KR20020006930A - High molecular weight degradable film containing crosslinked potato starch and process for preparation thereof - Google Patents
High molecular weight degradable film containing crosslinked potato starch and process for preparation thereof Download PDFInfo
- Publication number
- KR20020006930A KR20020006930A KR1020000040492A KR20000040492A KR20020006930A KR 20020006930 A KR20020006930 A KR 20020006930A KR 1020000040492 A KR1020000040492 A KR 1020000040492A KR 20000040492 A KR20000040492 A KR 20000040492A KR 20020006930 A KR20020006930 A KR 20020006930A
- Authority
- KR
- South Korea
- Prior art keywords
- film
- potato starch
- starch
- polyethylene
- crosslinked
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001592 potato starch Polymers 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 230000008569 process Effects 0.000 title description 11
- 239000004698 Polyethylene Substances 0.000 claims abstract description 59
- 229920000573 polyethylene Polymers 0.000 claims abstract description 31
- 238000004132 cross linking Methods 0.000 claims abstract description 25
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims abstract description 20
- -1 polyethylene Polymers 0.000 claims abstract description 19
- 229920006254 polymer film Polymers 0.000 claims abstract description 11
- 239000004594 Masterbatch (MB) Substances 0.000 claims abstract description 7
- 229920006237 degradable polymer Polymers 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 229920000092 linear low density polyethylene Polymers 0.000 claims abstract description 4
- 239000004707 linear low-density polyethylene Substances 0.000 claims abstract description 4
- 239000004743 Polypropylene Substances 0.000 claims abstract description 3
- 239000004793 Polystyrene Substances 0.000 claims abstract description 3
- 229920001155 polypropylene Polymers 0.000 claims abstract description 3
- 229920002223 polystyrene Polymers 0.000 claims abstract description 3
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000002861 polymer material Substances 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims 1
- 244000005700 microbiome Species 0.000 abstract description 7
- 230000003244 pro-oxidative effect Effects 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 2
- 229920002472 Starch Polymers 0.000 description 60
- 235000019698 starch Nutrition 0.000 description 60
- 239000008107 starch Substances 0.000 description 58
- 244000061456 Solanum tuberosum Species 0.000 description 18
- 235000002595 Solanum tuberosum Nutrition 0.000 description 18
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 17
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000005979 thermal decomposition reaction Methods 0.000 description 8
- 229920000881 Modified starch Polymers 0.000 description 7
- 235000019426 modified starch Nutrition 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004368 Modified starch Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920000856 Amylose Polymers 0.000 description 3
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 238000006065 biodegradation reaction Methods 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 229920000704 biodegradable plastic Polymers 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 241001279686 Allium moly Species 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- KMHZPJNVPCAUMN-UHFFFAOYSA-N Erbon Chemical compound CC(Cl)(Cl)C(=O)OCCOC1=CC(Cl)=C(Cl)C=C1Cl KMHZPJNVPCAUMN-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- HLVXFWDLRHCZEI-UHFFFAOYSA-N chromotropic acid Chemical compound OS(=O)(=O)C1=CC(O)=C2C(O)=CC(S(O)(=O)=O)=CC2=C1 HLVXFWDLRHCZEI-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002362 mulch Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000013502 plastic waste Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
- C08J3/226—Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2403/00—Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
- C08J2403/02—Starch; Degradation products thereof, e.g. dextrin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/066—LDPE (radical process)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
- C08L3/02—Starch; Degradation products thereof, e.g. dextrin
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Biological Depolymerization Polymers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
본 발명은 가교결합 감자전분을 함유하는 분해성 고분자 필름 및 그 제조방법에 관한 것이다. 더욱 상세하게는, 본 발명은 가교결합시킨 감자전분을 함유하므로써 기계적 강도가 우수할 뿐만 아니라 열분해성 및 생분해성이 우수한 고분자 필름 및 그 제조방법에 관한 것이다.The present invention relates to a degradable polymer film containing crosslinked potato starch and a method for producing the same. More specifically, the present invention relates to a polymer film having excellent mechanical strength as well as excellent thermal decomposition and biodegradability by containing crosslinked potato starch and a method for producing the same.
합성 플라스틱은 내부식성, 내수성, 생물학적 안정성이 뛰어나 여러 용도의 포장재로 널리 사용되고 있으나 사용 후 매립되면 자연환경 중에서 거의 분해가 되지 않아 폐플라스틱으로 인한 환경오염은 날로 심각해지고 있다. 플라스틱 폐기물에 의한 환경오염 문제가 제기되면서 자연 중에서 분해가 가능한 '분해성 플라스틱'의 연구개발이 1970년대부터 시작되었다(Wei, S. and Z. L. Nikolov. 1992. Accelerated degradation studies of starch-filled polyethylene films.Ind. Eng. Chem. Res., 31(10):2332). 그 중에서 천연물계 고분자의 대표적 소재인 전분은 비교적 손쉽게 다량으로 얻을 수 있으며 생분해성이 뛰어나고 가격 또한 저렴하기 때문에 생분해성 필름의 충진제로 사용하기에 매우 적합한 물질이다. 생전분(Griffin, J. L. 1974. Biodegradable fillers in thermoplastic.Adv. Chem. Ser. 134:159.)뿐만 아니라 호화 전분(Otey, F. H., A. M. Mark, C. L. Mehltretter and C. R. Russell. 1974. Starch-based film for degradable agricultural mulch.Ind. Eng. Chem. Prod. Res. Dev., 13:90, Otey, F. H., R.P. Westhoff and W. M. Doane. 1980. Starch-based blown films.Ind. Eng. Chem. Prod. Res. Dev.,19:592, Otey, F. H. and R. P. Westhoff. 1984. Starch-based films. Preliminary diffusion evaluation.Ind. Eng. Chem. Prod. Res. Dev., 23:284, Otey, F. H., R. P. Westhoff and W. M. Doane. 1987. Starch-based blown films. 2.Ind. Eng. Chem. Res., 26:1659), 산화 폴리에틸렌(Kim, M., A. L. PomettoⅢ, K. E. Johnson and A. R. Fratzke. 1994. Degradation studies of novel degradable starch-polyethylene plastics containing oxidized polyethylene and prooxidant.J. Environ. Polym. Degrad, 2:27) 등도 플라스틱의 생분해성을 향상시키기 위한 충진제로서 이용되어 왔다. 그러나 전분을 이용하여 제조한 생분해성 필름에서는 필름의 강도가 약해지는 단점이 나타난다. 따라서 필름의 강도를 높이기 위하여 전분 입자 표면을 화학적으로 변형시켜 전분과 합성 고분자와의 친화력을 강화시켜 주는 방법이 연구되었다. Otey 등(Otey, F. H., R. P. Westhoff and C. R. Russell. 1977. Biodegradable films from starch and ethylene-acrylic acid copolymer.Ind. Eng. Chem. Prod. Res. Dev., 16(4):305)은 수용성 포장재를 개발하기 위해 PVA(polyvinyl alcohol)와 변성 전분을 혼합하여 이용하였고, Swanson 등(Swanson, C. L., R. P. Westhoff and W. P. Doane. 1988. Modified starches in plastic films.Proceedings of the corn utilization conferenceⅡ, Columbus, OH. National Corn Growers Association, St, Louis, Mo)은 생분해성 필름의 기계적 성질들을 향상시키기 위해 옥수수 변성 전분의 영향에 대해 연구하였다. 그러나 전분은 급원마다 그 이화학적 성질들이 매우 다르므로 이들이 고분자 물질에 혼합되어 필름을 형성할 때 필름에 주는 영향력도 매우 다양하게 나타난다. 따라서 전분을 사용한 생분해성 필름에서는 전분의 급원 및 변성 전분에 따른 영향력이 연구되어야 한다. 생분해는 세균이나 곰팡이 그리고 그들의 대사적 중간체인 효소 등 살아있는 유기체 작용의 결과로써 일어난다(Griffin, J. L. 1977. Synthetic resin sheet material. U. S. Patent. 4,021,388).Synthetic plastics are widely used as packaging materials for various purposes because of their excellent corrosion resistance, water resistance, and biological stability. However, since they are hardly decomposed in the natural environment when they are landfilled after use, environmental pollution due to waste plastics is becoming more serious. With a raised environmental pollution caused by plastic waste research and development of a possible 'biodegradable plastics' decomposed in nature it began in the 1970s (Wei, S. and ZL Nikolov. 1992. Accelerated degradation studies of starch-filled polyethylene films. Ind Eng. Chem. Res ., 31 (10): 2332). Among them, starch, which is a representative material of the natural product polymer, is relatively easy to obtain in large quantities, and is highly suitable for use as a filler for biodegradable films because of its excellent biodegradability and low price. Starch-based film for degradable, as well as raw starch (Griffin, JL 1974. Biodegradable fillers in thermoplastic.Adv. Chem. Ser . 134: 159.), As well as luxury starches (Otey, FH, AM Mark, CL Mehltretter and CR Russell. 1974. agricultural mulch. Ind. Eng. Chem . Prod. Res. Dev., 13:90, Otey, FH, RP Westhoff and WM Doane. 1980. Starch-based blown films. Ind. Eng. Chem. Prod. Res. Dev. , 19:..... .. 592, Otey, FH and RP Westhoff 1984. Starch-based films Preliminary diffusion evaluation Ind Eng Chem Prod Res Dev, 23:.. 284, Otey, FH, RP Westhoff and WM Doane. Starch-based blown films. 2. Ind. Eng. Chem. Res ., 26: 1659), polyethylene oxide (Kim, M., AL Pometto III, KE Johnson and AR Fratzke. 1994. Degradation studies of novel degradable starch- polyethylene plastics containing oxidized polyethylene and prooxidant.J. Environ.Polym.Degrad , 2:27) have also been used as fillers to improve the biodegradability of plastics. However, in the biodegradable film produced using starch, the weakness of the film appears. Therefore, in order to increase the film strength, a method of chemically modifying the surface of starch particles to enhance the affinity between starch and synthetic polymers has been studied. Otey et al. (Otey, FH, RP Westhoff and CR Russell. 1977. Biodegradable films from starch and ethylene-acrylic acid copolymer.Ind . Eng. Chem.Prod.Res. Dev ., 16 (4): 305) To develop, polyvinyl alcohol (PVA) and modified starch were mixed and used, and Swanson et al. (Swanson, CL, RP Westhoff and WP Doane. 1988. Modified starches in plastic films.Proceedings of the corn utilization conference II, Columbus, OH. Corn Growers Association, St, Louis, Mo) studied the effects of corn modified starch to improve the mechanical properties of biodegradable films. However, starch has very different physicochemical properties from source to source, and thus, when they are mixed with high molecular materials to form a film, the influence on the film varies widely. Therefore, in starch biodegradable film, the influence of starch source and modified starch should be studied. Biodegradation occurs as a result of living organisms such as bacteria, fungi and their metabolic intermediates (Griffin, JL 1977. Synthetic resin sheet material. US Patent. 4,021,388).
고분자 필름의 생분해 정도를 평가하기 위해서는 필름의 물리적 성질의 변화, 필름의 화학적 특성의 변화, 생물학적 활성 변화를 측정하는 방법들을 많이 이용하고 있다(Maddever, W. J. 1989. Modified starch-based biodegradable plastics.Plastics engineering.pp31-34).It has been widely used to evaluate the extent of the biodegradable polymer film changes in the physical properties of the film, changing the chemical nature of the film, a method of measuring a change in biological activity (Maddever, WJ 1989. Modified starch- based biodegradable plastics. Plastics engineering . pp31-34).
전분의 가교결합은 분자 사이의 다리역할을 하는 화학적 결합에 의해 입자의 수소결합을 강화시키는 변형으로 전분 입자는 chemical bridge에 의해 그 성질을 유지하여 쉽게 파괴되지 않는 성질을 갖게 된다. 또한 분열 저항성을 증가시켜 팽윤한 전분 입자에서 아밀로오스의 방출을 조정하여 향상된 필름 성질들을 제공하기도 한다. 이러한 성질로 인해 가교결합 전분은 식품산업에서 이용될 뿐 아니라 직물, 제지, 코팅제, 이온교환수지, 필름의 anti- blocking agents 등 다양한 분야에서 이용되고 있는 변성전분이다(Rutenberg, M. W. and D. Solarek. 1984. Starch derivatives: production and uses. In :Starch Chemistry and Technology, 2nd ed. by R. L. Whistler, J. N. Bemiller and E. F. Paschall(eds.). Academic Press, New York, N. Y. pp324-331, Wurzburg, O. B. 1987. Cross-linked starches. In:Modified starches, properties and uses, ed. by O. B.Wurzburg(ed). CRS Press, Frorida. pp46-51).Starch crosslinking is a modification that strengthens the hydrogen bonding of particles by chemical bonds that act as bridges between molecules. Starch particles retain their properties by chemical bridges and are not easily destroyed. It also increases the fission resistance to regulate the release of amylose in the swollen starch particles to provide improved film properties. Because of these properties, cross-linked starch is not only used in the food industry but also modified starch, which is used in various fields such as textiles, paper, coatings, ion exchange resins, and film's anti-blocking agents (Rutenberg, MW and D. Solarek. 1984.Starch derivatives: production and uses.In: Starch Chemistry and Technology , 2nd ed. By RL Whistler, JN Bemiller and EF Paschall (eds.). Academic Press, New York, NY pp324-331, Wurzburg, OB 1987.Cross linked starches.In: Modified starches , properties and uses, ed. by OBWurzburg (ed) .CRS Press, Frorida.pp46-51).
본 발명자는 생분해성 필름의 기계적 특성 및 분해도를 향상시키기 위하여 감자에서 추출한 전분을 원료로 이용하여 이 전분을 가교결합시킨 후, 가교결합 감자전분을 첨가한 분해성 폴리에틸렌(polyethylene) 필름을 제조하고 이 필름의 기계적 특성과 분해도를 평가한 결과, 가교결합을 시키지 않은 무처리 감자전분을 이용하여 제조한 필름보다 기계적 강도가 우수하고 열에 의한 분해와 미생물에 의한 분해가 우수함을 확인함으로써 본 발명을 완성하였다.The present inventors crosslink this starch by using starch extracted from potatoes as a raw material to improve the mechanical properties and degradability of the biodegradable film, and then produce a degradable polyethylene film containing crosslinked potato starch. As a result of evaluating the mechanical properties and the degree of decomposition of the present invention, the present invention was completed by confirming that the mechanical strength is superior to that of the film prepared using untreated potato starch without crosslinking, and that the decomposition by heat and the degradation by microorganisms are superior.
따라서, 본 발명의 목적은 가교결합 감자전분을 함유함으로써 기계적 강도가 우수할 뿐만 아니라 열분해도 및 생분해도가 우수한 분해성 고분자 필름을 제공함에 있다.Accordingly, it is an object of the present invention to provide a degradable polymer film having excellent mechanical strength as well as excellent thermal and biodegradability by containing crosslinked potato starch.
본 발명의 다른 목적은 상기 분해성 고분자 필름의 제조방법을 제공함에 있다.Another object of the present invention to provide a method for producing the degradable polymer film.
본 발명의 상기 목적은 감자전분을 가교결합시킨 후 가교결합시킨 감자전분을 고분자 필름에 일정량 혼합하여 가교결합 감자전분-고분자 필름을 제조하고 이 필름의 기계적 강도와 열분해도 및 생분해도를 각각 측정한 후 가교결합시키지 않은 무처리 감자전분을 함유하는 고분자 필름의 기계적 강도, 열분해도 및 생분해도와 그 결과값을 비교함으로써 달성하였다.The object of the present invention is to prepare a cross-linked potato starch-polymer film by crosslinking potato starch and then crosslinking potato starch to a polymer film, and measuring the mechanical strength, thermal decomposition and biodegradability of the film, respectively. This was achieved by comparing the mechanical strength, thermal decomposition and biodegradability of the polymer film containing untreated potato starch that was not crosslinked with the resulting values.
이하, 본 발명의 구성을 설명한다.Hereinafter, the configuration of the present invention will be described.
도 1은 12주 동안 70℃에서 열처리한 본 발명 가교결합 감자전분-폴리에틸렌 필름의 카보닐 인덱스(carbonyl index)를 나타낸다.FIG. 1 shows the carbonyl index of the crosslinked potato starch-polyethylene film of the present invention heat treated at 70 ° C. for 12 weeks.
도 2는 4주동안 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주를 접종하여 배양한 본 발명 가교결합 감자전분-폴리에틸렌 필름의 카보닐 인덱스를 나타낸다.Figure 2 shows the carbonyl index of the cross-linked potato starch-polyethylene film of the present invention inoculated with Pseudomonas aeruginosa (KCTC 2651) strain for 4 weeks.
도 3은 4주동안 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주를 접종하여 배양한 본 발명 가교결합 감자전분-폴리에틸렌 필름의 기계적 성질을 나타낸다.Figure 3 shows the mechanical properties of the cross-linked potato starch-polyethylene film of the present invention inoculated with Pseudomonas aeruginosa (KCTC 2651) strain for 4 weeks.
도 4는 4주동안 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주를 접종하여 배양한 본 발명 가교결합 감자전분-폴리에틸렌 필름의 표면을 주사 전자현미경(×2,000)으로 관찰한 결과를 나타낸다.Figure 4 shows the results of observing the surface of the cross-linked potato starch-polyethylene film of the present invention incubated by inoculating Pseudomonas aeruginosa (KCTC 2651) strain for 4 weeks with a scanning electron microscope (× 2,000) .
본 발명은 감자전분에 에피클로로하이드린(epichlorohydrin)을 첨가하고 알칼리 조건하에서 가교반응시키는 단계; 상기 감자전분의 가교반응시 반응하지 않은 에피클로로하이드린의 양을 측정하여 전분과 에피클로로하이드린의 반응수율과 전분의 가교화도를 측정하는 단계; 가교화도가 다른 가교결합 감자전분과 선형 저밀도 폴리에틸렌(LLDPE) 및 프로옥시단트를 혼합하여 가교결합 감자전분-폴리에틸렌필름을 제조하고 비교군으로 무처리 감자전분을 함유하는 폴리에틸렌 필름을 제조하는 단계; 무처리 감자전분과 가교결합 감자전분을 함유하는 폴리에틸렌 필름을 각각 열처리한 후 카보닐 인덱스, 인장강도, 신장율, 인장에너지를 측정하여 본 발명 가교결합 감자전분-폴리에틸렌 필름이 무처리 감자전분을 함유하는 경우보다 열처리에 의해 빨리 분해됨을 확인하는 단계; 및 무처리 감자전분과 가교결합 감자전분을 함유하는 폴리에틸렌 필름을 화학적으로 멸균한 후 슈도모나스 아에루기노사 (Pseudomonas aeruginosa)(KCTC2651) 균주를 접종하여 4주동안 배양한 후 필름의 카보닐인덱스, 인장강도, 신장율, 인장에너지를 각각 측정하고 필름 형태를 주사 전자 현미경으로 관찰하여 본 발명 가교결합 감자전분을 함유하는 폴리에틸렌 필름이 무처리 감자전분을 함유하는 경우보다 생분해도가 우수함을 확인하는 단계로 구성된다.The present invention comprises the steps of adding epichlorohydrin to potato starch and crosslinking under alkaline conditions; Measuring the reaction yield of starch and epichlorohydrin and the degree of crosslinking of starch by measuring the amount of epichlorohydrin that did not react during the crosslinking reaction of the potato starch; Preparing a crosslinked potato starch-polyethylene film by mixing crosslinked potato starch with different degree of crosslinking, linear low density polyethylene (LLDPE) and prooxydant, and preparing a polyethylene film containing untreated potato starch as a comparative group; When the polyethylene film containing the untreated potato starch and the crosslinked potato starch was heat treated, respectively, and the carbonyl index, tensile strength, elongation rate, and tensile energy were measured, the crosslinked potato starch-polyethylene film of the present invention contained untreated potato starch. Confirming the faster decomposition by heat treatment; And chemically sterilized polyethylene film containing untreated potato starch and crosslinked potato starch, inoculated with Pseudomonas aeruginosa (KCTC2651) strain and incubated for 4 weeks, followed by carbonyl index and tensile strength of the film. , Elongation and tensile energy were measured and the film form was observed under a scanning electron microscope to confirm that the polyethylene film containing the cross-linked potato starch of the present invention had better biodegradability than that containing untreated potato starch. .
본 발명에서 필름 제조에 사용 가능한 고분자 물질은 폴리스티렌, 폴리프로필렌, 폴리에틸렌이며 바람직하게는 폴리에틸렌이다.The polymeric materials usable in the film production in the present invention are polystyrene, polypropylene, polyethylene, preferably polyethylene.
본 발명에서 고분자 필름에 함유시킨 가교결합시킨 감자전분은 1 ∼ 20중량%이며 바람직하게는 5 ∼ 10중량%이다.The crosslinked potato starch contained in the polymer film in the present invention is 1 to 20% by weight, preferably 5 to 10% by weight.
본 발명에서 고분자 필름에 함유시킨 프로옥시단트는 2 ∼ 10중량%이며 바람직하게는 5중량%이다.In the present invention, the prooxydant contained in the polymer film is 2 to 10% by weight, preferably 5% by weight.
본 발명에서 고분자 필름에 함유된 고분자 물질은 80 ∼ 96중량%이며 바람직하게는 85 ∼ 90중량%이다.In the present invention, the polymer material contained in the polymer film is 80 to 96% by weight, preferably 85 to 90% by weight.
본 발명에서 얻은 실험결과들은 SAS program(version 6.12)을 사용하여 통계분석하였다(SAS Institute, Inc., 1995).The experimental results obtained in the present invention were statistically analyzed using a SAS program (version 6.12) (SAS Institute, Inc., 1995).
이하 본 발명의 구체적인 방법을 실시예를 들어 상세히 설명하고자 하지만 본 발명의 권리범위는 이들 실시예와 실험예에만 한정되는 것은 아니다.Hereinafter, the specific method of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples and Experimental Examples.
실시예 1: 본 발명 분해성 가교결합 감자전분-폴리에틸렌 필름 제조Example 1 Inventive Degradable Crosslinked Potato Starch-Polyethylene Film Preparation
제 1 공정: 가교결합 감자전분의 제조First Step: Preparation of Crosslinked Potato Starch
감자전분은 알칼리 침지법(이신영, 변유량, 조형용, 유주현, 이상규. 1984. 쌀 전분의 현탁액과 호화액의 유동거동. 한국식품과학회지. 16(1))을 사용하여 추출하였고, Jane 등(Jane, T., A. Xu, M. Radosavljevic and P. A. Seib. 1992. Location of amylose in normal starch granules. Ⅰ. Susceptibility of amylose and amylopectin to cross-linking reagents.Cereal Chem., 69:405)의 방법을 수정하여 가교결합(crosslink;CL) 감자전분을 제조하였다. 즉 감자전분 100 g을 증류수 166 mL에 현탁시켜 상온에서 2시간동안 교반한 후 감자전분 무게의 0.1%, 0.5%,1%, 2% 에피클로로하이드린(epichlorohydrin)을 첨가하였다. 여기에 1M NaOH용액을 첨가하여 pH를 10.5로 맞추고 상온에서 24시간동안 교반하면서 가교반응을 진행시켰다. 이를 아세트산를 사용하여 pH 5.5로 맞추고 Whatman No. 2 여과지로 여과한 다음 동량의 증류수로 2번, 95% 에탄올로 1번 수세하여 여과하였다. 얻어진 가교 전분은 40℃에서 48시간 건조한 후 100메시 체를 통과시켰다.Potato starch was extracted using alkaline immersion method (Lee Shin-young, Perfume, Cho Yong-Yong, Ju-Hyun Yoo, Lee Sang-Kyu. 1984. Suspension of Rice Starch and Flow Behavior of Gelatinized Liquids. Korean Journal of Food Science and Technology, 16 (1)), and Jane et al. , T., A. Xu, M. Radosavljevic and PA Seib. 1992. Location of amylose in normal starch granules.I. Susceptibility of amylose and amylopectin to cross-linking reagents.Cereal Chem ., 69: 405). Crosslink (CL) potato starch was prepared. That is, 100 g of potato starch was suspended in 166 mL of distilled water, stirred at room temperature for 2 hours, and then 0.1%, 0.5%, 1%, and 2% epichlorohydrin of the potato starch was added. 1M NaOH solution was added thereto to adjust the pH to 10.5, and the crosslinking reaction proceeded while stirring at room temperature for 24 hours. This was adjusted to pH 5.5 using acetic acid and the Whatman No. 2 filtered with filter paper, washed twice with the same amount of distilled water, washed once with 95% ethanol. The crosslinked starch obtained was dried at 40 ° C. for 48 hours and then passed through a 100 mesh sieve.
제 2 공정: 가교화도 측정Second Step: Determination of Crosslinking Degree
본 공정에서는 Hamerstrand 등(Hamerstrand, G. E., B. T. Hofretter and C. L. Mehltretter. 1960. Determination of the extent of reaction between epichlorohydrin and starch.Cereal Chem., 37:519)의 방법에 따라 제 1 공정에서 감자전분의 가교결합 반응 후 반응하지 않은 에피클로로하이드린의 양을 측정하여 전분과 에피클로로하이드린의 반응 수율 및 전분의 가교화도를 계산하였다. 즉 가교결합에서 반응하지 않고 남은 에피클로로하이드린을 페리오데이트(periodate)로 산화시킨 후 이를 클로모트로피산(chromotropic acid)으로 발색시켜 570 nm에서 흡광도를 측정하여 정량하였다. 이로부터 가교결합당 무수포도당 개수 (anhydroglucose units per crosslink, AGU/CL)와 몰가교화도(molar degree of crosslinking, MDC)를 계산하여 가교화도를 표시하였다.In this process, the crosslinking of potato starch in the first process is carried out according to the method of Hamerstrand et al. (Hamerstrand, GE, BT Hofretter and CL Mehltretter. 1960. Determination of the extent of reaction between epichlorohydrin and starch. Cereal Chem ., 37: 519). After the reaction, the amount of unreacted epichlorohydrin was measured to calculate the reaction yield of starch and epichlorohydrin and the degree of crosslinking of starch. In other words, the epichlorohydrin remaining without reaction in the cross-linking was oxidized with periodate, which was then developed with chromotropic acid, and the absorbance was measured and measured at 570 nm. From this, anhydroglucose units per crosslink (AGU / CL) and molar degree of crosslinking (MDC) were calculated to indicate the degree of crosslinking.
실험결과, 표 1에 나타낸 바와 같이 전분의 가교반응에서 전분과 에피클로로하이드린의 가교결합 반응수율은 75% ∼ 91%의 범위로 평균 85%로 나타났다. 전분입자에서 가교결합을 형성하지 않고 소비되는 에피클로로하이드린 양은 반응한 에피클로로하이드린 양의 5% 이하이므로 가교화도 계산시 이 값을 고려하여 계산한 것으로 감자전분의 몰가교화도(MDC)는 사용한 에피클로로하이드린 양에 비례하여 증가하여(r2=0.9992) 전분의 가교결합이 제대로 이루어졌음을 확인할 수 있었다.As a result, as shown in Table 1, the yield of crosslinking reaction between starch and epichlorohydrin was 85% in the range of 75% to 91%. The amount of epichlorohydrin consumed without forming crosslinks in starch particles is less than 5% of the amount of epichlorohydrin reacted, so this value was calculated in consideration of the crosslinking degree. The molar crosslinking degree (MDC) of potato starch is In proportion to the amount of epichlorohydrin used (r 2 = 0.9992) it was confirmed that the crosslinking of the starch was properly made.
제 3 공정: 가교결합 감자전분-폴리에틸렌 필름 제조Third Step: Preparation of Crosslinked Potato Starch-Polyethylene Film
제 1 공정에서 제조한 가교화도가 다른 가교결합시킨 감자전분과 선형 저밀도폴리에틸렌(linear low density polyethylene;LLDPE), 프로옥시단트 (prooxidant;IR1025, Novon International, INC., NY, USA)를 혼합하여 캐스트(cast) 필름을 표 2에 나타낸 바와 같이 제조하였다. 가교결합시킨 감자전분을 진공오븐에서 수분함량을 0.3% 이하로 건조시킨 후, 이 전분과 PE를 동량으로 혼합하여 150℃, 50 rpm의 kneader(Haake Rheomex 3000, Germany)를 이용하여 50% 마스터 배치(master batch)를 만들었다. 가교화도가 다른 감자전분이 각각 5% 함유되도록 마스터 배치와 LLDPE와 프로옥시단트를 혼합하여 단일 스크류압출기(single screw extruder;Rheomex 254)를 장착한 Haake Rheocord 90(Germany)에서 배럴(barrel)의 온도는 140 ∼ 160℃, 스크류 속도(screw speed)는 15 ∼ 25 rpm으로 0.5 cm 칩을 제조하였다. 제조된 칩을 싱글 스크류 압출기(single screw extruder)를 사용하여 배럴(barrel) 온도 110 ∼ 160℃, 스크류 속도(screw speed) 45 ∼ 65 rpm으로 하여 5종류의 캐스트 필름을 제조하였다. 가교결합 감자전분으로 제조한 필름과 비교하기 위해 무처리 감자전분으로 제조한 필름도 동일한 조건에서 제조하였다.The crosslinked potato starch prepared in the first step was mixed with a linear low density polyethylene (LLDPE) and a prooxidant (IR1025, Novon International, INC., NY, USA) and mixed with cast ( cast) films were prepared as shown in Table 2. After drying the cross-linked potato starch in a vacuum oven to 0.3% or less, the starch and PE were mixed in the same amount and 50% masterbatch was prepared using a kneader (Haake Rheomex 3000, Germany) at 150 ° C and 50 rpm. I created a master batch. The temperature of the barrel in Haake Rheocord 90 (Germany) equipped with a single screw extruder (Rheomex 254) by mixing the master batch with LLDPE and prooxydant to contain 5% of each other cross-linked potato starch. A 0.5 cm chip was produced at 140 to 160 ° C. and a screw speed of 15 to 25 rpm. Five kinds of cast films were prepared using a single screw extruder at a barrel temperature of 110 to 160 ° C. and a screw speed of 45 to 65 rpm. Films made from untreated potato starch were also prepared under the same conditions in order to compare with films made from crosslinked potato starch.
실험예 1: 본 발명 가교결합 감자전분-폴리에틸렌 필름의 기계적 성질Experimental Example 1: Mechanical Properties of the Crosslinked Potato Starch-Polyethylene Film of the Present Invention
상기 실시예 1에서 제조한 무처리 감자전분과 가교결합 감자전분으로 제조한 필름을 1×3 cm의 조각(strip)으로 자른 후 인스트론(Instron;AGS-500A, Shimadzu, Japan)을 이용하여 필름의 인장강도(tensile strength), 신장율(percent elongation), 인장에너지(strain energy)를 측정하였다. 인스트론(Instron)의 조작을 위해 로드 셀(load cell)은 50 kgf, 로드 범위(load range)는 5, 속도는 100mm/min의 조건으로 하였다. 인스트론으로 측정하기 전에 필름을 25℃, 50% 항온항습기에서 40시간 이상 유지시킨 후 측정하였다.The film prepared from the untreated potato starch and the crosslinked potato starch prepared in Example 1 was cut into strips of 1 × 3 cm, and then the instron (Instron; AGS-500A, Shimadzu, Japan) was used to Tensile strength, percent elongation, and tensile energy were measured. For the operation of Instron, the load cell was 50 kgf, the load range was 5, and the speed was 100 mm / min. Before the measurement by Instron, the film was measured after holding at least 40 hours in a 25 ℃, 50% thermo-hygrostat.
실험결과, 표 3에 나타낸 바와 같이 필름을 끊어지게 하는데 요구되는 단위면적당 힘을 의미하는 인장강도는 가교결합 감자전분으로 제조한 필름이 무처리 감자전분으로 제조한 필름보다 높았으며 1.0 CL전분으로 제조한 필름에서 유의적으로 가장 높았다. 신장율은 1.0 CL전분으로 제조한 필름을 제외하고는 모두 가교결합 전분으로 제조한 필름이 무처리 전분으로 제조한 필름보다 유의적으로 높게 나타났다. 필름을 파단점으로 되게 하는데 요구되는 일(work)을 의미하는 인장에너지도 가교결합 전분으로 제조한 필름이 무처리 전분으로 제조한 필름에서보다 유의적으로 높아 전분을 가교결합시킴으로써 필름의 기계적 강도가 향상되었음을 볼 수 있었다.As a result, as shown in Table 3, the tensile strength, which means the force per unit area required to break the film, was higher than that of the cross-linked potato starch film and that of 1.0 CL starch. Significantly higher in one film. The elongation was significantly higher than the film made of cross-linked starch except the film made of 1.0 CL starch. The tensile energy, which means the work required to bring the film to break point, is also significantly higher than that of a film made from cross-linked starch, so that the mechanical strength of the film is increased by crosslinking the starch. It can be seen that the improvement.
실험예 2: 본 발명 가교결합 감자전분-폴리에틸렌 필름의 열분해도Experimental Example 2: The thermal decomposition degree of the crosslinked potato starch-polyethylene film of the present invention
본 실험예에서는 먼저 FT-IR에 의한 필름의 열분해 특성을 조사하였다.In this experimental example, first, the thermal decomposition property of the film by FT-IR was investigated.
실시예 1에서 제조한 무처리 감자전분과 산화 감자전분으로 제조한 필름을 1 × 3 cm의 조각(strip)으로 자른 후 70℃ 강제 통풍건조기(forced air dry oven)에서 12주동안 열처리하면서 매주 FT-IR을 측정하여 하기 식에 의해 카보닐 인덱스(carbonyl index)를 구하였다.The film prepared from the untreated potato starch and the oxidized potato starch prepared in Example 1 was cut into strips of 1 × 3 cm and then heat treated every week for 12 weeks in a 70 ° C. forced air dry oven. IR was measured and the carbonyl index was obtained by the following equation.
그리고 상기 FT-IR에 의한 필름의 열분해 특성측정법과 동일한 방법으로 열처리된 필름을 매주 인스트론(Instron)을 이용하여 인장강도, 신장율, 인장에너지를 측정하여 기계적 성질에 의한 필름의 열분해 특성을 측정하였다. 인스트론(Instron)의 조작조건은 상기 실험예 1에서 필름의 기계적 성질을 측정할 때와 동일한 조건으로 하였다.And the thermally decomposed properties of the film by mechanical properties by measuring the tensile strength, elongation rate, and tensile energy of the film heat-treated weekly in the Instron (Instron) by the same method as the thermal decomposition property measurement method of the film by the FT-IR . The operating conditions of Instron were the same as those when measuring the mechanical properties of the film in Experimental Example 1.
FT-IR에 의한 필름의 열분해 특성 조사 실험결과는 도 1에 나타낸 바와 같이 12주의 열처리동안 무처리 감자전분으로 제조한 필름의 카보닐 인덱스(carbonyl index)는 변화가 거의 없는 반면, 0.1 CL전분으로 제조한 필름은 4주 이후부터 카보닐 인덱스가 증가하기 시작하였으며, 0.5 CL전분과 2.0 CL전분으로 제조한 필름은 5주 이후부터 그리고 1.0 CL전분으로 제조한 필름은 6주 이후부터 카보닐 인덱스가 증가하기 시작하였다. 또한 열처리 12주째에는 무처리 감자전분으로 제조한필름의 카보닐 인덱스는 가교결합 감자전분으로 제조한 필름의 카보닐 인덱스와는 매우 큰 차이를 보임으로써 가교결합 감자전분으로 제조한 필름이 무처리 감자전분으로 제조한 필름보다 열처리에 의해 더 빨리 산화적 분해가 되었음을 보여주었다.Experimental results of the thermal decomposition properties of the film by FT-IR show that the carbonyl index of the film prepared with untreated potato starch during the 12-week heat treatment shows little change, while it is 0.1 CL starch. The carbonyl index increased after 4 weeks, and the film made with 0.5 CL starch and 2.0 CL starch increased after 5 weeks and the film produced with 1.0 CL starch showed carbonyl index after 6 weeks. It started to increase. In addition, at 12 weeks of heat treatment, the carbonyl index of the film made from untreated potato starch was very different from the carbonyl index of the film made from crosslinked potato starch. It was shown that the oxidative decomposition was faster by heat treatment than the film made from powder.
또 기계적 성질에 의한 필름의 열분해 특성 조사 실험결과, 표 4, 표 5 및 표 6에 나타낸 바와 같이 70℃에서 열처리한 필름의 기계적 성질 변화들은 상기 FT-IR 스펙트럼(spectrum)에 의한 카보닐 인덱스(carbonyl index)의 변화와 대체로 일치하였다. 무처리 감자전분으로 제조한 필름은 인장강도, 신장율, 인장에너지 모두 11주 이후가 되어야 유의적으로 감소된 반면, 0.1 CL전분과, 2.0 CL전분으로 제조한 필름은 5주 이후, 0.5 CL전분과 1.0 CL전분으로 제조한 필름은 7주 이후부터 기계적 성질들이 유의적으로 감소하여(p<0.05) 무처리 감자전분으로 제조한 필름보다 가교결합 감자전분으로 제조한 필름의 열분해도가 빠른 것을 보여 주였다. 특히 0.1 CL전분으로 제조한 필름은 열분해로 5주부터 급격히 필름이 기계적 강도가 약화되고 7주부터는 필름이 부서져 기계적 강도를 측정할 수 없을 정도가 되었다. 표에 기계적 특성값이 나타나지 않은 경우는 필름이 열처리에 의해 열분해되어 필름이 부서지면서 기계적 특성값을 측정하지 못한 경우이다. 0.5 CL과 1.0 CL전분으로 제조한 필름은 열처리 후 11주부터 2.0 CL전분으로 제조한 필름은 9주부터 그들의 기계적 강도가 상실될 정도로 열분해 되었음을 확인할 수 있었다.In addition, as a result of investigating the thermal decomposition property of the film by mechanical properties, as shown in Tables 4, 5, and 6, the mechanical property changes of the film heat-treated at 70 ° C. showed the carbonyl index according to the FT-IR spectrum ( It is generally consistent with the change of carbonyl index). Tensile strength, elongation, and tensile energy of the untreated potato starch were significantly reduced after 11 weeks, whereas the films made of 0.1 CL starch and 2.0 CL starch had 0.5 CL starch after 5 weeks. Films made with 1.0 CL starch showed a significant decrease in mechanical properties after 7 weeks (p <0.05), indicating that pyrolysis of film made with crosslinked potato starch was faster than that made with untreated potato starch. It was. In particular, the film made from 0.1 CL starch was thermally degraded from 5 weeks due to thermal degradation, the mechanical strength was weakened from 7 weeks and the mechanical strength could not be measured. The case where the mechanical characteristic value does not appear in the table is when the film is thermally decomposed by heat treatment and thus the mechanical characteristic value is not measured as the film is broken. Films made from 0.5 CL and 1.0 CL starch were thermally decomposed to the extent that their mechanical strength was lost from 9 weeks after heat treatment.
실험예 3: 본 발명 가교결합 감자전분-폴리에틸렌 필름의 생분해도Experimental Example 3: Biodegradability of Cross-linked Potato Starch-Polyethylene Film of the Present Invention
제 1 공정: 필름의 화학적 멸균First Process: Chemical Sterilization of Film
실시예 1에서 제조한 무처리 감자전분 및 가교결합시킨 감자전분으로 제조한 생분해성 필름을 각각 1cm × 3cm의 조각(strip)으로 자른 후, 이것을 Universal disinfection solution(20 mL의 표백제, 8 mL의 멸균된 tween 80, 972 mL의 멸균증류수)에 첨가하여 1∼2시간 동안 교반시켰다. 이것을 멸균된 핀셋을 이용하여 1 L의 멸균증류수에 옮겨 다시 1시간동안 교반하였다. 이 필름을 95% 에탄올, 70% 에탄올, 마지막으로 멸균증류수에 연속적으로 세척하였다.The biodegradable film prepared from the untreated potato starch and the crosslinked potato starch prepared in Example 1 was cut into strips of 1 cm x 3 cm, respectively, and then, this was a universal disinfection solution (20 mL of bleach, 8 mL of sterilization). Tween 80, 972 mL sterile distilled water) was added and stirred for 1-2 hours. This was transferred to 1 L sterile distilled water using sterile tweezers and stirred for 1 hour. The film was washed successively with 95% ethanol, 70% ethanol and finally sterile distilled water.
제 2 공정: 슈도모나스 아에루기노사의 접종 및 배양Second Process: Inoculation and Cultivation of Pseudomonas aeruginosa
상기 제 1 공정에 의해 멸균된 필름을 멸균된 뉴트리엔트 브로스(nutrient broth)가 담긴 삼각 플라스크에 넣고 35℃, 100 rpm에서 하루동안 배양시켜 미생물에 대한 각 필름의 멸균정도를 관찰하였다. 즉, 24시간 배양 후 필름이 담긴 플라스크의 뉴트리엔트 브로스(nutrient broth)의 투명도를 관찰하여 필름의 멸균상태를 확인한 후 플라스크에 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주를 접종하였다. 이것을 35℃ 배양기(incubator)에서 100 rpm으로 교반하면서 4주동안 배양하였다. 대조군은 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주를 접종하지 않고 동일한 과정을 거쳐 배양하였다.The film sterilized by the first process was placed in a Erlenmeyer flask containing sterilized nutrient broth and cultured for one day at 35 ° C. and 100 rpm to observe the sterilization degree of each film against microorganisms. That is, after culturing for 24 hours to confirm the sterile state of the film by observing the transparency of the nutrient broth (nutrient broth) of the flask containing the film, the flask was inoculated with Pseudomonas aeruginosa (KCTC 2651) strain. This was incubated for 4 weeks with stirring at 100 rpm in a 35 ℃ incubator. The control group was cultured through the same process without inoculating Pseudomonas aeruginosa (KCTC 2651) strain.
제 3 공정: 필름의 생분해도 측정Third Process: Determination of Biodegradability of Film
본 공정에서는 먼저 필름의 FT-IR에 의한 생분해도를 측정하기 위해 상기 제 2 공정에 의해 4주동안 배양된 필름을 각각 삼각 플라스크로부터 멸균수로 옮겨 세척하고, 다시 70% 에탄올에 30분동안 담궜다. 이 필름을 페트리디쉬(petridish)로 옮긴 후 45℃ 오븐에서 8시간 건조시켰다. 건조된 필름에 대해 FT-IR 스펙트럼(spectrum)을 측정하여 카보닐 인덱스(carbonyl index)를 측정하였다. 또 기계적 성질에 의한 필름의 생분해도 측정을 위해 상기 실험예 2의 FT-IR에 의한 필름의 분해도 측정 방법과 동일한 방법으로 건조시킨 필름을 50% 상대습도에서 40시간동안 유지시킨 후 인스트론(Instron)을 이용하여 인장강도, 신장율, 인장에너지를 측정하였다. 인스트론의 조작조건은 실험예 1의 필름의 기계적 성질을 측정할 때와 동일한 조건으로 하였다.In this process, first, the films incubated for 4 weeks by the second process were transferred to the sterile water from the Erlenmeyer flask, and then immersed in 70% ethanol for 30 minutes in order to measure the biodegradability of the film by FT-IR. . The film was transferred to petridish and dried in a 45 ° C. oven for 8 hours. The carbonyl index was determined by measuring the FT-IR spectrum on the dried film. In addition, in order to measure the biodegradability of the film by mechanical properties, the dried film was maintained for 40 hours at 50% relative humidity in the same manner as the method for measuring the decomposition of the film by FT-IR of Experimental Example 2, followed by Instron (Instron Tensile strength, elongation rate, and tensile energy were measured using. The operating conditions of the Instron were the same conditions as when measuring the mechanical properties of the film of Experimental Example 1.
실험결과, 도 2에 나타낸 바와 같이 FT-IR에 의한 필름의 생분해 특성 분석에 의하면 무처리 감자전분으로 제조한 필름은 슈도모나스 아에루기노사 (Pseudomonas aeruginosa)(KCTC 2651) 균주를 처리한 필름과 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주를 처리하지 않은 대조군 필름에서 카보닐 인덱스에 거의 차이가 없었지만, 가교결합 감자전분으로 제조한 필름은 1.0 CL/PE 필름을 제외하고는 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주를 처리한 필름이 대조군 필름에서보다 카보닐 인덱스가 더 높게 나타났다. 이것은 가교결합 전분으로 제조한 필름에 미생물이 생성하는 효소에 의한 공격이 더 용이하여 Starch/PE film이 더 쉽게 분해됨으로써 카보닐(carbonyl)기가 더 많이 생성되었다는 것을 의미한다.As a result, as shown in FIG. 2, according to the biodegradation characteristic analysis of the film by FT-IR, the film prepared with untreated potato starch was treated with Pseudomonas aeruginosa (KCTC 2651) strain and Pseudomonas. Although there was little difference in the carbonyl index in the control film that was not treated with the Pseudomonas aeruginosa (KCTC 2651) strain, the film prepared with the crosslinked potato starch was obtained from Pseudomonas ae except 1.0 CL / PE film. Films treated with Pseudomonas aeruginosa (KCTC 2651) strains showed higher carbonyl indices than in control films. This means that the film made with cross-linked starch is more easily attacked by enzymes produced by microorganisms, and thus more carbonyl groups are produced by the decomposition of the Starch / PE film more easily.
필름의 기계적 성질에서의 변화는 도 3에 나타낸 바와 같이 FT-IR 스펙트럼에 의한 카보닐 인덱스의 변화와 일치하였다. 즉 무처리 감자전분으로 제조한 필름은 슈도모나스 아에루기노사(Pseudomonas aeruginosa;KCTC 2651)를 처리한 필름과 대조군 필름간에 기계적 특성에 거의 변화가 없었던 반면 가교결합 감자전분으로 제조한 필름에서는 대부분 슈도모나스 아에루기노사(Pseudomonas aeruginosa;KCTC 2651)를 처리한 필름이 대조군 필름에 비해 거의 모든 기계적 성질들이 저하되었다. 특히 0.1 CL전분과 1.0 CL전분으로 제조된 필름에서는 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주를 처리한 필름이 대조군에 비해 인장강도, 신장율, 인장에너지 모두가 크게 낮아져 필름의 생분해가 활발히 일어났음을 보여주었다. 이러한 결과는 가교결합시킨 전분이 무처리 감자전분보다 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주의 대사에 더 적합한 환경조건을 제공하여 미생물에 의해 필름이 더 쉽게 생분해되었다는 것을 의미한다.The change in the mechanical properties of the film was consistent with the change in carbonyl index by the FT-IR spectrum as shown in FIG. 3. In other words, the film prepared with untreated potato starch showed little change in mechanical properties between Pseudomonas aeruginosa ( KCTC 2651) treated film and the control film, whereas most of the films made with cross-linked potato starch were Pseudomonas aeruginosa. Almost all mechanical properties of the film treated with Pseudomonas aeruginosa ( KCTC 2651) were lower than those of the control film. Particularly, in the film prepared with 0.1 CL starch and 1.0 CL starch, the film treated with Pseudomonas aeruginosa (KCTC 2651) strain showed significantly lower tensile strength, elongation rate and tensile energy than the control group, resulting in biodegradation of the film. Showed that it happened actively. These results indicate that the crosslinked starch provides more suitable environmental conditions for the metabolism of Pseudomonas aeruginosa (KCTC 2651) strain than untreated potato starch, making the film more readily biodegradable by the microorganism.
제 4 공정: 필름의 형태 측정4th process: measuring the shape of a film
상기 제 2 공정에서 배양이 끝난 필름의 형태를 주사 전자 현미경(Scanning electron microscope, Hitachi S-4200, Japan)을 이용하여 2,000배 확대비율로 관찰하였다.The form of the film incubated in the second step was observed at a magnification of 2,000 times using a scanning electron microscope (Hitachi S-4200, Japan).
실험결과, 도 4에 나타낸 바와 같이 대조군 필름(A)에서는 초기의 필름 형태와 거의 변화가 없었으나 슈도모나스 아에루기노사(Pseudomonas aeruginosa)(KCTC 2651) 균주를 처리한 필름에서는 미생물의 대사과정에서 생성되는 효소에 의한 공격으로 전분 입자와 필름이 약간 파괴된 것을 볼 수 있었다.As a result, as shown in Figure 4, the control film (A) was almost unchanged from the initial film form, but in the film treated with Pseudomonas aeruginosa (KCTC 2651) strain produced in the metabolic process of microorganisms The starch particles and film were slightly destroyed by the attack by the enzyme.
필름의 생분해도를 측정하기 위한 매립과 같은 대부분의 실험들은 온도, 습도 등의 변화가 심한 환경하에서 1년∼10년이 소요되는데 비해 본 실험에서는 일정한 조건하에서 단기간내에 필름의 생분해도를 측정할 수 있었다.Most experiments, such as landfill, to measure the biodegradability of a film take 1 to 10 years under conditions of extreme changes in temperature and humidity.However, in this experiment, the biodegradability of a film can be measured within a short period of time under certain conditions. there was.
이상, 상기 실시예와 실험예를 통하여 설명한 바와 같이, 0.1 ∼ 2.0% 에피클로로하이드린(epichlorohydrin)으로 가교결합시킨 감자전분을 1 ∼ 20중량% 함유시켜 제조한 본 발명 분해성 고분자 필름은 무처리 감자전분을 함유시켜 제조한 고분자 필름보다 인장강도, 신장율, 인장에너지와 같은 기계적 성질이 우수한 효과가 있고 또 열에 의해 빠르게 분해될 뿐만 아니라 미생물에 의해서도 빠르게 생분해되어 환경오염을 최소화시키는 뛰어난 효과가 있으므로 생물산업 및 환경보전산업상 매우 유용한 발명인 것이다.As described above, the degradable polymer film of the present invention prepared by containing 1 to 20% by weight of potato starch cross-linked with 0.1 to 2.0% epichlorohydrin, as described through the above Examples and Experimental Examples The mechanical properties such as tensile strength, elongation, and tensile energy are superior to polymer films prepared by containing powder, and they are not only rapidly decomposed by heat but also biodegraded by microorganisms to minimize environmental pollution. And it is a very useful invention in environmental conservation industry.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0040492A KR100383909B1 (en) | 2000-07-14 | 2000-07-14 | High molecular weight degradable film containing crosslinked potato starch and process for preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0040492A KR100383909B1 (en) | 2000-07-14 | 2000-07-14 | High molecular weight degradable film containing crosslinked potato starch and process for preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020006930A true KR20020006930A (en) | 2002-01-26 |
KR100383909B1 KR100383909B1 (en) | 2003-05-14 |
Family
ID=19678057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0040492A Expired - Fee Related KR100383909B1 (en) | 2000-07-14 | 2000-07-14 | High molecular weight degradable film containing crosslinked potato starch and process for preparation thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100383909B1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6011723B2 (en) * | 1977-04-04 | 1985-03-27 | 株式会社協立有機工業研究所 | Method for producing highly viscous cation-modified starch |
KR0150249B1 (en) * | 1994-01-05 | 1998-10-15 | 김경환 | Biodegradable composition |
KR0145268B1 (en) * | 1994-11-19 | 1998-07-01 | 김화응 | toothpick |
JP3398860B2 (en) * | 1998-06-24 | 2003-04-21 | 株式会社プラスト | Biodegradable resin foam |
JP3399866B2 (en) * | 1998-11-10 | 2003-04-21 | 三和化工株式会社 | Biodegradable resin foam and method for producing the same |
-
2000
- 2000-07-14 KR KR10-2000-0040492A patent/KR100383909B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100383909B1 (en) | 2003-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhong et al. | Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review | |
Niranjana Prabhu et al. | A review on present status and future challenges of starch based polymer films and their composites in food packaging applications | |
Suriyatem et al. | Improvement of mechanical properties and thermal stability of biodegradable rice starch–based films blended with carboxymethyl chitosan | |
Singh et al. | Biodegradation of poly (ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer | |
Kim | Evaluation of degradability of hydroxypropylated potato starch/polyethylene blend films | |
US5446079A (en) | Aliphatic-aromatic copolyesters and cellulose ester/polymer blends | |
AU638598B2 (en) | A starchy polymeric mixture particularly for the production of films and the like and a method for its production | |
Sam et al. | Recent advances in polyolefins/natural polymer blends used for packaging application | |
Verma et al. | PVA-based blends and composites | |
Taghizadeh et al. | Study of enzymatic degradation and water absorption of nanocomposites starch/polyvinyl alcohol and sodium montmorillonite clay | |
Datta et al. | Enhancing degradability of plastic waste by dispersing starch into low density polyethylene matrix | |
JPH03505232A (en) | Starch-based biodegradable products and their manufacturing method | |
JP2011511119A (en) | Soluble starch-based thermoplastic compositions and methods for preparing such compositions | |
Imam et al. | Biodegradation of starch-poly (β-hydroxybutyrate-co-valerate) composites in municipal activated sludge | |
CN111849177A (en) | Full-biodegradable material | |
JP7530974B2 (en) | Biodegradable resin composition and its manufacturing method | |
Riyajan | Establishment and properties of epoxidized natural rubber-graft-poly (N-vinylcaprolactam)/poly (vinyl alcohol) blend | |
CN113980446B (en) | Composite modified starch-based environment-friendly material, preparation method and application | |
EP0837903B1 (en) | Meltprocessible starch composition, a process for the preparation thereof and the use of the composition | |
JP3773335B2 (en) | Biodegradable aliphatic polyester resin-starch composition | |
CN113683804A (en) | Double-crosslinked chitosan poly (ester-urethane) modified oxidized starch and preparation method thereof | |
KR100383909B1 (en) | High molecular weight degradable film containing crosslinked potato starch and process for preparation thereof | |
Teseme | Review on the manufacturing of biodegradable plastic packaging film from root and tuber starches | |
CN112500600B (en) | Self-cleaning antibacterial degradable daily chemical bottle and preparation method thereof | |
Luckachan et al. | Sugar end-capped polyethylene: Ceric ammonium nitrate initiated oxidation and melt phase grafting of glucose onto polyethylene and its microbial degradation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20000714 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20000823 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20000714 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20021030 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20030409 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20030430 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20030502 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20051228 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20061228 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20080402 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20090402 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20100331 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20110331 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20120329 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20130325 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20130325 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20140324 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20140324 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20160329 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20160329 Start annual number: 14 End annual number: 14 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20190211 |