰다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a diffusion barrier film in a copper wiring step in a semiconductor manufacturing process, and improves the effect of preventing diffusion of copper by filling aluminum oxide in the diffusion barrier film.
Description
본 발명은 반도체 제조 공정의 확산 방지막 형성 방법에 관한 것으로, 보다 상세하게는, 확산 방지막을 알루미늄 산화물로 충진시켜서 배선으로 형성되는 구리의 확산을 방지시킨 반도체 제조 공정의 확산 방지막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a diffusion barrier film in a semiconductor manufacturing process, and more particularly, to a method for forming a diffusion barrier in a semiconductor manufacturing process in which a diffusion barrier is filled with aluminum oxide to prevent diffusion of copper formed by wiring.
구리 원자는 확산성이 높기 때문에 반도체 제조 공정 중 구리 배선 공정에서 소자의 신뢰성을 확보하기 위하여 구리 배선에 확산 방지막이 적용된다.Since copper atoms have high diffusivity, a diffusion barrier film is applied to the copper wiring in order to secure the reliability of the device in the copper wiring process during the semiconductor manufacturing process.
확산 방지막에 사용될 수 있는 물질들은 Ta, TaN, TiN, WN, W-Si-N 및 Ti-Si-N등이 있으며, 특히 Ta, TaN 확산막의 형성을 위하여는 스퍼터링(sputtering) 방법의 일종인 IMP(ionized metal plasma)법이 사용된다.Materials that can be used for the diffusion barrier include Ta, TaN, TiN, WN, W-Si-N, and Ti-Si-N. Especially, for the formation of Ta, TaN diffusion layers, IMP, which is a kind of sputtering method, is used. (ionized metal plasma) method is used.
하지만 IMP 방법을 사용하여 확산막을 형성하면 컨택 바닥에 대하여는 커버력이 좋은 반면, 측면에 대하여는 커버력이 좋지 않아, 측면 벽을 통한 확산에 대하여는 충분한 확산 방지막으로서의 역할을 하지 못하는 문제점이 있다.However, when the diffusion film is formed using the IMP method, the coverage of the contact bottom is good, but the coverage of the side is not good, and thus there is a problem in that it does not serve as a sufficient diffusion barrier for diffusion through the side wall.
또한 스텝 커버력이 우수한 CVD(chemical vapor deposition) 방법이 TiN 방지막 형성에 사용되는데, 이렇게 형성된 TiN 방지막은 섭씨 500 도 이상에서 구리 확산 방지 효과를 충분히 나타내지 못한다.In addition, a chemical vapor deposition (CVD) method having excellent step coverage is used to form the TiN barrier layer. The TiN barrier layer thus formed does not sufficiently exhibit the copper diffusion prevention effect at 500 degrees Celsius or more.
현재 사용되는 확산 방지막은 다결정질 박막이다. 다결정질 박막에서 결정립계를 통한 확산은 결정립을 통한 확산보다 훨씬 쉬우므로 결정립을 통한 확산 방지가 매우 중요하다.Currently used diffusion barrier films are polycrystalline thin films. In the polycrystalline thin film, diffusion through grain boundaries is much easier than diffusion through grains, so preventing diffusion through grains is very important.
이를 해결하기 위하여 결정립계가 없는 단결정이나 비정질로 확산 방지막을 형성하거나, 이미 존재하는 다결정질 확산 방지막의 결정립계를 차단한다.In order to solve this problem, a diffusion barrier layer is formed of a single crystal or amorphous layer without a grain boundary, or a grain boundary of an existing polycrystalline diffusion barrier layer is blocked.
다결정질 박막의 결정립계를 차단하는 것을 충진이라 하며, 이와 같이 결정립계가 차단된 방지막을 '충진된 방지막'이라 한다.The blocking of the grain boundaries of the polycrystalline thin film is called filling, and the blocking film in which the grain boundaries are blocked is called a "filled blocking film".
현재 N2또는 O2충진의 효과가 알려져 있다.Currently the effect of N 2 or O 2 filling is known.
그 중, O2충진에 있어서는 박막 증착 후 증착된 박막을 공기중에 노출시키거나 질소 분위기에서 열처리하여 분위기 중에 존재하는 산소를 박막의 결정립계를 통해 확산시킴으로써 충진 효과를 얻는다.Among them, in the O 2 filling, a filling effect is obtained by exposing the deposited thin film to air or heat treatment in a nitrogen atmosphere to diffuse oxygen present in the atmosphere through the grain boundary of the thin film.
알루미늄 및 구리 배선 공정에 있어서, 스퍼터링으로 증착한 TiN 확산 방지막 대한 충진 효과의 연구 비교 결과가 다음과 같이 알려져 있다.In the aluminum and copper wiring process, the research comparison result of the filling effect with respect to the TiN diffusion barrier film deposited by sputtering is known as follows.
질소 분위기에서 열처리하여 O2로 충진된 확산 방지막은 알루미늄 배선에 대하여는 탁월한 확산 방지 효과를 나타내지만, 구리 배선에 대하여는 확산 방지 효과를 나타내지 못한다.The diffusion barrier film filled with O 2 by heat treatment in a nitrogen atmosphere exhibits an excellent diffusion barrier effect on the aluminum wiring, but does not exhibit a diffusion barrier effect on the copper wiring.
그 이유는 열처리에 의해 Tin 박막 내에 함유된 산소는 대부분 결정립계를 따라 확산해들어가 Tin 결정립의 표면을 산화시켜 타이타늄과 결합된 상태로 존재하게 된다.The reason is that most of the oxygen contained in the tin thin film by heat treatment diffuses along the grain boundaries and oxidizes the surface of the tin grains so that they exist in a state of being combined with titanium.
이때 알루미늄이 결정립계를 따라 확산되어 들어가면 알루미늄 산화물의 생성열이 타이타늄 산화물의 생성열보다 크기 때문에 알루미늄은 타이타늄 산화물의 산소와 결합하여 알루미늄 산화물이 되며, 형성된 알루미늄 산화물은 결정립계를 충진하는 효과가 있어 알루미늄의 확산 경로가 차단된다.At this time, when aluminum diffuses along the grain boundary, the heat of production of aluminum oxide is greater than that of titanium oxide, so aluminum combines with oxygen of titanium oxide to form aluminum oxide, and the formed aluminum oxide has an effect of filling the grain boundary, so that the aluminum diffusion path Is blocked.
반면 구리 산화물은 타이타늄 산화물보다 생성열이 작으므로, 구리는 타이타늄 산화물의 산소와 반응할 수 없다. 따라서, 구리는 결정립계를 따라 확산되는 과정에서 구리 산화물로 결정립계를 충진할 수 없다.On the other hand, since copper oxide produces less heat than titanium oxide, copper cannot react with oxygen of titanium oxide. Therefore, copper cannot fill the grain boundaries with copper oxide in the process of diffusing along the grain boundaries.
또한 구리는 질소 등과의 반응성도 거의 없으므로, N2충진 효과에 의하여 구리 확산 방지 효과를 향상시킬 수 없으며, 이러한 결과는 PVD나 CVD로 증착된 Ti, TiN 박막에 대하여도 마찬가지이다.In addition, since copper has little reactivity with nitrogen and the like, the effect of preventing diffusion of copper can not be improved by the N 2 filling effect, and this result is the same for the Ti and TiN thin films deposited by PVD or CVD.
따라서, 본 발명은 상술한 바와 같은 종래 구리 배선의 확산 방지막 형성 방법의 문제점을 해결하기 위해 이루어진 것으로, 본 발명의 목적은 알루미늄 산화물로 구리 배선의 확산 방지막을 충진시키도록 하여 구리 배선의 확산 방지 효과를 향상시키는 것이다.Accordingly, the present invention has been made to solve the problems of the conventional method for forming a diffusion barrier film of copper wiring as described above, and an object of the present invention is to fill the diffusion barrier film of copper wiring with aluminum oxide to prevent the diffusion of copper wiring. To improve.
도 1은 본 발명에 따른 실시예의 듀얼 상감 구조의 형성 단계의 단면도.1 is a cross-sectional view of the step of forming a dual inlay structure of an embodiment according to the present invention.
도 2 는 실시예의 확산 방지막 증착 및 산소 투입 단계의 단면도.2 is a cross-sectional view of the diffusion barrier film deposition and oxygen input step of the embodiment.
도 3은 실시예의 알루미늄 증착 및 열처리 단계의 단면도.3 is a cross-sectional view of the aluminum deposition and heat treatment steps of the embodiment.
도 4는 실시예의 확산 방지막 형성이 완료된 상태의 단면도.4 is a cross-sectional view of the diffusion barrier film formation of the embodiment is completed.
상기 목적을 달성하기 위해, 본 발명의 반도체 제조 공정의 확산 방지막 형성 방법에서는 확산 방지막 형성 후, 충진 단계에서 확산 방지막이 알루미늄 산화물로 충진된다.In order to achieve the above object, in the diffusion barrier film forming method of the semiconductor manufacturing process of the present invention, the diffusion barrier film is filled with aluminum oxide in the filling step after the diffusion barrier film is formed.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 반도체 제조 공정의 확산 방지막 형성 방법에서는 우선 도 1과 같이 구리 배선을 형성하기 위한 듀얼(dual) 상감 구조가 형성된다.In the diffusion barrier film forming method of the semiconductor manufacturing process of the present invention, first, a dual damascene structure for forming copper wirings is formed as shown in FIG. 1.
도 2를 참조하면, 형성된 듀얼 상감 구조(1) 위에 확산 방지막(2)이 증착되며, 증착된 확산 방지막(2)은 공기중에 노출된다.Referring to FIG. 2, a diffusion barrier film 2 is deposited on the formed dual damascene structure 1, and the deposited diffusion barrier film 2 is exposed to air.
이 때 확산 방지막(2)은 Ti나 TiN을 사용하여 증착되며, PVD 또는 CVD 방법에 의해 증착되도록 하는 것이 바람직하다.At this time, the diffusion barrier 2 is deposited using Ti or TiN, it is preferable to be deposited by the PVD or CVD method.
확산 방지막(2)이 공기중에 노출되면, 확산 방지막(2) 내의 결정립계(4)에는 산소가 포함된다.When the diffusion barrier 2 is exposed to air, oxygen is contained in the grain boundary 4 in the diffusion barrier 2.
이후, 도 3에 도시된 바와 같이 확산 방지막(2) 위에 알루미늄(5)이 증착되며, 증착된 알루미늄(5)이 확산 방지막(2)의 결정립계(4)로 확산되도록 열처리된다.Thereafter, as shown in FIG. 3, aluminum 5 is deposited on the diffusion barrier 2, and the aluminum 5 is heat-treated so as to diffuse into the grain boundary 4 of the diffusion barrier 2.
도 4를 참조하면, 열처리 후 표면에 남은 알루미늄이 제거되며, 확산방지막(6)의 결정립계(7)로 확산된 알루미늄은 이에 포함된 산소와 결합하여 알루미늄 산화물이 된다. 이로써 확산 방지막(6)은 알루미늄 산화물로 충진된다.Referring to FIG. 4, aluminum remaining on the surface after heat treatment is removed, and aluminum diffused to the grain boundary 7 of the diffusion barrier 6 is combined with oxygen to form aluminum oxide. As a result, the diffusion barrier 6 is filled with aluminum oxide.
이와 같이 형성된 확산 방지막(6)은 결정립계에 충진된 알루미늄 산화물에 의해 구리의 확산 경로가 모두 차단된다.In the diffusion barrier layer 6 formed as described above, all the diffusion paths of copper are blocked by the aluminum oxide filled in the grain boundary.
이상 설명한 바와 같은 본 발명의 반도체 제조 공정의 확산 방지막 형성 방법은 확산 방지막 내의 구리 확산 경로가 모두 차단되도록하므로, 이에 의해 형성된 구리 배선의 확산 방지막은 구리 확산 방지 효과가 현저히 향상된다.Since the diffusion barrier film forming method of the semiconductor manufacturing process of the present invention as described above allows all of the copper diffusion paths in the diffusion barrier film to be blocked, the diffusion barrier film of the copper wiring formed thereby significantly improves the copper diffusion prevention effect.
한편, 본 발명은 상술한 실시예로만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위내에서 수정 및 변형하여 실시할 수 있고, 이러한 수정 및 변경 등은 이하의 특허 청구의 범위에 속하는 것으로 보아야 할 것이다.On the other hand, the present invention is not limited to the above-described embodiment, but can be modified and modified within the scope not departing from the gist of the present invention, such modifications and changes should be regarded as belonging to the following claims. will be.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000082545A KR20020053190A (en) | 2000-12-27 | 2000-12-27 | Method for forming diffusion barrier layer in semiconductor process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000082545A KR20020053190A (en) | 2000-12-27 | 2000-12-27 | Method for forming diffusion barrier layer in semiconductor process |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020053190A true KR20020053190A (en) | 2002-07-05 |
Family
ID=27686420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000082545A Withdrawn KR20020053190A (en) | 2000-12-27 | 2000-12-27 | Method for forming diffusion barrier layer in semiconductor process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020053190A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100420598B1 (en) * | 2001-11-28 | 2004-03-02 | 동부전자 주식회사 | Method for formation copper diffusion barrier a film by using aluminum |
KR20200012139A (en) | 2018-07-26 | 2020-02-05 | (주)윈앤텍코리아 | Oil mist air supply device |
-
2000
- 2000-12-27 KR KR1020000082545A patent/KR20020053190A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100420598B1 (en) * | 2001-11-28 | 2004-03-02 | 동부전자 주식회사 | Method for formation copper diffusion barrier a film by using aluminum |
KR20200012139A (en) | 2018-07-26 | 2020-02-05 | (주)윈앤텍코리아 | Oil mist air supply device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100856023B1 (en) | Copper wiring structure and method including diffusion barrier | |
JP3386385B2 (en) | Method for manufacturing silicon integrated circuit | |
KR100446300B1 (en) | Method for forming metal interconnections of semiconductor device | |
US5447887A (en) | Method for capping copper in semiconductor devices | |
JP3732048B2 (en) | Method for forming multilayer TiN film | |
US6194310B1 (en) | Method of forming amorphous conducting diffusion barriers | |
KR100546943B1 (en) | Semiconductor Device Formation Method | |
KR100227287B1 (en) | A buried conductive layer and its formation method | |
US6133147A (en) | Process for selective metal deposition in holes of semiconductor device | |
US6410986B1 (en) | Multi-layered titanium nitride barrier structure | |
KR19990013826A (en) | Process for Forming Semiconductor Device | |
US6602782B2 (en) | Methods for forming metal wiring layers and metal interconnects and metal interconnects formed thereby | |
US5895267A (en) | Method to obtain a low resistivity and conformity chemical vapor deposition titanium film | |
KR100455382B1 (en) | Method for forming metal interconnections of semiconductor device having dual damascene structure | |
US20070197015A1 (en) | Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer | |
US6432820B1 (en) | Method of selectively depositing a metal layer in an opening in a dielectric layer by forming a metal-deposition-prevention layer around the opening of the dielectric layer | |
JPH07321112A (en) | Metal wiring formation of semiconductor element | |
US20070152334A1 (en) | Semiconductor device and manufacturing method | |
US6579789B2 (en) | Method for fabricating metal wiring and the metal wiring | |
KR20020053190A (en) | Method for forming diffusion barrier layer in semiconductor process | |
KR20040053457A (en) | Method For Manufacturing Semiconductor Devices | |
KR930002672B1 (en) | Metal wiring method using amorphous titanium-nitride film | |
US7524749B2 (en) | Metallization method of semiconductor device | |
KR100336655B1 (en) | Method for forming metal wiring in semiconductor device | |
JP2004311545A (en) | Semiconductor device manufacturing method and high melting point metal film deposition apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20001227 |
|
PG1501 | Laying open of application | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20041006 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PC1203 | Withdrawal of no request for examination | ||
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |