KR20010022605A - Process for preparing perfluoroalkane-1-sulfonyl(perfluoroalkylsulfonyl)imide-n-sulfonyl-containing methanides, imides and sulfonates, and perfluoroalkane-1-n-sulfonylbis(perfluoroalkylsulfonyl)methanides - Google Patents
Process for preparing perfluoroalkane-1-sulfonyl(perfluoroalkylsulfonyl)imide-n-sulfonyl-containing methanides, imides and sulfonates, and perfluoroalkane-1-n-sulfonylbis(perfluoroalkylsulfonyl)methanides Download PDFInfo
- Publication number
- KR20010022605A KR20010022605A KR1020007001199A KR20007001199A KR20010022605A KR 20010022605 A KR20010022605 A KR 20010022605A KR 1020007001199 A KR1020007001199 A KR 1020007001199A KR 20007001199 A KR20007001199 A KR 20007001199A KR 20010022605 A KR20010022605 A KR 20010022605A
- Authority
- KR
- South Korea
- Prior art keywords
- formula
- compound
- cso
- lithium
- perfluoroalkylsulfonyl
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 150000003949 imides Chemical class 0.000 title description 9
- 150000003871 sulfonates Chemical class 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 69
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 54
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 35
- 150000003839 salts Chemical class 0.000 claims abstract description 22
- 239000003792 electrolyte Substances 0.000 claims abstract description 19
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 19
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 9
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 8
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 4
- 229910052701 rubidium Inorganic materials 0.000 claims abstract description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 52
- 239000011734 sodium Substances 0.000 claims description 39
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 22
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 21
- -1 lithium halide Chemical class 0.000 claims description 18
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 14
- 239000000010 aprotic solvent Substances 0.000 claims description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical compound [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 229910003002 lithium salt Inorganic materials 0.000 claims description 11
- 159000000002 lithium salts Chemical class 0.000 claims description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 9
- 238000005649 metathesis reaction Methods 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Substances [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 8
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 claims description 8
- 150000001450 anions Chemical class 0.000 claims description 7
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical class [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 7
- 159000000000 sodium salts Chemical class 0.000 claims description 7
- 239000007858 starting material Substances 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- 150000004292 cyclic ethers Chemical class 0.000 claims description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 6
- 239000011707 mineral Substances 0.000 claims description 6
- 150000002642 lithium compounds Chemical class 0.000 claims description 5
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 33
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 6
- 229910000851 Alloy steel Inorganic materials 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000007127 saponification reaction Methods 0.000 description 5
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 4
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000011877 solvent mixture Substances 0.000 description 4
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000000859 sublimation Methods 0.000 description 3
- 230000008022 sublimation Effects 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- KAKQVSNHTBLJCH-UHFFFAOYSA-N trifluoromethanesulfonimidic acid Chemical compound NS(=O)(=O)C(F)(F)F KAKQVSNHTBLJCH-UHFFFAOYSA-N 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- PUAQLLVFLMYYJJ-UHFFFAOYSA-N 2-aminopropiophenone Chemical compound CC(N)C(=O)C1=CC=CC=C1 PUAQLLVFLMYYJJ-UHFFFAOYSA-N 0.000 description 2
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 241000321453 Paranthias colonus Species 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- KCIDZIIHRGYJAE-YGFYJFDDSA-L dipotassium;[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical class [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@H]1O KCIDZIIHRGYJAE-YGFYJFDDSA-L 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 238000006138 lithiation reaction Methods 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 2
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 description 2
- DVSDBMFJEQPWNO-UHFFFAOYSA-N methyllithium Chemical compound C[Li] DVSDBMFJEQPWNO-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- GYJCQBSYXHMHED-UHFFFAOYSA-N sodium;trifluoromethylsulfonyl(trimethylsilyl)azanide Chemical compound [Na+].C[Si](C)(C)[N-]S(=O)(=O)C(F)(F)F GYJCQBSYXHMHED-UHFFFAOYSA-N 0.000 description 2
- KDKCKVFVXANWQZ-UHFFFAOYSA-N sodium;trifluoromethylsulfonylazanide Chemical compound [Na+].[NH-]S(=O)(=O)C(F)(F)F KDKCKVFVXANWQZ-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- MKOBNHWWZPEDQJ-UHFFFAOYSA-N trifluoro(methanidylsulfonyl)methane Chemical compound [CH2-]S(=O)(=O)C(F)(F)F MKOBNHWWZPEDQJ-UHFFFAOYSA-N 0.000 description 2
- QBOFWVRRMVGXIG-UHFFFAOYSA-N trifluoro(trifluoromethylsulfonylmethylsulfonyl)methane Chemical compound FC(F)(F)S(=O)(=O)CS(=O)(=O)C(F)(F)F QBOFWVRRMVGXIG-UHFFFAOYSA-N 0.000 description 2
- SLVAEVYIJHDKRO-UHFFFAOYSA-N trifluoromethanesulfonyl fluoride Chemical compound FC(F)(F)S(F)(=O)=O SLVAEVYIJHDKRO-UHFFFAOYSA-N 0.000 description 2
- VPSOPXOTOKNDHQ-UHFFFAOYSA-N 1,2,2,3,3,4,5,5,6,6-decafluoropiperazine Chemical compound FN1C(F)(F)C(F)(F)N(F)C(F)(F)C1(F)F VPSOPXOTOKNDHQ-UHFFFAOYSA-N 0.000 description 1
- BJBXQQZMELYVMD-UHFFFAOYSA-N 2,2,3,3,4,5,5,6,6-nonafluoromorpholine Chemical compound FN1C(F)(F)C(F)(F)OC(F)(F)C1(F)F BJBXQQZMELYVMD-UHFFFAOYSA-N 0.000 description 1
- UJQZTMFRMLEYQN-UHFFFAOYSA-N 3-methyloxane Chemical compound CC1CCCOC1 UJQZTMFRMLEYQN-UHFFFAOYSA-N 0.000 description 1
- LJPCNSSTRWGCMZ-UHFFFAOYSA-N 3-methyloxolane Chemical compound CC1CCOC1 LJPCNSSTRWGCMZ-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 159000000006 cesium salts Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- CHDFNIZLAAFFPX-UHFFFAOYSA-N ethoxyethane;oxolane Chemical compound CCOCC.C1CCOC1 CHDFNIZLAAFFPX-UHFFFAOYSA-N 0.000 description 1
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- QVXQYMZVJNYDNG-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)methylsulfonyl-trifluoromethane Chemical compound [Li+].FC(F)(F)S(=O)(=O)[C-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F QVXQYMZVJNYDNG-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 125000001979 organolithium group Chemical group 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 229920003936 perfluorinated ionomer Polymers 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 125000005463 sulfonylimide group Chemical group 0.000 description 1
- ZUEAAEQNFKVONV-UHFFFAOYSA-N sulfonylmethane Chemical class [CH-]=S(=O)=O ZUEAAEQNFKVONV-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/26—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C317/28—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/48—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/02—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
- C07C317/04—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Secondary Cells (AREA)
- Primary Cells (AREA)
Abstract
본 발명은 화학식 I의 화합물, 상기 화합물의 제조방법, 리튬 배터리의 전도성 염으로서 전해질 시스템중에서의 상기 화합물의 용도 및 화학식 I의 화합물을 포함하는 리튬 배터리용 전해질 뿐만 아니라 상응하는 전해질을 포함하는 이차 리튬 배터리 그 자체에 관한 것이다:The present invention provides a secondary lithium comprising a compound of formula (I), a process for preparing the compound, the use of the compound in an electrolyte system as a conductive salt of a lithium battery and an electrolyte for a lithium battery comprising the compound of formula (I) as well as a corresponding electrolyte. It's about the battery itself:
화학식 IFormula I
M2[R1-SO2-(CF2)n-SO2-R]M 2 [R 1 -SO 2- (CF 2 ) n -SO 2 -R]
상기 식에서,Where
R은 C(SO2RF)2, N(SO2RF) 또는 O이고,R is C (SO 2 R F ) 2 , N (SO 2 R F ) or O,
R1은 C(SO2RF)2또는 N(SO2RF)이고,R 1 is C (SO 2 R F ) 2 or N (SO 2 R F ),
R과 R1은 서로 독립적이고,R and R 1 are independent of each other,
RF는 (CxF2x+1)이고,R F is (C x F 2x + 1 ),
M은 Li, Na, K, Cs, Rb, Be1/2, Mg1/2, Sr1/2및 Ba1/2로 이루어진 군으로부터 선택된 반대 이온이고,M is a counter ion selected from the group consisting of Li, Na, K, Cs, Rb, Be 1/2 , Mg 1/2 , Sr 1/2 and Ba 1/2 ,
n은 1, 2 또는 3이고,n is 1, 2 or 3,
x는 1, 2, 3 또는 4이다.x is 1, 2, 3 or 4.
Description
문헌에는 제조방법이 단순하고 그 결과 상업적으로 이용가능한 Li[F3CSO3](리튬 트리플레이트)와 같은 리튬 화합물이 개시되어 있다. 그러나, 상응하는 화합물은 이차 배터리에서 사용하기에 부적합한데, 그 이유는 이차 전지에서 사용되는 전형적인 비양성자성 용매에서 상기 화합물의 전도도가 지나치게 낮기 때문이다(문헌[Volkov, O.V.; Skudin, A.M.; Ignat'ev, N.V.; Soviet Electrochemistry, 1992, 28, 1527] 참조). 반대로, 리튬 트리스(트리플루오로메틸설포닐)메타나이드(Li[C(SO2CF3)3]) 및 리튬 비스(트리플루오로메틸설포닐)이미드 (Li[N(SO2CF3)2])는 비양성자성 용매에서 매우 높은 용해도 및 전도도를 나타낸다(문헌[Levy, S.C.; Cieslak, W.R.; "Review of Lithium-Ion Technology", Sandia National Laboratories, Exploratory Batteries Dept. 2223, Albuquerque, NM 87185-0614, 1994; Dominey, L.A.; "Anodic Corrosion Processes Relevant to Lithium Batteries Employing High Voltage Cathodes", Proc. 10th Int. Seminar on Prim. and Second. Battery Tech. and Appl., Florida Educational Seminars, Inc. Boca Raton, Fl. 1993] 참조). 그러나, 이들 화합물마저도 리튬 배터리에서 사용하기에는 제한적으로 적합한데, 그 이유는 Li[N(SO2CF3)2]가 높은 부식성을 갖고(문헌[Levy, S.C.; Cieslak, W.R.; "Review of Lithium-Ion Technology" Sandia National Laboratories, Exploratory Batteries Dept. 2223, Albuquerque, NM 87185-0614, 1994] 참조) Li[C(SO2CF3)3]는 1.66%의 함량을 가져서 리튬 함량이 낮기 때문이다.Literature discloses lithium compounds such as Li [F 3 CSO 3 ] (lithium triflate) which are simple in production and consequently commercially available. However, the corresponding compounds are unsuitable for use in secondary batteries because the conductivity of the compounds is too low in typical aprotic solvents used in secondary batteries (Volkov, OV; Skudin, AM; Ignat). 'ev, NV; Soviet Electrochemistry, 1992, 28, 1527). Conversely, lithium tris (trifluoromethylsulfonyl) methanide (Li [C (SO 2 CF 3 ) 3 ]) and lithium bis (trifluoromethylsulfonyl) imide (Li [N (SO 2 CF 3 ) 2 ]) shows very high solubility and conductivity in aprotic solvents (Levy, SC; Cieslak, WR; "Review of Lithium-Ion Technology", Sandia National Laboratories, Exploratory Batteries Dept. 2223, Albuquerque, NM 87185 -0614, 1994; Dominey, LA; "Anodic Corrosion Processes Relevant to Lithium Batteries Employing High Voltage Cathodes", Proc. 10th Int. Seminar on Prim. And Second.Battery Tech. And Appl., Florida Educational Seminars, Inc. Boca Raton , Fl. 1993). However, even these compounds are of limited suitability for use in lithium batteries, because Li [N (SO 2 CF 3 ) 2 ] is highly corrosive (Levy, SC; Cieslak, WR; "Review of Lithium- Ion Technology "Sandia National Laboratories, Exploratory Batteries Dept. 2223, Albuquerque, NM 87185-0614, 1994). Li [C (SO 2 CF 3 ) 3 ] has a content of 1.66%, which is low in lithium.
미국 특허 제 5514493호는 또한 퍼플루오로모폴린, 퍼플루오로피페라진 및 퍼플루오르화 아민과 함께 설포네이트, 설포닐이미드 및 설포닐메타나이드를 조합 함으로써 보다 우수한 전해질 특성, 구체적으로는 부식성을 갖는 시스템을 얻기 위한 시도를 개시하고 있다. 적합한 조합은 이가 음이온성 시스템(dianionic system)을 제공한다. 마찬가지로, 다른 연구가들도 유사한 조성의 이가 음이온성 시스템을 기술하고 있다(문헌[Razaq 등, Case Cent. Electrochem. Sci., Case Western Reserve Univ., Cleveland, OH, USA Report(1989), GRI-89/0025; Order No. PB89-178768, 214 pp. Avail.: from Geov. Rep. Announce. Index. (U.S.) 1989, 89(12), Abstr. No. 932, 621; A.J. Appleby 등. Cent. Electrochem. Syyt. Hydrogen Res., Texas A and M Univ. System, College Station, TX, 77843-3402, USA, Morgantown Energy Technol. Cent., [Rep.] DOE/METC (U.S. Dep. Energy). 1991 DOE/METC-91/6120, Proc. Annu. Fuel Cells Contract. Rev. Meet. 3rd, 1991, 169-177)]을 참조한다). 라자크(Razaq) 등은 연료 셀에 대한 보고서에서 화학식 II, 즉 F3CSO2-NH-SO2-(CF2)4-O2S-NH-SO2CF3로 표시되는 가교된 α,ω-퍼플루오로알칸-비스[설포닐트리플루오로메틸-설포닐이미드]를 기술하고 있다.U. S. Patent No. 5514493 also discloses better electrolyte properties, specifically corrosive, by combining sulfonates, sulfonylimides and sulfonylmethanides with perfluoromorpholine, perfluoropiperazine and perfluorinated amines. Attempts are being made to obtain a system. Suitable combinations provide a dianionic system. Similarly, other researchers have described bivalent anionic systems of similar composition (Razaq et al., Case Cent. Electrochem. Sci., Case Western Reserve Univ., Cleveland, OH, USA Report (1989), GRI-89). / 0025; Order No. PB89-178768, 214 pp. Avail .: from Geov.Rep.Announce.Index. (US) 1989, 89 (12), Abstr. No. 932, 621; AJ Appleby et al. Cent. Electrochem Syyt.Hydrogen Res., Texas A and M Univ.System, College Station, TX, 77843-3402, USA, Morgantown Energy Technol.Cent., [Rep.] DOE / METC (US Dep. Energy). 1991 DOE / METC-91 / 6120, Proc.Annu.Fuel Cells Contract.Rev.Meet. 3rd, 1991, 169-177). Razaq et al. Have a crosslinked α, ω in the report for fuel cells represented by the formula II, ie F 3 CSO 2 -NH-SO 2- (CF 2 ) 4 -O 2 S-NH-SO 2 CF 3 . -Perfluoroalkane-bis [sulfonyltrifluoromethyl-sulfonylimide] is described.
이후의 논문(문헌[D.D. DesMarteau, "Novel Perfluorinated Ionomers and Ions", Proceedings of international conference on Fluorine Chemistry 27-30, July 1994, Kyoto, Japan]에서는 디세슘 비스이미드의 결정 구조가 개시되어 있으며, 화학식 II의 화합물의 특성을 기술하고 있다. 명백히, 이는 "전형적인" Li[N(SO2CF3)2]와 유사하게 비양성자성 용매에서 우수한 전도도를 나타내는 매우 강한 산이다. -(CF2)4-와 같은 보다 긴 퍼플루오르화 알킬 쇄를 도입하면 부식 경향이 감소한다. 그러나, 이는 예컨대 양이온성 전도도 및 전류 세기의 결과와 같은 다른 특성에 악영향을 미친다.Subsequent papers (DD DesMarteau, "Novel Perfluorinated Ionomers and Ions", Proceedings of international conference on Fluorine Chemistry 27-30, July 1994, Kyoto, Japan) disclose the crystal structure of cesium bisimide, and technical characteristics of the compound clearly, which is a very strong acid represent "typical" Li [N (sO 2 CF 3) 2] in analogy to the non-positive excellent conductivity in the magnetic solvents -.. (CF 2) 4 - The introduction of longer perfluorinated alkyl chains, such as, reduces the tendency for corrosion, but this adversely affects other properties such as, for example, the result of cationic conductivity and current intensity.
본 발명은 화학식 I의 화합물, 상기 화합물의 제조방법, 리튬 배터리의 전도성 염으로서 전해질 시스템중에서의 상기 화합물의 용도 및 상기 화학식 I의 화합물을 포함하는 리튬 배터리용 전해질 뿐만 아니라 상응하는 전해질을 포함하는 이차 리튬 배터리에 관한 것이다:The present invention provides a secondary compound comprising a compound of formula (I), a process for preparing the compound, the use of the compound in an electrolyte system as a conductive salt of a lithium battery and an electrolyte for a lithium battery comprising the compound of formula (I) as well as a corresponding electrolyte. Regarding lithium battery:
상기 식에서,Where
R은 C(SO2RF)2, N(SO2RF) 또는 O이고,R is C (SO 2 R F ) 2 , N (SO 2 R F ) or O,
R1은 C(SO2RF)2또는 N(SO2RF)이고,R 1 is C (SO 2 R F ) 2 or N (SO 2 R F ),
R과 R1은 서로 독립적이고,R and R 1 are independent of each other,
RF는 (CxF2x+1)이고,R F is (C x F 2x + 1 ),
M은 Li, Na, K, Cs, Rb, Be1/2, Mg1/2, Sr1/2및 Ba1/2로 이루어진 군으로부터 선택된 반대 이온이고,M is a counter ion selected from the group consisting of Li, Na, K, Cs, Rb, Be 1/2 , Mg 1/2 , Sr 1/2 and Ba 1/2 ,
n은 1, 2 또는 3이고,n is 1, 2 or 3,
x는 1, 2, 3 또는 4이다.x is 1, 2, 3 or 4.
따라서, 본 발명의 목적은 적절한 리튬 함량을 갖고 부식 안정성을 나타내고 양이온성 전도도가 공지된 비교가능한 리튬 염보다 우수한 동시에 반대 방향으로 이동하는 음전하로 인해 유해한 역전위를 발생시키지 않는 적합한 리튬 염을 제공하는 것이다.Accordingly, it is an object of the present invention to provide suitable lithium salts which have a suitable lithium content and exhibit corrosion stability and which do not generate harmful reverse potential due to negative charges moving in opposite directions while having a cationic conductivity that is superior to known comparable lithium salts. .
상기 목적은 하기 화학식 I의 신규한 화합물, 그의 제조방법, 리튬 배터리의 전도성 염으로서 전해질 시스템중에서의 상기 화합물의 용도 및 화학식 I의 화합물을 포함하는 리튬 배터리용 전해질 뿐만 아니라 상응하는 전해질을 포함하는 이차 리튬 배터리에 의해 이루어진다:The object is a novel compound of formula (I), a process for its preparation, the use of said compound in an electrolyte system as a conductive salt of a lithium battery and a secondary electrolyte comprising a corresponding electrolyte as well as an electrolyte for a lithium battery comprising a compound of formula (I) Made by lithium battery:
화학식 IFormula I
M2[R1-SO2-(CF2)n-SO2-R]M 2 [R 1 -SO 2- (CF 2 ) n -SO 2 -R]
상기 식에서,Where
R은 C(SO2RF)2, N(SO2RF) 또는 O이고,R is C (SO 2 R F ) 2 , N (SO 2 R F ) or O,
R1은 C(SO2RF)2또는 N(SO2RF)이고,R 1 is C (SO 2 R F ) 2 or N (SO 2 R F ),
R과 R1은 서로 독립적이고,R and R 1 are independent of each other,
RF는 (CxF2x+1)이고,R F is (C x F 2x + 1 ),
M은 Li, Na, K, Cs, Rb, Be1/2, Mg1/2, Sr1/2및 Ba1/2로 이루어진 군으로부터 선택된 반대 이온이고,M is a counter ion selected from the group consisting of Li, Na, K, Cs, Rb, Be 1/2 , Mg 1/2 , Sr 1/2 and Ba 1/2 ,
n은 1, 2 또는 3이고,n is 1, 2 or 3,
x는 1, 2, 3 또는 4이다.x is 1, 2, 3 or 4.
본 발명의 주제인 상기 화학식 I의 화합물의 제조방법은 a) 퍼플루오로알킬설포닐 플루오라이드를 비양성자성 용매에 용해된 암모니아와 반응시키고, b) 수득된 아민을 물에 용해된 수산화나트륨으로 처리하여 상응하는 나트륨 염을 제공하고, c) 나트륨 염을 가열하에 (Me3Si)2NH와 반응시켜 화학식 III의 나트륨 퍼플루오로알킬설포닐트리메틸실릴아미드를 제공하고, d) 상기 화학식 III의 화합물을 1,n-알칸-비스(설포닐 플루오라이드)와 반응시켜 화학식 IV으로 표시되는 나트륨 퍼플루오로알칸-1-플루오로설포닐-N-트리플루오로-메틸설포닐이미드를 제공한 후, e) 화학식 IV의 화합물을 화학식 III의 나트륨 퍼플루오로알킬설포닐트리메틸실릴아미드와 반응시키고 산성 에테르 용액, 수성 KOH에서 연속하여 반응시키고, 이후 복분해에 의해 하기 화학식 V의 디리튬 비스이미드로 전환시키거나, 또는 f) 화학식 IV의 화합물 1당량을 디리튬화 비스-(퍼플루오로알킬설포닐)메탄과 반응시키고 수득된 반응 생성물을 적합하게 후처리하고 복분해하여 화학식 VI의 디리튬 이미드메타나이드를 제조하거나, 또는 g) 화학식 IV의 화합물을 알칼리성 리튬 염과 반응시키고 리튬 할로겐화물로 복분해하여 하기 화학식 VII의 퍼플루오로알칸-1-설포닐-(퍼플루오로알킬설포닐)이미드-N-설포네이트를 제조한다:The process for preparing the compound of formula (I), which is the subject of the present invention, comprises the steps of: a) reacting perfluoroalkylsulfonyl fluoride with ammonia dissolved in an aprotic solvent, and b) obtaining the amine with sodium hydroxide dissolved in water. Treating to give the corresponding sodium salt, c) reacting the sodium salt with (Me 3 Si) 2 NH under heating to give sodium perfluoroalkylsulfonyltrimethylsilylamide of formula III, d) The compound was reacted with 1, n-alkane-bis (sulfonyl fluoride) to provide sodium perfluoroalkane-1-fluorosulfonyl-N-trifluoro-methylsulfonylimide represented by Formula IV. E) reacting the compound of formula IV with sodium perfluoroalkylsulfonyltrimethylsilylamide of formula III and successively reacting in acidic ether solution, aqueous KOH, followed by metathesis of Or di) reacting one equivalent of the compound of formula IV with dilithiated bis- (perfluoroalkylsulfonyl) methane and suitably post-treatment and metathesis of the reaction product obtained Or di) perfluoroalkane-1-sulfonyl- (perfluoroalkyl) of formula VII by reacting a compound of formula IV with an alkaline lithium salt and metathesizing it with a lithium halide Sulfonyl) imide-N-sulfonate is prepared:
상기 식에서,Where
n은 1, 2 또는 3이고,n is 1, 2 or 3,
RF는 전술한 의미를 갖는다.R F has the above meaning.
또한, 본 발명은 a) 비스(퍼플루오로알킬설포닐)메탄을 테트라하이드로푸란, 2-메틸테트라하이드로푸란 및 디에틸에테르로 이루어진 군으로부터 선택된 비양성자성 유기 용매에서 -10 내지 +50℃, 바람직하게는 10 내지 25℃에서 리튬화시키고, 하기 화학식 VIII의 α,ω-퍼플루오로알칸비스(설포닐 플루오라이드)와 1:0.3 내지 1:0.5의 몰비로, -10 내지 +50℃, 바람직하게는 20 내지 30℃의 온도에서 반응시키고, 이어서 b) 광산 용액에서 반응시키고, 용매를 분리하여 제거하고, 용액중의 알칼리성 세슘 염을 사용하여 상응하는 이가 음이온으로 전환시키고, 필요시에는 정제시킨 후, c) 우선, 디에틸 에테르, 디부틸 에테르 및 2-메틸테트라하이드로푸란으로 이루어진 군으로부터 선택된 유기 용매에서 광산, 바람직하게는 염산으로 처리하고, 이어서 수산화리튬 수용액중에서 반응시켜 화학식 Xa의 목적하는 디-알칼리 금속 비스메타나이드로 전환시키는 것을 특징으로 하는, R1과 R이 동일하고 (C(SO2RF)2)의 의미를 갖는 화학식 I의 화합물을 제조하는 방법에 관한 것이다:In addition, the present invention provides a composition comprising a) bis (perfluoroalkylsulfonyl) methane in an aprotic organic solvent selected from the group consisting of tetrahydrofuran, 2-methyltetrahydrofuran and diethyl ether, Preferably it is lithiated at 10 to 25 ℃, -10 to +50 ℃, in a molar ratio of α, ω-perfluoroalkanebis (sulfonyl fluoride) of the general formula (VIII) and 1: 0.3 to 1: 0.5, Preferably at a temperature of 20 to 30 ° C., then b) in a mineral solution, separating off the solvent, converting to the corresponding divalent anion using alkaline cesium salt in solution, and purifying if necessary C) firstly treated with a mineral acid, preferably hydrochloric acid, in an organic solvent selected from the group consisting of diethyl ether, dibutyl ether and 2-methyltetrahydrofuran, followed by lithium hydroxide water. A compound of formula (I) having the meaning of, characterized in that the conversion of alkali metal bismethacrylate arsenide, R 1 and R are the same, and (C (SO 2 R F) 2) - by reacting in the liquid D for purposes of the formula Xa Relates to a method of making:
상기 식에서,Where
RF와 n은 전술한 의미를 갖는다.R F and n have the above meaning.
특히, 본 발명은 하기 화학식 Xb의 상응하는 디리튬 화합물에 관한 것이다:In particular, the invention relates to the corresponding dilithium compounds of the formula Xb:
본 발명에 따른 방법을 실시하기 위하여 트리플루오로메틸설포닐 플루오라이드와 암모니아로부터 출발하는 4단계 합성법을 이용하여 하기 화학식 III의 제 1 중간체를 형성하여 화학식 IV로 표시되는 목적하는 또 다른 중간체를 제조한다:In order to carry out the process according to the invention, a fourth intermediate synthesis starting from trifluoromethylsulfonyl fluoride and ammonia is used to form a first intermediate of formula III to prepare another desired intermediate represented by formula IV. do:
화학식 IIIFormula III
Na[RF-SO2-N-SiMe3]Na [R F -SO 2 -N-SiMe 3 ]
화학식 IVFormula IV
Na[RFSO2NSO2-(CF2)n-SO2F]Na [R F SO 2 NSO 2- (CF 2 ) n -SO 2 F]
상기 염을 제조하기 위해, 이미 수득된 [RF-SO2-N-SiMe3] 나트륨 염의 일부만을 사용해도 되는데, 그 이유는 Na[RFSO2NSO2-(CF2)n-SO2F]가 동몰량의 Na[RF-SO2-N-SiMe3]을 사용하는 표준 방법에 따라 화학식 V의 상응하는 가교된 디리튬 비스이미드, 예컨대 Li2[F3CSO2N-SO2-NSO2CF3](이 때, 화학식 I에 따라 R은 N(SO2RF)이고, RF는 CF3이며, M은 Li이고, n은 1이다)으로 전환될 수 있기 때문이다.In order to prepare the salt, only part of the already obtained [R F -SO 2 -N-SiMe 3 ] sodium salt may be used, since Na [R F SO 2 NSO 2- (CF 2 ) n -SO 2 F] corresponds to the corresponding crosslinked dilithium bisimide of Formula V according to standard methods using equimolar amounts of Na [R F -SO 2 -N-SiMe 3 ], such as Li 2 [F 3 CSO 2 N-SO 2 -NSO 2 CF 3 ] wherein R is N (SO 2 R F ), R F is CF 3 , M is Li and n is 1 according to formula (I).
대조적으로, 혼합 조성의 디리튬 이미드 메타나이드의 제조방법은 예컨대 동몰량의 Na[F3CSO2NSO2-(CF2)n-SO2F](이 때, n은 1이다)를 디리튬화 비스(트리플루오로메틸설포닐)메탄과 반응시키고 복분해에 의해 원하는 리튬 염을 제조함으로써 이루어진다.In contrast, the process for the preparation of dilithium imide methide with mixed composition, for example, uses an equimolar amount of Na [F 3 CSO 2 NSO 2- (CF 2 ) n -SO 2 F], where n is 1. By reaction with lithiated bis (trifluoromethylsulfonyl) methane and metathesis to produce the desired lithium salt.
또한, 본 발명에 따르는 화학식 I의 화합물은 화학식 VII의 디리튬 이미드 설포네이트를 포함한다. 이러한 화합물은, 일가 음이온인 Na[RFSO2NSO2-(CF2)n-SO2F] (이 때, n은 1이고, RF는 CF3이다)을 적합한 염기에 의해 수용액중에서 비누화시켜서 상응하는 이가 음이온을 제조함으로써 제조할 수 있다. Li2CO3및 LiOH·H2O 또는 그 밖의 다른 화합물로 이루어진 군으로부터 선택된 알칼리성 리튬염이 비누화에 적합하다. 리튬 할로겐화물, 바람직하게는 염화리튬에 의한 복분해를 이용하여 디리튬 이미드 설포네이트를 얻을 수 있다.The compounds of formula (I) according to the invention also comprise dilithium imide sulfonates of formula (VII). This compound saponifies a monovalent anion, Na [R F SO 2 NSO 2- (CF 2 ) n -SO 2 F], where n is 1 and R F is CF 3 in an aqueous solution with a suitable base. By preparing a corresponding divalent anion. Alkaline lithium salts selected from the group consisting of Li 2 CO 3 and LiOH.H 2 O or other compounds are suitable for saponification. Dilithium imide sulfonate can be obtained by metathesis with lithium halides, preferably lithium chloride.
따라서, 본 발명은 한 예로서 본 발명에 따르는 리튬 화합물을 사용하는, 하기 반응식 1로 도시될 수 있는 방법에 관한 것이다:Thus, the present invention relates to a process which can be shown by the following scheme 1 using the lithium compound according to the invention as an example:
반응식 1의 절차Procedure of Scheme 1
상기 반응식 절차로부터 예측될 수 있는 바와 같이, 화학식 III에 따르는 화합물의 제조방법은 3단계로 수행된다. 본 발명자들은 유리하게는 제 1 반응 단계가 데스마르토우(D.D. DesMarteau)의 문헌[M. Witz, J. Fluorine Chem. 1991, 52, 7)에 기재된 바와 같이 액체 암모니아에서 실시될 필요가 없으며, 그 대신에 예컨대 고온에서 테트라하이드로푸란과 같은 비양성자성 용매에서 일어날 수 있음을 발견하였다. 암모니아와 퍼플루오로알킬설포닐 플루오라이드의 반응이 완료된 후에, 상기 반응은 -100 내지 -50℃, 특히 약 -78℃에서 비양성자성 용매중에서 진행되며, 수득된 아민은 알칼리 금속염, 바람직하게는 나트륨 염으로 전환된다. 이 실험은 문헌에서 공지된 바와 같이 반응이 알코올계 용액중에서 실시될 필요가 없으며, 그 대신에 알칼리 금속 수산화물, 바람직하게는 수산화나트륨과의 반응이 수용액중에서 간단한 방식으로 이루어질 수 있음을 나타낸다. 이어서, 화학식 III의 화합물은 비스(트리메틸실릴)아민의 존재하에 알칼리 금속 퍼플루오로알킬설포닐아미노 염을 가열함으로써 간단한 방식으로 얻어질 수 있다.As can be expected from the above scheme, the process for preparing the compound according to formula III is carried out in three steps. The inventors have advantageously found that the first reaction step is described by D. D. Des Marteau, M. Witz, J. Fluorine Chem. It has been found that it does not need to be carried out in liquid ammonia as described in 1991, 52, 7) but instead can occur in an aprotic solvent such as tetrahydrofuran at high temperatures, for example. After completion of the reaction of ammonia with perfluoroalkylsulfonyl fluoride, the reaction proceeds in an aprotic solvent at -100 to -50 ° C, in particular at about -78 ° C, and the amine obtained is an alkali metal salt, preferably Converted to sodium salt. This experiment shows that, as is known in the literature, the reaction does not have to be carried out in alcoholic solutions, but instead the reaction with alkali metal hydroxides, preferably sodium hydroxide, can be made in a simple manner in aqueous solution. The compound of formula III can then be obtained in a simple manner by heating the alkali metal perfluoroalkylsulfonylamino salt in the presence of bis (trimethylsilyl) amine.
이어서, 화학식 III에 따르는 화합물과 하기 화학식 VIII의 α,ω-퍼플루오로알칸비스(설포닐 플루오라이드)는 비양성자성 용매중에서 40 내지 70℃, 바람직하게는 65 내지 70℃까지의 단순 가열에 의해 반응하여서 화학식 IV의 화합물, 즉 Na[RF-SO2-N-SO2-(CF2)n-SO2F]을 고수율로 제조할 수 있다. 따라서, 이러한 나트륨[트리플루오로메틸설포닐-α,ω-퍼플루오로알칸-비스(설포닐 플루오라이드)아미드]는 90% 수율로 얻어진다. 이러한 반응에 적합한 용매는 2-메틸테트라하이드로푸란, 3-메틸테트라하이드로푸란, 테트라하이드로푸란 또는 다른 시클릭 에테르를 포함한다. 상기 반응은 바람직하게는 테트라하이드로푸란을 사용하여 수행한다.Subsequently, the compound according to formula (III) and α, ω-perfluoroalkanebis (sulfonyl fluoride) of formula (VIII) are subjected to simple heating to 40 to 70 캜, preferably to 65 to 70 캜 in aprotic solvent. By reacting the compound of formula IV, ie, Na [R F -SO 2 -N-SO 2- (CF 2 ) n -SO 2 F] in high yield. Thus, such sodium [trifluoromethylsulfonyl-α, ω-perfluoroalkane-bis (sulfonyl fluoride) amide] is obtained in 90% yield. Suitable solvents for this reaction include 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, tetrahydrofuran or other cyclic ethers. The reaction is preferably carried out using tetrahydrofuran.
문헌으로부터 공지된 방법에 따라, 전술한 바와 같이 화학식 IV의 화합물로부터 화학식 V의 신규한 리튬 화합물을 제조할 수 있다. 본 발명자들은 α,ω-퍼플루오로알칸-비스(설포닐플루오라이드)의 쇄 길이가 증가함에 따라 화학식 IV의 화합물과 화학식 III의 화합물의 반응에 의한 수율이 감소됨을 발견하였다. n이 1인 화학식 V의 디리튬 비스이미드를 정제하고 단리시킨 후, 수율은 약 60%인 반면, n이 3인 상응하는 비스이미드는 단지 약 40%의 수율로 수득된다.According to methods known from the literature, novel lithium compounds of formula V can be prepared from compounds of formula IV as described above. The inventors have found that the yield by the reaction of the compound of formula IV with the compound of formula III decreases as the chain length of α, ω-perfluoroalkane-bis (sulfonylfluoride) increases. After purifying and isolating the dilithium bisimide of formula V with n equal to 1, the yield is about 60%, while the corresponding bisimides with n equal 3 are obtained in only about 40% yield.
특히, 화학식 IV의 화합물을 시클릭 에테르로 이루어진 군으로부터 선택된 비양성자성 용매, 바람직하게는 피란((±)-3-메틸테트라하이드로피란에 상응한다)에서 100 내지 110℃에서 화학식 III의 화합물(10 내지 20% 과량으로 사용된다)과 반응시킴으로써 화학식 V의 화합물이 제조된다. 광산 용액, 바람직하게는 디에틸 에테르중 수성 염산으로 이루어진 용액으로 처리하여 하기 화학식 IX의 화합물을 제공한다:In particular, the compound of formula IV is prepared in an aprotic solvent selected from the group consisting of cyclic ethers, preferably pyran (corresponding to (±) -3-methyltetrahydropyran) at 100 to 110 ° C. Is used in an excess of 10 to 20%). Treatment with a mineral acid solution, preferably a solution consisting of aqueous hydrochloric acid in diethyl ether, provides a compound of formula
상기 식에서,Where
n은 1, 2 또는 3이다.n is 1, 2 or 3.
정제, 바람직하게는 승화에 의한 정제를 실시한 후, 상기 화합물을 수성 칼륨 이온을 포함하는 알칼리성 용액, 바람직하게는 수산화칼륨 용액을 사용하여 상응하는 디칼륨 염으로 전환시키고, 이어서 LiCl, LiI 및 LiBr으로 이루어진 군으로부터 선택된 리튬 할로겐화물, 바람직하게는 염화 리튬에 의해 비양성자성 유기 용매, 예컨대 테트라하이드로푸란 또는 1,3-디옥솔란중에서 복분해를 실시하여 화학식 V의 디리튬 비스이미드를 제조한다.After purification, preferably by sublimation, the compound is converted into the corresponding dipotassium salt using an alkaline solution comprising aqueous potassium ions, preferably a potassium hydroxide solution, followed by LiCl, LiI and LiBr. Dilithium bisimide of Formula (V) is prepared by metathesis in an aprotic organic solvent such as tetrahydrofuran or 1,3-dioxolane with a lithium halide selected from the group consisting of lithium chloride, preferably lithium chloride.
또한, 본 발명에 따른 방법은 전술한 반응식으로부터 알 수 있듯이 신규한 퍼플루오로알칸-1-설포닐(퍼플루오로알킬설포닐)이미드-n-설포닐-비스-(퍼플루오로알킬설포닐) 메타나이드 및 화학식 VI의 혼합 조성의 디리튬 이미드 메타나이드의 제조방법에 관한 것이다.In addition, the process according to the invention is novel perfluoroalkane-1-sulfonyl (perfluoroalkylsulfonyl) imide-n-sulfonyl-bis- (perfluoroalkylsulphur) as can be seen from the above reaction scheme. PONYL) METHINIDE AND METHOD FOR MANUFACTURING DILITHIMIDE IMIDE MAINIDE OF A COMPOSITION OF THE COMPOUND VI.
상기 화합물을 제조하기 위하여, 테트라하이드로푸란 및 2-메틸테트라하이드로푸란으로 이루어진 군으로부터 선택된 비극성 비양성자성 용매중에서, 시클로헥산, n-헥산 또는 다른 시클릭 또는 비시클릭 탄화수소와 같은 용매중 부틸리튬 또는 메틸리튬에 의해 -10 내지 +30℃, 바람직하게는 10 내지 20℃에서 비스(퍼플루오로알킬설포닐)메탄을 극성 디리튬화시킨다. 이어서, a) 시클릭 에테르로 이루어진 군으로부터 선택된 비양성자성 용매, 특히 테트라하이드로푸란중에서 동량의 화학식 IV의 화합물과 0 내지 50℃, 바람직하게는 20 내지 30℃에서 반응시키고, b) 이어서 에테르로 이루어진 군으로부터 선택된 유기 용매, 바람직하게는 디에틸 에테르 또는 디부틸 에테르중에서 광산, 특히 염산으로 처리하고, c) 일반적으로 공지된 방법에 따라, 특히 증류에 의해 정제시키고, d) 정제, 바람직하게는 재결정에 의해 재생된, CsOH 및 Cs2CO3로 이루어진 군으로부터 선택된 알칼리성 세슘 염, 바람직하게는 탄산 세슘으로 복분해시키고, e) 리튬 할로겐화물을 사용하여 추가로 복분해시켜서, 화학식 VI의 혼합 조성의 신규한 디리튬 이미드 메타나이드를 제조할 수 있다. 정제후, 원하는 생성물을 약 25 내지 35%의 수율로 수득한다.To prepare the compound, in a nonpolar aprotic solvent selected from the group consisting of tetrahydrofuran and 2-methyltetrahydrofuran, butyllithium in a solvent such as cyclohexane, n-hexane or other cyclic or bicyclic hydrocarbons or Bis (perfluoroalkylsulfonyl) methane is polar dilithiated at −10 to + 30 ° C., preferably 10 to 20 ° C. with methyllithium. A) reacting an equal amount of the compound of formula IV in 0 to 50 ° C., preferably 20 to 30 ° C., in an aprotic solvent selected from the group consisting of cyclic ethers, in particular tetrahydrofuran, b) then with ether Treatment with a mineral acid, in particular hydrochloric acid, in an organic solvent selected from the group consisting of diethyl ether or dibutyl ether, c) purification according to generally known methods, in particular by distillation, d) purification, preferably A novel metathesis of the mixed composition of formula (VI) is further metathesized with an alkaline cesium salt selected from the group consisting of CsOH and Cs 2 CO 3 , preferably cesium carbonate, regenerated by recrystallization, and e) further metathesis with lithium halides. One dilithium imide methide may be prepared. After purification, the desired product is obtained in a yield of about 25-35%.
반응식 1의 절차에서 이미 나타낸 바와 같이, 본 발명은 또한 디알칼리 이미드 설포네이트, 특히 화학식 VII의 디리튬 이미드 설포네이트를 제조하는 방법에 관한 것이다. 실험은 이들 화합물이 화학식 IV의 상응하는 일가 음이온을 비누화시킴으로써 제조될 수 있음을 나타내었다. 이러한 목적을 위해, LiOH2·H2O 및 Li2CO3로 이루어진 군으로부터 선택된 알칼리성 리튬염 수용액을 사용할 수 있다. 바람직하게는, 상기 반응은 수산화리튬 용액과 함께 수행되며, 구체적으로는 수용액중 일가 음이온을 초기 투입물로서 도입하고, 알칼리성 리튬염을 1.5배 몰량으로 첨가한다. 승온, 특히 비점 온도에서 비누화를 실시한다. 필요시에, 활성 탄소를 반응 용액에 첨가하여 불순물을 제거할 수 있다. 단순 공정에서, 여과후에 물을 제거하여 반응 생성물을 제공할 수 있으며, 이를 염화(salinification)시켜 디리튬 염을 제조할 수 있다. 수득된 비누화 반응 생성물을 에테르 테트라하이드로푸란과 1,3-디옥솔란으로 이루어진 군으로부터 선택된 비양성자성 용매, 바람직하게는 테트라하이드로푸란에 넣고 비양성자성 유기 용매, 바람직하게는 비누화 생성물을 용해시키는데 사용된 것과 동일한 용매에 그의 1.5배에 해당하는 몰량으로 용해된 리튬 할로겐화물과 혼합하고, 약 20 내지 40℃, 바람직하게는 실온에서 잠시 교반시킨다. 형성된 나트륨 할로겐화물이 침전되며, 단순한 방식, 예컨대 여과 또는 당해 분야의 숙련자들에게 공지된 다른 방법에 의해 분리시켜 제거할 수 있다. 바람직하게는 진공 증류에 의해 용매를 제거한 후, 원하는 디알칼리 이미드 설포네이트를 98% 이상의 수율로 고체로서 수득한다.As already indicated in the procedure of Scheme 1, the invention also relates to a process for preparing dialkali imide sulfonates, in particular the dilithium imide sulfonates of the formula (VII). Experiments have shown that these compounds can be prepared by saponifying the corresponding monovalent anions of Formula IV. For this purpose, it is possible to use the alkaline lithium salt is selected from the group consisting of aqueous solution of LiOH 2 · H 2 O and Li 2 CO 3. Preferably, the reaction is carried out with a lithium hydroxide solution, specifically, monovalent anions in an aqueous solution are introduced as an initial input, and an alkaline lithium salt is added in 1.5-fold molar amount. Saponification is carried out at elevated temperatures, especially at boiling temperatures. If necessary, activated carbon can be added to the reaction solution to remove impurities. In a simple process, water can be removed after filtration to provide the reaction product, which can be salinified to produce the dilithium salt. The obtained saponification reaction product is placed in an aprotic solvent selected from the group consisting of ether tetrahydrofuran and 1,3-dioxolane, preferably tetrahydrofuran and used to dissolve the aprotic organic solvent, preferably the saponification product. It is mixed with the lithium halide dissolved in the same solvent as the molar amount thereof 1.5 times in the same solvent and stirred briefly at about 20 to 40 ° C, preferably at room temperature. The sodium halide formed is precipitated and can be removed by separation in a simple manner, such as by filtration or other methods known to those skilled in the art. After removal of the solvent, preferably by vacuum distillation, the desired dialaliimide sulfonate is obtained as a solid in a yield of at least 98%.
화학식 I에 따르면, 본 발명은 또한 하기 화학식 X으로 표시되며 플루오르화 알칸 쇄에 의해 가교된 대칭적인 비스메타나이드 및 그의 제조방법에 관한 것이다:According to formula (I), the present invention also relates to symmetric bismetanides represented by the following formula (X) and crosslinked by fluorinated alkane chains and a process for their preparation:
상기 식에서,Where
M, n 및 RF는 전술한 의미를 갖는다.M, n and R F have the above meanings.
실험은 상기 화합물이 상응하는 리튬염의 예를 사용하여 반응식 2에 도시된 바와 같은 단순한 절차에 의해 제조될 수 있음을 나타낸다.The experiment shows that the compound can be prepared by a simple procedure as shown in Scheme 2 using examples of the corresponding lithium salts.
반응식 2의 절차Procedure of Scheme 2
시클릭 에테르로 이루어진 군으로부터 선택된 비양성자성 용매, 바람직하게는 테트라하이드로푸란에 비스(퍼플루오로알킬설포닐)메탄을 넣고, 공지된 방식으로 제조되어 시클로헥산과 같은 탄화수소에 용해된 부틸리튬, 메틸리튬과 같은 알킬리튬에 의해 리튬화시킨다. 다르게는, 반응을 알킬-Mg 화합물을 사용하여 유사하게 수행할 수 있다. 이러한 리튬화 반응은 0 내지 50℃, 바람직하게는 10 내지 25℃의 온도에서 실시할 수 있다. 이후, 전술한 화학식 VIII(이 때, n은 명시된 의미를 가질 수 있다)의 α,ω-퍼플루오로알칸비스(설포닐 플루오라이드)와 반응시킨다. 이 반응에서 출발물질은 1:0.3 내지 1:0.5의 몰비로 사용된다. 반응은 시클릭 에테르 또는 비시클릭 에테르, 바람직하게는 테트라하이드로푸란에서 10 내지 50℃에서 수행된다. 특히 우수한 수율은 25 내지 30℃의 온도를 이용하는 경우에 얻어진다.Bis (perfluoroalkylsulfonyl) methane is placed in an aprotic solvent selected from the group consisting of cyclic ethers, preferably tetrahydrofuran, butyllithium prepared in a known manner and dissolved in a hydrocarbon such as cyclohexane, Lithiation is performed with alkyllithium such as methyllithium. Alternatively, the reaction can be carried out similarly using alkyl-Mg compounds. This lithiation reaction can be carried out at a temperature of 0 to 50 ℃, preferably 10 to 25 ℃. Thereafter, it is reacted with α, ω-perfluoroalkanesi (sulfonyl fluoride) of the above-mentioned formula VIII, wherein n may have the specified meaning. In this reaction the starting materials are used in molar ratios of 1: 0.3 to 1: 0.5. The reaction is carried out at 10-50 ° C. in cyclic ethers or bicyclic ethers, preferably tetrahydrofuran. Particularly excellent yields are obtained when using a temperature of 25 to 30 ° C.
광산 용액, 바람직하게는 염산 용액으로 처리한 후에, 또한 미반응된 출발 물질을 제거한 후에 수득되는 생성물을 Cs2CO3및 CsOH로 이루어진 군으로부터 선택된 세슘 염(용액중에서 알칼리성이다) 수용액을 사용하여 상응하는 이가 음이온으로 전환시키고, 임의로는 초기 정제, 예를 들면 재결정 또는 당해 분야의 숙련자들에게 공지된 다른 방법에 의해 연속 처리하여 디에틸 에테르 및 디부틸 에테르로 이루어진 군으로부터 선택된 유기 용매로 바꾸고, 수산화리튬 수용액으로 처리하여 하기 화학식 Xa의 디리튬 비스메타나이드와 같은 목적하는 염으로 전환된다:The product obtained after treatment with a mineral acid solution, preferably hydrochloric acid solution, and also after removal of unreacted starting material is subjected to a corresponding solution using an aqueous cesium salt (which is alkaline in solution) selected from the group consisting of Cs 2 CO 3 and CsOH. To divalent anions and optionally subjected to initial purification, for example by recrystallization or by other methods known to those skilled in the art, to convert into organic solvents selected from the group consisting of diethyl ether and dibutyl ether, Treatment with an aqueous lithium solution converts to the desired salt, such as dilithium bismetanide of Formula Xa:
화학식 XaFormula Xa
Li2[(RFSO2)2C-SO2-(CF2)n-SO2-C(SO2RF)2]Li 2 [(R F SO 2 ) 2 C-SO 2- (CF 2 ) n -SO 2 -C (SO 2 R F ) 2 ]
특히 동몰량의 수산화리튬 또는 그의 수화물을 사용하여 디리튬 비스메타나이드를 방출시킨다. 반응 평형을 이동시키기 위하여, 수산화리튬을 또한 과량으로 사용할 수 있다.In particular, an equimolar amount of lithium hydroxide or its hydrate is used to release the dilithium bismetanide. In order to shift the reaction equilibrium, lithium hydroxide can also be used in excess.
따라서, 본 발명은 또한 화학식 I로 표시되는 화합물의 나트륨 염, 칼륨 염 및 세슘 염에 관한 것이다.The present invention therefore also relates to the sodium salts, potassium salts and cesium salts of the compounds represented by formula (I).
특히, 본 발명에 따르는 화합물에서 RF는 불소-포화된 라디칼인 트리플루오로메틸, 펜타플루오로에틸, i- 및 n-헵타플루오로프로필, i-, n- 및 t-노나플루오로부틸일 수 있다.In particular, in the compounds according to the invention R F is a fluorine-saturated radical, trifluoromethyl, pentafluoroethyl, i- and n-heptafluoropropyl, i-, n- and t-nonafluorobutylyl Can be.
특히, 본 발명은 하기와 같은 화학식 I로 표시되는 화합물의 리튬 염에 관한 것이다:In particular, the present invention relates to lithium salts of compounds represented by formula (I)
a) Li2[(F3CSO2)2C-SO2-CF2-SO2-C(SO2CF3)2]a) Li 2 [(F 3 CSO 2 ) 2 C-SO 2 -CF 2 -SO 2 -C (SO 2 CF 3 ) 2 ]
b) Li2[(F3CSO2)2C-SO2-(CF2)2-SO2-C(SO2CF3)2]b) Li 2 [(F 3 CSO 2 ) 2 C-SO 2- (CF 2 ) 2 -SO 2 -C (SO 2 CF 3 ) 2 ]
c) Li2[(F3CSO2)2C-SO2-(CF2)3-SO2-C(SO2CF3)2]c) Li 2 [(F 3 CSO 2 ) 2 C-SO 2- (CF 2 ) 3 -SO 2 -C (SO 2 CF 3 ) 2 ]
d) Li2[F3CSO2N-SO2-CF2-C(SO2CF3)2]d) Li 2 [F 3 CSO 2 N—SO 2 —CF 2 —C (SO 2 CF 3 ) 2 ]
e) Li2[F3CSO2N-SO2-(CF2)2C(SO2CF3)2]e) Li 2 [F 3 CSO 2 N—SO 2 — (CF 2 ) 2 C (SO 2 CF 3 ) 2 ]
f) Li2[F3CSO2N-SO2-(CF2)3-C(SO2CF3)2]f) Li 2 [F 3 CSO 2 N-SO 2- (CF 2 ) 3 -C (SO 2 CF 3 ) 2 ]
g) Li2[F3CSO2N-SO2-CF2-SO2-N-SO2CF3]g) Li 2 [F 3 CSO 2 N-SO 2 -CF 2 -SO 2 -N-SO 2 CF 3 ]
h) Li2[F3CSO2N-SO2-(CF2)2SO2-N-SO2CF3]h) Li 2 [F 3 CSO 2 N-SO 2- (CF 2 ) 2 SO 2 -N-SO 2 CF 3 ]
i) Li2[F3CSO2N-SO2-(CF2)3SO2-N-SO2CF3]i) Li 2 [F 3 CSO 2 N-SO 2- (CF 2 ) 3 SO 2 -N-SO 2 CF 3 ]
j) Li2[F3CSO2N-SO2-CF2-SO3]j) Li 2 [F 3 CSO 2 N-SO 2 -CF 2 -SO 3 ]
l) Li2[F3CSO2N-SO2-(CF2)2SO3]l) Li 2 [F 3 CSO 2 N—SO 2 — (CF 2 ) 2 SO 3 ]
m) Li2[F3CSO2N-SO2-(CF2)3SO3]m) Li 2 [F 3 CSO 2 N—SO 2 — (CF 2 ) 3 SO 3 ]
본 발명자들은 신규한 화합물이 극히 안정함을 발견하였다. 예컨대, 약 100℃ 온도에서의 건조 보관은 전혀 분해를 발생시키지 않는다. 200℃보다 상당히 높은 온도에서만 변색되어 분해를 나타낸다. 그러나, 예컨대 테트라하이드로푸란 또는 아세토니트릴과 같은 유기 용매 등의 용액중에서 보관하는 경우에도 몇 주동안 보관한 후에 색상의 변화 또는 분해 생성물이 탐지되지 않았다. 다른 이유가 없다면, 본 발명에 따른 신규한 화합물은 이차 리튬 배터리용 비수성 전해질에서 전도성 염으로서 매우 안정하다.We found that the new compounds are extremely stable. For example, dry storage at a temperature of about 100 ° C. produces no decomposition at all. It discolors only at temperatures significantly higher than 200 ° C, indicating decomposition. However, even when stored in a solution such as, for example, an organic solvent such as tetrahydrofuran or acetonitrile, no change in color or degradation product was detected after storage for several weeks. Without other reasons, the novel compounds according to the invention are very stable as conductive salts in non-aqueous electrolytes for secondary lithium batteries.
유기리튬 염 이외에, 본 발명에 따르는 화합물을 포함하는 상기 전해질은 하나 이상의 비수성 유기 용매 및 임의로 추가의 첨가제를 함유한다. 이러한 전해질, 이들의 조성 및 이차 리튬 배터리의 작동 모드에 관한 보다 구체적인 세부사항은 당해 분야의 숙련자들에게 공지되어 있다. 본 발명에 따른 화합물은 상기 용도에 대해 공지된 리튬 화합물과 전적으로 유사하게 사용될 수 있다. 이와 관련하여, 본 발명에 의한 화합물은 마찬가지로 특히 높은 안정성을 나타낸다. 상응하는 배터리 셀은 하전-방전 사이클의 평균 횟수에 걸친 커패시티(capacity), 전압 불변성 및 비제한적인 작동성 측면에서 우수한 특징을 나타낸다.In addition to the organolithium salts, the electrolyte comprising a compound according to the invention contains at least one non-aqueous organic solvent and optionally further additives. More specific details regarding such electrolytes, their composition and mode of operation of the secondary lithium battery are known to those skilled in the art. The compounds according to the invention can be used entirely similarly to the lithium compounds known for these uses. In this regard, the compounds according to the invention likewise exhibit particularly high stability. Corresponding battery cells exhibit excellent characteristics in terms of capacity, voltage invariance, and non-limiting operability over an average number of charge-discharge cycles.
리튬 전극과 짝을 이루어 알루미늄이 작업 전극으로서 사용되는 사이클 전압전류 실험에서, 특히 신규한 디리튬 비스메타나이드가 비양성자성 용매중에서 매우 우수한 전도성을 나타냄을 보여주었다. 또한, 상기 화합물은 알루미늄 전류 콜렉터의 부식 경향을 감소시키는 동시에 분해 반응에서 안정하다. 특히, 이들 염은 알루미늄에 대해 표면 안정화(passivating) 또는 보호 효과를 갖는다. 본 발명에 따르는 화학식 I의 화합물은 일차 셀과 이차 셀 둘다에서 전도성 염으로서 사용될 수 있으며, 따라서 전해질에서 표면 활성 염으로서 작용할 수 있다.In a cyclic voltammetric experiment in which aluminum is used as a working electrode, paired with a lithium electrode, the new dilithium bismetamide, in particular, showed very good conductivity in an aprotic solvent. In addition, the compound is stable in decomposition reactions while reducing the corrosion tendency of the aluminum current collector. In particular, these salts have a surface passivating or protective effect on aluminum. The compounds of formula (I) according to the invention can be used as conductive salts in both primary and secondary cells and thus can act as surface active salts in the electrolyte.
앞서 말한 바와 같이, 전술한 리튬 염은 전해질에서 전도성 염으로서 사용하기에 특히 적합하다. 특히, 이와 관련된 상기 염의 유리한 특성은 제조된 염중의 리튬 함량에 따라 좌우된다. 본원에서 지금까지 언급한 리튬 전도성 염중에서, 화학식 VII으로 표시되는 디리튬 이미드 설포네이트가 가장 높은 리튬 함량, 즉 3.91%의 리튬 함량을 갖는다. 또한, 이 염은 본원에 기재된 방법에 따라 매우 우수한 수율로 제조될 수 있다. 예컨대, 비누화 및 이어지는 복분해는 거의 정량적으로 진행된다. 그러나, 전도성 염의 제조에 사용되는 화학식 IV으로 표시되는 화합물조차도 90% 이상의 수율로 수득되어서 이들 전도성 염의 제조방법은 기본적으로 출발 물질의 손실을 매우 낮춘다.As mentioned above, the lithium salts described above are particularly suitable for use as conductive salts in electrolytes. In particular, the advantageous properties of these salts in this regard depend on the lithium content in the salts prepared. Of the lithium conductive salts mentioned heretofore, the dilithium imide sulfonate represented by the formula (VII) has the highest lithium content, ie, the lithium content of 3.91%. In addition, these salts can be prepared in very good yields according to the methods described herein. For example, saponification and subsequent metathesis proceed almost quantitatively. However, even the compounds represented by the formula (IV) used in the preparation of the conductive salts are obtained in a yield of 90% or more so that the preparation method of these conductive salts basically lowers the loss of starting material very much.
하기 실시예는 본 발명을 예시하여 그의 이해를 돕기 위해 제공되었으나, 발명의 상세한 설명의 일반적으로 유효한 교지를 고려할 때 본 발명의 청구물질을 상기 실시예에 한정하는 것은 아니다.The following examples are provided to illustrate the invention and to aid its understanding, but do not limit the claimed subject matter to the examples given the generally valid teachings of the detailed description.
실시예 1Example 1
트리플루오로메틸설포닐아미드(F3CSO2NH2)Trifluoromethylsulfonylamide (F 3 CSO 2 NH 2 )
복합 코일 응축기(-78℃)와 내부 온도계를 갖춘 500㎖들이 3목 플라스크를 -78℃까지 냉각시키고, 기체 유입관을 통해 투입된 무수 암모니아를 70㎖ 부피로 응축시키고, 여기에 THF 200 내지 250㎖를 천천히 적가하였다. THF/NH3용액을 다시 -78℃까지 냉각시킨 후, 트리플루오로메탄설포닐 플루오라이드 68g(0.45mol)(문헌 [J. Chem. Soc. (1956) 17]에 따라 제조됨)을 약 2시간에 걸쳐 기체 유입관을 통해 투입하였다. 고 발열 반응 동안에, 형성된 암모늄 플루오라이드가 침전하고, 생성된 암모늄 아미드 일부도 침전되었다. 반응이 완료된 후, 현탁액을 실온까지 가온시켜서 남아있는 암모니아를 증발시켰다. 침전물을 흡입에 의해 여과하고, 남아있는 무색 용액을 회전 증발기상에서 농축시켰다. 조도의 생성물을 고 진공에서 승화에 의해 정제한다.Cool a 500 ml three-necked flask with a composite coil condenser (-78 ° C.) and an internal thermometer to -78 ° C., condense the anhydrous ammonia introduced through the gas inlet to a volume of 70 ml, and THF 200-250 ml Was slowly added dropwise. After cooling the THF / NH 3 solution back to −78 ° C., 68 g (0.45 mol) of trifluoromethanesulfonyl fluoride (prepared according to J. Chem. Soc. (1956) 17) were about 2 Introduced through a gas inlet tube over time. During the high exothermic reaction, the ammonium fluoride formed precipitated, and some of the resulting ammonium amide precipitated. After the reaction was completed, the suspension was warmed to room temperature to evaporate the remaining ammonia. The precipitate was filtered off by suction and the remaining colorless solution was concentrated on a rotary evaporator. The product of the roughness is purified by sublimation at high vacuum.
수율: 62.8g(0.42mol) 또는 93%(M=149.09g/mol)(CH2F3NO2S)Yield: 62.8 g (0.42 mol) or 93% (M = 149.09 g / mol) (CH 2 F 3 NO 2 S)
융점: 118℃(점화온도: 119℃) [48; GRAMSTADT AND HAZELDINE]Melting point: 118 ° C. (ignition temperature: 119 ° C.) [48; GRAMSTADT AND HAZELDINE]
비점: 60 내지 70℃(0.01torr)Boiling Point: 60 to 70 ° C (0.01torr)
1H-NMR(CD3CN, 500.13MHz, 20중량%), δ= 6.24(b) 1 H-NMR (CD 3 CN, 500.13 MHz, 20% by weight), δ = 6.24 (b)
13C-NMR(CD3CN, 125.76MHz, 20중량%), δ= 120.94(quat,1JCF=319.0Hz) 13 C-NMR (CD 3 CN, 125.76 MHz, 20 wt%), δ = 120.94 (quat, 1 J CF = 319.0 Hz)
19F-NMR(CD3CN, 외부 C6F6, 470.59MHz, 20중량%), δ= -80.89(s) 19 F-NMR (CD 3 CN, External C 6 F 6 , 470.59 MHz, 20 wt%), δ = -80.89 (s)
IR(KBr 펠릿) : γ=3388(s), 3277(s), 1523(s), 1360(vs), 1235(w), 1191(vs), 1154(w), 1043(w), 955(w), 931(m-b), 564(m), 490(m-b)IR (KBr pellet): γ = 3388 (s), 3277 (s), 1523 (s), 1360 (vs), 1235 (w), 1191 (vs), 1154 (w), 1043 (w), 955 ( w), 931 (mb), 564 (m), 490 (mb)
MS(EI, 70eV, 35℃)MS (EI, 70 eV, 35 ° C.)
m/e = 150(2%, M+H+), 133(19%, F3C-SO2 +), 80(100%, SO2-NH2 +), 69(100%, CF3 +), 64(60%, SO2 +), 48(28%, SO+) 및 그 외의 단편m / e = 150 (2%, M + H + ), 133 (19%, F 3 C-SO 2 + ), 80 (100%, SO 2 -NH 2 + ), 69 (100%, CF 3 + ), 64 (60%, SO 2 + ), 48 (28%, SO + ), and other fragments
실시예 2Example 2
나트륨 트리플루오로메틸설포닐아미드 (Na[F3CSO2NH])Sodium Trifluoromethylsulfonylamide (Na [F 3 CSO 2 NH])
물 300㎖중 승화된 트리플루오로메탄설포닐아미드 149g(1.0mol)의 현탁액을 조심스럽게 수산화나트륨 40g(1.0mol)과 혼합시켜 그 동안에 투명한 무색 용액이 형성되었다. 30분동안 교반한 후, 용매를 수성 압력하에 제거하고, 남아있는 무색의 잔류물을 80℃의 고 진공에서 건조시켰다.A suspension of 149 g (1.0 mol) of sublimated trifluoromethanesulfonylamide in 300 ml of water was carefully mixed with 40 g (1.0 mol) of sodium hydroxide, during which a clear colorless solution was formed. After stirring for 30 minutes, the solvent was removed under aqueous pressure and the remaining colorless residue was dried at 80 ° C. in high vacuum.
수율: 170.12g(0.99mol) 또는 99% 수율 (CHF3NNaO2S)(171.O7g/mol)Yield: 170.12 g (0.99 mol) or 99% yield (CHF 3 NNaO 2 S) (171.O7 g / mol)
계산치: C 7.02%, Na 13.45%Calculation: C 7.02%, Na 13.45%
수득치: C 7.05%, Na: 13.43%Obtained: C 7.05%, Na: 13.43%
IR(KBr 펠릿): γ=3348(s), 3295(s), 3287(s), 1295(st), 1275(st), 1250(vs), 1178(vs), 1089(m), 1069(m), 998(s), 639(m), 618(m), 574(m), 513(m), 483(m)IR (KBr pellet): γ = 3348 (s), 3295 (s), 3287 (s), 1295 (st), 1275 (st), 1250 (vs), 1178 (vs), 1089 (m), 1069 ( m), 998 (s), 639 (m), 618 (m), 574 (m), 513 (m), 483 (m)
실시예 3Example 3
나트륨 트리플루오로메틸설포닐트리메틸실릴아미드 (Na[F3CSO2NSiMe3])Sodium trifluoromethylsulfonyltrimethylsilylamide (Na [F 3 CSO 2 NSiMe 3 ])
암모니아의 방출이 더 이상 관찰되지 않을 때까지, 헥사메틸디실라잔(HMDS) 800㎖중 나트륨 트리플루오로메탄설포닐아미드 42.8g(250mmol) 용액을 환류시켰다(약 2시간). 이어서, 용매를 수성 압력하에 제거하고, 남아있는 가수분해-민감성 무색 잔류물을 80 내지 90℃에서 건조시켰다.A solution of 42.8 g (250 mmol) of sodium trifluoromethanesulfonylamide in 800 ml of hexamethyldisilazane (HMDS) was refluxed (about 2 hours) until no release of ammonia was observed anymore. The solvent was then removed under aqueous pressure and the remaining hydrolysis-sensitive colorless residue was dried at 80-90 ° C.
수율: 60.0g(247mmol) 또는 99%(M = 243.26g/mol) (C4H9F3NNaO2SSi)Yield: 60.0 g (247 mmol) or 99% (M = 243.26 g / mol) (C 4 H 9 F 3 NNaO 2 SSi)
1H-NMR(CD3CN, 500.13MHz, 20중량%) δ= 0.04(s) 1 H-NMR (CD 3 CN, 500.13 MHz, 20% by weight) δ = 0.04 (s)
13C-NMR(CD3CN, 125.76MHz, 20중량%) δ= 2.25(s), 122.64(quat,1JCF= 324.6Hz) 13 C-NMR (CD 3 CN, 125.76 MHz, 20% by weight) δ = 2.25 (s), 122.64 (quat, 1 J CF = 324.6 Hz)
19F-NMR(CD3CN, 외부 C6F6, 470.59MHz, 20중량%) δ= -78.23(s) 19 F-NMR (CD 3 CN, External C 6 F 6 , 470.59 MHz, 20% by weight) δ = -78.23 (s)
29Si-NMR(CD3CN, 99.36MHz, 20중량%) δ= -5.82(s) 29 Si-NMR (CD 3 CN, 99.36 MHz, 20% by weight) δ = −5.82 (s)
IR(KBr 펠릿) : γ= 2960(m), 2903(w), 1277(s), 1251(vs), 1231(vs), 1205(vs), 1171(s), 1145(s), 1059(vs), 989(m), 840(vs), 762(m), 730(w), 712(m), 692(w), 620(s), 579(m), 548(w), 523(w), 489(w), 483(w), 476(w), 471(w), 462(w), 427(w).IR (KBr pellet): γ = 2960 (m), 2903 (w), 1277 (s), 1251 (vs), 1231 (vs), 1205 (vs), 1171 (s), 1145 (s), 1059 ( vs), 989 (m), 840 (vs), 762 (m), 730 (w), 712 (m), 692 (w), 620 (s), 579 (m), 548 (w), 523 ( w), 489 (w), 483 (w), 476 (w), 471 (w), 462 (w), 427 (w).
실시예 4Example 4
나트륨 퍼플루오로알칸-1-플루오로설포닐-N-트리플루오로메틸설포닐이미드(Na[F3CSO2-N-SO2-(CF2)n-SO2F], n은 1 내지 3이다)Sodium perfluoroalkane-1-fluorosulfonyl-N-trifluoromethylsulfonylimide (Na [F 3 CSO 2 -N-SO 2- (CF 2 ) n -SO 2 F], n is 1 To 3)
테트라하이드로푸란 100㎖중 나트륨 트리플루오로메틸설포닐트리메틸실릴아미드(Na[F3CSO2-N-SiMe3]) 60.0g(247mmol)의 용액에, 상응하는 1,n-알칸-비스(설포닐 플루오라이드) 250mmol을 적가하였다. 4시간동안 환류하에 교반시킨 후, 용매를 제거하고, 약간 황색을 띤 무색 잔류물을 60 내지 70℃로 고 진공에서 건조시켰다.To a solution of 60.0 g (247 mmol) of sodium trifluoromethylsulfonyltrimethylsilylamide (Na [F 3 CSO 2 -N-SiMe 3 ]) in 100 mL of tetrahydrofuran, the corresponding 1, n-alkane-bis (sul 250 mmol) was added dropwise. After stirring under reflux for 4 hours, the solvent was removed and the slightly yellowish colorless residue was dried at 60-70 ° C. in high vacuum.
Na[F3CSO2-N-SO2-CF2SO2F]Na [F 3 CSO 2 -N-SO 2 -CF 2 SO 2 F]
19F-NMR(CD3CN, 75.4MHz, 20중량%): δ= -96.81(s, 2F), -78.40(s, 3F), 46.04(s, 1F) 19 F-NMR (CD 3 CN, 75.4 MHz, 20% by weight): δ = -96.81 (s, 2F), -78.40 (s, 3F), 46.04 (s, 1F)
Na[F3CSO2-N-SO2-(CF2)2SO2F]Na [F 3 CSO 2 -N-SO 2- (CF 2 ) 2 SO 2 F]
19F-NMR(CD3CN, 75.4MHz, 20중량%): δ= -110.80(d,3JFF=7.1Hz, 2F), -104.32(d,3JFF=5.6Hz, 2F), -78.53(s, 3F), 46.23(t,3JFF=6.8Hz, 1F) 19 F-NMR (CD 3 CN, 75.4 MHz, 20% by weight): δ = -110.80 (d, 3 J FF = 7.1 Hz, 2F), -104.32 (d, 3 J FF = 5.6 Hz, 2F),- 78.53 (s, 3F), 46.23 (t, 3 J FF = 6.8 Hz, 1F)
Na[F3CSO2-N-SO2-(CF2)3SO2F]Na [F 3 CSO 2 -N-SO 2- (CF 2 ) 3 SO 2 F]
19F-NMR(CD3CN, 75.4MHz, 20중량%): δ= -117.26(t,3JFF=3.7Hz, 2F), -111.95(t,3JFF=13.1Hz, 2F), -105.73(t,3JFF=11.3Hz, 2F), -78.57(s, 3F), 46.68(t,3JFF=6.8Hz, 1F) 19 F-NMR (CD 3 CN, 75.4 MHz, 20% by weight): δ = -117.26 (t, 3 J FF = 3.7 Hz, 2F), -111.95 (t, 3 J FF = 13.1 Hz, 2F),- 105.73 (t, 3 J FF = 11.3 Hz, 2F), -78.57 (s, 3F), 46.68 (t, 3 J FF = 6.8 Hz, 1F)
실시예 5Example 5
디-칼륨 퍼플루오로알칸-1,N-비스[설포닐(트리플루오로메틸설포닐)이미드] (K2[F3CSO2-N-SO2-(CF2)n-SO2-N-SO2CF3], n은 1 내지 3이다)Di-potassium perfluoroalkane-1, N-bis [sulfonyl (trifluoromethylsulfonyl) imide] (K 2 [F 3 CSO 2 -N-SO 2- (CF 2 ) n -SO 2- N-SO 2 CF 3 ], n is 1 to 3)
피란 150㎖중 Na[F3CSO2NSiMe] 60.0g(247mmol)의 용액을 상응하는 Na[F3CSO2N-SO2-(CF2)n-SO2F] 188mmol과 혼합하였다. 이어서, 옅은 황색 내지 갈색의 용액을 5시간동안 환류시켰다. 용매를 수성 압력하에 제거하고, 남아있는 황색 잔류물을 3M 염산 600 내지 700㎖에 용해시키고 4시간동안 교반시켰다. 이어서 용액을 매회 디에틸 에테르 150㎖로 4회 추출하였다. 에테르 상을 합하여 완만한 조건하에 농축시켰다. 이어서, 미반응된 트리플루오로메탄설폰아미드를 남아있는 오일로부터 승화시켰다. 승화 저부에 물 100 내지 150㎖를 넣고, 과립 활성 탄소에 의해 여과시키고 수산화칼륨으로 중화시켰다. 활성 탄소와 함께 끓인 다음 여과한 후, 수성 압력하에 물을 제거하였다. 이소프로판올 약 300 내지 400㎖로부터 무색 고체를 재결정화시켰다. 여과후에 결정을 70℃의 고 진공에서 건조시켰다.A solution of 60.0 g (247 mmol) of Na [F 3 CSO 2 NSiMe] in 150 ml of pyran was mixed with the corresponding Na [F 3 CSO 2 N—SO 2 — (CF 2 ) n —SO 2 F] 188 mmol. The pale yellow to brown solution was then refluxed for 5 hours. The solvent was removed under aqueous pressure and the remaining yellow residue was dissolved in 600-700 mL of 3M hydrochloric acid and stirred for 4 hours. The solution was then extracted four times with 150 ml of diethyl ether each time. The ether phases were combined and concentrated under gentle conditions. The unreacted trifluoromethanesulfonamide was then sublimed from the remaining oil. 100-150 ml of water was added to the sublimation bottom, filtered through granular activated carbon, and neutralized with potassium hydroxide. After boiling with activated carbon and filtered, the water was removed under aqueous pressure. The colorless solid was recrystallized from about 300-400 ml of isopropanol. After filtration the crystals were dried in high vacuum at 70 ° C.
실시예 6Example 6
디리튬 테트라플루오로에탄-비스[설포닐(트리플루오로메틸설포닐)이미드] (Li2[F3CSO2-N-SO2-(CF2)2-SO2-N-SO2CF3]Dilithium tetrafluoroethane-bis [sulfonyl (trifluoromethylsulfonyl) imide] (Li 2 [F 3 CSO 2 -N-SO 2- (CF 2 ) 2 -SO 2 -N-SO 2 CF 3 ]
테트라하이드로푸란 100㎖중 K2[F3CSO2-N-SO2-CF2-SO2-N-SO2CF3] 100.00g (182mmol)의 용액을 테트라하이드로푸란 650㎖중 염화 리튬 15.40g(364mmol)의 용액과 혼합하였다. 30분동안 교반한 후, 염화 칼륨의 침전물을 여과하여 제거하고, THF를 수성 압력하에 제거한다. 생성된 무색 고체를 약 80℃의 고 진공(0.1torr 미만)에서 건조시킨다.A solution of 100.00 g (182 mmol) of K 2 [F 3 CSO 2 -N-SO 2 -CF 2 -SO 2 -N-SO 2 CF 3 ] in 100 ml of tetrahydrofuran was added 15.40 g of lithium chloride in 650 ml of tetrahydrofuran. Mixed with a solution of (364 mmol). After stirring for 30 minutes, the precipitate of potassium chloride is filtered off and THF is removed under aqueous pressure. The resulting colorless solid is dried at high vacuum (less than 0.1 torr) at about 80 ° C.
수율: 85.5g(178mmol) 또는 98%Yield: 85.5 g (178 mmol) or 98%
(C3F8Cl2N2O8S4) m = 486.15g/mol(C 3 F 8 Cl 2 N 2 O 8 S 4 ) m = 486.15 g / mol
계산치: C 7.41%, Li 2.86%, K 0.00%Calculated: C 7.41%, Li 2.86%, K 0.00%
수득치: C 7.43%, Li 2.84%, K < 0.1%Obtained: C 7.43%, Li 2.84%, K <0.1%
함수량: <2000ppmWater content: <2000ppm
분해점: >200℃Decomposition Point:> 200 ℃
실시예 7Example 7
디세슘 디플루오로메탄-설포닐(트리플루오로메틸설포닐)이미드-N-설포닐-비스(트리플루오로메틸-설포닐)메타나이드 (Cs2[F3CSO2N-SO2-CF2-SO2-C(SO2CF3)2])Dicemium difluoromethane-sulfonyl (trifluoromethylsulfonyl) imide-N-sulfonyl-bis (trifluoromethyl-sulfonyl) methanide (Cs 2 [F 3 CSO 2 N-SO 2- CF 2 -SO 2 -C (SO 2 CF 3 ) 2 ])
테트라하이드로푸란 150㎖중 비스(트리플루오로메틸설포닐)메탄 70g(250mmol)의 용액에 시클로헥산중 2M 부틸리튬 용액 260㎖를 적가하고, 그 동안 혼합물을 얼음으로 냉각시켰다. 적가하는 동안, 온도를 10 내지 20℃로 유지하고, 이후에 교반을 지속하였다. 20℃의 온도에서 THF 100㎖중 Na[F3CSO2N-SO2-CF2-SO2F] 92g(250mmol)을 적가하고, 온도를 가능한한 25 내지 30℃로 유지한다. 반응 용액을 2시간동안 60℃까지 가열한다. 이어서, 용매 혼합물을 제거한다. 생성된 고체를 3M 염산 500㎖에 넣고, 약 4시간동안 교반한다. 이어서, 용액을 매회 디에틸 에테르 150㎖를 사용하여 4회 추출한다. 에테르상을 합하고 용매를 제거한 후, 미반응된 출발 물질을 증류시켜 제거한다. 저부에 남아있는 생성물을 물 500㎖에 용해시키고 탄산 세슘 약 33g을 사용하여 중화시켰다. 상기 과정중에 침전되는 세슘 염을 끓여서 용해시킨다. 이어서, 용액을 활성 탄소로 처리하고, 30분동안 가열한 후에 여과하였다. 필요시에는 물을 이용하여 결정화된 세슘 염을 다시 재결정하였다.To a solution of 70 g (250 mmol) of bis (trifluoromethylsulfonyl) methane in 150 ml tetrahydrofuran 260 ml of a 2M butyllithium solution in cyclohexane was added dropwise while the mixture was cooled with ice. During the dropwise addition, the temperature was maintained at 10 to 20 ° C., and then stirring was continued. 92 g (250 mmol) of Na [F 3 CSO 2 N—SO 2 —CF 2 —SO 2 F] in 100 mL of THF are added dropwise at a temperature of 20 ° C., and the temperature is maintained at 25 to 30 ° C. as possible. The reaction solution is heated to 60 ° C. for 2 hours. The solvent mixture is then removed. The resulting solid is placed in 500 ml of 3M hydrochloric acid and stirred for about 4 hours. The solution is then extracted four times with 150 ml of diethyl ether each time. After the ether phases are combined and the solvent is removed, the unreacted starting material is distilled off. The product remaining at the bottom was dissolved in 500 ml of water and neutralized with about 33 g of cesium carbonate. The cesium salt precipitated during the process is boiled and dissolved. The solution was then treated with activated carbon, heated for 30 minutes and then filtered. If necessary, the crystallized cesium salt was recrystallized again using water.
수율: 69.1g(80mmol) 또는 32%(M = 869.15g/mol) (C5Cs2F11NO10S5)Yield: 69.1 g (80 mmol) or 32% (M = 869.15 g / mol) (C 5 Cs 2 F 11 NO 10 S 5 )
13C-NMR(CD3CN, 125.8MHz) δ= 86.14(s, C (SO2CF3)2), 119.54(t,1JCF=329.9Hz, CF2), 120.02(qua,1JCF=320.5Hz, NSO2CF3), 120.40 (C(SO2CF3)2) 13 C-NMR (CD 3 CN, 125.8 MHz) δ = 86.14 (s, C (SO 2 CF 3 ) 2 ), 119.54 (t, 1 J CF = 329.9 Hz, CF 2 ), 120.02 (qua, 1 J CF = 320.5Hz, NSO 2 CF 3 ), 120.40 (C (SO 2 CF 3 ) 2 )
19F-NMR(CD3CN, 470.6MHz, 외부 C6F6): δ= -99.09(s, 2F), -78.43(s, 3F), -75.22(s, 6F) 19 F-NMR (CD 3 CN, 470.6 MHz, External C 6 F 6 ): δ = -99.09 (s, 2F), -78.43 (s, 3F), -75.22 (s, 6F)
실시예 8Example 8
디리튬 디플루오로메탄-설포닐(트리플루오로메틸설포닐)이미드-N-설포닐-비스(트리플루오로메틸-설포닐)메타나이드 (Li2[F3CSO2N-SO2-CF2-C(SO2CF3)2])Dilithium difluoromethane-sulfonyl (trifluoromethylsulfonyl) imide-N-sulfonyl-bis (trifluoromethyl-sulfonyl) methanide (Li 2 [F 3 CSO 2 N-SO 2- CF 2 -C (SO 2 CF 3 ) 2 ])
THF 100㎖중 Cs2[F3CSO2-N-SO2-CF2-C(SO2CF3)2] 100.00g(115mmol)의 용액을 테트라하이드로푸란 400㎖중 LiCl 9.75g(230mmol)의 용액과 혼합하였다. 30분동안 교반한 후, CsCl 침전물을 여과하여 제거하고, 테트라하이드로푸란을 수성 압력하에 제거하였다. 생성된 고체를 약 80℃의 고 진공(0.1torr 미만)에서 건조시켰다.A solution of 100.00 g (115 mmol) of Cs 2 [F 3 CSO 2 -N-SO 2 -CF 2 -C (SO 2 CF 3 ) 2 ] in 100 mL of THF was dissolved in 9.75 g (230 mmol) of LiCl in 400 mL of tetrahydrofuran. Mixed with solution. After stirring for 30 minutes, the CsCl precipitate was filtered off and tetrahydrofuran was removed under aqueous pressure. The resulting solid was dried at high vacuum (less than 0.1 torr) at about 80 ° C.
수율: 69.56g(113mmol) 또는 98%Yield: 69.56 g (113 mmol) or 98%
(C5F11Li2NO10S5) M = 617.22g/mol(C 5 F 11 Li 2 NO 10 S 5 ) M = 617.22 g / mol
계산치: C 9.73%, Li 2.25%, Cs 0.00%Calculations: C 9.73%, Li 2.25%, Cs 0.00%
수득치: C 9.75%, Li 2.23%, Cs < 0.1%Obtained: C 9.75%, Li 2.23%, Cs <0.1%
함수량: <2000ppmWater content: <2000ppm
분해점: >200℃Decomposition Point:> 200 ℃
실시예 9Example 9
디리튬 디플루오로메탄-설포닐(트리플루오로메틸설포닐)이미드-N-설포네이트 (Li2[F3CSO2N-SO2-CF2SO3])Dilithium difluoromethane-sulfonyl (trifluoromethylsulfonyl) imide-N-sulfonate (Li 2 [F 3 CSO 2 N-SO 2 -CF 2 SO 3 ])
물 250㎖중 Na2[F3CSO2N-SO2-CF2-SO3] 91.8g(250mmol)의 용액을 수산화리튬 일수화물 21.0g(500mmol)과 혼합하였다. 필요시에는 활성 탄소의 존재하에, 현탁액을 1시간동안 끓이고, 실온까지 냉각시킨 후 여과하고, 수성 압력하에 물을 제거하였다. 무색의 고체를 건조시키고 이어서 테트라하이드로푸란 250㎖에 용해시켰다. 이를 테트라하이드로푸란 450㎖중 LiCl 10.6g(250mmol)의 용액과 혼합하였다. 30분동안 교반한 후, 침전된 NaCl을 여과하여 제거하고 수성 압력하에 테트라하이드로푸란을 제거한다. 생성된 고체를 80℃에서 고 진공(<0.1torr)하에 건조한다.A solution of 91.8 g (250 mmol) of Na 2 [F 3 CSO 2 N—SO 2 —CF 2 —SO 3 ] in 250 mL of water was mixed with 21.0 g (500 mmol) of lithium hydroxide monohydrate. If necessary, in the presence of activated carbon, the suspension was boiled for 1 hour, cooled to room temperature, filtered and the water removed under aqueous pressure. The colorless solid was dried and then dissolved in 250 ml of tetrahydrofuran. It was mixed with a solution of 10.6 g (250 mmol) of LiCl in 450 ml of tetrahydrofuran. After stirring for 30 minutes, the precipitated NaCl is filtered off and tetrahydrofuran is removed under aqueous pressure. The resulting solids are dried at 80 ° C. under high vacuum (<0.1torr).
수율: 87.0g(245mmol) 또는 98% (C2F5Li2NO7S3) (M = 355.08g/mol)Yield: 87.0 g (245 mmol) or 98% (C 2 F 5 Li 2 NO 7 S 3 ) (M = 355.08 g / mol)
계산치: C 6.77%, Li 3.91%, Na 0.00%Calculated: C 6.77%, Li 3.91%, Na 0.00%
수득치: C 6.81%, Li 3.95%, Na < 0.1%Yield: C 6.81%, Li 3.95%, Na <0.1%
함수량: <2000ppmWater content: <2000ppm
분해점: >200℃Decomposition Point:> 200 ℃
13C-NMR(CD3CN, 125.8MHz), δ= 119.82(t,1JCF=319.1Hz), 13 C-NMR (CD 3 CN, 125.8 MHz), δ = 119.82 (t, 1 J CF = 319.1 Hz),
19F-NMR(CD3CN, 470.6MHz, 외부 C6F6), δ= -105.38(s, 2F), -78.64(s, 2F), 19 F-NMR (CD 3 CN, 470.6 MHz, external C 6 F 6 ), δ = -105.38 (s, 2F), -78.64 (s, 2F),
전기화학 연구Electrochemical research
환원에 대한 안정성Stability against reduction
시험 용매 혼합물인 EC/DMC(1:1; 약 10 내지 20ppm의 함수량)과 EC/DEC(1:1; 약 10 내지 20ppm의 함수량)중 Li2[(F3CSO2)2-SO2-(CF2)3-SO2-C(SO2CF3)2] 염은 리튬에 대해 우수한 안정성을 갖는다. 기저 전류 사이클 전압도(도 1)는 음극 분해를 암시하는 어떠한 신호도 나타내지 않는다.Li 2 [(F 3 CSO 2 ) 2 -SO 2 -in test solvent mixture EC / DMC (1: 1; water content of about 10-20 ppm) and EC / DEC (1: 1; water content of about 10-20 ppm) The (CF 2 ) 3 -SO 2 -C (SO 2 CF 3 ) 2 ] salt has excellent stability to lithium. The base current cycle voltage diagram (FIG. 1) does not show any signal suggestive of cathodic decomposition.
산화에 대한 안정성Stability against oxidation
a) 불활성 백금 전극에서의 산화a) oxidation at inert platinum electrodes
이가 메타나이드의 분해 전위는 Li/Li+에 대하여 용매 혼합물로부터 독립적으로 5.3V로 측정되었다. 이는 용매의 분해가 실제로 관여할 수 있음을 나타낸다. 도 2는 용매로서 EC/DMC 혼합물을 사용하여 측정할 때의 전압도를 나타낸다.The dissolution potential of divalent methoxide was measured at 5.3 V independently from the solvent mixture for Li / Li + . This indicates that decomposition of the solvent may actually be involved. 2 shows a voltage diagram when measured using an EC / DMC mixture as a solvent.
b) 알루미늄 전극에서의 산화b) oxidation on aluminum electrodes
일가 설포닐 유도체의 경우와는 달리, 연구된 염은 알루미늄 표면을 효과적으로 안정화시켰다(도 3). 어떠한 경우에도 알루미늄의 용해가 관찰되지 않았다.Unlike in the case of monovalent sulfonyl derivatives, the salts studied effectively stabilized the aluminum surface (FIG. 3). In no case dissolution of aluminum was observed.
사이클 실험Cycle experiment
사이클 특징을 사이클 전류전압법을 사용하여 전위 동력학적으로(도 3, 표 5) 및 전기통계학적으로(표 6과 7) 측정하였다. 그 결과는 이미 연구한 염의 범위내에 있다.Cycle characteristics were measured potentiometrically (FIG. 3, Table 5) and electrostatistically (Tables 6 and 7) using the cycle amphoteric method. The results are within the range of salts already studied.
도 1은 하기 조건하에 DMC/EC(mdcv 279)중 Li2[(F3CSO2)2C-SO2-(CF2)3-SO2-C(SO2CF3)2] (0.58mol)을 사용하여 실시하는, 기저 전류 사이클 전류전압 측정의 분석을 그래프에 의해 나타낸다:1 is Li 2 [(F 3 CSO 2 ) 2 C-SO 2- (CF 2 ) 3 -SO 2 -C (SO 2 CF 3 ) 2 ] (0.58 mol) in DMC / EC (mdcv 279) under the following conditions: The analysis of the ground current cycle current voltage measurement, carried out using), is shown graphically:
측정 장치: 3-전극 배치Measuring device: three-electrode placement
작업 전극: V2A 합금 강; 전극 면적: 0.503㎠Working electrode: V2A alloy steel; Electrode Area: 0.503cm2
반대 전극: 리튬Counter electrode: lithium
기준 전극: 리튬Reference electrode: lithium
사이클 횟수: 5Cycle count: 5
경사율(ramp rate): 20mV/sRamp rate: 20mV / s
도 2는 하기 조건하에 DMC/EC(mdcv 285)중 Li2[(F3CSO2)2C-SO2-(CF2)3-SO2-C(SO2CF3)2] (0.58mol)의 예를 사용하여 실시한 것으로 본 발명에 의한 전해질의, 백금에 대한 양극 안정성 범위(전극 면적 0.071㎠)를 그래프 형태로 나타낸 것이다:FIG. 2 shows Li 2 [(F 3 CSO 2 ) 2 C-SO 2- (CF 2 ) 3 -SO 2 -C (SO 2 CF 3 ) 2 ] (0.58 mol) in DMC / EC (mdcv 285) under the following conditions: The anode stability range for the platinum (electrode area 0.071 cm 2) of the electrolyte according to the present invention is shown in the form of a graph using the following example:
측정 장치: 3-전극 배치Measuring device: three-electrode placement
작업 전극: V2A 합금 강; 전극 면적: 0.503㎠Working electrode: V2A alloy steel; Electrode Area: 0.503cm2
반대 전극: 리튬Counter electrode: lithium
기준 전극: 리튬Reference electrode: lithium
사이클 횟수: 5Cycle count: 5
경사율: 10mV/sTilt rate: 10 mV / s
도 3은 하기 조건하에 DMC/EC(mdcv 280)중 Li2[(F3CSO2)2C-SO2-(CF2)3-SO2-C(SO2CF3)2](0.58mol)을 사용하여 실시하는, 사이클 전지 실험에 의해 리튬 침적을 그래프 형태로 나타낸 것이다:FIG. 3 shows Li 2 [(F 3 CSO 2 ) 2 C—SO 2 — (CF 2 ) 3 —SO 2 —C (SO 2 CF 3 ) 2 ] (0.58 mol) in DMC / EC (mdcv 280) under the following conditions: Cycle deposition experiments using) show lithium deposition in graphical form:
측정 장치: 3-전극 배치Measuring device: three-electrode placement
작업 전극: V2A 합금 강; 전극 면적: 0.503㎠Working electrode: V2A alloy steel; Electrode Area: 0.503cm2
반대 전극: 리튬Counter electrode: lithium
기준 전극: 리튬Reference electrode: lithium
사이클 횟수: 5Cycle count: 5
경사율: 20mV/sTilt rate: 20 mV / s
도 4는 알루미늄(전극 면적 0.583㎠)상에서 DMC/MC(mdcv 284)중의 Li2[(F3CSO2)2C-SO2-(CF2)3-SO2-C(SO2CF3)2](0.58mol)의 양극 안정성을 나타낸 것이다.4 shows Li 2 [(F 3 CSO 2 ) 2 C-SO 2- (CF 2 ) 3 -SO 2 -C (SO 2 CF 3 ) in DMC / MC (mdcv 284) on aluminum (electrode area 0.583 cm 2 ). 2 ] (0.58 mol) positive electrode stability.
도 5는 DEC/EC(1:1) (xec=0.5724) 용매 혼합물중에서 다양한 온도에서의 Li2[(F3CSO2)2C-SO2-(CF2)3-SO2-C(SO2CF3)2] 농도의 함수로서 비전도계수 κ(m, T)를 나타낸 것이다.FIG. 5 shows Li 2 [(F 3 CSO 2 ) 2 C-SO 2- (CF 2 ) 3 -SO 2 -C () at various temperatures in a DEC / EC (1: 1) (x ec = 0.5724) solvent mixture. SO 2 CF 3 ) 2 ] shows the non-conductivity coefficient κ (m, T) as a function of concentration.
Claims (13)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19733948A DE19733948A1 (en) | 1997-08-06 | 1997-08-06 | Process for the preparation of perfluoroalkane-1-sulfonyl (perfluoroalkylsulfonyl) imide-N-sulfonyl-containing methanides, imides and sulfonates, and perfluoroalkane-1-N- (sulfonylbis (perfluoroalkylsulfonyl) methanides) |
DE19733948.4 | 1997-08-06 | ||
PCT/EP1998/004648 WO1999007676A1 (en) | 1997-08-06 | 1998-07-24 | Process for preparing perfluoroalkane-1-sulfonyl (perfluoroalkylsulfonyl) imide-n-sulfonyl- containing methanides, imides and sulfonates, and perfluoroalkane-1-n- sulfonylbis(perfluoroalkylsulfonyl) methanides |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20010022605A true KR20010022605A (en) | 2001-03-26 |
Family
ID=7838109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020007001199A KR20010022605A (en) | 1997-08-06 | 1998-07-24 | Process for preparing perfluoroalkane-1-sulfonyl(perfluoroalkylsulfonyl)imide-n-sulfonyl-containing methanides, imides and sulfonates, and perfluoroalkane-1-n-sulfonylbis(perfluoroalkylsulfonyl)methanides |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1001931A1 (en) |
JP (1) | JP2001512714A (en) |
KR (1) | KR20010022605A (en) |
DE (1) | DE19733948A1 (en) |
TW (1) | TW438803B (en) |
WO (1) | WO1999007676A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19919347A1 (en) * | 1999-04-28 | 2000-11-02 | Merck Patent Gmbh | Process for the purification of methanide electrolytes (II) |
DE10139409A1 (en) * | 2001-08-17 | 2003-02-27 | Merck Patent Gmbh | Polymer electrolytes and their use in galvanic cells |
US6727386B2 (en) * | 2001-10-25 | 2004-04-27 | 3M Innovative Properties Company | Aromatic imide and aromatic methylidynetrissulfonyl compounds and method of making |
JP4367648B2 (en) * | 2003-02-14 | 2009-11-18 | ダイキン工業株式会社 | Fluorosulfonic acid compound, production method thereof and use thereof |
JP4469692B2 (en) * | 2004-09-14 | 2010-05-26 | 富士フイルム株式会社 | Photosensitive composition, compound used for photosensitive composition, and pattern formation method using the photosensitive composition |
JP4819409B2 (en) * | 2005-06-15 | 2011-11-24 | 日本電気株式会社 | Non-aqueous electrolyte secondary battery charge / discharge method |
JP2010159256A (en) * | 2010-01-18 | 2010-07-22 | Fujifilm Corp | Acid and salt thereof useful for photosensitive composition |
EP2719009B1 (en) * | 2011-06-07 | 2017-06-21 | 3M Innovative Properties Company | Lithium-ion electrochemical cells including fluorocarbon electrolyte additives |
JP6582880B2 (en) | 2014-12-01 | 2019-10-02 | セントラル硝子株式会社 | IMIDIC ACID COMPOUND HAVING DIVALENT ANION AND PROCESS FOR PRODUCING THE SAME |
JP6853636B2 (en) * | 2016-09-08 | 2021-03-31 | 三菱マテリアル電子化成株式会社 | Method for Producing Perfluoroalkyl Sulfonamide |
CN111883835B (en) * | 2020-07-24 | 2023-05-23 | 香河昆仑新能源材料股份有限公司 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
US11682793B2 (en) * | 2020-10-27 | 2023-06-20 | Ford Global Technologies. Llc | Single-ion polymer electrolyte molecular design |
WO2023119946A1 (en) * | 2021-12-24 | 2023-06-29 | 株式会社村田製作所 | Secondary battery electrolyte solution and secondary battery |
CN118451580A (en) * | 2022-02-25 | 2024-08-06 | 株式会社村田制作所 | Secondary battery |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2606217B1 (en) * | 1986-10-30 | 1990-12-14 | Elf Aquitaine | NOVEL ION CONDUCTIVE MATERIAL CONSISTING OF A SALT SOLUTION IN A LIQUID ELECTROLYTE |
FR2645533B1 (en) * | 1989-04-06 | 1991-07-12 | Centre Nat Rech Scient | PROCESS FOR THE SYNTHESIS OF SULFONYLIMIDURES |
FR2683524A1 (en) * | 1991-11-08 | 1993-05-14 | Centre Nat Rech Scient | DERIVATIVES OF BIS (PERFLUOROSULFONYL) METHANES, THEIR METHOD OF PREPARATION, AND THEIR USES. |
US5514493A (en) * | 1995-03-06 | 1996-05-07 | Minnesota Mining And Manufacturing Company | Perfluoroalkylsulfonates, sulfonimides, and sulfonyl methides, and electrolytes containing them |
-
1997
- 1997-08-06 DE DE19733948A patent/DE19733948A1/en not_active Withdrawn
-
1998
- 1998-07-24 WO PCT/EP1998/004648 patent/WO1999007676A1/en not_active Application Discontinuation
- 1998-07-24 JP JP2000506180A patent/JP2001512714A/en active Pending
- 1998-07-24 EP EP98943778A patent/EP1001931A1/en not_active Withdrawn
- 1998-07-24 KR KR1020007001199A patent/KR20010022605A/en not_active Application Discontinuation
- 1998-08-03 TW TW087112762A patent/TW438803B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1001931A1 (en) | 2000-05-24 |
WO1999007676A1 (en) | 1999-02-18 |
TW438803B (en) | 2001-06-07 |
JP2001512714A (en) | 2001-08-28 |
DE19733948A1 (en) | 1999-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7153974B2 (en) | Ionic liquids II | |
US9093722B2 (en) | Functionalized ionic liquid electrolytes for lithium ion batteries | |
EP2334831B1 (en) | Pentacyclic anion salt and use thereof as an electrolyte | |
US7166724B2 (en) | Ionic liquids | |
KR20010022605A (en) | Process for preparing perfluoroalkane-1-sulfonyl(perfluoroalkylsulfonyl)imide-n-sulfonyl-containing methanides, imides and sulfonates, and perfluoroalkane-1-n-sulfonylbis(perfluoroalkylsulfonyl)methanides | |
JPH11512563A (en) | Battery containing bis (perfluoroalkylsulfonyl) imide salt and cyclic perfluoroalkylene disulfonylimide salt | |
EP3617140B1 (en) | Method for preparing lithium difluorophosphate crystal with high purity, and non-aqueous electrolyte solution for secondary battery using same | |
KR20190002543A (en) | Method for producing bis (fluorosulfonyl) imide alkali metal salt and bis (fluorosulfonyl) imide alkali metal salt composition | |
US20050175867A1 (en) | Room-temperature molten salt, process for producing the same and applications thereof | |
WO2018072024A1 (en) | Sulphamic acid derivatives and production methods thereof | |
WO1993009092A1 (en) | Bis(perfluorosulphonyl)methanes, process for preparing same and uses thereof | |
KR20010067251A (en) | Fluorinated sulfonamides as low-flammability solvents for use in electrochemical cells | |
KR20210077773A (en) | Method for Removal of Reactive Solvents from Lithium Bis(fluorosulfonyl)imide (LiFSI) Using Organic Solvents Stable for Lithium Ion and Anode in Lithium Metal Batteries | |
CN109422252B (en) | A kind of preparation method of lithium fluorosulfonyl difluoride phosphorimide and its product and application | |
CN105175452B (en) | A kind of preparation method of phosphonitrile oroalkane sulfonyl imine alkali metal salt | |
EP1127888B1 (en) | Lithium fluoralkylphosphates and their use as electrolyte salts | |
CN108432026B (en) | Electrolyte composition, secondary battery and method for using secondary battery | |
KR20040030140A (en) | Polymer electrolyte and the use thereof in galvanic cells | |
CA2368990A1 (en) | Borate salts for use in electrochemical cells | |
CA2354794A1 (en) | Fluoroalkyl phosphates for use in electrochemical cells | |
KR20020069339A (en) | Fluoroalkylphosphate salts, and process for the preparation of these substances | |
WO2018172696A1 (en) | Novel ionic liquids resulting from the association of a specific cation and a specific anion | |
CA2313603A1 (en) | Method of preparing lithium complex salts for use in electrochemical cells | |
CN117603099A (en) | Preparation method and application of binary fluorine-containing sulfimide alkali metal salt | |
KR102771388B1 (en) | Electrolyte additive for secondary battery, manufacturing method thereof, electrolyte containing the same, and secondary battery including the Electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20000203 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination | ||
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |