KR20020032991A - Line Delay Effect Compensated MIM LCD - Google Patents
Line Delay Effect Compensated MIM LCD Download PDFInfo
- Publication number
- KR20020032991A KR20020032991A KR1020000063822A KR20000063822A KR20020032991A KR 20020032991 A KR20020032991 A KR 20020032991A KR 1020000063822 A KR1020000063822 A KR 1020000063822A KR 20000063822 A KR20000063822 A KR 20000063822A KR 20020032991 A KR20020032991 A KR 20020032991A
- Authority
- KR
- South Korea
- Prior art keywords
- mim
- pixel
- liquid crystal
- crystal display
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000694 effects Effects 0.000 title abstract description 10
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 12
- 230000007423 decrease Effects 0.000 abstract description 3
- 239000012212 insulator Substances 0.000 abstract description 3
- 230000001502 supplementing effect Effects 0.000 abstract description 2
- 239000011521 glass Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 239000010407 anodic oxide Substances 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1345—Conductors connecting electrodes to cell terminals
- G02F1/13452—Conductors connecting driver circuitry and terminals of panels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
본발명은 MIM(Metal Insulator Metal) 액정표시소자의 신호지연(line delay)의 효과를 줄인 것이다. MIM 액정표시소자는 신호선이 투명도전막인 ITO로 금속에 비하여 저항이 매우 크기 때문에 신호지연으로 밝기가 균등하지 않다. 또한 화면이 커질수록 주사선의 저항도 커지고 또한 MIM 소자와 화소의 정전용량이 커지기 때문에 신호지연이 매우 중요한 설계 요소가 된다. 본발명에서는 신호지연의 효과를 보상할 수 있도록 주사선 패드 또는 신호선 패드로부터 화소까지의 거리가 멀수록 MIM소자의 면적을 크게 하여, 신호지연 때문에 줄어드는 화소의 전하를 보충하였다. 또한 신호선 패드로부터 멀어질수록 바이어스 전압의 절대값이 커지게하여 신호지연의 효과로 줄어드는 전하를 보충하였다. 본발명의 MIM 액정표시소자는 대형 모니터나 또는 대화면 TV의 화면소자로 쓰일 수 있다.The present invention reduces the effect of the line delay of the metal insulator metal (MIM) liquid crystal display. The MIM liquid crystal display device is made of ITO, which is a transparent conductive film, and its resistance is much higher than that of metal. Therefore, brightness is not uniform due to signal delay. In addition, the larger the screen, the larger the resistance of the scan line and the larger the capacitance of the MIM element and the pixel, so signal delay becomes a very important design element. In the present invention, the area of the MIM element is increased as the distance from the scanning line pad or the signal line pad to the pixel is increased so as to compensate for the effect of the signal delay, thereby supplementing the charge of the pixel which is reduced due to the signal delay. In addition, as the distance from the signal line pad increases, the absolute value of the bias voltage increases to compensate for the decrease in charge due to the effect of signal delay. The MIM liquid crystal display device of the present invention can be used as a display device of a large monitor or a large screen TV.
Description
MIM(Metal Insulator Metal) 액정표시소자의 단면구조가 도1에 나타나 있다. 현재 가장 널리 쓰이는 MIM 소자는 Ta와 Ta2O3그리고 Cr이 적층 된 구조이다. Ta2O3막은 Ta막을 양극산화 시켜서 만든다. 위 유리기판(1)에는 ITO로 만든 신호선(9)이 있고, 아래 유리기판(2)에는 Ta로 된 주사선(5)과 Ta2O3의 절연막(6)과 Cr으로 만든 금속막(7) 그리고 화소전극(4)이 있다. 신호선은 투명전극이고, 화소전극은 투과형인 경우에는 투명전극이고, 반사형인 경우에는 Cr이나 Al등으로 만든다. 반사형인 경우에는 금속막(7)과 화소전극(4)을 같은 재질로 일체화하여 만든다.A cross-sectional structure of a metal insulator metal (MIM) liquid crystal display is shown in FIG. Currently, the most widely used MIM device is a stacked structure of Ta, Ta 2 O 3 and Cr. Ta 2 O 3 film is made by anodizing Ta film. The upper glass substrate 1 has a signal line 9 made of ITO, and the lower glass substrate 2 has a scanning line 5 made of Ta, an insulating film 6 of Ta 2 O 3 , and a metal film made of Cr 7. And the pixel electrode 4. The signal line is a transparent electrode, and the pixel electrode is a transparent electrode in the case of a transmissive type, and made of Cr or Al in the case of a reflective type. In the case of the reflective type, the metal film 7 and the pixel electrode 4 are made of the same material.
MIM 액정표시소자의 위 유리기판은 수동구동 액정표시소자(passive matrix LCD)와 구조가 같다. MIM LCD의 모드는 대부분이 모두 90˚TN이다. MIM 소자의 대표적인 공정 순서는 아래와 같다. 소요되는 노광 마스크는 3∼4개이다.The upper glass substrate of the MIM liquid crystal display device has the same structure as a passive matrix LCD. Most of MIM LCD's modes are 90˚TN. A typical process sequence of the MIM device is as follows. Three to four exposure masks are required.
(1) 유리기판 위에 Ta을 입히고 400℃ 공기중에서 어넬링(annealing)하여 Ta2O3막을 만든다.(1) Ta is coated on a glass substrate and annealed in air at 400 ° C to form a Ta 2 O 3 film.
이 막은 유리가 식각이 되는 것을 막는다.This film prevents the glass from being etched.
(2) 2000Å 정도의 Ta를 입히고, CF4/O2분위기에서 식각한다.(2) Apply about 2000Å of Ta and etch it in CF 4 / O 2 atmosphere.
(3) 1% 글리콜(gylcol)과 0.01% citric(시트릭)산에서 양극산화막을 만든다.(3) Anodic oxide film is made from 1% glycol and 0.01% citric acid.
(4) 진공에서 어넬링(annealing)한다.(4) Anneal in vacuum.
(5) Cr을 입히고 ITO막을 입힌다.(5) Cr and ITO film are applied.
MIM소자의 흐르는 전류는 두 금속막에 걸어주는 전압의 함수(Poole-Frenkel conduction equation)로 나타낼 수 있는데, 전압이 클수록 전류가 대수적으로 증가한다. 도3은 MIM 액정표시소자의 구동파형이다. 비선택기간 동안에 주사선에 걸리는 전압이 0V로 다른 파형의 기준 전압이다. 선택기간 동안에 주사선에 걸리는 전압은 VP이고, 매 프레임마다 극성이 바뀐다. 글자를 나타내는 경우에, 신호선에는 +Vd또는 -Vd가운데 한 전압이 걸리는데, ON(선택) 화소에는 주사선의 극성과 반대인 신호전압이 걸리고, OFF(비선택)화소에는 주사선과 같은 극성의 신호전압이 걸린다. 도3에서 n-1번째와 n번째 화소는 ON화소이고, n+1번째 화소는 OFF화소이다. 도4는 ON화소와 OFF화소에 걸리는 전압파형이다. 선택기간의 ON화소에 걸리는 절대전압은 VP+ Vd이고, 선택기간의 OFF화소에 걸리는 절대전압은 VP- Vd이다. 선택기간은 주사선이 ±VP가 걸린기간이고, 비선택기간은 주사선에 0V 전압이 걸린 기간이다. 비선택기간의 ON화소와 OFF화소는 신호선의 전압에 따라서-Vd또는 +Vd이다. 선택기간 동안에 ON화소의 MIM소자는 OFF화소의 MIM소자 보다 저항이 작으므로 많은 전류가 흐른다. MIM 액정표시소자는 선택기간 동안에 화소에 충전되는 전하를 조절하여 액정의 구동전압을 달리한다. 도5는 계조를 구현하는 MIM 액정표시소자의 신호파형이다. 선택기간 동안에 신호에 걸리는 +Vd와 -Vd의 비율을 조절하여 계조를 나타낸다. 즉 주사선이 선택되는 동안에 ON전압과 OFF전압이 걸리는시간비율을 조절하여 계조를 나타낸다.The flowing current of the MIM device can be expressed as a function of the voltage applied to the two metal films (Poole-Frenkel conduction equation). As the voltage increases, the current increases algebraically. 3 is a driving waveform of the MIM liquid crystal display device. During the non-selection period, the voltage across the scan line is 0V, which is the reference voltage for the other waveforms. The voltage across the scan line during the selection period is V P , and the polarity changes every frame. In the case of a letter, the signal line is subjected to either + V d or -V d voltage, the ON pixel is subjected to a signal voltage opposite to that of the scan line, and the OFF pixel is of the same polarity as the scan line. Signal voltage is applied. In Fig. 3, the n-1 th and n th pixels are ON pixels, and the n + 1 th pixel is an OFF pixel. 4 shows voltage waveforms applied to the ON and OFF pixels. The absolute voltage across the ON pixel of the selection period is V P + V d , and the absolute voltage across the OFF pixel of the selection period is V P -V d . The selection period is a period in which the scan line takes ± V P , and the non-selection period is a period in which 0 V voltage is applied to the scan line. The ON and OFF pixels in the non-selection period are -V d or + V d depending on the voltage of the signal line. During the selection period, much current flows because the MIM element of the ON pixel has a smaller resistance than the MIM element of the OFF pixel. The MIM liquid crystal display device varies the driving voltage of the liquid crystal by controlling the charge charged in the pixel during the selection period. 5 is a signal waveform of a MIM liquid crystal display device implementing gray scales. The gray level is displayed by adjusting the ratio of + V d and -V d applied to the signal during the selection period. That is, the gray scale is displayed by adjusting the time ratio between the ON voltage and the OFF voltage while the scan line is selected.
MIM 액정표시소자 모듈의 블록도가 도6에 나타나 있다. 제어기(controller)에는 R,G,B화소 신호와 제어의 기본이 되는 시스템 클락(clock) 수직 및 수평 동기 신호가 입력된다. 제어기는 외부 시스템에서 입력되는 신호를 MIM LCD 판넬에 맞도록 조절한다. 제어기 내부의 시간제어기(timing controller)에서는 MIM LCD 판넬에 맞도록 시간에 관련된 신호를 발생한다.A block diagram of the MIM liquid crystal display module is shown in FIG. The controller receives R, G, and B pixel signals and system clock vertical and horizontal synchronization signals that are the basis of control. The controller adjusts the signal from the external system to match the MIM LCD panel. The timing controller inside the controller generates time-related signals to fit the MIM LCD panel.
도2는 MIM 액정표시소자 화소의 등가회로이다. MIM 액정표시소자는 액정과 MIM소자가 직렬로 연결된 구조이다. 액정의 비저항은 1013Ω- cm 정도로 높기 때문에 무시할 수 있다. 주사선이 선택기간이 되는 동안에는 MIM 소자의 저항이 보통 106Ω정도로 MIM소자의 정전용량의 임피던스(impedance)보다 낮기 때문에 MIM 소자의 정전용량은 무시한다. 주사선이 선택되었을 때의 주사선에 연결된 화소의 등가회로는 도7과 같다. 도7에서는 화소와 화소 사이에 주사선의 저항이 직렬로 연결된 구조이다. 주사선의 저항(R주사선)과 액정의 정전용량(CLC) 그리고 MIM 저항(RMIM) 때문에 주사선에 걸린 전압파형이 화소의 위치에 따라 다르다. 도9는 화소 위치에 따른 주사선의 전압파형이다. 파형 A는 주사선 패드에 가까운 위치의 화소에 걸린 주사선의 구동파형이고, C는 주사선 패드에 가장 먼 위치의 화소에 걸린 주사선의 구동파형이고, B는 중간에 있는 화소의 주사선의 구동파형이다. 주사선 패드에서멀어질수록 신호지연으로 파형이 왜곡된다.2 is an equivalent circuit of the MIM liquid crystal display element pixel. The MIM liquid crystal display device has a structure in which a liquid crystal and a MIM device are connected in series. Since the resistivity of the liquid crystal is as high as 10 13 Ω-cm, it can be ignored. During the selection period, the capacitance of the MIM element is ignored because the resistance of the MIM element is usually about 10 6 Ω, which is lower than the impedance of the capacitance of the MIM element. The equivalent circuit of the pixel connected to the scan line when the scan line is selected is shown in FIG. In FIG. 7, the resistance of the scanning line is connected in series between the pixel and the pixel. Because of the scanning line resistance (R scan line ), the liquid crystal capacitance (C LC ), and the MIM resistance (R MIM ), the voltage waveform across the scanning line varies depending on the position of the pixel. 9 is a voltage waveform of a scan line according to the pixel position. Waveform A is a drive waveform of a scan line caught on a pixel at a position close to the scan line pad, C is a drive waveform of a scan line caught on a pixel at a position furthest from the scan line pad, and B is a drive waveform of a scan line of a pixel in the middle. As the distance from the scanning line pad increases, the waveform is distorted due to signal delay.
도9와 같이 주사선의 구동 파형이 화소의 위치마다 다르기 때문에 충전되는 전하의 양도 많은 차이가 난다. 신호지연이 작을수록 MIM 소자에 높은 전압이 걸리는 시간이 많으므로 화소에 충전되는 전하가 많다. 도8은 신호선에 연결된 화소의 등가회로이다. 비선택기간이 되는 동안에는 MIM 소자의 저항도 1011Ω정도로 높기 때문에 무시하면, MIM 액정표시소자 화소의 등가회로는 MIM소자의 정전용량과 액정의 정전용량이 질렬로 연결된 구조가 된다. 신호선에 연결된 화소 가운데 선택기간이 되는 화소는 1개이고, 나머지는 모두 비선택기간이다. 선택기간인 화소는 도8에서 점선으로된 사각형으로 나타나 있다. 선택기간인 화소는 MIM 저항과 액정의 정전용량이 직렬로 연결된 등가구조이고, 비선택 기간인 화소는 MIM 정전용량(CMIM)과 액정의 정전용량(CLC)이 직렬로 연결된 구조이다. 각각의 화소는 신호선의 저항(R신호선)으로 연결된 구조이다. 신호선은 투명도전막인 ITO를 주로 많이 쓰므로 주사선에 비하여 저항이 크다. 신호선의 신호지연도 주사선과 마찬가지로 화소의 충전율을 떨어뜨리므로 신호선 패드에 가까운 부분과 멀리 떨어진 부분의 화소의 투과율이 다르다. 도12는 동일 화소에 신호지연이 없는 신호선 패드에 가까운 화소와 시간상수(RC)를 3㎲로 신호지연이 생긴 화소의 선택파형이 인가되었을 때의 전기광학투과곡선이다. 전기광학곡선이 약 1V 정도 오른쪽으로 이동했음을 알 수 있다. 종래의 MIM 액정표시소자는 신호지연에 따른 투과율의 차이 때문에 대형화가 어려웠다.As shown in Fig. 9, since the driving waveform of the scanning line is different for each pixel position, the amount of charge charged also varies greatly. The smaller the signal delay, the more time the high voltage is applied to the MIM element, so the more charge is charged in the pixel. 8 is an equivalent circuit of a pixel connected to a signal line. During the non-selection period, since the resistance of the MIM element is as high as about 10 11 Ω, neglected, the equivalent circuit of the MIM liquid crystal display element pixel has a structure in which the capacitance of the MIM element and the capacitance of the liquid crystal are arranged in series. Among the pixels connected to the signal line, one pixel becomes a selection period, and the rest are all non-selection periods. The pixel which is the selection period is shown by the dotted rectangle in FIG. The pixel in the selection period is an equivalent structure in which the MIM resistor and the capacitance of the liquid crystal are connected in series, and the pixel in the non-selection period is the structure in which the MIM capacitance C MIM and the capacitance C LC of the liquid crystal are connected in series. Each pixel has a structure connected by a resistance (R signal line ) of a signal line . The signal line uses a large number of transparent conductive film ITO, and thus has a higher resistance than the scan line. Since the signal delay of the signal line, like the scan line, reduces the charge rate of the pixel, the transmittance of the pixel in the part close to the signal line pad and in the part far away is different. Fig. 12 is an electro-optical transmission curve when a selection waveform of a pixel close to a signal line pad without signal delay and a signal delay of 3 kHz with a time constant RC is applied to the same pixel. It can be seen that the electro-optic curve has shifted to the right by about 1V. The conventional MIM liquid crystal display device has been difficult to enlarge due to the difference in transmittance due to signal delay.
도1은 MIM 액정표시소자 단면도이다.1 is a cross-sectional view of a MIM liquid crystal display device.
도2는 MIM 액정표시소자의 등가회로이다.2 is an equivalent circuit of the MIM liquid crystal display device.
도3은 MIM 액정표시소자의 구동파형이다.3 is a driving waveform of the MIM liquid crystal display device.
도4는 ON/OFF되는 MIM 액정표시소자에 걸린 구동파형이다.Fig. 4 shows driving waveforms applied to the MIM liquid crystal display device turned ON / OFF.
도5는 MIM 액정표시소자의 계조를 구현하는 구동파형이다.5 is a driving waveform that implements gradation of the MIM liquid crystal display device.
도6은 MIM 액정표시소자 모듈의 블록도(block diagram)이다.6 is a block diagram of a MIM liquid crystal display device module.
도7은 선택된 주사선의 신호지연 등가회로이다.7 is a signal delay equivalent circuit of a selected scan line.
도8은 신호선의 등가회로이다.8 is an equivalent circuit of a signal line.
도9는 화소 위치에 따른 주사선의 신호지연 파형이다.9 is a signal delay waveform of a scanning line according to pixel positions.
도10은 본발명의 MIM 액정표시소자의 MIM소자의 평면도이다.Fig. 10 is a plan view of the MIM element of the MIM liquid crystal display element of the present invention.
도11은 본발명의 MIM 액정표시소자의 바이어스 전압의 파형이다.11 is a waveform of bias voltage of the MIM liquid crystal display device of the present invention.
도12는 신호지연에 따른 MIM 액정표시소자의 전기광학투과곡선이다.12 is an electro-optical transmission curve of a MIM liquid crystal display device due to signal delay.
※도면의 주요 부분에 대한 부호의 설명※ Explanation of code for main part of drawing
1 : 위 유리기판 2 : 아래 유리기판 3 : 액정 4 : 화소전극DESCRIPTION OF SYMBOLS 1 Upper glass substrate 2 Lower glass substrate 3 Liquid crystal 4 Pixel electrode
5 : 주사선 6 : 절연막 7 : 금속막 9 : 신호선5 scanning line 6 insulating film 7 metal film 9 signal line
본발명은 MIM(Metal Insulator Metal) 액정표시소자의 신호지연(line delay)의 효과를 줄인 것이다. MIM 액정표시소자는 화면이 커질수록 주사선의 길이가 늘어나므로, 주사선 패드에서 멀리 떨어진 화소는 신호지연이 커진다. 본발명에서는 신호지연의 효과를 보상할 수 있도록 주사선 패드 또는 신호선 패드로부터 화소까지의 거리가 멀수록 MIM소자의 면적이 커지도록 하여, 신호지연 때문에 줄어드는 화소의 충전량을 보충하였다. 도10은 본발명의 MIM 액정표시소자의 전극의 평면도이다. 주사선(5)과 금속막(7)이 서로 겹치는 면적이 오른쪽으로 갈수록(주사선 패드에서 멀리 떨어질수록) 커지게 설계되어 있다. 즉 MIM소자의 면적을 주사선 패드에서 멀리 떨어질수록 크게하였다. 주사선 패드에서 멀어질수록 신호지연으로 충전률이 떨어지는데, 주사선 패드에서 멀어지는 화소일수록 MIM 소자의 면적을 크게하여 충전율을 보상하였다. MIM소자의 신호선은 투명도전막으로 저항이 높기 때문에 신호지연 효과가 주사선보다 크다. 신호선에 연결된 화소도 주사선에 연결된 화소와 마찬가지로 신호선 패드에서 멀어질수록 MIM 소자의 면적을 크게하면 신호지연에 의한 충전율을 보상할 수 있다. 신호선의 신호지연은 바이어스 전압을 조절하면 간단히 보상할 수 있다. MIM소자의 신호선 구동 IC는 외부에서 연결되는 바이어스 전압 Vd와 -Vd를 계조에 맞추어 스위칭(switching)한다. 외부에서 연결되는 바이어스 전압 Vd와 -Vd의 진폭을 신호선의 패드로부터 떨어진 거리마다 다르게 구동하면 신호선의 신호지연을 보상할 수 있다. 도11은 외부 바이어스 전압의 파형이다. 종래에는 바이어스 전압이 고정되었는데, 도11에서는 프레임에 따르서 파형이 다르다. + 전압이 인가되는 + 프레임 동안에는 Vd(+)는 일정하고, Vd(-)는 신호선 패드로부터 떨어질수록 화소에 걸리는 전압이 커진다. - 전압이 인가되는 - 프레임 동안에는 Vd(-)는 일정하고, Vd(+)는 신호선 패드로부터 떨어질수록 화소에 걸리는 전압이 커진다. 따라서 신호선 패드로부터 멀리 떨어질수록 ON되는 기간 동안의 전압이 커지기 때문에 신호선의 신호지연에 의한 효과를 보상할 수 있다.The present invention reduces the effect of the line delay of the metal insulator metal (MIM) liquid crystal display. In the MIM liquid crystal display, as the screen is larger, the length of the scan line increases, so that a pixel farther from the scan line pad increases the signal delay. In the present invention, the area of the MIM element increases as the distance from the scanning line pad or the signal line pad to the pixel increases to compensate for the effect of the signal delay, thereby supplementing the amount of charge of the pixel which is reduced due to the signal delay. 10 is a plan view of the electrode of the MIM liquid crystal display device of the present invention. The area where the scanning line 5 and the metal film 7 overlap with each other is designed to be larger toward the right side (farther from the scanning line pad). That is, the area of the MIM element was increased as the distance from the scanning line pad increased. As the distance from the scan line pad decreases, the charge rate decreases due to signal delay. As the pixel moves away from the scan line pad, the charge rate is compensated by increasing the area of the MIM element. Since the signal line of the MIM element is a transparent conductive film and has a high resistance, the signal delay effect is greater than that of the scan line. Like the pixel connected to the scan line, the pixel connected to the signal line can compensate for the charge rate due to signal delay as the area of the MIM element increases as the distance from the signal line pad increases. The signal delay of the signal line can be compensated simply by adjusting the bias voltage. The signal line driver IC of the MIM device switches externally connected bias voltages V d and -V d in accordance with gray levels. The signal delay of the signal line can be compensated by driving the amplitudes of the externally connected bias voltages V d and -V d at different distances from the pads of the signal line. 11 is a waveform of an external bias voltage. Conventionally, the bias voltage is fixed. In FIG. 11, the waveform differs depending on the frame. During the + frame to which the + voltage is applied, V d (+) is constant, and as the V d (−) is separated from the signal line pad, the voltage applied to the pixel increases. During a frame in which a voltage is applied, V d (−) is constant, and as the V d (+) moves away from the signal line pad, the voltage applied to the pixel increases. Therefore, the farther away from the signal line pad, the greater the voltage during the ON period, thereby compensating the effect of the signal delay of the signal line.
본 발명은 MIM 액정표시소자의 대형화에 장애가 되었던 신호지연의 효과를 줄일 수 있어, 앞으로 MIM LCD가 대형화되는 길을 열었다. 종래에는 신호지연을 줄이기 위하여 주로 신호선과 주사선을 두껍고 넓게 피막하여 저항을 줄이는 방법으로 신호지연에 의한 화질의 저하를 막았다. 막을 두껍게하면 공정시간이 많이 걸리고 또한 개구율이 떨어지므로 화면이 어둡다. 본 발명에서는 MIM 소자의 면적과 바이어스전압의 파형을 조절하여 신호지연의 효과를 최소화하였으므로, 공정과 특성의 변화가 없이 대형 MIM 액정표시소자를 만들 수 있다. 본 발명의 MIM 액정표시소자는 초대형 TV나 모니터 등에 쓰일 수 있다.The present invention can reduce the effects of signal delay, which has been an obstacle to the enlargement of the MIM liquid crystal display device, thus opening the way for the enlargement of the MIM LCD in the future. Conventionally, in order to reduce the signal delay, the signal lines and the scan lines are mainly coated with a thick and wide film to reduce the resistance, thereby preventing the degradation of the image quality due to the signal delay. The thicker the film, the longer the process takes and the lower the aperture ratio. In the present invention, since the effect of signal delay is minimized by adjusting the area of the MIM device and the waveform of the bias voltage, a large sized MIM liquid crystal display device can be manufactured without changing the process and characteristics. The MIM liquid crystal display device of the present invention can be used for a very large TV or a monitor.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000063822A KR100628258B1 (en) | 2000-10-28 | 2000-10-28 | MI LCD Liquid Crystal Display Compensating Signal Delay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000063822A KR100628258B1 (en) | 2000-10-28 | 2000-10-28 | MI LCD Liquid Crystal Display Compensating Signal Delay |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020032991A true KR20020032991A (en) | 2002-05-04 |
KR100628258B1 KR100628258B1 (en) | 2006-09-27 |
Family
ID=19696008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000063822A Expired - Lifetime KR100628258B1 (en) | 2000-10-28 | 2000-10-28 | MI LCD Liquid Crystal Display Compensating Signal Delay |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100628258B1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3366496B2 (en) * | 1995-07-11 | 2003-01-14 | 株式会社日立製作所 | Liquid crystal display |
JP3310600B2 (en) * | 1997-10-14 | 2002-08-05 | シャープ株式会社 | Active matrix type liquid crystal display device and its defect repair method |
KR100529490B1 (en) * | 1998-03-02 | 2006-04-06 | 삼성전자주식회사 | LCD Display Module |
-
2000
- 2000-10-28 KR KR1020000063822A patent/KR100628258B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
KR100628258B1 (en) | 2006-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8878829B2 (en) | Liquid crystal display and common electrode drive circuit thereof | |
EP0360523B1 (en) | Active matrix liquid crystal display with reduced flicker | |
US5995074A (en) | Driving method of liquid crystal display device | |
US20020149574A1 (en) | Display device | |
KR100604718B1 (en) | LCD and Kickback Voltage Correction Method. | |
JPH1031202A (en) | Selection line driver for display matrix having toggling back plane | |
KR0158717B1 (en) | Active Matrix Liquid Crystal Display | |
KR20020096400A (en) | Liquid crystal display device and a driving method thereof | |
US5724057A (en) | Method and apparatus for driving a liquid crystal display | |
KR100440360B1 (en) | LCD and its driving method | |
KR20040026009A (en) | Liquid crystal display and driving method thereof | |
JP4480821B2 (en) | Liquid crystal display | |
KR101020421B1 (en) | Display and how to drive the display | |
GB2295045A (en) | Liquid crystal display | |
US6329976B1 (en) | Electro-optical display device with temperature-dependent drive means | |
WO1995000874A1 (en) | Liquid crystal matrix display device and method of driving the same | |
WO2003019509A2 (en) | Matrix display device with crosstalk reduction | |
US7439946B2 (en) | Liquid crystal display device with controlled positive and negative gray scale voltages | |
KR100628258B1 (en) | MI LCD Liquid Crystal Display Compensating Signal Delay | |
KR100516062B1 (en) | LCD Display | |
KR100590747B1 (en) | Liquid crystal display fine-tuning the difference between different common voltages | |
JP3454567B2 (en) | Driving method of liquid crystal display device | |
JPH09179098A (en) | Display device | |
KR100640988B1 (en) | Method of driving MIM liquid crystal display without crosstalk | |
KR100825095B1 (en) | Driving device of liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20001028 |
|
PG1501 | Laying open of application | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20050110 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20050502 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20001028 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060428 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20060830 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20060919 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20060920 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20090622 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20100621 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20110615 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20120628 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130619 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20130619 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140630 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20140630 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20150818 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20150818 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20160816 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20160816 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20170816 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20170816 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20180816 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20180816 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20190814 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20190814 Start annual number: 14 End annual number: 14 |
|
PC1801 | Expiration of term |
Termination date: 20210428 Termination category: Expiration of duration |