KR20010112887A - BILLETS FOR Bi-S SYSTEM FREE CUTTING STEEL WITHOUT SPLIT END DURING WIRE-ROD ROLLING AND A METHOD THEREFOR - Google Patents
BILLETS FOR Bi-S SYSTEM FREE CUTTING STEEL WITHOUT SPLIT END DURING WIRE-ROD ROLLING AND A METHOD THEREFOR Download PDFInfo
- Publication number
- KR20010112887A KR20010112887A KR1020000032914A KR20000032914A KR20010112887A KR 20010112887 A KR20010112887 A KR 20010112887A KR 1020000032914 A KR1020000032914 A KR 1020000032914A KR 20000032914 A KR20000032914 A KR 20000032914A KR 20010112887 A KR20010112887 A KR 20010112887A
- Authority
- KR
- South Korea
- Prior art keywords
- cutting steel
- free
- billet
- steel
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/02—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/16—Control of thickness, width, diameter or other transverse dimensions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/02—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
- B21B2001/022—Blooms or billets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2263/00—Shape of product
- B21B2263/16—Alligatoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2265/00—Forming parameters
- B21B2265/14—Reduction rate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Metal Rolling (AREA)
Abstract
본 발명은 선재압연시 선단부 벌어짐이 없는 Bi-S계 쾌삭강 빌렛 및 그 제조방법에 관한 것이며; 그 목적은 쾌삭강중 MnS개재물의 크기와 분포 등을 적절히 제어하고 용강내의 Al과 [O]의 양을 적절히 조절하므로써 선단부 벌어짐이 없애고 이에 따라 열간압연성이 우수한 Bi-S계 쾌삭강 제조를 위한 빌렛을 제공하는데 그 목적이 있다.The present invention relates to a Bi-S-based free-cutting steel billet, and a method of manufacturing the same, which does not have a crack at the tip when the wire is rolled; The purpose is to control the size and distribution of MnS inclusions in free-cutting steel and to control the amount of Al and [O] in molten steel to eliminate gaps at the tip, thereby producing Bi-S free cutting steel with excellent hot rolling. The purpose is to provide.
상기 목적달성을 위한 본 발명은 Bi-S계 쾌삭강 빌렛에 있어서, 중량%로, C: 0.03~0.15%, Si: 0.03%이하, Mn: 0.50~2.0%, S: 0.15~0.40%, Al: 0.002%이하, [O]: 30~100ppm, Bi: 0.10~0.20%, B: 30~150ppm, 잔부 Fe 및 기타 불가피한 불순물을 포함하여 조성되고, 크기가 30~80㎛의 범위인 MnS개재물 상호간의 거리를 10~30㎛의 범위로 두고 전단면 면적비가 1.3~1.9%의 범위내로 분포되는 Bi-S계 쾌삭강 빌렛 및 상기와 같이 조성된 부룸(bloom)을 1250~1350℃의 온도범위에서 재가열한 다음, 재가열된 부룸을 50~60%의 단면감소율로 조압연한 후 사상압연하는 Bi-S계 쾌삭강 빌렛의 제조방법에 관한 것을 그 기술적 요지로 한다.The present invention for achieving the above object in the Bi-S-based free-cutting steel billet, by weight%, C: 0.03 ~ 0.15%, Si: 0.03% or less, Mn: 0.50 ~ 2.0%, S: 0.15 ~ 0.40%, Al: 0.002% or less, [O]: 30-100 ppm, Bi: 0.10-0.20%, B: 30-150 ppm, residual Fe and other unavoidable impurities, and are composed of MnS inclusions having a size in the range of 30-80 μm. Re-heated Bi-S-based free-cutting steel billets having a shear surface area ratio of 1.3-1.9% and a bloom formed as described above with a distance in the range of 10-30 μm in a temperature range of 1250-1350 ° C. Next, the technical gist of the method for manufacturing a bi-S-based free-cutting steel billet which is roughly rolled after the reheated bloom is roughly rolled at a section reduction rate of 50 to 60%.
Description
본 발명은 범용 Bi-S계 쾌삭강의 제조에 관한 것으로, 보다 상세하게는 선단부 벌어짐이 없어 열간압연성이 우수한 Bi-S계 쾌삭강 제조를 위한 빌렛 및 그 제조방법에 관한 것이다.The present invention relates to the production of general-purpose Bi-S-based free-cutting steel, and more particularly, to a billet for producing Bi-S-based free-cutting steel excellent in hot rolling without leading edges open.
범용 Bi-S계 쾌삭강은 가공성과 절삭성이 양호하여 사무용 OA기기, 카메라, 시계 등의 소부품을 비롯하여 자동차 유압부품에 널리 이용되고 있다. 이러한 Bi-S계 쾌삭강의 절삭성은 강중에 분포된 저융점 금속인 Bi와 비금속개재물인 MnS개재물이 절삭가공시 응력집중원으로 작용하여 일어난다. 따라서, 쾌삭강의 절삭성을향상시키기 위해서는 MnS 개재물 등의 적절한 제어가 필요하며, 연속주조공정이나 열간압연공정 등 제조공정상에 있어서도 적절한 제어를 필요로 한다.General purpose Bi-S free cutting steel has good machinability and machinability, so it is widely used in automobile hydraulic parts as well as small parts such as office OA equipment, cameras and watches. The machinability of the Bi-S-based free cutting steel is caused by the low melting point metal, Bi, and the non-metallic inclusions, MnS inclusions, acting as stress concentration sources during cutting. Therefore, in order to improve the machinability of free-cutting steel, appropriate control such as MnS inclusions is required, and appropriate control is required in manufacturing processes such as a continuous casting process and a hot rolling process.
연속주조에 의한 Bi-S계 쾌삭강의 제조는 용강을 연속주조한 후 얻어지는 부룸(bloom)을 재가열한 다음 재가열된 부룸을 빌렛(billet)으로 강편압연하여 선재를 제조하고, 제조된 선재를 압연하여 이루어진다. 지금까지 Bi-S계 쾌삭강의 제조방법에 대해서는 다양한 방법이 제시되어 있다.The manufacturing of Bi-S-based free-cutting steel by continuous casting is carried out by reheating a bloom obtained after continuous casting of molten steel, and then rolling the reheated bloom with a billet to produce a wire rod, and rolling the manufactured wire rod. Is done. So far, various methods have been proposed for the manufacturing method of Bi-S-based free cutting steel.
예를들면, 대한민국 특허출원 제99-29038호에 의하면, Bi-S계 쾌삭강의 제조시 제강공정을 적절히 제어하여 표면흠이 저감되는 빌렛을 제조하는 기술이 제시되어 있다. 구체적으로 이 방법은 적정량의 B을 첨가하고 또한 턴디쉬내에 종점산소[O]를 25~100ppm이 되도록 제어한 상태에서 주조속도를 0.6~0.7m/min의 범위로 하여 중심편석을 방지하고 빌렛 표면흠을 저감하는 쾌삭강 선재의 제조에 관한 것이다.For example, according to Korean Patent Application No. 99-29038, a technique of manufacturing a billet having a surface defect is reduced by appropriately controlling a steelmaking process when manufacturing Bi-S-based free cutting steel. Specifically, this method prevents center segregation by setting the casting speed in the range of 0.6 to 0.7 m / min while adding an appropriate amount of B and controlling the end point oxygen [O] to 25 to 100 ppm in the tundish. The present invention relates to the production of a free cutting steel wire which reduces scratches.
이외에도 대한민국 특허공개 제98-29705호에는 Bi-S계 쾌삭강의 제조방법이 제시되어 있는데, 이 방법은 분괴, 빌렛 내부 결함을 최소화하기 위해 B을 첨가하고, 용존 산소량을 5~20ppm의 범위로 한정하여 연속주조하는 방법이 알려져 있다.In addition, Korean Patent Publication No. 98-29705 discloses a method for manufacturing Bi-S-based free-cutting steel, in which B is added to minimize particle defects and billet internal defects, and the amount of dissolved oxygen is limited to the range of 5 to 20 ppm. Continuous casting is known.
또 다른 예로서, 대한민국 특허 제213334호에 의하면 Bi-S계 쾌삭강 제조시 MnS개재물 및 Bi가 흡착된 개재물의 전단면 분율, 길이와 폭 등을 한정하여 선재압연시 표면흠, 스캡(scab) 발생을 방지하여 내열간 취화성이 우수한 선재의 제조방법이 제안되어 있다.As another example, according to Korean Patent No. 213334, the surface flaw and the scab are generated during wire rolling by limiting the shear surface fraction, length and width of MnS inclusions and Bi-adsorbed inclusions during Bi-S-based free cutting steel production. A method for producing a wire rod having excellent heat embrittlement resistance is proposed.
그러나, 상기 방법들은 Bi-S계 쾌삭강의 제조에 있어서 가장 큰 문제는 빌렛의 표면흠이나 중심편석 방지 등에는 매우 효과적이나 빌렛 선단부가 갈라지는 현상이 심화되어 열간압연이 원활히 진행되지 못하는 문제가 여전히 상존하고 있다.However, these methods are the biggest problem in the production of Bi-S-based free-cutting steel is very effective in preventing the surface scratches and center segregation of the billet, but the problem that the hot rolling does not proceed smoothly due to the deepening phenomenon of the billet tip is still present Doing.
즉, Bi-S계 쾌삭강은 일반적인 탄소강과는 달리 MnS 개재물이 연속적으로 기지조직에 많이 분포하여 절삭성은 우수하나 열간압연시 그 개재물의 존재 자체가 소재의 취화를 일으키는 요인으로 작용하고, 더욱이 빌렛 소재의 선단부가 갈라지는 현상이 나타난다. 선단 벌어짐(split end) 현상은 열간 선재 압연시 빌렛의 선단부가 벌어지는 현상을 말하는 것으로서, 선재압연시 선단 벌어짐 현상이 발생하면 압연스탠드(mill stand)에 소재의 치입이 어려워져 압연라인을 이탈하게 되어 설비파손은 물론 소재 자체를 스크랩(scrap) 처리를 해야 된다는 문제가 있다.In other words, Bi-S-based free-cutting steel has excellent machinability because MnS inclusions are continuously distributed in the matrix structure unlike general carbon steels, but the presence of the inclusions itself causes the embrittlement of the material during hot rolling. The leading edge of the split appears. The split end phenomenon refers to a phenomenon in which the tip end portion of the billet is opened during hot wire rolling. When the end opening phenomenon occurs during wire rolling, it becomes difficult to insert the material into the mill stand, thereby leaving the rolling line. In addition to equipment damage, the material itself has to be scrapped.
본 발명은 이와같은 종래의 문제점을 해결하고자 제안된 것으로서 쾌삭강중 MnS개재물의 크기와 분포 등을 적절히 제어하고 용강내의 Al과 [O]의 양을 적절히 조절하므로써 선단부 벌어짐이 없애고 이에 따라 열간압연성이 우수한 Bi-S계 쾌삭강 제조를 위한 빌렛 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve such a conventional problem, by appropriately controlling the size and distribution of MnS inclusions in free-cutting steel, and by appropriately adjusting the amount of Al and [O] in the molten steel to eliminate the flaring of the tip and accordingly hot rolling properties An object of the present invention is to provide a billet and a method for manufacturing the excellent Bi-S free cutting steel.
도1a 및 도1b는 각각 비교강과 발명강 빌렛의 선재압연시 선단부의 벌어짐 현상을 보이는 사진Figure 1a and Figure 1b is a photograph showing the opening phenomenon of the tip portion during the wire rod rolling of the comparative steel and the invention steel billet, respectively
상기 목적달성을 위한 본 발명은 Bi-S계 쾌삭강 빌렛에 있어서,The present invention for achieving the above object in the Bi-S-based free cutting steel billet,
중량%로, C: 0.03~0.15%, Si: 0.03%이하, Mn: 0.50~2.0%, S: 0.15~0.40%, Al: 0.002%이하, [O]: 30~100ppm, Bi: 0.10~0.20%, B: 30~150ppm, 잔부 Fe 및 기타불가피한 불순물을 포함하여 조성되고, 크기가 30~80㎛의 범위인 MnS개재물 상호간 거리를 10~30㎛의 범위로 두고 전단면 면적비가 1.3~2.0%의 범위내로 분포되어 있는 선단부 벌어짐이 없는 Bi-S계 쾌삭강 빌렛에 관한 것이다.By weight%, C: 0.03 to 0.15%, Si: 0.03% or less, Mn: 0.50 to 2.0%, S: 0.15 to 0.40%, Al: 0.002% or less, [O]: 30 to 100 ppm, Bi: 0.10 to 0.20 %, B: 30 ~ 150ppm, balance Fe and other unavoidable impurities, and the surface area ratio of 1.3 ~ 2.0% with the distance between MnS inclusions in the range of 30 ~ 80㎛ in the range of 10 ~ 30㎛ It relates to a Bi-S free cutting steel billet with no open end portion distributed in the range of.
또한, 본 발명은 Bi-S계 쾌삭강 빌렛의 제조방법에 있어서,In addition, the present invention is a manufacturing method of Bi-S-based free cutting steel billet,
상기와 같은 조성을 갖는 부룸(bloom)을 1250~1350℃의 온도범위에서 재가열한 다음, 재가열된 부룸을 50~60%의 단면감소율로 조압연한 후 사상압연하는 선단부 벌어짐이 없는 Bi-S계 쾌삭강 빌렛의 제조방법에 관한 것이다.Re-heating the bloom having the composition as above in the temperature range of 1250 ~ 1350 ℃, then roughly rolling the reheated bloom at 50 ~ 60% sectional reduction rate, and then free rolling the Bi-S-based free cutting steel It relates to a method for producing a billet.
이하, 먼저 본 발명의 빌렛에 대하여 상세히 설명한다.Hereinafter, the billet of the present invention will be described in detail.
본 발명의 쾌삭강 빌렛에 함유되는 C는 0.03~0.15%의 범위로 제한함이 바람직한데, 그 이유는 0.03%이하에서는 소재의 강도를 충분히 확보하기 어렵고 0.15%이상에서는 최종 쾌삭강 소재의 연성을 저하시켜 바람직하지 않기 때문이다.The C contained in the free cutting steel billet of the present invention is preferably limited to the range of 0.03 to 0.15%, because it is difficult to sufficiently secure the strength of the material below 0.03%, and the ductility of the final free cutting steel material is reduced by 0.15% or more. This is because it is not preferable.
또한, 상기 Si은 MnS개재물과 복합개재물을 형성하는 SiO2를 생성시키는데, 생성되는 복합개재물은 소성변형능이 매우 나쁘기 때문에 쾌삭강 절삭공구의 끝에 MnS개재물층 형성을 방해하여 표면조도에 악영향을 미친다. 따라서, Si함량은 가능한 한 낮게 0.03%이하로 관리함이 바람직하다.In addition, the Si produces SiO 2 forming MnS inclusions and composite inclusions, and the resulting composite inclusions have a very poor plastic deformation ability, which interferes with the formation of the MnS inclusion layer at the end of the free cutting steel cutting tool, thus adversely affecting the surface roughness. Therefore, it is desirable to manage Si content to 0.03% or less as low as possible.
상기 Mn은 MnS개재물의 양을 확보하고 열간압연시 결정립계에 FeS의 생성으로 인한 열간취화를 억제하는 성분으로서, 이를 위해 적어도 0.50%이상은 함유되어야 한다. 그러나, 2.0%이상을 넘는 경우 강의 경도가 증가되어 피삭성의 감소를 초래하여 바람직하지 않다.The Mn is a component that secures the amount of the MnS inclusions and suppresses hot embrittlement due to the formation of FeS at grain boundaries during hot rolling, and at least 0.50% or more should be contained therein. However, when more than 2.0%, the hardness of the steel is increased, leading to a decrease in machinability, which is not preferable.
상기 S는 소재의 절삭가공시 build-up edge의 성장 억제에 의한 피삭체의 표면조도를 개선하기 위해 MnS개재물을 형성하는 성분으로서, 그 함량은 적어도 0.15%이상 첨가되어야 한다. 그러나, S함량이 0.40%이상이면 열간가공성과 냉간가공성을 확보하기 어려워져 S함량은 0.15~0.40%의 범위로 관리함이 바람직하다.S is a component that forms the MnS inclusions to improve the surface roughness of the workpiece by the growth inhibition of the build-up edge during cutting of the material, the content should be added at least 0.15%. However, if the S content is more than 0.40%, it is difficult to secure hot workability and cold workability, and the S content is preferably managed in the range of 0.15 to 0.40%.
일반 탄소강의 연속주조시에는 강의 정련공정에서 잔존 산소를 없애기 위해 Al과 같은 탈산제를 넣게 되지만, 쾌삭강의 경우 용강중의 산소를 잔존시켜야 하므로 완전 탈산작업을 행하지 않고 최대한 많이 용강중에 산소가 잔류하도록 하고 있다. 본 발명의 Bi-S계 쾌삭강용 빌렛중의 Al은 0.002%이하로 제한함이 바람직하다. 상기 Al의 함량이 0.002%이상으로 첨가되는 경우 산소량의 감소에 의해 제조된 빌렛의 선재압연시 MnS개재물의 미세한 분포 및 합체를 유발하여 빌렛 선단부의 벌어짐 현상이 생겨 바람직하지 않다.In the continuous casting of general carbon steel, deoxidizer such as Al is added to remove residual oxygen in steel refining process, but in high-cutting steel, oxygen in molten steel must remain, so oxygen remains in molten steel as much as possible without performing complete deoxidation work. . In the Bi-S-based free cutting steel billet of the present invention, Al is preferably limited to 0.002% or less. When the Al content is added at 0.002% or more, it is not preferable because the phenomenon of opening of the billet tip occurs due to the fine distribution and coalescence of MnS inclusions during wire rod rolling of the billet prepared by the reduction of the oxygen content.
또한, 본 발명의 빌렛 제조시 용강중의 산소 함량 [O]은 30~100ppm의 범위로 관리함이 바람직하다. 빌렛중의 산소함량이 30ppm미만이면 MnS개재물이 작고 미세하게 분포되어 이후 빌렛의 열간 선재압연시 압하에 의한 선단부 벌어짐 현상이 일어난다. 그러나, 빌렛중의 산소함량이 100ppm을 넘는 경우 절삭가공시 MnS개재물의 소성변형능의 확보가 어려워 바람직하지 않다.In addition, the oxygen content [O] in the molten steel when manufacturing the billet of the present invention is preferably managed in the range of 30 ~ 100ppm. If the oxygen content in the billet is less than 30ppm, the MnS inclusions are small and finely distributed, and then the tip flare occurs due to the rolling reduction during hot wire rolling of the billet. However, when the oxygen content in the billet exceeds 100 ppm, it is not preferable to secure the plastic deformation capacity of the MnS inclusions during cutting.
상기 Bi는 Bi결정립 또는 MnS개재물 주위에 존재하여 절삭가공시 공구 선단부에 마찰열이 발생할 때 용융되어 윤활작용을 하므로써 절삭성을 향상시키는 성분으로서, 이를 위해 적어도 0.10%이상 첨가는 것이 바람직하다. 그러나, Bi의 함량이 0.20%를 넘는 경우 고온 연성을 저하시키므로 열간 취성을 유발하여 바람직하지 못하다.The Bi is present around the Bi grains or MnS inclusions to melt and lubricate when friction heat is generated at the tip of the tool during cutting, thereby improving cutting properties. Preferably, at least 0.10% or more of Bi is added. However, if the Bi content is more than 0.20%, hot ductility is lowered, causing hot brittleness, which is not preferable.
상기 B은 결정립계 및 비금속개재물 주위에 우선적으로 편석되어 공공(void) 생성을 억제하여 고온 연성을 향상시키는 성분으로서, 이를 위해 적어도 30ppm이상은 첨가되어야 한다. 그러나, B의 함량이 150ppm를 넘는 경우 오스테나이트 결정립계에 B의 석출물이 형성되므로 Bi, S 등이 편석되지 않아도 오스테나이트 결정립계를 취약하게 하므로 오히려 고온 연성을 떨어뜨려 바람직하지 않다.B is a component that preferentially segregates around grain boundaries and non-metallic inclusions to suppress void formation and thus improve high temperature ductility, and at least 30 ppm or more should be added thereto. However, when the content of B exceeds 150ppm, precipitates of B are formed in the austenite grain boundary, so that the austenite grain boundary is vulnerable even if Bi, S and the like are not segregated.
한편, 본 발명의 Bi-S계 쾌삭강 빌렛중의 MnS개재물은 소재의 피삭성과 열간압연성을 동시에 만족시킬 수 있도록 MnS개재물의 분포를 적정범위로 관리한다. 구체적으로는 상기 MnS개재물의 크기가 30~80㎛의 범위에서 각각 10~30㎛의 거리를 두고 전단면 면적비가 1.3~2.0%의 범위내로 분포되도록 하는 것이다.On the other hand, the MnS inclusions in the Bi-S free cutting steel billet of the present invention manage the distribution of the MnS inclusions in an appropriate range so as to satisfy the machinability and hot rolling property of the material at the same time. Specifically, the shear surface area ratio is distributed in the range of 1.3 to 2.0% at a distance of 10 to 30 μm in the size of the MnS inclusions in the range of 30 to 80 μm.
MnS개재물의 크기가 너무 미세하면 응력집중원으로서의 역할이 줄어들어 절삭 효과가 떨어지며, 반대로 너무 조대하면 열간압연시 큰 부피의 흠으로 작용하여 제품 표면이 쉽게 취화를 일으키고 그 결과 열간가공성이 하락하게 되어 바람직하지 못하다.If the size of MnS inclusion is too small, the role of stress concentration is reduced, and the cutting effect is decreased. On the contrary, if too coarse, the surface of the product is easily embrittled because it acts as a large volume of flaw during hot rolling. I can't.
또한, 상기 개재물들이 너무 가깝게 분포될 경우 개재물과 모재 사이의 취화로 인한 균열이 발생하여 소재의 벌어짐을 조장하게 되며, 너무 멀게 되면 제품의 냉간가공시 공구에 의한 응력을 받아 칩이 절단되는 역할을 나쁘게 하여 피삭성이 하락하여 바람직하지 않다.In addition, when the inclusions are distributed too closely, cracks due to embrittlement between the inclusions and the base material are generated to promote the spreading of the material. When the inclusions are too far, chips are cut under stress by a tool during cold processing of the product. It worsens and machinability falls and is unpreferable.
또한, 개재물의 전단면 면적비가 1.3%미만일 경우 개재물의 양이 적어 피삭시 응력집중에 의한 입계취화로 절삭성을 향상 효과가 미흡하고, 2.0%을 넘는 경우 오히려 흠(defect)에 의해 열간가공성을 약화시킬 수 있어 바람직하지 않다.In addition, when the area ratio of shear surface of inclusions is less than 1.3%, the amount of inclusions is small, and the effect of improving machinability is insufficient due to grain boundary embrittlement due to stress concentration during machining, and when it exceeds 2.0%, hot workability is weakened by defects. It is not preferable because it can be made.
이하, 본 발명의 제조방법에 대하여 상세히 설명한다.Hereinafter, the manufacturing method of the present invention will be described in detail.
상기와 같이 조성된 부룸(bloom)이 연속주조공정에서 얻어진다할지라도 부룸내의 MnS개재물은 강편압연시 단면감소와 함께 연신을 일으키게 되는데, 이 과정에서 연신이 불충분하면 MnS와 모재의 계면에서 균열이 발생하거나 선단부의 벌어짐 현상이 발생하게 된다. 쾌삭강의 MnS개재물의 연속파괴는 강편압연시 온도와 단면 감면율에 따라 틀려지게 된다.Although the blown formed as described above is obtained in the continuous casting process, the MnS inclusions in the bloom cause stretching along with the reduction of the cross section during the rolling of the steel sheet. If the stretching is insufficient during this process, cracking occurs at the interface between the MnS and the base metal. Or the phenomena of the tip end are generated. The continuous failure of MnS inclusions in free-cutting steel is different depending on the temperature and section reduction rate during rolling.
본 발명의 경우 적절한 범위의 MnS개재물 형성을 위해 우선, 상기와 같이 조성된 부룸을 1250~1350℃의 온도범위에서 재가열한 다음, 재가열된 부룸을 50~60%의 단면감소율로 조압연한 후 사상압연한다.In the present invention, in order to form an appropriate range of MnS inclusions, first, the reconstituted bloom is reheated at a temperature range of 1250 to 1350 ° C., and then the reheated bloom is roughly rolled at a cross-sectional reduction rate of 50 to 60%. Roll.
상기 재가열온도가 1250℃이하로 되는 경우 강편 조압연과 사상압연을 거치는 동안 온도하락으로 급격히 소재의 연성이 저하하여 표면부의 터짐이나 벌어짐을 조장하여 빌렛 생산이 곤란하게 된다. 즉, 쾌삭강 빌렛내의 Bi가 흡착된 MnS개재물이 낮은 온도에서 변형을 받을 경우 연신이 불충분하고 그 주변과의 취화를 일으키기 때문에 바람직하지 않다. 따라서, 재가열온도가 높을수록 좋지만 오스테나이트 영역까지 가열할 경우 문제는 없으나 통상 강편 가열로 설비 사양상 너무 높은 온도로 승온하는 것은 바람직하지 않다.When the reheating temperature is 1250 ° C. or less, the ductility of the material rapidly decreases due to the temperature drop during the rough rolling and finishing rolling, thereby facilitating bursting or spreading of the surface portion, making it difficult to produce the billet. In other words, when the Bi-adsorbed MnS inclusions in the free-cutting steel billet are deformed at low temperatures, the stretching is insufficient and causes embrittlement with the surroundings. Therefore, the higher the reheating temperature is better, but there is no problem when heating up to the austenite region, but it is not preferable to raise the temperature to too high in the specification of the steel sheet furnace.
또한, 강편 조압연은 단면감소율을 50~60%의 범위로 하여 행함이 바람직한데, 단면 감소율을 50%미만으로 할 경우 조압연이후의 사상압연에서 최소한 40%이상의 감면을 해야 제품이 만들어져 좋지 않으며, 단면 감소율이 60%를 넘는 경우빌렛의 정확한 형태에 맞추어 치수를 유지하기 곤란할 뿐만아니라 설비에 무리가 되어 바람직하지 않다.In addition, it is preferable to perform the rough rolling of the slab in the range of 50 to 60%, but if the reduction of the cross section is less than 50%, at least 40% of the reduction in the finishing rolling after the rough rolling is not good. If the reduction rate of the cross section is more than 60%, it is not only difficult to maintain the dimensions in accordance with the exact shape of the billet, but also becomes unreasonable to the equipment.
이러한 제조공정을 거치게 되면 쾌삭강 빌렛중의 MnS개재물의 크기를 30~80㎛의 범위로 조절 가능하며, 또한 MnS개재물의 분포를 10~30㎛의 거리를 두고 전단면 면적비가 1.3~2.0%의 범위내로 할 수 있다.Through this manufacturing process, the size of MnS inclusions in free-cutting steel billets can be adjusted in the range of 30 to 80 μm, and the distribution of MnS inclusions is in the range of 1.3 to 2.0% with a shear surface area of 10 to 30 μm. You can do it by mine.
이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.
실시예1Example 1
하기표 1과 같은 조성을 갖도록 용강을 정련하고 정련된 용강을 연속주조한 후, 주조된 부룸을 강편압연하여 160각 빌렛을 제조하였다. 이때, 강편압연은 250×330mm 크기의 부룸을 1310℃로 재가열하고, 재가열된 부룸을 강편조압연에서 56.2%의 감소율로 압하하고, 사상압연을 거쳐 160각 빌렛을 제조하였다. 이렇게 제조된 각각의 빌렛 선단부를 절취한 후 선단부 단면을 관찰하여 MnS개재물의 크기 및 평균거리, 전단면 면적율을 조사하고, 그 결과를 표1에 나타내었다.The molten steel was refined to have a composition as shown in Table 1 and continuously cast the refined molten steel, followed by rolling the cast bloom to prepare 160 square billets. At this time, the steel rolling re-heated the size of the 250 × 330mm bloom at 1310 ℃, and reduced the reheated bloom at a rate of reduction of 56.2% in the steel-rolled rolling, and produced 160 angle billet through finishing rolling. After cutting each billet tip prepared in this way, the cross section of the tip was observed, and the size, average distance, and shear area ratio of the MnS inclusions were examined, and the results are shown in Table 1.
또한, 각각의 빌렛을 선재압연하면서 압연스탠드간 절단장치(crop shear)를 작동시켜 선단부를 절취한 후, 절취된 선재의 선단부 벌어짐 현상을 관찰하고 그 결과를 표1에 나타내었다. 또한, 비교강과 발명강의 빌렛의 선단부를 각각 도1에 나타내었다.In addition, after cutting each billet by operating the shear between the rolling stand (crop shear) (roll shear) to cut the tip end, the phenomenon of the open end of the cut wire was observed and the results are shown in Table 1. In addition, the front-end | tip part of the billet of a comparative steel and an invention steel is respectively shown in FIG.
상기 표1에도 나타난 바와 같이, 본 발명에 따른 강 조성 및 개재물을 갖는 본 발명강(1-8)의 경우 선재의 선단부에서 벌어짐 현상이 없어 열간 선재압연이 원활히 진행되는 반면 비교강(1-8)의 경우 선재의 선단부에서 벌어짐 현상이 관찰되고 있음을 알 수 있었다. 이러한 현상은 각각 비교강과 발명강에 대하여 선단부 벌어짐을 보이는 도1a 및 도1b에서도 확인되고 있다.As shown in Table 1, in the present invention steel (1-8) having a steel composition and inclusions according to the present invention there is no phenomenon in the distal end of the wire rods, while hot wire rolling is smoothly performed, while comparative steel (1-8) ), It can be seen that the phenomenon of opening at the tip of the wire rod is observed. This phenomenon has also been confirmed in Figs. 1A and 1B, which show the leading edges of the comparative steel and the inventive steel, respectively.
실시예2Example 2
실시예1의 발명강(4)와 비교강(5)를 이용하여 제조조건을 하기 표2와 같이 변화시키면서 강편압연을 행하여 160각 빌렛을 제조하였다. 제조된 각각의 빌렛에대하여 빌렛의 선단부 벌어짐 현상과 함께 표면 상태를 육안으로 관찰하고 그 결과를 하기 표2에 나타내었다.160 square billets were prepared by rolling the steel sheet using the inventive steel 4 and the comparative steel 5 of Example 1 while changing the manufacturing conditions as shown in Table 2 below. For each billet manufactured, the surface condition was visually observed along with the bulging phenomena of the billet, and the results are shown in Table 2 below.
상기 표2에도 나타난 바와 같이, 본 발명의 제조조건에 따라 얻어지는 발명재(1-4)의 경우 빌렛의 선단부에서 벌어짐 현상이 없을 뿐만아니라 빌렛의 표면상태도 매우 양호함을 알 수 있었다.As shown in Table 2, in the case of the inventive material (1-4) obtained according to the manufacturing conditions of the present invention, it was found that not only the phenomenon of opening at the tip of the billet but also the surface state of the billet was very good.
반면, 비교재(1-8)의 경우 빌렛의 선단부가 벌어지거나, 선단부가 벌어지지 않더라도 표면상태가 매우 불량함을 보이고 있다.On the other hand, in the case of the comparative material (1-8), even if the tip of the billet does not open, or the tip does not open, the surface state is very poor.
상술한 바와 같이, 본 발명은 Bi-S계 쾌삭강 빌렛내에 MnS개재물의 크기와 분포 등을 적절히 제어하고 용강내의 Al과 [O]의 양을 적절히 조절하므로써 쾌삭강빌렛의 선단부 벌어짐 현상이 발생하지 않고 이에 따라 열간압연성이 우수한 Bi-S계 쾌삭강을 매우 용이하게 제조하는 커다란 효과가 있다.As described above, according to the present invention, the tip opening of the free-cutting steel billet does not occur by appropriately controlling the size and distribution of MnS inclusions in the Bi-S-based free-cutting steel billet, and by appropriately adjusting the amount of Al and [O] in the molten steel. Accordingly, there is a great effect of producing a Bi-S-based free-cutting steel having excellent hot rolling property very easily.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000032914A KR20010112887A (en) | 2000-06-15 | 2000-06-15 | BILLETS FOR Bi-S SYSTEM FREE CUTTING STEEL WITHOUT SPLIT END DURING WIRE-ROD ROLLING AND A METHOD THEREFOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000032914A KR20010112887A (en) | 2000-06-15 | 2000-06-15 | BILLETS FOR Bi-S SYSTEM FREE CUTTING STEEL WITHOUT SPLIT END DURING WIRE-ROD ROLLING AND A METHOD THEREFOR |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20010112887A true KR20010112887A (en) | 2001-12-22 |
Family
ID=19671983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000032914A Ceased KR20010112887A (en) | 2000-06-15 | 2000-06-15 | BILLETS FOR Bi-S SYSTEM FREE CUTTING STEEL WITHOUT SPLIT END DURING WIRE-ROD ROLLING AND A METHOD THEREFOR |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20010112887A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100715187B1 (en) * | 2005-10-31 | 2007-05-07 | 주식회사 네패스 | Composition for insulating film formation and manufacturing method thereof |
KR100885368B1 (en) * | 2001-03-26 | 2009-02-26 | 제이에스알 가부시끼가이샤 | Composition for film formation and material for forming insulating film |
KR101105622B1 (en) * | 2006-06-02 | 2012-01-18 | 가부시키가이샤 알박 | Precursor composition for porous membrane, process for preparation of the precursor composition, porous membrane, process for production of the porous membrane, and semiconductor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06114500A (en) * | 1992-10-05 | 1994-04-26 | Nippon Steel Corp | Method for manufacturing low-carbon sulfur-based free-cutting steel |
KR970033113A (en) * | 1995-12-29 | 1997-07-22 | 김종진 | Bismuth (Bi) -Sulfur (S) -based free-cutting steel with excellent hot and brittle resistance and a method for producing the wire rod |
KR970033107A (en) * | 1995-12-19 | 1997-07-22 | 김종진 | Bismuth-Sulfur Free Cutting Steel |
KR19990042033A (en) * | 1997-11-25 | 1999-06-15 | 이구택 | Bismuth sulfur free cutting steel with excellent ductility and its manufacturing method |
-
2000
- 2000-06-15 KR KR1020000032914A patent/KR20010112887A/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06114500A (en) * | 1992-10-05 | 1994-04-26 | Nippon Steel Corp | Method for manufacturing low-carbon sulfur-based free-cutting steel |
KR970033107A (en) * | 1995-12-19 | 1997-07-22 | 김종진 | Bismuth-Sulfur Free Cutting Steel |
KR970033113A (en) * | 1995-12-29 | 1997-07-22 | 김종진 | Bismuth (Bi) -Sulfur (S) -based free-cutting steel with excellent hot and brittle resistance and a method for producing the wire rod |
KR19990042033A (en) * | 1997-11-25 | 1999-06-15 | 이구택 | Bismuth sulfur free cutting steel with excellent ductility and its manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100885368B1 (en) * | 2001-03-26 | 2009-02-26 | 제이에스알 가부시끼가이샤 | Composition for film formation and material for forming insulating film |
KR100715187B1 (en) * | 2005-10-31 | 2007-05-07 | 주식회사 네패스 | Composition for insulating film formation and manufacturing method thereof |
KR101105622B1 (en) * | 2006-06-02 | 2012-01-18 | 가부시키가이샤 알박 | Precursor composition for porous membrane, process for preparation of the precursor composition, porous membrane, process for production of the porous membrane, and semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102164113B1 (en) | Non-oriented electrical steel sheet having low iron loss property and excellent surface quality and method of manufacturing the same | |
JP5277315B2 (en) | Environmentally friendly lead-free free-cutting steel and method for producing the same | |
CN110205461B (en) | Manufacturing method of high-carbon high-manganese wear-resistant steel plate | |
TWI859812B (en) | Continuously cast steel blank and manufacturing method thereof | |
KR20010112887A (en) | BILLETS FOR Bi-S SYSTEM FREE CUTTING STEEL WITHOUT SPLIT END DURING WIRE-ROD ROLLING AND A METHOD THEREFOR | |
KR101027246B1 (en) | Eco-friendly lead-free free cutting steel with excellent cutting ability and manufacturing method | |
KR20210102398A (en) | Method for manufacturing high manganese steel slab and manufacturing method for high manganese steel slab or steel sheet | |
KR100306138B1 (en) | METHOD FOR MANUFACTURING Bi-S FREE CUTTING STEEL ROD WIRE WITH NO SURFACE DEFECTS | |
KR102103382B1 (en) | Steel material and manufacturing method thereof | |
KR100920621B1 (en) | Manufacturing method of bismuth-sulfur (S) free cutting steel billet | |
Sridhar et al. | Failure analysis of low carbon free-cutting steel wire rods | |
KR101105084B1 (en) | Eco-friendly lead-free cutting steel with excellent machinability | |
JP4556861B2 (en) | Round billet manufacturing method | |
KR100285651B1 (en) | Manufacturing method of bismuth-sulfur free cutting steel wire with excellent surface finish | |
US4236939A (en) | Semi-finished steel article and method for producing same | |
KR101676144B1 (en) | Medium carbon free cutting steel having hot workability and method for manufacturing the same | |
US4333776A (en) | Semi-finished steel article | |
JP3091794B2 (en) | Method of manufacturing automotive shaft parts excellent in extrudability and forgeability | |
US2237243A (en) | Method of making corrosion resistant metal strip | |
JPH0333777B2 (en) | ||
JPH10237604A (en) | Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, slab rolling method thereof, seamless steel pipe using the same, and manufacturing method thereof | |
CN101072891A (en) | Low carbon free cutting steel | |
KR100328050B1 (en) | Free machining steel with superior hot ductility and a method of manufacturing thereof | |
JP3456468B2 (en) | Martensitic stainless steel seamless steel pipe with excellent machinability and hot workability | |
KR102034429B1 (en) | Steel material and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20000615 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20020508 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20000615 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20040531 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20040902 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20040531 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |