KR20020049826A - Electronic control semi-active suspension - Google Patents
Electronic control semi-active suspension Download PDFInfo
- Publication number
- KR20020049826A KR20020049826A KR1020000079121A KR20000079121A KR20020049826A KR 20020049826 A KR20020049826 A KR 20020049826A KR 1020000079121 A KR1020000079121 A KR 1020000079121A KR 20000079121 A KR20000079121 A KR 20000079121A KR 20020049826 A KR20020049826 A KR 20020049826A
- Authority
- KR
- South Korea
- Prior art keywords
- value
- damping force
- active suspension
- roll
- electronically controlled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/016—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
- B60G17/0162—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/016—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
- B60G17/0164—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during accelerating or braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/018—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/20—Speed
- B60G2400/204—Vehicle speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/40—Steering conditions
- B60G2400/41—Steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/18—Automatic control means
- B60G2600/184—Semi-Active control means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/18—Automatic control means
- B60G2600/188—Spectral analysis; Transformations
- B60G2600/1881—Integral
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/60—Signal noise suppression; Electronic filtering means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/90—System Controller type
- B60G2800/91—Suspension Control
- B60G2800/912—Attitude Control; levelling control
- B60G2800/9122—ARS - Anti-Roll System Control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/30—Sensors
- B60Y2400/304—Acceleration sensors
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
본 발명은 전자 제어 반능동 현가 장치에 관한 것으로, 인장 행정시 감쇠력을 조절하는 가변 밸브와 압축 행정시 감쇠력을 조절하는 가변 밸브가 독립적으로 구성되어 인장 및 압축 행정별로 감쇠력 사양을 조절할 수 있는 감쇠력 가변 댐퍼를 채용한 전자 제어 반능동 현가 장치에 있어서, 차륜들의 수직 가속도에 대응하여 감쇠력을 제어하기 위한 승차감 값()과 차체 수직 속도()를 검출하는 승차감 제어 로직(20)과, 차량의 차속 및 조향각에 대응하여 감쇠력을 조절하기 위한 롤 값()을 산출하는 안티 롤 제어 로직(30)과, 승차감 값()과 차체 수직 속도()에 따라 각 차륜의 인장용 가변 밸브 및 압축용 가변 밸브의 감쇠력을 조절하여 스카이-훅 제어를 구현하며, 롤 값()에 따라 각 차륜의 인장용 가변 밸브 및 압축용 가변 밸브의 감쇠력을 조절하여 조향시 생기는 롤 현상을 억제하는 댐퍼 제어 회로(40)를 포함하여, 승차감 제어 로직을 통하여 스카이-훅 제어를 구현함과 아울러 안티 롤 제어 로직을 통하여 조향시 생기는 롤 현상을 억제할 수 있는 이점이 있다.The present invention relates to an electronically controlled semi-active suspension device, wherein a variable valve for adjusting the damping force in the tension stroke and a variable valve for adjusting the damping force in the compression stroke are independently configured to adjust the damping force specification for each tension and compression stroke. In an electronically controlled semi-active suspension system employing a damper, a ride comfort value for controlling the damping force corresponding to the vertical acceleration of the wheels ( ) And body vertical speed ( ) And a ride value control logic 20 for detecting a roll value for adjusting the damping force corresponding to the vehicle speed and steering angle of the vehicle ( ), The anti-roll control logic 30 that calculates the riding comfort value ( ) And body vertical speed ( Sky-hook control is implemented by adjusting the damping force of the variable valve for compression and the variable valve for compression of each wheel according to the Sky-hook control is implemented through the ride comfort control logic, including a damper control circuit 40 that controls the damping force of the tension variable valve and the compression variable valve of each wheel according to In addition, through the anti-roll control logic there is an advantage that can suppress the roll phenomenon generated during steering.
Description
본 발명은 차량의 전자 제어 반능동 현가 장치에 관한 것으로, 더욱 상세하게는 차체가 들리는 인장(rebound) 행정시 감쇠력을 조절하는 가변 밸브와 차체가 가라앉는 압축(compression) 행정시 감쇠력을 조절하는 가변 밸브가 독립적으로 구성되어 인장 및 압축 행정별로 감쇠력 사양을 조절할 수 있는 자기 유변(Magneto-Rheological Fluid, MR) 유체를 이용한 독립 구동 밸브식 감쇠력 가변 댐퍼를 채용하여 승차감 제어 로직을 통하여 스카이-훅(sky-hook) 제어를 구현함과 아울러 안티 롤 제어 로직을 통하여 조향시 생기는 롤 현상을 억제하도록 한 전자 제어 반능동 현가 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronically controlled semi-active suspension of a vehicle. More particularly, the present invention relates to a variable valve for adjusting damping force during a rebound stroke in which a vehicle body is lifted and a variable for adjusting damping force in a compression stroke in which a car body sinks. Independently operated valve-type damping force variable dampers using magnetic-Rheological Fluid (MR) fluids that can be independently configured to adjust the damping force specification for each tension and compression stroke, so that the sky-hook (sky-hook) The present invention relates to an electronically controlled semi-active suspension device that implements control and suppresses a roll phenomenon during steering through anti-roll control logic.
현가 장치는 차축과 차체를 연결하여 주행 중에 차축이 노면으로부터 받는 진동이나 충격이 차체에 직접 전달되지 않도록 하여 차체와 화물의 손상을 방지하고 승차감을 좋게 하는 장치이다. 또한 현가 장치는 구동 바퀴에서 발생하는 구동력이나 제동시 각 바퀴의 제동력을 차체에 전달함과 동시에 선회시의 원심력에도 견디고 각 바퀴를 차체에 대해서 올바른 위치에 유지하는 역할도 가지고 있다.Suspension device is a device that connects the axle and the body so that the vibration or shock received from the road surface while driving is not directly transmitted to the vehicle body to prevent damage to the body and cargo and improve ride comfort. In addition, the suspension system transmits the driving force generated from the driving wheels or the braking force of each wheel during braking to the vehicle body, and also withstands the centrifugal force during the turning and maintains each wheel in the correct position with respect to the vehicle body.
한편, 전자 제어 반능동 현가 장치에서는 차량내에 각종 센서를 부착하고, 센서로부터의 정보에 따라 댐퍼의 운동특성을 실시간으로 가변시켜 승차감 및 조정 안정성을 향상시키고 있다.On the other hand, in the electronically controlled semi-active suspension device, various sensors are mounted in the vehicle, and the motion characteristics of the damper are varied in real time according to the information from the sensor to improve ride comfort and adjustment stability.
그런데, 이러한 반능동 현가 장치에서는 어떠한 센서 및 댐퍼를 사용하고, 센서로부터의 정보를 어떠한 방식으로 이용하여 댐퍼를 제어하느냐에 따라 그 효율이 극히 상이하므로 가장 효율적으로 댐퍼를 제어할 수 있는 장치의 개발이 요망되고 있다.However, in such a semi-active suspension device, the efficiency is extremely different depending on which sensor and damper is used and how the information from the sensor is used to control the damper. It is requested.
반능동 현가 장치는 4륜의 감쇠력을 독립적으로 제어함으로서 독립 현가 시스템의 장점을 최대한 보장하여 주는 시스템으로서, 각 차륜의 상단 차체에는 수직 가속도 센서가 부착되어 차륜 각각의 거동을 측정, 독립적인 제어를 가능하게 한다.The semi-active suspension system independently controls the damping force of the four wheels to maximize the advantages of the independent suspension system. A vertical acceleration sensor is attached to the upper body of each wheel to measure the behavior of each wheel and provide independent control. Make it possible.
이러한 반능동 현가 장치의 주요 구성요소는 수직 가속도 센서, 조향각 센서, 댐퍼 및 엑츄에이터, 전자제어기로 이루어진다.The main components of this semi-active suspension consist of a vertical acceleration sensor, steering angle sensor, damper and actuator, and electronic controller.
종래 기술에 의하면, 댐퍼는 감쇠력 가변식 댐퍼가 채용되었으며, 이러한 감쇠력 가변식 댐퍼로는 리버스형 반능동 댐퍼(Reverse type Semi-active Damper)와 노말형 반능동 댐퍼(Normal type Semi-active Damper)가 존재하였다.According to the prior art, a damper variable damper is employed, and such damping force variable dampers include a reverse type semi-active damper and a normal type semi-active damper. Existed.
리버스형 반능동 댐퍼를 이용한 리버스 제어 로직은 차체의 속도 계측만으로 스카이-훅 제어가 가능한 장점을 갖는다. 차체가 들리는 인장 행정시 감쇠력 모드를 하드/소프트로 조절하고, 차체가 가라앉는 압축 행정시 감쇠력 모드를 소프트/하드로 조절한다. 이렇게 하면 스카이-훅 제어가 구현되는 것이다.Reverse control logic using reverse type semi-active damper has the advantage that the sky-hook control is possible only by measuring the speed of the body. Adjusts the damping force mode to hard / soft during the tension stroke where the body is lifted and soft / hard to adjust the damping force mode during the compression stroke when the body sinks. This implements sky-hook control.
여기서, 설명의 이해를 돕기 위하여 "스카이-훅 제어"에 관하여 간략히 설명하면 다음과 같다.Here, briefly described with respect to the "sky-hook control" to help understand the description as follows.
지면에 대한 차체 수직 속도를 Vs, 지면에 대한 차축 수직 속도를 Vu, 댐퍼 작동 속도인 Vs- Vu를 Vd라 할 때에,When the vertical velocity of the body to the ground is V s , the vertical velocity of the axle to the ground is V u , and the damper operating speed V s -V u is defined as V d ,
만약, Vs〉0 이면 댐퍼의 감쇠력 모드를 하드/소프트로 설정하여 인장 행정시 Vd〉0 인 하드 감쇠력을 제공하고, 압축 행정시 Vd〈 0 인 소프트 감쇠력을 제공한다. 반면 Vs〈 0 이면 댐퍼의 감쇠력 모드를 소프트/하드로 설정하여 인장 행정시 Vd〉0 인 소프트 감쇠력을 제공하고, 압축 행정시 Vd〈 0 인 하드 감쇠력을 제공한다.If V s > 0, the damper force mode of the damper is set to hard / soft to provide a hard damping force of V d > 0 in the tension stroke and a soft damping force of V d < 0 in the compression stroke. On the other hand, if V s <0, the damper force mode of the damper is set to soft / hard to provide a soft damping force of V d > 0 in the tension stroke and a hard damping force of V d <0 in the compression stroke.
이러한 스카이-훅 제어를 정리하면 다음의 수학식 1로 나타난다.This sky-hook control is summarized in the following equation.
그러나, 전술한 리버스형 반능동 댐퍼를 이용하는 리버스 제어 로직은 조향시 생기는 롤 현상을 억제하는 안티-롤 로직을 구현하기에 필요한 스포티한 댐퍼(하드/하드)의 감쇠력을 제공하지 못하는 문제점이 있다.However, the reverse control logic using the reverse type semi-active damper described above does not provide the damping force of the sporty damper (hard / hard) necessary to implement the anti-roll logic to suppress the roll phenomenon generated during steering.
이에 반하여, 노말형 반능동 댐퍼를 이용하는 노말 제어 로직은 조향시 생기는 롤 현상을 억제하고 완벽한 스포티 모드의 하드 감쇠력을 이용한 로직을 구현할 수 있으나, 차체와 차축 속도에 대한 정보를 알고 있어야 하므로 센서의 개수가 더 많아야만 스카이-훅 제어를 구현할 수 있는 문제점이 있다.On the other hand, the normal control logic using the normal semi-active damper can suppress the roll phenomenon during steering and implement the logic using the hard damping force of the perfect sporty mode, but the number of sensors must be known because the information about the body and the axle speed must be known. There is a problem that sky-hook control can be implemented only when there are more.
따라서, 리버스 제어 로직과 노말 제어 로직의 장점만을 살릴 수 있는 새로운 댐퍼 및 이에 적용할 수 있는 최적한 제어 로직의 개발이 절실한 요구 과제로 부각되었다.Therefore, the development of a new damper that can only take advantage of the reverse control logic and normal control logic, and the development of the optimum control logic that can be applied to it is an urgent requirement.
종래에는 가제어성 유체의 일종인 전기 유변(ER) 유체에 대한 연구가 선형 댐퍼, 마운트 등 주로 반능동 장치에서 이루어졌으나 최근 들어서는 ER 유체의 빠른 응답 속도의 장점은 그대로 가지고 있으면서 낮은 항복 응력, 좁은 사용 온도 범위, 특히 불순물에 대한 민감성 등의 단점을 극복한 자기 유변(Magneto-Rheological Fluid; MR) 유체에 대한 연구가 활발히 진행되고 있다.In the past, research on electric rheological (ER) fluids, which is a type of controllable fluid, has been mainly conducted in semi-active devices such as linear dampers and mounts. However, in recent years, the ER fluid has the advantages of fast response speed while maintaining low yield stress and narrow use. Magnetic-Rheological Fluid (MR) fluids that overcome the shortcomings such as temperature range, especially susceptibility to impurities, are being actively researched.
MR 유체란 실리콘 오일 또는 미네랄 오일 등의 비전도성 용매 속에 미크론 크기의 자성을 가질 수 있는 입자들을 분산시킨 비콜로이드 용액으로, 자기장이 부하되지 않은 경우는 분산 입자가 뉴튼 유체 성질을 띠지만 자기장이 부하되면 분산 입자가 분극화를 일으켜 부하된 자기장과 평행한 방향으로 섬유질이 형성되어 전단력이나 유동에 대한 저항력을 가지는 유체이다.MR fluid is a non-colloidal solution in which micron-sized particles are dispersed in a non-conductive solvent such as silicone oil or mineral oil.If the magnetic field is not loaded, the dispersed particles have Newtonian fluid properties but the magnetic field is loaded. In this case, the dispersed particles are polarized to form fibers in a direction parallel to the loaded magnetic field, thereby having a shear force or a resistance to flow.
본 발명은 전술한 종래의 요구 과제를 해결하기 위한 연구 개발의 한 결과로서, 인장 행정시 감쇠력을 조절하는 가변 밸브와 압축 행정시 감쇠력을 조절하는 가변 밸브가 독립적으로 구성되어 인장 및 압축 행정별로 감쇠력 사양을 조절할 수 있는 MR 유체를 이용한 독립 구동 밸브식 감쇠력 가변 댐퍼를 채용하여 승차감 제어 로직을 통하여 스카이-훅 제어를 구현함과 아울러 안티 롤 제어 로직을 통하여 조향시 생기는 롤 현상을 억제하도록 한 전자 제어 반능동 현가 장치를 제공하는 데 그 목적이 있다.The present invention is a result of the research and development for solving the above-mentioned conventional requirements, the variable valve for controlling the damping force during the tension stroke and the variable valve for controlling the damping force during the compression stroke is independently configured to damping force for each tension and compression stroke Independent drive valve type damping force variable damper using MR fluid with adjustable specification realizes sky-hook control through ride comfort control logic and anti-roll control logic to suppress roll phenomenon during steering The purpose is to provide a semi-active suspension device.
이와 같은 목적을 실현하기 위한 본 발명에 따른 전자 제어 반능동 현가 장치는, 인장 행정시 감쇠력을 조절하는 가변 밸브와 압축 행정시 감쇠력을 조절하는가변 밸브가 독립적으로 구성되어 인장 및 압축 행정별로 감쇠력 사양을 조절할 수 있는 감쇠력 가변 댐퍼를 채용한 전자 제어 반능동 현가 장치에 있어서, 차륜들의 수직 가속도에 대응하여 감쇠력을 제어하기 위한 승차감 값()과 차체 수직 속도()를 검출하는 승차감 제어 로직(20)과; 차량의 차속 및 조향각에 대응하여 감쇠력을 조절하기 위한 롤 값()을 산출하는 안티 롤 제어 로직(30)과; 상기 승차감 값()과 차체 수직 속도()에 따라 각 차륜의 상기 인장용 가변 밸브 및 압축용 가변 밸브의 감쇠력을 조절하여 스카이-훅 제어를 구현하며, 상기 롤 값()에 따라 각 차륜의 상기 인장용 가변 밸브 및 압축용 가변 밸브의 감쇠력을 조절하여 조향시 생기는 롤 현상을 억제하는 댐퍼 제어 회로(40)를 포함한다.The electronically controlled semi-active suspension device according to the present invention for realizing such an object is characterized in that the variable valve for adjusting the damping force during the tension stroke and the variable valve for regulating the damping force during the compression stroke are independently configured to have a damping force specification for each tension and compression stroke. In the electronically controlled semi-active suspension system employing a variable damper capable of adjusting the damping force, a ride comfort value for controlling the damping force corresponding to the vertical acceleration of the wheels ( ) And body vertical speed ( Ride comfort control logic 20 for detecting (); Roll value for adjusting the damping force corresponding to the vehicle speed and steering angle of the vehicle ( Anti-roll control logic (30) for calculating; The ride comfort value ( ) And body vertical speed ( Sky-hook control is implemented by adjusting the damping force of the variable valve for compression and the variable valve for compression of each wheel according to), and the roll value ( And a damper control circuit 40 for controlling the damping force of the tension variable valve and the compression variable valve of each wheel to suppress a roll phenomenon generated during steering.
도 1은 본 발명을 채용하기 위한 자기 유변 유체를 이용한 독립 구동 밸브식 감쇠력 가변 댐퍼의 구성도,1 is a block diagram of an independent drive valve damping force variable damper using a magnetic rheological fluid for employing the present invention,
도 2는 본 발명에 따른 전자 제어 반능동 현가 장치의 블록 구성도,2 is a block diagram of an electronically controlled semi-active suspension device according to the present invention;
도 3은 본 발명에 따른 전자 제어 반능동 현가 장치에서 승차감 제어 로직의 블록 구성도,3 is a block diagram of a ride comfort control logic in an electronically controlled semi-active suspension device according to the present invention;
도 4는 본 발명에 따른 전자 제어 반능동 현가 장치에서 안티롤 제어 로직의 블록 구성도이다.4 is a block diagram of anti-roll control logic in the electronically controlled semi-active suspension device according to the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
10 : 댐퍼 11 : 가변 밸브 뭉치10 damper 11: variable valve bundle
12 : 피스톤 로드 20 : 승차감 제어 로직12: piston rod 20: ride comfort control logic
21 : 고주파수 통과형 적분기 22 : 차체 수직 속도 RMS 검출부21: high frequency pass integrator 22: body vertical velocity RMS detector
23 : 차체 수직 속도 필터링부 30 : 안티 롤 제어 로직23 body vertical velocity filtering unit 30 anti-roll control logic
31 : 스티어링 비율 검출부 32 : 롤 값 연산부31: steering ratio detection unit 32: roll value calculation unit
S1∼S4 : 수직 가속도 센서 S5 : 차속 센서S1 to S4: Vertical acceleration sensor S5: Vehicle speed sensor
S6 : 조향각 센서S6: Steering Angle Sensor
본 발명의 실시예로는 다수개가 존재할 수 있으며, 이하에서는 첨부한 도면을 참조하여 바람직한 실시예에 대하여 상세히 설명하기로 한다. 이 실시예를 통하여 본 발명의 목적, 특징 및 이점들을 보다 잘 이해할 수 있게 된다.There may be a plurality of embodiments of the present invention. Hereinafter, preferred embodiments will be described in detail with reference to the accompanying drawings. Through this embodiment, it is possible to better understand the objects, features and advantages of the present invention.
도 1은 본 발명에 따른 전자 제어 반능동 현가 장치에 채용되는 MR 유체를 이용한 독립 구동 밸브식 감쇠력 가변 댐퍼의 구성도이다.1 is a block diagram of an independent drive valve type damping force variable damper using MR fluid employed in the electronically controlled semi-active suspension according to the present invention.
본 발명을 위한 댐퍼(10)는 측면에 가변 밸브 뭉치(11)가 부착되어 있으며, 가변 밸브 뭉치(11) 내에는 피스톤 로드(12)가 인장 행정시 감쇠력을 조절하는 인장용 가변 밸브와 피스톤 로드(12)가 압축 행정시 감쇠력을 조절하는 압축용 가변 밸브가 독립적으로 설치되어 있다.The damper 10 for the present invention has a variable valve bundle 11 is attached to the side, the variable valve bundle 11 in the tension variable valve and piston rod for adjusting the damping force during the tension stroke in the piston rod 12 (12) is independently provided with a variable valve for compression to adjust the damping force during the compression stroke.
이와 같은 독립 구동 밸브식 감쇠력 가변 댐퍼(10)는 2개의 독립된 감쇠력 조절용 밸브가 설치되어 있으므로 인장/압축 행정시의 감쇠력을 별도로 제어 할 수 있으며, MR 유체를 이용하므로 다른 가변 댐퍼가 구현할 수 없는 빠른 응답성(10msec이내)을 나타낸다. 이로서 감쇠력 사양을 인장/압축 행정별로 하드/소프트, 소프트/하드, 소프트/소프트, 하드/하드 모드로 조절할 수 있다.Since the independent driving valve damping force variable damper 10 is provided with two independent damping force adjusting valves, it is possible to separately control the damping force during tension / compression stroke, and because MR fluid is used, the other variable dampers cannot be quickly implemented. Responsiveness (within 10 msec) is shown. This allows the damping force specification to be adjusted in hard / soft, soft / hard, soft / soft and hard / hard mode for each tension / compression stroke.
도 2는 도 1에 도시된 독립 구동 밸브식 감쇠력 가변 댐퍼를 채용하는 본 발명에 따른 전자 제어 반능동 현가 장치의 개략 블록 구성도이다.2 is a schematic block diagram of an electronically controlled semi-active suspension according to the present invention employing the independent drive valve type damping force variable damper shown in FIG.
본 발명은 도시된 바와 같이 승차감 제어 로직(Ride Control Logic)(20), 안티 롤 제어 로직(Anti-Roll Control Logic)(30), 댐퍼 제어 회로(40), 각종 센서(S1∼S6)들로 구성된다.The present invention, as shown, ride control logic (Ride Control Logic) 20, anti-roll control logic (Anti-Roll Control Logic) 30, damper control circuit 40, various sensors (S1 ~ S6) It is composed.
승차감 제어 로직(20)은 차체가 들리는 인장 행정시 댐퍼(10)의 인장용 가변 밸브를 통하여 감쇠력 모드를 하드/소프트로 조절하고, 차체가 가라앉는 압축 행정시 압축용 가변 밸브를 통하여 감쇠력 모드를 소프트/하드로 조절하여 스카이-훅 제어를 구현함으로써, 차량 운동을 제어하여 승차감을 향상시킨다.The ride comfort control logic 20 adjusts the damping force mode to hard / soft through the tension variable valve of the damper 10 during the tension stroke in which the vehicle body is lifted, and adjusts the damping force mode through the variable valve for compression in the compression stroke in which the vehicle body sinks. By adjusting the soft / hard to implement the sky-hook control, the vehicle movement is controlled to improve the riding comfort.
이러한 승차감 제어 로직(20)은 도 3에 도시된 바와 같이 고주파수 통과형 적분기(21), 차체 수직 속도 RMS(Root Mean Square) 검출부(22), 차체 수직 속도 필터링부(23)를 포함한다.As shown in FIG. 3, the ride comfort control logic 20 includes a high-frequency pass integrator 21, a vehicle vertical velocity root mean square (RMS) detector 22, and a vehicle vertical velocity filter 23.
고주파수 통과형 적분기(21)에는 4개의 수직 가속도 센서(S1∼S4)가 연결되며, 이 수직 가속도 센서(S1∼S4)들은 4개의 차륜들의 수직 가속도를 각각 검출하여 고주파수 통과형 적분기(21)에 인가한다. 한편 도 2의 실시예에서는 4개의 수직가속도 센서(S1∼S4)를 사용하였으나 3개의 수직 가속도 센서만으로도 4개 차륜의 수직 가속도를 검출할 수 있다는 것은 본 발명의 당업자는 용이하게 알 수 있을 것이다.Four vertical acceleration sensors S1 to S4 are connected to the high frequency pass integrator 21, and the vertical acceleration sensors S1 to S4 detect vertical accelerations of the four wheels, respectively, to the high frequency pass integrator 21. Is authorized. Meanwhile, although four vertical acceleration sensors S1 to S4 are used in the embodiment of FIG. 2, it will be readily understood by those skilled in the art that only three vertical acceleration sensors can detect the vertical acceleration of four wheels.
아래의 수학식 2는 고주파수 통과형 적분기(21)의 z-영역(domain)과 s-영역을 나타낸 것이다.Equation 2 below shows the z-domain and s-region of the high-frequency pass integrator 21.
고주파수 통과형 적분기(21)는 수직 가속도 센서(S1∼S4)들로부터 인가된 수직 가속도 신호들 중 직류값을 포함한 저주파수의 신호를 제거하고, 수학식 3, 4와 같이 설계자의 의도에 따른 주파수 영역에서의 적분을 행함으로써 수직 속도()를 계산한다.The high-frequency pass integrator 21 removes a low frequency signal including a direct current value among the vertical acceleration signals applied from the vertical acceleration sensors S1 to S4, and a frequency domain according to a designer's intention as shown in Equations 3 and 4 By integrating at the vertical velocity ( Calculate
여기서, ζ1및 ω1은 설계 변수이다. 또한 상기 수학식 3, 4 및 이하의 수학식에서 물리량을 나타내는 알파벳의 위첨자는 필터링되는 주파수 대역을 표시하며, 모든 개별 로직은 네 개의 차륜에 대하여 각각 독립적이다.Where ζ 1 and ω 1 are design variables. In addition, the superscripts of the alphabet representing the physical quantities in Equations 3, 4 and the following Equations indicate frequency bands to be filtered, and all individual logics are independent of four wheels, respectively.
다음으로, 수직 속도()의 평균 크기를 결정하기 위하여 아래의 수학식 5, 6과 같이 수직 속도의 절대값을 취하고 0.5[㎐] 저역 통과 필터를 통하여 필터링한다.Next, the vertical speed ( In order to determine the average size of), the absolute value of the vertical velocity is taken as shown in Equations 5 and 6 and filtered through a 0.5 [㎐] low pass filter.
여기서, T는 소정 시간 지연을 위한 변수값이다.Here, T is a variable value for a predetermined time delay.
차체 수직 속도 RMS 검출부(22)는 수학식 5, 6의 출력값을 이용하여 아래의 수학식 7을 행함으로써 승차감 값(ride value)을 검출한다.The vehicle body vertical velocity RMS detector 22 detects a ride value by performing the following equation (7) using the output values of equations (5) and (6).
여기서,는 필터링을 거친 수직 속도이며,(,),(,)값은 소정의 게인값을 의미한다.here, Is the filtered vertical speed, ( , ), ( , ) Value means a predetermined gain value.
그리고, 수직 가속도 신호는 차체 수직 속도 필터링부(23)에 의하여 수학식 8, 11과 같은 특징을 갖는 10[㎐] 대역 통과 필터로 필터링한 후 수학식 9, 12와 같이 제곱하여 수학식 10, 13과 같은 특징을 갖는 3[㎐] 1차 저역 통과 필터로 필터링함으로써 그 평균값을 구한다.In addition, the vertical acceleration signal is filtered by the vehicle body vertical velocity filtering unit 23 by a 10 [㎐] band pass filter having the characteristics of Equations 8 and 11, and then squared by Equations 9 and 12, The average value is obtained by filtering with a 3 [㎐] first-order low pass filter having the same characteristics as 13.
그리고, 차체 수직 속도 필터링부(23)는 검출된 평균값 및 수학식 3, 4에서 검출한를 이용하여 차체 수직 속도()를 수학식 14와 같이 검출한다.The vehicle body vertical velocity filtering unit 23 detects the detected average value and the equations (3) and (4). With the body vertical speed ( ) Is detected as in Equation 14.
여기서,(,)는 튜닝 변수이다.here, ( , ) Is the tuning variable.
차체 수직 속도()는 후술하는 댐퍼 제어 회로(40)에 인가되며, 이 차체 수직 속도()는 입력되는 가속도 신호가 저주파일수록 커지고 고주파일수록 작아진다. 즉 차체 가속도 입력이 고주파이면 그 출력이 작아짐을 알 수 있다. 이러한 특징은 차체에 고주파 입력이 있을 경우 감쇠력을 소프트하게 유지시켜 승차감을 확보하기 위해서이다.Bodywork vertical speed ( ) Is applied to a damper control circuit 40, which will be described later, The acceleration signal that is input is larger as the curse is reduced and becomes smaller as the frequency is higher. In other words, if the vehicle acceleration input is high frequency, the output becomes small. This feature is to ensure a comfortable ride by maintaining a soft damping force when there is a high frequency input to the vehicle body.
안티 롤 제어 로직(30)은 차량의 조향시에 댐퍼의 감쇠력을 높임으로써 차량의 롤 운동을 억제하기 위한 것으로서, 도 4에 도시된 바와 같이 차속 센서(S5) 및 조향각 센서(S6)와 연결되어 있다. 즉 안티 롤 제어 로직(30)은 운전자의 조향 입력을 감지하고 차체 거동의 과동 영역(transient)을 제어하기 위한 것으로서, 조향각 센서(S6)로부터 신호를 입력하여 조향 각속도를 검출하고, 이 조향 각속도에 차속 센서(S5)로부터의 차속을 고려하여 횡가속도의 변화량과 롤 값(roll value)을 검출하기 위한 것이다.The anti-roll control logic 30 is to suppress the roll motion of the vehicle by increasing the damping force of the damper during steering of the vehicle, and is connected to the vehicle speed sensor S5 and the steering angle sensor S6 as shown in FIG. 4. have. That is, the anti-roll control logic 30 detects the steering input of the driver and controls the transient area of the body behavior. The anti-roll control logic 30 detects the steering angular velocity by inputting a signal from the steering angle sensor S6, and applies the steering angular velocity to the steering angular velocity. The change amount of the lateral acceleration and the roll value are detected in consideration of the vehicle speed from the vehicle speed sensor S5.
한편, 댐퍼의 감쇠력은 상하 수직 속도에 대한 함수이므로 롤 값에는 롤 속도에 대한 정보가 포함되어 있어야 한다. 여기서, 롤 각도(roll angle)를 나타내는 롤 속도는 횡 가속도()에 비례하며, 횡 가속도()는 조향 각 변위와 차속으로부터 구할 수 있다. 롤 속도의 미분값은 횡 가속도()의 변화량으로 구해지므로 조향 각 속도를 검출하여 롤 값을 계산한다.On the other hand, the damping force of the damper is a function of the vertical speed up and down, so the roll value should contain information about the roll speed. Here, the roll speed representing the roll angle is the lateral acceleration ( Is proportional to the lateral acceleration ( ) Can be obtained from steering angle displacement and vehicle speed. The derivative of the roll speed is the lateral acceleration ( It is calculated by the amount of change of), and the roll value is calculated by detecting the steering angle speed.
스티어링 비율 검출부(31)는 수학식 15를 이용하여 조향 입력 각에 대한 차륜의 움직임인 횡 가속도()를 스티어링 비율()로서 검출한다.The steering ratio detector 31 uses the equation 15 to determine the lateral acceleration, which is the movement of the wheel with respect to the steering input angle. ) The steering ratio ( Detection).
여기서,은 스티어링 기어 비율(steering gear ratio),는 스티어링 휠 각 비율(steering wheel angle rate)(degree/sec),은 휠 베이스(wheel base),는 차량 속도(m/sec), 그리고는 특징 속도(characteristic speed)이다.here, Is the steering gear ratio, Is the steering wheel angle rate (degree / sec), Silver wheel base, Is the vehicle speed (m / sec), and Is the characteristic speed.
한편, 실제 시스템에서는 조향 입력에 대한 횡 가속도()의 출력이 1차 지연(1st order delay)을 가지므로 수학식 16, 17에서와 같이 횡 가속도()을 저주파 필터링하여 그 결과값 즉 횡 가속도값()을 구하여야 한다.On the other hand, in a real system, the lateral acceleration for steering input ( ) Has a first order delay, so the lateral acceleration ( ), The low frequency filtering results in a lateral acceleration ) Should be obtained.
스티어링 비율 검출부(31)에서의 횡 가속도()값은 롤 값 연산부(32)에 인가되며, 롤 값 연산부(32)는 수학식 18을 행하여 롤 값()을 구한다.Lateral acceleration in the steering ratio detector 31 ( ) Value is applied to the roll value calculator 32, and the roll value calculator 32 performs the equation (18) to determine the roll value ( )
여기서,(,)은 소정 게인값을 의미하는 변수로서, 수학식 19를 통하여 구할 수 있다. λ은 슬립율(slip ratio),과는 리어와 프론트 휠 반지름,와는 리어와 프론트 휠 속도이다.here, ( , ) Is a variable representing a predetermined gain value, and can be obtained through Equation 19. λ is the slip ratio, and Is the rear and front wheel radius, Wow Is the rear and front wheel speed.
댐퍼 제어 회로(40)는 상술한 각 로직(20,30)으로부터의 신호들을 종합하여 수학식 20를 행함으로써 각 차륜에 적용되어야 할 감쇠력()을 결정하여 댐퍼(10)의 측면에 부착된 가변 밸브 뭉치(11) 내 인장용 가변 밸브와 압축용 가변 밸브를 구동한다.The damper control circuit 40 combines the signals from each of the above-described logics 20 and 30 to perform equation (20) to apply damping force to each wheel ( ) To drive the variable and tension variable valves in the variable valve bundle 11 attached to the side of the damper 10.
여기서,은 인장 밸브 감쇠력,는 압축 밸브 감쇠력이다.here, Silver tension valve damping force, Is the compression valve damping force.
수학식 20를 통하여과가 구하여지면 다음의 수학식 21, 22를 통하여 최종적으로 인장 전류()와 압축 전류()를 산출한다.Through Equation 20 and When the tensile current is finally obtained through the following equations 21 and 22, ) And compression current ( ) Is calculated.
댐퍼 제어 회로(40)는 승차감 제어 로직(20)을 통하여 입력되는 승차감 값()과 차체 수직 속도()에 따라 산출된 인장 전류()와 압축 전류()에 의거하여 댐퍼(10)의 인장용 가변 밸브와 압축용 가변 밸브를 개별 제어함으로써 스카이-훅 제어를 구현하며, 안티 롤 제어 로직(30)을 통하여 입력되는 롤 값()에 따라 산출된 인장 전류()와 압축 전류()에 의거하여 댐퍼(10)의 인장용 가변 밸브와 압축용 가변 밸브를 개별 제어함으로써 스포티 모드의 하드 감쇠력을 이용하여 조향시 생기는 롤 현상을 억제한다.The damper control circuit 40 has a ride comfort value inputted through the ride comfort control logic 20. ) And body vertical speed ( Calculated according to) ) And compression current ( Sky-hook control is implemented by individually controlling the tension variable valve and the compression variable valve of the damper 10 according to the present invention, and the roll value input through the anti-roll control logic 30 ( Calculated according to) ) And compression current ( By controlling the tension variable valve and the compression variable valve of the damper 10 separately, the roll phenomenon generated during steering using the hard damping force of the sporty mode is suppressed.
또한, 본 발명에 따라 MR 유체를 이용하는 독립 구동 밸브식 감쇠력 가변 댐퍼(10) 및 안티 롤 제어 로직(30)은 현재 보편화되고 있는 브레이크 시스템(ABS, VDC, TCS)의 4 휠 속도 센서, 요 레이트(yaw rate) 센서, 압력 센서를 활용하면 안티 롤 측면뿐만 아니라 차량 제동 및 거동에 필요한 서스펜션 성능을 확보할 수 있다. 휠 정보를 활용하여 대응하기 위해서는 감쇠력이 최대한 빠르게 가변 되어야 하는데, 본 발명의 댐퍼는 감쇠력 가변 특성을 가질 뿐만 하니라 MR 유체를 이용하므로 다른 가변 댐퍼가 구현할 수 없는 10msec이내의 빠른 응답성을 갖기 때문이다.In addition, the independent drive valve type damping force variable damper 10 and the anti-roll control logic 30 using MR fluid according to the present invention are the four-wheel speed sensor, yaw rate of the brake system ABS, VDC, TCS that are currently common. The yaw rate sensor and pressure sensor provide the suspension performance required for vehicle braking and behavior as well as the anti-roll side. In order to cope with the wheel information, the damping force should be varied as fast as possible. This is because the damper of the present invention not only has variable damping force characteristics but also has a fast response within 10 msec that cannot be implemented by other variable dampers because it uses MR fluid. .
전술한 바와 같은 본 발명은 차체가 들리는 인장 행정시 감쇠력을 조절하는 가변 밸브와 차체가 가라앉는 압축 행정시 감쇠력을 조절하는 가변 밸브가 독립적으로 구성되어 인장 및 압축 행정별로 감쇠력 사양을 조절할 수 있는 자기 유변 유체를 이용한 독립 구동 밸브식 감쇠력 가변 댐퍼를 채용하여 승차감 제어 로직을 통하여 스카이-훅 제어를 구현함과 아울러 안티 롤 제어 로직을 통하여 조향시 생기는 롤 현상을 억제할 수 있는 효과가 있다.As described above, the present invention is a magnetic valve capable of adjusting the damping force specification for each of the tension and compression stroke is independently composed of a variable valve for adjusting the damping force during the tension stroke to lift the vehicle body and a variable valve for adjusting the damping force during the compression stroke to sink the vehicle body. Independent driving valve type damping force variable damper using rheological fluid is adopted to implement the sky-hook control through the ride comfort control logic and also to suppress the roll phenomenon caused by steering through the anti-roll control logic.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000079121A KR20020049826A (en) | 2000-12-20 | 2000-12-20 | Electronic control semi-active suspension |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000079121A KR20020049826A (en) | 2000-12-20 | 2000-12-20 | Electronic control semi-active suspension |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020049826A true KR20020049826A (en) | 2002-06-26 |
Family
ID=27683776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000079121A Ceased KR20020049826A (en) | 2000-12-20 | 2000-12-20 | Electronic control semi-active suspension |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020049826A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100394142B1 (en) * | 2001-02-28 | 2003-08-09 | 주식회사 만도 | Method for controlling a ride control of semi-active suspension system |
KR100831895B1 (en) * | 2006-09-15 | 2008-05-23 | 부산대학교 산학협력단 | Control Method of Semi-active Suspension for Vehicle |
KR100905671B1 (en) * | 2007-09-03 | 2009-06-30 | 부산대학교 산학협력단 | Motion Equation of All Vehicle Models and Control Method of Semi-active Suspension System of Vehicle Using Low-pass Filter and High-pass Filter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02151513A (en) * | 1988-12-02 | 1990-06-11 | Mitsubishi Motors Corp | Active suspension for vehicles |
JPH05193320A (en) * | 1992-01-21 | 1993-08-03 | Nissan Motor Co Ltd | Active suspension |
KR20000027739A (en) * | 1998-10-29 | 2000-05-15 | 밍 루 | Electro control suspension apparatus |
KR20000055865A (en) * | 1999-02-10 | 2000-09-15 | 밍 루 | Electronic suspension apparatus |
-
2000
- 2000-12-20 KR KR1020000079121A patent/KR20020049826A/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02151513A (en) * | 1988-12-02 | 1990-06-11 | Mitsubishi Motors Corp | Active suspension for vehicles |
JPH05193320A (en) * | 1992-01-21 | 1993-08-03 | Nissan Motor Co Ltd | Active suspension |
KR20000027739A (en) * | 1998-10-29 | 2000-05-15 | 밍 루 | Electro control suspension apparatus |
KR20000055865A (en) * | 1999-02-10 | 2000-09-15 | 밍 루 | Electronic suspension apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100394142B1 (en) * | 2001-02-28 | 2003-08-09 | 주식회사 만도 | Method for controlling a ride control of semi-active suspension system |
KR100831895B1 (en) * | 2006-09-15 | 2008-05-23 | 부산대학교 산학협력단 | Control Method of Semi-active Suspension for Vehicle |
KR100905671B1 (en) * | 2007-09-03 | 2009-06-30 | 부산대학교 산학협력단 | Motion Equation of All Vehicle Models and Control Method of Semi-active Suspension System of Vehicle Using Low-pass Filter and High-pass Filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6507778B2 (en) | Apparatus for controlling semi-active suspension system | |
US7340334B2 (en) | Control device of variable damping force damper | |
EP2022655B1 (en) | Control apparatus of a variable damping force damper | |
JP3066445B2 (en) | Vehicle suspension system | |
CN102729761B (en) | Suspension | |
EP0752331B1 (en) | Automotive vehicle suspension control system | |
EP2072293B1 (en) | Damping characteristics control apparatus for a vehicle suspension | |
EP2179873B1 (en) | Apparatus for controlling damping force, taking account of human sensitivity, as described by the Weber-Fechner law. | |
US8855856B2 (en) | Vehicle roll control method using controllable friction force of MR dampers | |
CN102131663A (en) | Method and apparatus for controlling a semi-active suspension system of a motorcycle | |
EP2537691B1 (en) | Damping force control device for vehicle | |
US20080234896A1 (en) | Control apparatus of variable damping force damper | |
EP1219475A1 (en) | Apparatus for controlling semi-active suspension system | |
JP2002219921A (en) | Control device for semiactive suspension system | |
KR20000027739A (en) | Electro control suspension apparatus | |
WO2017159369A1 (en) | Damper control device, and suspension device | |
JP4515240B2 (en) | Control device for suspension system for vehicle | |
KR20020049826A (en) | Electronic control semi-active suspension | |
KR101071896B1 (en) | Continuously variable MR damper control system using body acceleration and relative displacement of damper | |
JP4421985B2 (en) | Road surface condition judgment method | |
JP3475152B2 (en) | Vehicle suspension device | |
JP2009137342A (en) | Control device for damping force variable damper | |
JP3080254B2 (en) | Vehicle suspension system | |
KR20020045771A (en) | Ride control apparatus and method, semi-active suspension system for automobile using it | |
JP3379742B2 (en) | Vehicle suspension system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20001220 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20011123 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20001220 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20040622 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20041115 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20040622 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |