KR200158409Y1 - Explosion control plug - Google Patents
Explosion control plug Download PDFInfo
- Publication number
- KR200158409Y1 KR200158409Y1 KR2019960024508U KR19960024508U KR200158409Y1 KR 200158409 Y1 KR200158409 Y1 KR 200158409Y1 KR 2019960024508 U KR2019960024508 U KR 2019960024508U KR 19960024508 U KR19960024508 U KR 19960024508U KR 200158409 Y1 KR200158409 Y1 KR 200158409Y1
- Authority
- KR
- South Korea
- Prior art keywords
- explosion
- aluminum alloy
- alloy foil
- pressure
- cuts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004880 explosion Methods 0.000 title description 28
- 239000011888 foil Substances 0.000 claims abstract description 23
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 17
- 239000000945 filler Substances 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- 238000003860 storage Methods 0.000 description 11
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 10
- 230000001629 suppression Effects 0.000 description 8
- 239000002360 explosive Substances 0.000 description 6
- 101100008046 Caenorhabditis elegans cut-2 gene Proteins 0.000 description 5
- 239000001294 propane Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000008034 disappearance Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D25/00—Details of other kinds or types of rigid or semi-rigid containers
- B65D25/02—Internal fittings
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
[목적][purpose]
안전간극형성용 격자공간의 확보작업이 용이하고, 칩이 발생하지 않으며, 구기거나 뭉치더라도 유효 안전간극이 충분히 확보되고 또한 장입 및 필요시 회수하기가 수월한 폭발억제용 충전물을 제공하기 위한 것이다.The purpose of the present invention is to provide an explosion-proof filler that is easy to secure a grid space for forming a safety gap, that chips do not occur, and that an effective safety gap is secured even when crumpled or agglomerated, and that it is easy to load and recover when necessary.
[구성][Configuration]
경도가 우수하고 탄성도 알맞게 지닌 알루미늄합금 포일(1)을 소재로 하고, 이 알루미늄합금 포일(1)을 소재로 하고, 이 알루미늄합금 포일(1)에 횡살(5)보다도 폭이 넓은 종살(4)에 의하여 칼자국의 폭방향으로 잡아당겼을 때 인접한 안전공간확보용 격자공간(3)간에 단이 지도록 칼자국(2)을 낸 폭발억제용 충전물이다.The aluminum alloy foil (1) which has excellent hardness and moderate elasticity is used as a material, and this aluminum alloy foil (1) is used as a material, and this aluminum alloy foil (1) is wider than the ribs (4) (4). It is an explosion-suppressing filler that cuts out the cuts (2) so that a step is formed between adjacent lattice space securing grid spaces (3) when pulled in the width direction of the cuts.
Description
본고안은 가연성 액체 또는 기체보관용 저장탱크 또는 용기에 함께 넣어서 열적(熱的)요인, 충격요인 등에 기인하는 폭발가능성을 제거할 목적으로 사용하는 폭발억제용 충전물에 관한 것이며, 특히 안전간극형성용 격자 공간의 확보작업이 용이하고, 칩이 발생하지 않으며, 구기거나 뭉치더라도 유효 안전간극이 충분히 확보되고 또한 장입 및 필요시 회수하기가 수월한 폭발억제용 충전물에 관한 것이다.This article relates to an explosion-proof filler used for the purpose of eliminating the possibility of explosion caused by thermal factors, impact factors, etc., in a storage tank or container for storing flammable liquids or gases. The present invention relates to an explosion-proof filling that is easy to secure a lattice space, does not generate chips, and has a sufficient safety gap even when crumpled or agglomerated, and is easy to charge and to recover when necessary.
가연성 액체의 폭발압력은 0.7~0.8MPA(메틸 아세틸렌은 약 1.0MPA)이다. 저장용기의 대소는 가연성 액체의 최대폭발압력의 상승속도에 영향을 줄 뿐 가연성 액체의 최대 폭발압력은 저장용기의 면적과는 무관하다. 이점을 감안하여 어떤 악조건에서도 폭발을 억제할 수 있는 공간을 만드는 것이다.The explosive pressure of flammable liquids is 0.7 to 0.8 MPA (about 1.0 MPA for methyl acetylene). The magnitude of the storage vessel affects the rate of rise of the maximum explosive pressure of the flammable liquid, but the maximum explosion pressure of the flammable liquid is independent of the area of the storage vessel. Taking this into account, it is possible to create a space that can suppress the explosion in any adverse conditions.
가연성 액체용 저장용기의 내부압력이 급속 팽창하여 용기가 견딜 수 있는 압력을 초과하면 폭발한다. 폭발시 용기내부의 초기압력을 Pi(MPA)라고 할 때, 그 최대폭발압력 Pm(MPA)은 다음식으로 구할 수 있다.It explodes if the internal pressure of the storage container for flammable liquids expands rapidly and exceeds the pressure the container can withstand. When the initial pressure inside the vessel at the time of explosion is Pi (MPA), the maximum explosion pressure Pm (MPA) can be obtained from the following equation.
여기서, Nf는 연소 또는 분해된 혼합물중 기체의 최종 분자, Ni는 초기 혼합물중의 기체몰수자(분자), Tf는 초기온도(K), Ti는 최종온도(K)이다.Where Nf is the final molecule of the gas in the burned or decomposed mixture, Ni is the gas mole number (molecular) in the initial mixture, Tf is the initial temperature (K), and Ti is the final temperature (K).
기체가 연소될 때, 반응전의 Ni치와 반응후의 Nf치의 변화는 크지 않다. 프로판가스가 공기중에서 완전 연소된 기체의 물리적변화에서 확인할 수가 있다.When the gas is combusted, the change in the Ni value before the reaction and the Nf value after the reaction is not large. Propane gas can be seen in the physical change of the gas completely burned in air.
C3H8+ 5O2+ 18.8N2= 3CO2+ 4H2O + 18.8N2 C 3 H 8 + 5O 2 + 18.8N 2 = 3CO 2 + 4H 2 O + 18.8N 2
반응전의 Ni값은 24.8이고, 반응후의 Ni값은 25.8이다. 이와같이 폭발시 발생하는 압력은 연소시의 온도상승때문에 조성되는 것이다. 따라서, 어떤 상황에 봉착하든지 가연성 액체의 온도상승을 저지하여 Tf가 Ti로 신속히 내려뜨리면 가연성 액체의 폭발을 억제시킬 수가 있다.The Ni value before the reaction is 24.8 and the Ni value after the reaction is 25.8. Thus, the pressure generated during the explosion is created due to the temperature rise during combustion. Therefore, under any circumstances, if the temperature rise of the flammable liquid is prevented and Tf is rapidly lowered to Ti, the explosion of the flammable liquid can be suppressed.
이런 목적하에 사용하는 것이 폭발억제용 충전물이다. 이것은 가연성 액체저장용 용기내에 설치했을 때 루이스(B. Lewis)의 소염거리 이론, 즉 기체의 소염거리보다도 작은 공간내에서는 화염이 존재하게 된다는 원리를 응용하여 용기의 충전체적의 최소화 및 최대 유효 안전간극(小室)을 확보하기 위하여 가연성 액체와 함께 저장용기에 충전하는 물질을 말한다.Use for this purpose is an explosion proof filler. This is based on B. Lewis's extinguishing distance theory when installed in a flammable liquid storage container, that is, where the flame exists in a space less than the gas extinguishing distance, minimizing the filling volume of the container and providing maximum effective safety. It refers to a material that fills a storage container with a flammable liquid in order to secure a gap.
이런 사용목적을 가진 폭발억제용 충전물은 내구성, 내유성, 내가스성, 형태변화성을 높이기 위하여 대개 비금속 포일을 소재로 하며, 최대 유효 안전간극을 형성하기 위한 격자공간은 대체로 타발 또는 성형법을 채택해 왔다.Explosion-proof fillers intended for this purpose are usually made of non-metallic foils to increase durability, oil resistance, gas resistance, and morphology, and the lattice space for forming the maximum effective safety clearance is generally adopted by punching or forming method. come.
그러나 비금속 포일을 타발 또는 성형하여 격자공간을 확보하는 것은 제조면에서 비능률적이고, 칩이 다량 발생하므로 재료의 낭비가 심해 원가가 높다. 또, 구겨서 뭉치면 안전간극이 제대로 확보되지 않고 축소되기때문에 비효과적이고, 충전량은 상대적으로 늘어나 비용부담이 가중된다.However, securing the lattice space by punching or forming non-metallic foils is inefficient in terms of manufacturing, and since a large amount of chips are generated, the waste of materials is high and the cost is high. In addition, when crumpled together, the safety gap is not secured properly and is reduced, which is ineffective, and the filling amount is relatively increased, which increases the cost burden.
또한 종래의 폭발억제용 충전물은 저장용기의 내면에 부착하든가, 칸막이식으로 설치하게 되어 있기때문에 저장용기를 완성한 후에는 충전이 불가능하고, 회수하기는 더욱 어려웠으며, 유동시 정전기가 발생하므로 불안했다.In addition, since the conventional explosion-proof filler is attached to the inner surface of the storage container or installed in a partition type, it is impossible to fill the storage container after completion of the storage container, it is more difficult to recover, and it is unstable because static electricity is generated during the flow. .
따라서 본고안의 목적은 구기거나 뭉치더라도 유효 안전간극이 충분히 확보되고, 칩이 발생하지 않으며, 또한 장입 및 필요시 회수가 가능하고, 정전기가 발생하지 않아 안전한 폭발억제용 충전물을 제공하는 것이다.Therefore, the purpose of this paper is to provide a safe explosion-proof filling, even when crumpled or bundled, sufficient effective safety gap is secured, chips are not generated, chargeable and recovered when necessary, and static electricity is not generated.
본고안은 내유성과 내가스성, 내식성, 유연성, 인장강도, 가공성이 우수하고 적당히 탄성도 지닌 신규의 알루미늄합금 포일에 규칙적 또는 불규칙적인 칼자국을 그것의 폭방향으로 인접한 것끼리 서로 어긋나게 내어서 이후 칼자국의 폭방향으로 포일을 잡아당기면 안전간극형성용 격자공간이 계단식으로 나타나게 한 폭발억제용 충전물을 제공한다.In this paper, the new aluminum alloy foil with excellent oil resistance, gas resistance, corrosion resistance, flexibility, tensile strength, processability and moderate elasticity is made to alternate regular or irregular cuts from each other in the width direction, and then cut out Pulling the foil in the widthwise direction provides an explosion-proof filling which causes the lattice space for the safety clearance to be cascaded.
제1도는 본고안에 의한 폭발억제용 충전물의 소재인 알루미늄합금제 포일의 평면도.1 is a plan view of an aluminum alloy foil which is a material of the explosion-proof filler according to the present proposal.
제2도는 상기 포일을 칼자국의 폭방향으로 잡아당긴 상태의 평면도.2 is a plan view of the foil pulled in the width direction of the cut.
제3도는 제2도의 I-I선 단면도.3 is a cross-sectional view taken along line II of FIG. 2.
제4도는 포일을 펼쳐 뭉친 폭발억제용 충전물의 예시도.Figure 4 is an illustration of the explosion-suppression filling the foil unfolded.
제5도는 폭발억제용 충전물을 장입한 경우와 비장입시를 비교한 폭발압력 그래프.5 is a graph of explosion pressure comparing the case of charging with an explosion-suppressing filler and the time of non-loading.
제6도는 폭발억제용 충전물의 밀도와 폭발압력과의 관계를 나타낸 그래프.6 is a graph showing the relationship between the density of the explosion-suppressive charge and the explosion pressure.
제7도는 폭발억제용 충전물이 장입된 경우의 가연성 액체 저장용기내의 잔여공간과 폭발억제압력과의 관계를 나타낸 그래프.7 is a graph showing the relationship between the remaining space in the flammable liquid storage container and the explosion suppression pressure when an explosion suppressing filler is charged.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 알루미늄합금 포일 2 : 칼자국1: aluminum alloy foil 2: cut
3 : 격자공간 4 : 종살3: lattice space 4: slave
5 : 횡살5: gigs
제1도에서, 알루미늄합금 포일(1)은 본고안자에 의해 새로 제조된 특수 알루미늄합금을 소재로 한다. 이 알루미늄합금은 Si 0.21무게%, Fe 0.47무게%, Cu 0.003무게%, Mg 0.01무게%, Mn 1.04무게%, Zn 0.02무게%, Ti 0.04무게%를 함유한 것으로, 내유성, 내화학성, 내약품성이 우수하고, 인장강도와 경도가 크며, 탄성과 소성을 함께 지닌 것이다.In FIG. 1, the aluminum alloy foil 1 is made of a special aluminum alloy newly manufactured by the present inventors. The aluminum alloy contains 0.21% by weight of Si, 0.47% by weight of Fe, 0.003% by weight of Cu, 0.01% by weight of Mg, 1.04% by weight of Mn, 0.02% by weight of Zn, and 0.04% by weight of Ti. It is excellent in tensile strength and hardness, and has elasticity and plasticity.
상기 알루미늄합금 포일(1)에 톰슨기 등의 가공기를 이용하여 칼자국(2)을 낸다. 칼자국(2)의 모양은 특정하지 않는다. 도면에서는 一자형으로 나타나 있지만 다른 모양으로도 형성할 수 있다. 칼자국(2)은 또 길이와 길이방향의 간격 및 폭방향의 간격은 규칙적 또는 불규칙적인 것을 망라한다. 다만, 안전간극의 확보가 용이하기로는 규칙적으로 배열하는 것이다.The aluminum alloy foil 1 is cut out using a processing machine such as a Thomson machine. The shape of the cut 2 is not specified. Although shown in the form of one-piece in the figure may be formed in other shapes. The cut 2 also encompasses regular or irregular lengths and gaps in the longitudinal direction and in the width direction. However, it is arranged regularly so that the safety clearance can be easily secured.
제2도는 상기 알루미늄합금 포일(1)을 칼자국(2)의 폭방향으로 잡아당겼을 때 격자공간(3)이 확보된 상태를 보여준다. 격자공간(3)은 칼자국(2)의 모양에 따라 다양하게 나타난다. 격자공간(3)을 구획하는 벽은 칼자국(2)들 사이에 붙어있는 종살(4)과 횡살(5)이 대신한다. 그리고 칼자국(2)의 길이방향에 놓인 종살(4)의 폭은 칼자국(2)의 폭방향에 놓인 횡살(5)보다도 높다. 이같은 살(4)과 (5)간의 칫수차이는 제3도에 나타난 바와같이 칼자국(2)과 종살(4) 및 횡살(5)에 의해 이뤄진 인접한 격자공간(3)끼리 단을 형성하게 된다. 전체적으로는 제4도에 나타난 바와같이 계단을 이룬다.2 shows a state in which the lattice space 3 is secured when the aluminum alloy foil 1 is pulled in the width direction of the cut 2. Lattice space (3) appears in various ways depending on the shape of the cut (2). The walls partitioning the lattice space 3 are replaced by the stalks 4 and the ribs 5 attached between the cuts 2. And the width | variety of the cutlet 4 which lays in the longitudinal direction of the cut 2 is higher than the rafter 5 placed in the width direction of the cut 2. This dimension difference between the flesh (4) and (5) forms a stage between adjacent lattice spaces (3) formed by the cuts (2), the bell masses (4) and the ribs (5), as shown in FIG. In total, they are staircases as shown in FIG.
또, 종살(4)과 횡살(5)은 폭이 좁을수록 살의 길이방향으로 구기든가 뭉쳤을 때 확실하게 안전간극을 확보할 수가 있다. 통상의 알루미늄 포일은 탄성과 경도가 낮아 타발등의 방법으로 단차없이 격자공간을 형성하여 접거나 뭉치면 마치 평탄한 종이를 접은 것처럼 면과 면이 밀착되므로 안전간극을 확보하기가 어려웠다. 그렇지만 본고안에서의 알루미늄합금 포일(1)은 적당히 탄성이 주어졌고 경도가 높기에 구기거나 뭉치더라도 살끼리 달라붙지 않아 안전간극이 확보된다.In addition, the narrower the width of the bell (4) and the ribs (5), the more securely a safety gap can be secured when crumpling or clumping in the longitudinal direction of the flesh. Conventional aluminum foil has low elasticity and hardness, and thus it is difficult to secure a safety gap because the surface is in close contact with each other as if a flat paper is folded and folded or formed by forming a lattice space without a step by a punching method. However, the aluminum alloy foil (1) in this paper is moderately elastic and high in hardness, so that even if crumpled or bundled together, the safety gap is secured.
상기 알루미늄합금 포일(1)은 제2,3도와 같이 잡아당겨 펼친 상태, 또는 제4도에 예시한대로 공모양으로 둥글게 또는 임의형태로 뭉쳐서 안전간극에는 가연성 액체 저장용 용기에 충전한다. 알루미늄합금 포일(1)을 뭉칠때는 안전간극이 충분히 확보되도록 하기위해서는 적당한 압력으로, 되도록이면 가볍게 뭉치는 것이 좋다.The aluminum alloy foil 1 is pulled and unfolded as shown in FIGS. 2 and 3, or rounded or arbitrarily agglomerated in a ball shape as illustrated in FIG. 4, and filled in a flammable liquid storage container in a safety gap. When agglomeration of the aluminum alloy foil (1), in order to ensure a sufficient safety gap, it is preferable to agglomerate lightly at a suitable pressure.
상기 알루미늄합금 포일(1)은 그 자체로서 혹은 구기거나 뭉쳐 만든 폭발억제용 충전물은 격자공간(3)들간에 단이 졌으므로 평면적인 하니컴형태의 것보다도 더 작고 많은 수의 안전간극, 즉 소실을 형성한다. 이는 폭발억제용 충전물이 폭발기체의 열로 부터 폭발을 억제시키므로 안전간극은 많다는 것은 곧 폭발억제기능이 우수하다는 것과 마찬가지다. 가연성 액체, 폭발성 액체속에서도 원형을 유지한다. 구겨진 곳에서는 소성변형이 일어나지만 구겨지지 아니한 종살(4)과 횡살(5)은 높은 경도와 탄성때문에 살끼리 달라붙지 않아 소실이 형성되는데다 본디의 모습을 잃지 않기 때문이다. 또한 성분적 특성은 가연성 액체가 유동할 때 발생하기 쉬운 정전기도 효과적으로 억제하여 폭발억제효과를 높여준다.The aluminum alloy foil 1, as it is or in the form of crumpled or agglomerated explosive charges, is interspersed between the lattice spaces 3 and thus is smaller than the planar honeycomb type and forms a large number of safety clearances, i.e. disappearance. do. This is because the explosion suppression filling suppresses the explosion from the heat of the explosive gas, so that the safety gap is large, which is equivalent to the excellent explosion suppression function. Retains its shape in flammable and explosive liquids. The plastic deformation occurs in the wrinkled area, but the unfolded bell masses (4) and the ribs (5) do not adhere to each other due to their high hardness and elasticity, resulting in disappearance and loss of bondage. In addition, the component property effectively suppresses static electricity, which is easily generated when a flammable liquid flows, thereby enhancing the explosion suppression effect.
제5도는 309㎜×200㎜, 용량 152ℓ의 프로판가스와 산소를 혼합하여 초기압력이 20㎪인 경우 연쇄폭발시의 시간대별 폭발압력의 변화를 나타낸 그래프로서, 본고안에 의한 폭발억제 충전물을 장입한 경우 그렇지 아니한 경우보다도 연소반응후의 최종온도(Ti)가 신속히 내려감을 알 수가 있다. 이는 잘 발달된 안전간극들의 흡열성이 연소시 발생하는 대부분의 열을 신속히 흡수하여 화염이 전파되는 것을 막은 때문이다. 이같이 우수한 폭발억제능력은 다른 안전조치를 취하지 않고도 사용중에 파손된 용기를 안심하고 용접할 수 있게 만든다. 폭발강도가 높은 액화수소, 프로판가스도 마찬가지다.5 is a graph showing the change of explosion pressure by time during a serial explosion when the initial pressure is 20㎪ by mixing 309 mm × 200 mm and 152 L of propane gas and oxygen. In this case, it can be seen that the final temperature (Ti) decreases rapidly after the combustion reaction than otherwise. This is because the endothermic properties of well-developed safety gaps quickly absorb most of the heat generated during combustion, preventing flame propagation. This superior explosion-proof capability makes it possible to safely weld damaged containers during use without taking any other safety measures. The same applies to liquefied hydrogen and propane gas with high explosive intensity.
제6도는 폭발억제용 충전물의 충전량이 어느 수준으로 할것인가를 보여주는 그래프이다. 용적중 5% 를 남기고 프로판가스와 산소가 혼합된 가연성 액체를 주입한 여러 개의 밀봉용기에 본고안에 의한 폭발억제용 충전물의 양을 달리하여 장입한 다음 초기압력과 초기온도 등의 제반여건이 동등한 상황하에 폭발실험을 실시한 결과, 충전물의 폭발억제용 충전물은 32㎏/㎥ 가 적합한 것으로 나타났다. 실험시 폭발압력은 0.69~0.72㎫, 32㎏/㎥ 일 때 압력은 0.05㎫이다. 밀도가 높을수록 압력은 상대적으로 낮아진다.6 is a graph showing the level of charge of the explosion-suppressing filling. After filling 5% of the volume with different amounts of fillers for explosion suppression according to this paper in several sealed containers in which flammable liquid mixed with propane gas and oxygen is charged, all conditions such as initial pressure and initial temperature are equal. Under the explosion test, it was found that 32 kg / m 3 was suitable for the explosion suppression filler. In the test, the explosion pressure is 0.69 ~ 0.72MPa and the pressure is 0.05MPa when 32㎏ / ㎥. The higher the density, the lower the pressure.
사용중인 가연성 액체 용기에 폭발억제용 충전물을 100% 충전하는 것은 불가능하므로 사용상 안전한지의 여부가 의문스럽지만 염려할 것이 못된다. 예컨대, 용기의 공간(Vc)가 0%에서 10%로 증가할 때 폭발억제압력 PS의 증가치는 0.03㎫에 불과하기 때문이다.It is not possible to fill the flammable liquid container in use with 100% of the explosion-proof filler, so it is questionable whether it is safe to use, but it is not a concern. For example, when the space Vc of the container increases from 0% to 10%, the increase in the explosion suppression pressure PS is only 0.03 MPa.
제7도는 폭발억제용 충전물 4.5㎏, 밀도 30㎏/㎥, 프로판가스와 산소혼합가스의 폭발압력 0.69~0.71㎫의 조건하에 실험한 결과를 나타낸 그래프이다. 이 그래프에서, 일정량의 폭발억제용 충전물을 용기에 장입한 후에 용기내에 작은 공간이 존재하더라도 사용상 안전함을 알 수가 있다. 이같이 높은 폭발안전성때문에 외부의 고온분위기, 충격으로 인하여 용기가 갈라지거나 파손되더라도 용기가 폭발되지 않는다.FIG. 7 is a graph showing the results of experiments under the conditions of 4.5 kg of explosion suppressant, 30 kg / m 3 of density, and explosion pressure of 0.69 to 0.71 MPa of propane and oxygen mixed gas. From this graph, it can be seen that even after a small amount of explosion-proof filler is charged into the container, even if there is a small space in the container, it is safe to use. Due to this high explosion safety, the container does not explode even if the container is broken or damaged due to an external high temperature atmosphere or impact.
이상 설명한 바와같은 본고안의 폭발방지용 충전물은 알루미늄합금제 포일에 인접한 것끼리 서로 엇갈리게 칼자국을 내고, 칼자국의 폭방향으로 포일을 잡아당겨서 인접한 격자공간간에 단차가 주어져 전체적으로 안전간극형성용 격자공간을, 특히 계단식으로 형성되게 구성한 것으로, 안전간극 확보용 격자공간의 확보가 아주 용이하고, 칩이 전혀 발생치 않아 재료의 손실도 전무하다.As described above, the explosion-proof filler in the present article intersects the aluminum alloy foils alternately with each other, and pulls the foils in the width direction of the knife marks to give a step between the adjacent grid spaces, thereby providing a grid space for forming a safety gap, especially It is configured to be formed in a stepped manner, and it is very easy to secure a grid space for securing a safety gap, and no chips are generated so that there is no loss of material.
또, 포일을 구기거나 뭉치더라도 유효 안전간극이 충분히 확보되어 저장물의 폭발억제효과가 크다. 또한 맘대로 구겨뭉칠 수 있으므로 용기의 주입구같이 좁은 구멍으로 장입하기도, 장입후에 인출하기도 용이하다.In addition, even if the foil is crumpled or bundled, the effective safety gap is sufficiently secured, and the explosion suppression effect of the stored material is large. In addition, since it can be crushed at will, it is easy to load into a narrow hole, such as the inlet of the container, or to withdraw after charging.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2019960024508U KR200158409Y1 (en) | 1996-08-16 | 1996-08-16 | Explosion control plug |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2019960024508U KR200158409Y1 (en) | 1996-08-16 | 1996-08-16 | Explosion control plug |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980011020U KR19980011020U (en) | 1998-05-25 |
KR200158409Y1 true KR200158409Y1 (en) | 1999-10-15 |
Family
ID=19463899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR2019960024508U Expired - Lifetime KR200158409Y1 (en) | 1996-08-16 | 1996-08-16 | Explosion control plug |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200158409Y1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030012513A (en) * | 2001-08-01 | 2003-02-12 | 조병호 | Container which is filled with the organic combustibility substance and the explosion-proof material is set up in |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2728003C1 (en) * | 2019-10-24 | 2020-07-28 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Method to increase npp explosion safety |
CN115792172A (en) * | 2022-11-21 | 2023-03-14 | 常州大学 | Filling method of natural gas pipeline and blocking explosion suppression material and explosion suppression experiment method |
-
1996
- 1996-08-16 KR KR2019960024508U patent/KR200158409Y1/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030012513A (en) * | 2001-08-01 | 2003-02-12 | 조병호 | Container which is filled with the organic combustibility substance and the explosion-proof material is set up in |
Also Published As
Publication number | Publication date |
---|---|
KR19980011020U (en) | 1998-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bond | Sources of ignition: flammability characteristics of chemicals and products | |
Rigas et al. | Hydrogen safety | |
Pfrang et al. | Safety of rechargeable energy storage systems with a focus on Li-ion technology | |
Holden et al. | Fragment hazards from failures of pressurized liquefied gas vessels | |
US20070107915A1 (en) | Methods and apparatus for controlling hazards | |
KR200158409Y1 (en) | Explosion control plug | |
US9682259B2 (en) | Fire suppression systems and methods of suppressing a fire | |
KR20170096222A (en) | Fluid container | |
CN102959762A (en) | Thermal decoupling of battery cells in the event of a fault | |
CN103403915A (en) | Housing for receiving a flat electrochemical cell | |
US5173374A (en) | Explosion attenuation system and method for assembly in battery | |
EP0003657A1 (en) | Container for pressurized gases | |
CN116022057B (en) | Oil transporting vehicle | |
US6696196B1 (en) | Closed battery container having high volume rapid venting feature | |
US4930651A (en) | Storage vessel for liquefied gas at ambient temperature | |
US4952468A (en) | Storage battery having a protective shield | |
GB1590165A (en) | Shielded anodes | |
KR102679870B1 (en) | the electric vehicle battery pack case in which the inflow of the fire extinguishing solvent and combustion gas exhaustion facilitates | |
CN201077661Y (en) | Explosion suppression type spiral material transmitting machine | |
CN102575788B (en) | Security device and container provided with such device | |
US8205947B2 (en) | Method of breaking brittle solids | |
CN211764910U (en) | Explosion-proof oil tank | |
Marshall | Modes and consequences of the failure of road and rail tankers carrying liquefied gases and other hazardous liquids | |
WO2002081247A1 (en) | Impact-resistant fuel tank device | |
RU2629569C1 (en) | Method of ice cover destruction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
UA0108 | Application for utility model registration |
Comment text: Application for Utility Model Registration Patent event code: UA01011R08D Patent event date: 19960816 |
|
UA0201 | Request for examination |
Patent event date: 19960816 Patent event code: UA02012R01D Comment text: Request for Examination of Application |
|
G15R | Request for early publication | ||
UG1501 | Laying open of application |
Comment text: Request for Laying-Open of Early Application Patent event code: UG15011R01I Patent event date: 19960821 |
|
E902 | Notification of reason for refusal | ||
UE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event code: UE09021S01D Patent event date: 19980708 |
|
E701 | Decision to grant or registration of patent right | ||
UE0701 | Decision of registration |
Patent event date: 19981007 Comment text: Decision to Grant Registration Patent event code: UE07011S01D |
|
REGI | Registration of establishment | ||
UR0701 | Registration of establishment |
Patent event date: 19990712 Patent event code: UR07011E01D Comment text: Registration of Establishment |
|
UR1002 | Payment of registration fee |
Start annual number: 1 End annual number: 3 Payment date: 19990712 |
|
UG1601 | Publication of registration | ||
UR1001 | Payment of annual fee |
Payment date: 20020715 Start annual number: 4 End annual number: 4 |
|
UR1001 | Payment of annual fee |
Payment date: 20030707 Start annual number: 5 End annual number: 5 |
|
UR1001 | Payment of annual fee |
Payment date: 20040708 Start annual number: 6 End annual number: 6 |
|
UR1001 | Payment of annual fee |
Payment date: 20050708 Start annual number: 7 End annual number: 7 |
|
UR1001 | Payment of annual fee |
Payment date: 20060711 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20070703 Year of fee payment: 9 |
|
UR1001 | Payment of annual fee |
Payment date: 20070703 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee |