KR20000050105A - Method of producing foam glass - Google Patents
Method of producing foam glass Download PDFInfo
- Publication number
- KR20000050105A KR20000050105A KR1020000026061A KR20000026061A KR20000050105A KR 20000050105 A KR20000050105 A KR 20000050105A KR 1020000026061 A KR1020000026061 A KR 1020000026061A KR 20000026061 A KR20000026061 A KR 20000026061A KR 20000050105 A KR20000050105 A KR 20000050105A
- Authority
- KR
- South Korea
- Prior art keywords
- silica gel
- glass
- gel
- heat
- foaming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000011494 foam glass Substances 0.000 title description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000011521 glass Substances 0.000 claims abstract description 76
- 239000000741 silica gel Substances 0.000 claims abstract description 44
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 claims abstract description 35
- 239000011148 porous material Substances 0.000 claims abstract description 24
- 238000005187 foaming Methods 0.000 claims abstract description 15
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 15
- 238000003980 solgel method Methods 0.000 claims abstract description 8
- 238000002844 melting Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 239000003513 alkali Substances 0.000 claims abstract description 5
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims abstract description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 8
- 239000006261 foam material Substances 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 6
- 239000002699 waste material Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 21
- 239000002245 particle Substances 0.000 abstract description 12
- 230000000704 physical effect Effects 0.000 abstract description 10
- 238000001354 calcination Methods 0.000 abstract 1
- 238000003912 environmental pollution Methods 0.000 abstract 1
- 239000004088 foaming agent Substances 0.000 abstract 1
- 229960001866 silicon dioxide Drugs 0.000 description 33
- 239000000463 material Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 14
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 12
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 7
- 229910052681 coesite Inorganic materials 0.000 description 7
- 229910052906 cristobalite Inorganic materials 0.000 description 7
- 235000019353 potassium silicate Nutrition 0.000 description 7
- 229910052682 stishovite Inorganic materials 0.000 description 7
- 229910052905 tridymite Inorganic materials 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000009415 formwork Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- COHDHYZHOPQOFD-UHFFFAOYSA-N arsenic pentoxide Chemical compound O=[As](=O)O[As](=O)=O COHDHYZHOPQOFD-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004604 Blowing Agent Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- GOLCXWYRSKYTSP-UHFFFAOYSA-N Arsenious Acid Chemical compound O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 229960004029 silicic acid Drugs 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004079 fireproofing Methods 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/08—Other methods of shaping glass by foaming
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
- C03B19/066—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Architecture (AREA)
- Dispersion Chemistry (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Glass Compositions (AREA)
Abstract
Description
본 발명은 발포성 유리의 제조방법에 관한 것으로서, 더욱 상세히는 건물의 단열재 등으로 그 효용가치가 높은 발포성 유리의 새로운 제조방법의 제공에 관한 것이다. 즉, 단열재용 혹은 내부식재용 발포(發泡)유리를 제조하는데 있어서 새로운 발포유리제조 방법에 관한 것이다.The present invention relates to a method for producing expandable glass, and more particularly, to the provision of a new method for producing expandable glass having high utility value as a heat insulating material for buildings. That is, the present invention relates to a new method for producing foamed glass in the production of foamed glass for thermal insulation or corrosion resistance.
종래로부터의 건축용 내화재로 사용되어온 재료는 암면 또는 그라스울 등으로 시멘트나 기타 바인딩 재료를 혼합하여 철골구조의 표면에 도포하여 사용하여 왔다.The materials that have been used as a building fireproofing material in the past have been used by mixing cement or other binding materials with rock wool or glass wool and applying them to the surface of steel structures.
그러나. 이러한 방법은 자체의 내열성이 높고 단열성이 낮은 반면, 공해물질로서 암면 등이 미세한 입자로서 비산하여 인체에 흡수됨으로서 공해문제가 심각한 방법이다.But. While this method has high heat resistance and low thermal insulation, the pollution problem is a serious method because rock wool and the like are scattered as fine particles and absorbed by the human body as pollutants.
따라서, 새로운 구성과 재료의 단열재가 요구되어 온 것이 현실이다.Therefore, it is a reality that a new structure and heat insulating material have been required.
이러한 문제점을 감안하여 근래에 대두한 것이 발포유리로서, 발포유리란 유리내부에 기포(氣泡)조직을 갖는 유리를 말하는데,In view of such a problem, what has emerged in recent years is foam glass, and foam glass refers to glass having a bubble structure in the glass.
발포유리는 유리 본래의 물성에 기포조직에서 기인하는 물성으로 인해 단열성, 가공성, 경량성, 내후성, 내화학성 등의 물성을 가지게 된다.Foamed glass has physical properties such as heat insulation, processability, light weight, weather resistance, chemical resistance, etc. due to the physical properties derived from the bubble structure to the original physical properties of the glass.
발포유리는 다포(多泡)유리, 다포초자(硝子)라고도 부르고 영문으로는 Foam Glass 또는 Multicelluar Glass 라고 하여 그 내방에 다수의 격리된 기체 공간을 가지는 다양한 종류의 것으로서 제조할 수있음을 알려주고 있다.Foamed glass is also called Dapo glass and Dapochoza, and in English it is called Foam Glass or Multicelluar Glass, which indicates that it can be manufactured as various kinds of materials with a large number of isolated gas spaces inside.
발포유리는 석유화학공장, LNG액화가스탱크 밑바닥, 냉동창고, 선박 등에 단열 보온·보냉재 및 내부식재(耐腐蝕材)로 가장 바람직한 재료로서 널리 사용되고 있고 그 생산량 또한 증대되고 있는 현실이다.Foamed glass is widely used as the most desirable material for thermal insulation, cold insulation and internal corrosion of petrochemical plants, LNG liquefied gas tank bottoms, refrigerated warehouses, ships, etc., and its production is also increasing.
발포유리의 대표적인 물성으로서 불연성, 내화학성, 단열성, 경량성, 가공성 등을 들 수 있다. 불연성과 내화학성은 유리본래의 물성이고 단열성, 경량성, 가공성은 유리가 발포됨으로서 생긴 물성이다.Typical physical properties of the foamed glass include non-combustibility, chemical resistance, heat insulation, light weight, processability, and the like. Nonflammability and chemical resistance are the original properties of glass, and heat insulation, light weight, and workability are properties resulting from the foaming of glass.
종래로부터의 발포유리의 제조원리 및 과정을 간략히 설명하면 다음과 같다.Briefly explaining the manufacturing principle and process of the foam glass from the prior art are as follows.
유리를 유발로 분쇄하여 유리 분말로 만들고 이 유리분말과 여러 종류의 고가의 발포제를 혼합하고 성형하여 이를 일정한 형상의 내열성 거푸집에 넣고 유리의 연화온도이상으로 가열,처리하여 발포제로부터 발생한 가스를 폐쇄시킴으로서 성형하였다.The glass is pulverized into glass powder, mixed with this glass powder and various kinds of expensive blowing agents, and then molded into a heat-resistant formwork of a certain shape and heated and processed above the softening temperature of the glass to close the gas generated from the blowing agent. Molded.
그러나 상기하는 종래의 방법은 그 제조방법이 번거롭고 균질한 발포가 보장되기 어려운 문제점을 가진다.However, the conventional method described above has a problem that the manufacturing method is cumbersome and it is difficult to guarantee homogeneous foaming.
이는 발포재가 가스를 분출하더라도 균질하게 배출하는 것이 아니고 국부적으로 용융된 유리 내부에서 일어나므로 전체 체적에 걸쳐서 균일한 발포가 보장되기 어렵기 때문이다.This is because even if the foam material ejects the gas, it is not discharged homogeneously but occurs inside the locally molten glass, so that uniform foaming over the entire volume is difficult to be guaranteed.
즉, 종래의 발포성 유리를 제조하는 방법은;That is, the conventional method for producing the expandable glass;
1) 먼저 유리분말의 연화에 의해 발포재를 포위한다.1) First, the foam is surrounded by softening the glass powder.
2) 이때 발포재는 연화된 유리입자에 의해 외부공기와 접촉할 수 없는 상태가 되어야 한다.2) At this time, the foam material should be in a state where it cannot be contacted with external air by softened glass particles.
3) 이것을 더욱 가열하면 발포재가 유리내부의 산소공급성분으로 부터 산소를 빼앗아 산화함으로서 기체로 변환되어 폐 기공을 형성하게 된다.3) When this is further heated, the foam material takes oxygen from the oxygen supply component inside the glass and oxidizes it, converting it into a gas and forming waste pores.
와 같은 공정을 가지고 다양한 종류의 고가의 발포제가 사용되어 왔다.Various kinds of expensive blowing agents have been used with the same process.
본 발명은 단열재용 발포유리가 폐기공조직을 가지게 하기 위하여 다공질의 겔을 이용하여 단열재용 혹은 내부식재용 발포유리를 제조하기 위한 다공성입자를 사용한 발포유리 제조방법을 신규한 방법으로서 제공하기 위한 것이다.The present invention is to provide a foamed glass manufacturing method using a porous particle for producing a foamed glass for insulation or corrosion resistant material using a porous gel in order to have a foamed structure for the insulation material has a closed pore structure as a novel method.
본 발명에서는 다공성 입자를 사용하여 균질한 발포유리를 제조하는 방법을 제공한다. 본 발명에서 개발한 유리조성은 여러 조건으로 다공성입자를 제조하고, 소성하면 균질한 폐기공조직의 내열 방열 단열 내부식성 방습 등 자연 친화 적인 탁월한 효과의 발포유리를 제조할 수 있었다.The present invention provides a method for producing a homogeneous foam glass using porous particles. The glass composition developed in the present invention produced a porous glass under various conditions, and when fired, it was possible to produce a foamed glass having excellent natural friendly effects such as heat-resistant heat-insulating heat-resistant corrosion-resistant moisture-proof of homogeneous waste pore structure.
도 1 은 본 발명의 발포성 유리의 제조방법의 공정도.1 is a process chart of the method for producing the expandable glass of the present invention.
도 2 는 본 발명의 발포성 유리의 제조방법에 의하여 제조된 발포성유리의 낟알 상태로 성형된 예시적인 제품사진.Figure 2 is an exemplary product photograph molded in the grain state of the foamed glass produced by the method for producing a foamed glass of the present invention.
도 3 은 본 발명의 발포성 유리의 제조방법에 의하여 제조된 발포성유리의 블록타입의 예시적인 다른 제품사진.3 is another exemplary photograph of a block type of foamable glass produced by the method for manufacturing the foamable glass of the present invention.
도 4 는 본 발명의 발포성 유리의 제조방법에 의하여 제조된 발포성유리의 단면을 도시하는 저배율의 현미경사진이다.4 is a low magnification micrograph showing a cross section of the expandable glass produced by the method for producing the expandable glass of the present invention.
* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
S: 실리카겔입자S: silica gel particles
F: 거푸집F: formwork
K: 터널킬른 내지 셔틀킬른K: tunnel kiln to shuttle kiln
본 발명의 발포성 유리의 제조방법이 이루고자 하는 목적은, 균질하고도 정형화된 발포유리를 최소의 가공공정으로서 저렴한 비용으로서 얻기 위한 것이다.The object of the present invention is to obtain a homogeneous and shaped foamed glass at a low cost as a minimum processing step.
본 발명의 다른 목적은 순수규사로 이루어 짐으로서 공해성이 극히 미미하고 입자 내부에 무수한 폐쇄된 미세한 공극을 가짐으로서 단열성이 우수하고 실리카 중공체 내부에 내부세공표면적이 미세한 기공으로 이루어지고 각각의 기공은 진공을 형성하고 있기 때문에 단열성이 대단히 높은 장점을 가짐으로서, 반도체 설비장치, 철구조건축물의 표면 마감. 석유화학공정, 액화가스탱크의 바닥면, 냉동창고, 선박 등의 단열, 보온, 보냉재 및 내부식재로서 사용될 수 있는 발포성 유리의 제조방법을 제공하는 것이다.Another object of the present invention is made of pure silica, extremely poor in pollution and has numerous closed fine pores inside the particles, excellent thermal insulation and fine pores inside the silica hollow body, each pore Silver has a very high thermal insulation because it forms a vacuum, so the surface finish of semiconductor equipment and steel ball building. It is to provide a method for producing expandable glass that can be used as a thermal insulation, heat insulation, cold insulation and corrosion resistant materials for petrochemical processes, the bottom surface of the liquefied gas tank, refrigerated warehouse, ships and the like.
이상과 같은 본 발명의 발포성 유리의 제조방법은; 발포재로서 실리카겔을 사용하고 최적의 성형방법과 조건을 제시함으로서 균질하고도 양호한 단열성 등을 가지는 우수한 물성의 발포유리를 얻을 수 있는 유용성을 가진다.The method for producing the expandable glass of the present invention as described above; By using silica gel as the foaming material and suggesting the optimum molding method and conditions, it is useful to obtain foamed glass having excellent physical properties with homogeneous and good thermal insulation.
상기하는 목적을 달성하기 위하여 본발명의 발포성 유리의 제조방법은;Method for producing the expandable glass of the present invention to achieve the above object;
내부에 다수의 미세한 공극체를 가지는 발포성 유리의 제조방법에 있어서; 발포재를 졸-겔법을 이용하여 제조되는 다공성의 실리카겔로만 하고, 상기 실리카겔을 가열 발포하는 방법으로 일정형상으로 발포성형함으로서, 상기 실리카겔의 연화온도이상으로 가열처리되어 실리카겔이 연화됨과 동시에 다공질 내부조직의 기체가 팽창되어 극미세 폐기공조직을 형성하는 것을 특징으로 하며, 또한,In the manufacturing method of the expandable glass having a plurality of fine pores therein; The foamed material is made of only porous silica gel prepared by using a sol-gel method, and foamed to a predetermined shape by heating and foaming the silica gel. The foamed material is heated above the softening temperature of the silica gel to soften the silica gel and at the same time, a porous internal structure. It is characterized in that the gas is expanded to form a micro-pore tissue,
상기 실리카겔은 이산화규소와 알카리를 용융하여 얻어진 알카리규산염을 통상적인 졸-겔방법으로 처리제조한 것이며, 상기 실리카겔 성형시의 투입되는 산에 따라 상기 실리카겔에 내부세공표면적과 외부표면적의 비를 조절하고, 그 건조도에 따라서 발포도를 상이하게 조절할 수 있는 것을 특징으로 한다.The silica gel is prepared by treating the alkali silicate obtained by melting silicon dioxide and alkali by a conventional sol-gel method, and controlling the ratio of the internal pore surface area and the external surface area to the silica gel according to the acid introduced during the silica gel molding. It is characterized in that the foaming degree can be adjusted differently according to the drying degree.
본 발명의 발포성 유리의 제조방법을 부수된 도면과 함께 더욱 상세하게 설명한다.The manufacturing method of the expandable glass of this invention is demonstrated in detail with accompanying drawing.
도 1 은 본 발명의 발포성 유리의 제조방법의 공정도, 도 2 는 본 발명의 발포성 유리의 제조방법에 의하여 제조된 발포성유리의 예시적인 제품사진, 도 3 은 본 발명의 발포성 유리의 제조방법에 의하여 제조된 발포성유리의 예시적인 다른 제품사진이다.1 is a process chart of the manufacturing method of the expandable glass of the present invention, Figure 2 is an exemplary product photo of the expandable glass produced by the manufacturing method of the expandable glass of the present invention, Figure 3 is a manufacturing method of the expandable glass of the present invention Is another exemplary product photograph of the foamable glass produced by the present invention.
본 발명의 발포성 유리의 제조방법의 가장 큰 기술적인 특징은 발포재로서 다공성입자를 채용하고 이 다공성입자의 바람직한 실시예로서 실리카겔을 사용하는 것이다.The biggest technical feature of the method for producing the expandable glass of the present invention is to employ porous particles as the foam material and to use silica gel as a preferred embodiment of the porous particles.
실리카겔은 물 유리를 산 분해함으로써 건조제로 쓰이는 다공질인 반투명의 겔(gel)재이다, 그리고 실리카겔은 흡착력이 강한 규산의 겔이며, 성분은 SiO2·nH2O이고, 무색 또는 황갈색의 투명 또는 반투명 분말이다.Silica gel is a porous semi-transparent gel material used as a desiccant by acid-decomposing water glass, and silica gel is a gel of silicic acid having high adsorptive power, and the component is SiO 2 · nH 2 O, and is a colorless or yellowish brown transparent or translucent powder.
또한 실리카겔은 공기중의 수분 제거, 석탄가스에서의 벤젠 채취, 천연가스에서의 저비점탄화수소 채취등에 응용된다.In addition, silica gel is applied to remove moisture from the air, to collect benzene from coal gas, and to collect low-boiling hydrocarbons from natural gas.
실리카겔은 규성하는 물유리 규소소오다(water glass)를 설명한다.Silica gel describes water glass silicon that is silicified.
물유리란 이산화규소와 알칼리를 용융하여 얻어진 알카리규산염을 진한 수용액으로 한 것으로 Na2O 1몰에 SiO2 2∼4몰을 함유하고, 무색이며, 점성이 큰 액체로써 공기속에서 말리면 유리모양이 된다.Water glass is a concentrated aqueous solution of alkali silicates obtained by melting silicon dioxide and alkali. It contains 2 to 4 mol of SiO2 in 1 mol of Na2O, and is a colorless, highly viscous liquid that becomes glass when dried in air.
물유리의 조성은 Na2O·SiO2 로 나타내며 점성질의 알칼리성을 나타내는 투명한 용액이다. Na2O 와 SiO2 의 몰비는 1:1 로부터 1:4 까지 여러 가지 조성을 가진다. 보통 n=2 를 갖는 것을 1호, n=2.5 의 것을 갖는 것을 2 호, n=3 의 것을 갖는 것을 3 호, n=4 의 것을 갖는 것을 4 호라 부른다.The composition of the water glass is Na2O.SiO2, which is a transparent solution showing viscous alkalinity. The molar ratio of Na2O and SiO2 has various compositions from 1: 1 to 1: 4. Usually, those having n = 2 are referred to as No. 1, those having n = 2.5 are referred to as No. 2, those having n = 3 are referred to as No. 3, and those having n = 4 are referred to as No. 4.
규산소오다는 Na2O 와 SiO2 의 결합비율에 따라 여러 형태로 존재한다.Sodium silicate exists in various forms depending on the bonding ratio of Na2O and SiO2.
현재 여러 가지 용도에 따라서 상품화되고 있는 규산소오다는 40여종 이상이나 된다. Na2O : SiO2의 비가 1:1.6∼1:4까지의 규산염을 콜로이달 실리카(colloidal silica)라 부르고 Na2O : SiO2의 비가 1:1인 것을 소디엄 메타실리케이트(sodium metasilicate), Na2O : SiO2의 비가 1.5:1인 것을 세스키실리케이트(sesqui-silicate), Na2O : SiO2의 비가 1.5:1인 것, 즉 NaSiO4를 오르소실리케이트(ortho-silicate)라 부른다.There are more than 40 kinds of sodium silicate that is currently commercialized for various uses. Silicates with a ratio of Na2O to SiO2 ranging from 1: 1.6 to 1: 4 are called colloidal silica and a ratio of Na2O to SiO2 of 1: 1 is sodium metasilicate, and the ratio of Na2O to SiO2 is 1.5 1: sesquisilicate (sesqui-silicate), Na 2 O: SiO 2 ratio is 1.5: 1, that is, NaSiO 4 is called ortho-silicate (ortho-silicate).
물유리(water glass)와 산과의 반응에 의한 실리카겔 제법은 다음과 같다.Silica gel preparation by the reaction of water glass and acid is as follows.
Na2O·xSiO2 + H2SO4 → xSiO2 + Na2SO4 + H2ONa2OxSiO2 + H2SO4 → xSiO2 + Na2SO4 + H2O
규산소오다의 제조공정은 이하와 같다.The manufacturing process of sodium silicate is as follows.
가압솥 안에 가성소오다 용액과 규사를 혼입하고 여기에 가열수증기를 불어넣어 용해시킨 다음 건식법과 마찬가지로 정치 및 여과하고 농축하여 제품으로 한다.Caustic soda solution and silica sand are mixed in the autoclave, and heated water vapor is blown into it to dissolve. The product is left still, filtered and concentrated as in the dry method.
물유리와 산으로 실리카 졸(sol) 을 만들고 이것을 겔화하는 것인데 두 액의 혼합방법중 산을 겔에 가하는 방법은 충분히 교반해도 균질한 졸(sol)이 되지 않고 또 물유리를 산에 가할 경우는 충분히 교반하면 균질하게 되지만 수화한 실리카가 혼입한다. 그 밖에 물유리와 산을 동시에 용기에 주입하는 방법이 있다. 즉 규산 소오다와 H2SO4를 고속의 교반기를 장치해둔 용기중에 동시에 주입하여 혼합한다. 이 때 농도와 양을 정확히 조절하여야 한다.Silica sol is made of water glass and acid and gelled.The method of adding acid to gel in the mixing method of the two liquids does not form a homogeneous sol even if it is sufficiently stirred. If it becomes homogeneous, hydrated silica is mixed. Another method is to inject water glass and acid into the container at the same time. That is, sodium silicate and H2SO4 are simultaneously injected into a vessel equipped with a high speed stirrer and mixed. At this time, the concentration and amount should be adjusted correctly.
그러면 졸상태가 되는데 교반기를 제거하고 방치해두면 온도에 따라서 겔화하는 시간은 다르지만 겔화된다. 이 제조 과정에서 제일 중요한 세척 단계에서 과잉의 산은 생성한 황산나트륨과 함께 세척방법에 따라 제거한다.Then, it becomes sol state. If the stirrer is removed and left to stand, the gelation time is different depending on the temperature. In the most important washing step of this manufacturing process, excess acid is removed along with the produced sodium sulfate according to the washing method.
수량은 방법에 따라 이론량의 98 %정도이지만 5∼10% 수분이 있으므로 사실상 90%정도이고 세척 중의 손실을 감안하면 그 이하가 된다.The yield is about 98% of the theoretical amount depending on the method, but since it is 5 to 10% moisture, it is about 90% and it is less than the loss during washing.
따라서 본 발명에서는 바람직한 발포재로서 실리카겔을 적용하여 구성하고, 이에 따라 졸-겔 법으로 제조된 다공성 입자(실리카겔)를 제조하고, 소정형상의 내열성 거푸집에 넣고 유리의 연화온도 이상으로 가열 처리하면 유리가 연화되는 시점과 동시에 다공질 내부조직의 기체가 팽창되어 폐기공(閉氣孔)조직의 발포유리가 되는 것이다.Therefore, in the present invention, it is configured by applying silica gel as a preferable foaming material, thereby preparing porous particles (silica gel) prepared by the sol-gel method, and putting it in a heat-resistant formwork of a predetermined shape and heat-treating it above the softening temperature of the glass. At the same time as the softening occurs, the gas in the porous internal tissue expands to form the foamed glass in the closed hole tissue.
실리카겔은 내부세공표면적과 외부표면적비가 250,000 배 정도이므로 내부에 흡수되어 있는 기체 및 액체가 가열되어 연화온도가 될 때까지 다 빠져 나가지 못하고 먼저 실리카겔의 표면 연화에 의하여 기공을 포위하게 되므로 외부공기와는 차단되는 것이다.Silica gel has an internal pore surface area and an external surface area ratio of about 250,000 times. Therefore, the gas and liquid absorbed therein are heated out to reach the softening temperature, and the pores are surrounded by the surface softening of the silica gel. It is blocked.
하나의 실시예로서는 다공질 규사입자(실리카겔)를 가열(980- 1200도)하여 낟알로 또는 블럭 판재 형태로 가공한다In one embodiment, the porous silica sand particles (silica gel) are heated (980-1200 degrees) and processed into granules or block boards.
이러한 제조공정이 도 1 에 도시되며 실시예로서 설명한다.This manufacturing process is shown in FIG. 1 and described as an example.
실시예Example
이산화규소와 알카리를 용융하여 얻어진 알카리규산염을 통상적인 졸-겔방법으로 제조된 실리카겔을 준비한다.The silica gel obtained by melting silicon dioxide and alkali is prepared by a conventional sol-gel method.
(1) 실리카겔(S)을 공기 중에 노출시켜 적당량의 수분을 흡수하게 한다. 이 때에 흡수되는 수분의 흡승량이 많게 되면 발포가 많이 유발되므로 발포의 정도를 조절할 수있다.(1) The silica gel (S) is exposed to air to absorb an appropriate amount of moisture. At this time, if the amount of water absorbed is increased, foaming is induced a lot, and thus the degree of foaming can be controlled.
(2) 상기 실리카겔(S)을 일정량으로 하여 형상을 가지도록 내열성 거푸집(F)에 투입한다.(2) A predetermined amount of the silica gel (S) is added to the heat-resistant form (F) to have a shape.
(3) 상기 거푸집을 터널킬른 내지 셔틀킬른(K)을 이용하여 980℃∼1170℃ 에서 소성하여 유리의 연화온도이상으로 가열처리하면 유리가 연화되는 시점과 동시에 다공질 내부조직의 기체가 평창되어 폐기공조직을 형성한다.(3) When the formwork is fired at 980 ° C to 1170 ° C using a tunnel kiln or shuttle kiln (K) and heated to a temperature above the softening temperature of the glass, at the same time as the glass is softened, the gas in the porous internal tissue is flattened and discarded. Forms a ball tissue.
(4) 상기 소성공정에 의하여 실리카겔이 용융되면서 상술한 원리로서 발포유리(FG)가 얻어진다.(4) As the silica gel is melted by the firing step, foamed glass (FG) is obtained on the principle described above.
상기의 제조방법은 흡습제의 본래의 특성으로부터 외부로부터 흡수된 것과 원료 내부에 잔존하는 미량의 탄화물이 용융된 겔에서 미쳐 빠져나오지 못하고 이것이 특정 온도가 되면 급팽창하여 발포되는 것이다.The above manufacturing method is that the absorbed from the outside from the original characteristics of the absorbent and the trace amount of carbide remaining inside the raw material does not escape from the molten gel, and when it reaches a specific temperature, it expands and foams.
이 경우 연화된 겔입자표면이 외부공기와 접촉할 수 없는 상태가 되도록 가온시간을 맞추며 연화된 시점에 이르면 내부공기가 급팽창하고 이를 식히면 외부로터 먼저 식기 때무에 내부기공이 진공상태로 되어 단열효과를 가지게 되는 것이다.In this case, the heating time is adjusted so that the surface of the softened gel particles cannot come into contact with external air. When the softening point is reached, the internal air expands rapidly, and when it cools down, the internal pores become vacuum when the external rotor is first cooled. Will have.
즉, 이하의 식과 같은 반응이 유발된다.That is, a reaction such as the following expression is induced.
실리카겔 내부에 잔존하는 SO3 + 2C →S2- + CO(가스) + CO2(가스)SO3 + 2C remaining in the silica gel → S2- + CO (gas) + CO2 (gas)
실리카겔 내부의 존재하는 As2O5 + C → As2O3 + CO2(가스)As2O5 + C → As2O3 + CO2 (gas) in silica gel
윗 식에서 SO3와 As2O5가 유리내부에 존재하는 산소공급성분이다. SO3는 유리용융 시 연소가스로부터 흡수된 것과 유리원료로 사용된 다양한 모재의 용융된 유리에서 미처 빠져나오지 못하여 잔존된 것이다.In the above formula, SO3 and As2O5 are oxygen supply components present in the glass. SO3 remains as it is absorbed from the combustion gas during melting of the glass and does not escape from the molten glass of various base materials used as the glass material.
본 발명에서는 이를 사용하여 균질한 발포유리를 얻을 수 있게 된다.In the present invention, it can be used to obtain a homogeneous foam glass.
즉, 폐기공을 형성하는 발포성 유리의 통상의 제조방법에 있어서;That is, in the usual manufacturing method of foamable glass which forms a waste hole;
상기 발포재를 다공성의 실리카겔 세라믹입자로 하여 내열성 거푸집에 유리모재와 혼합하여 터널킬른 내지 셔틀킬른을 이용하여 980℃∼1170℃ 에서 소성하여 발포성형하는 것을 특징으로 하는 것이다.The foamed material is made of porous silica gel ceramic particles, mixed with a glass base material in a heat-resistant formwork, and then fired at 980 ° C to 1170 ° C using tunnel kilns or shuttle kilns, followed by foam molding.
상기하는 방법으로 제조된 발포유리의 예시적인 성형모습이 도 2 에 도시되는 것으로서 균질한 기공의 발포유리가 되었음을 알 수 있다.It can be seen that an exemplary molding of the foamed glass produced by the above method is shown in FIG. 2, resulting in a homogeneous foamed glass.
이렇게 얻어진 발포유리의 물성을 ASTM C552-91에 의해 물성을 측정한 결과, 밀도 225kg/m3, 압축강도 700kPa, 곡강도 500kPa, 흡수율 0.01%, 수증기투과성 0.003g/h·mmHg·m 의 우수한 물성을 얻었다.The physical properties of the thus obtained foam glass were measured by ASTM C552-91. As a result, excellent physical properties of density 225 kg / m3, compressive strength 700 kPa, bending strength 500 kPa, water absorption 0.01%, and water vapor permeability 0.003 g / hmmHg · m were obtained. .
도 2 는 본 발명의 발포성 유리의 제조방법에 의하여 제조된 발포성유리의 낟알 상태로 성형된 예시적인 제품사진으로서 둥글고 균질한 기공의 발포성 유리가 성형됨을 도시하고, 도 3 은 블록형상으로 성형된 것을 도시하며,Figure 2 is an exemplary product photograph formed in the grain state of the foamed glass produced by the manufacturing method of the foamed glass of the present invention shows that the foamed glass of round and homogeneous pores are molded, Figure 3 is molded in a block shape City,
도 4 는 발포성유리의 단면을 도시하는 저배율의 현미경사진으로서 그 내부에 무수한 폐쇄된 미세한 공극에 극세 기공을 이루고 있음을 보여주며 이는 유리조성자체가 발포유리 제조에 알맞게 되어있기 때문에 작은 제조조건 변화에는 영향을 받지 않는다는 의미로서 양산시 대단히 중요한 요소가 된다.Figure 4 is a low-magnification micrograph showing the cross section of the foamed glass, showing that the micropores are formed in a myriad of closed fine pores therein, because the glass composition itself is suitable for the production of foamed glass, It is not affected and becomes a very important factor in mass production.
또한, 상기 실리카겔 성형시의 투입되는 산, 염기 등의 도핑(doping)재에 따라 상기 실리카겔에 내부세공표면적과 외부표면적의 비를 조절하고, 그 건조도에 따라서 발포도를 상이하게 조절할 수 있게 된다.In addition, it is possible to adjust the ratio of the inner pore surface area and the outer surface area to the silica gel according to the doping material such as acid, base, etc. introduced during the molding of the silica gel, and the foaming degree can be adjusted differently according to the drying degree. .
상기하는 방법으로 제조되는 발포성 유리는 98 % 이상의 순수규사로 이루어 짐으로서 공해성이 극히 미미하고 입자 내부에 무수한 폐쇄된 미세한 공극을 가짐으로서 단열성이 우수하고 실리카 중공체 내부에 내부세공표면적이 미세한 기공으로 이루어지고 각각의 기공은 진공을 형성하고 있기 때문에 단열성이 대단히 높은 장점을 가짐으로서, 반도체 설비장치, 철구조건축물의 표면 마감. 석유화학공정, 액화가스탱크의 바닥면, 냉동창고, 선박 등의 단열, 보온, 보냉재 및 내부식재로서 최적의 물성을 제공한다.The foamed glass produced by the above-mentioned method is made of pure silica of more than 98%, has very low pollution, and has numerous closed fine pores inside the particles, which is excellent in heat insulation and fine pores with an internal pore surface area inside the hollow silica. Since each pore forms a vacuum, it has the advantage of very high thermal insulation, so that the surface finish of the semiconductor equipment, steel structure building. It provides optimum physical properties as thermal insulation, heat insulation, cold insulation and internal plant material in petrochemical process, bottom of liquefied gas tank, refrigerated warehouse and ship.
이상과 같은 본 발명의 발포성 유리의 제조방법은; 발포재로서 실리카겔을 사용하고 최적의 성형방법과 조건을 제시함으로서 균질하고도 양호한 단열성 등을 가지는 우수한 물성의 발포유리를 얻을 수 있는 유용성을 가진다.The method for producing the expandable glass of the present invention as described above; By using silica gel as the foaming material and suggesting the optimum molding method and conditions, it is useful to obtain foamed glass having excellent physical properties with homogeneous and good thermal insulation.
Claims (3)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000026061A KR20000050105A (en) | 2000-05-16 | 2000-05-16 | Method of producing foam glass |
KR10-2001-0016235A KR100430437B1 (en) | 2000-05-16 | 2001-03-28 | Method of producing foam glass for a fireproof insulating material |
DE10196206T DE10196206T1 (en) | 2000-05-16 | 2001-04-10 | Process for the production of foam glass for refractory thermal insulation material |
AU48896/01A AU4889601A (en) | 2000-05-16 | 2001-04-10 | Method of producing foam glass for refractory thermal insulation material |
US10/276,249 US20030122274A1 (en) | 2000-05-16 | 2001-04-10 | Method of producing foam glass for refractory thermal insulation material |
PCT/KR2001/000602 WO2001087783A1 (en) | 2000-05-16 | 2001-04-10 | Method of producing foam glass for refractory thermal insulation material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000026061A KR20000050105A (en) | 2000-05-16 | 2000-05-16 | Method of producing foam glass |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20000050105A true KR20000050105A (en) | 2000-08-05 |
Family
ID=19668714
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000026061A Pending KR20000050105A (en) | 2000-05-16 | 2000-05-16 | Method of producing foam glass |
KR10-2001-0016235A Expired - Fee Related KR100430437B1 (en) | 2000-05-16 | 2001-03-28 | Method of producing foam glass for a fireproof insulating material |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0016235A Expired - Fee Related KR100430437B1 (en) | 2000-05-16 | 2001-03-28 | Method of producing foam glass for a fireproof insulating material |
Country Status (1)
Country | Link |
---|---|
KR (2) | KR20000050105A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102887623A (en) * | 2012-10-30 | 2013-01-23 | 江苏正禾新型墙体材料有限公司 | Preparation method of color foam glass |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226835A (en) * | 1988-07-15 | 1990-01-29 | Seiko Epson Corp | Method for manufacturing porous glass |
JPH0768864B2 (en) * | 1992-06-05 | 1995-07-26 | 株式会社イセキ開発工機 | Shield device |
KR950006207A (en) * | 1993-08-24 | 1995-03-20 | 전성원 | Cylinder Head Cooling System |
JPH1121139A (en) * | 1997-06-30 | 1999-01-26 | Toshiba Ceramics Co Ltd | Production of foamed quartz glass |
KR19990008535A (en) * | 1997-07-02 | 1999-02-05 | 송은용 | Laminated foam glass |
KR100246755B1 (en) * | 1997-10-20 | 2000-03-15 | 이철태 | Process for manufacturing foaming glass by hydrolyzing waste glass |
KR100262623B1 (en) * | 1998-03-18 | 2001-01-15 | 이한용 | Glass composition for producing heat insulating foam glass and method for preparing foam glass using the glass composition |
-
2000
- 2000-05-16 KR KR1020000026061A patent/KR20000050105A/en active Pending
-
2001
- 2001-03-28 KR KR10-2001-0016235A patent/KR100430437B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100430437B1 (en) | 2004-05-10 |
KR20010106171A (en) | 2001-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100306866B1 (en) | Thermally insulating building material | |
KR101955307B1 (en) | Preparation method of hydrophobic silica aerogel and hydrophobic silica aerogel produced by the same | |
CN107244882B (en) | A kind of aerosil felt and preparation method thereof | |
CN107759151A (en) | A kind of expanded perlite SiO2The preparation method of the light heat-insulation wall material of aeroge | |
KR101129375B1 (en) | Porous Ceramic Prepared From Sodium Silicate and Aerogel and A Method for Preparing Thereof | |
Li et al. | Fabrication of adiabatic foam at low temperature with sodium silicate as raw material | |
US3419495A (en) | Expanded silica insulation material | |
KR20030056840A (en) | borosilicate cellular glass and manufacture method of cellular glass using it | |
CN100368346C (en) | Expanded silicate building material and method for producing same | |
RU2154618C2 (en) | Method of manufacturing heat-isolation material based on siliceous rock | |
RU2363685C1 (en) | Method for production of construction material | |
KR20000050105A (en) | Method of producing foam glass | |
CN109305793A (en) | A kind of turpentine thermal insulation material and preparation method thereof | |
JPS59182223A (en) | Hollow silica sphere and its preparation | |
KR100603031B1 (en) | Inorganic spontaneous heat generation lightweight foam composition for building and manufacturing method | |
KR100536854B1 (en) | Composition for foam glass and method for preparing foam glass precusor using them | |
SU1724638A1 (en) | Composition for producing heat insulating refractory material | |
US20030122274A1 (en) | Method of producing foam glass for refractory thermal insulation material | |
KR100479970B1 (en) | Inorganic Insulation Including Inorganic Foam Material and Method of Manufacturing Thereof | |
CN107417073A (en) | A kind of preparation method for building sound insulation high porosity foam glass | |
KR101282988B1 (en) | Manufacuring method of foamed glass have nano structure | |
KR19990076196A (en) | Foamed glass composition for thermal insulation and its manufacturing method | |
KR100748622B1 (en) | Manufacturing method of lightweight porous insulation board using water glass | |
CN114524683B (en) | Multifunctional thin heat-insulating material for building outer wall and preparation method thereof | |
KR20140117755A (en) | Method for preparing inorganic hollow body powder from water glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20000516 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
PC1204 | Withdrawal of earlier application forming a basis of a priority claim |
Patent event date: 20000516 Comment text: Patent Application Patent event code: PC12041R01I |