[go: up one dir, main page]

KR19990019009A - Manufacturing method of polyamide reverse osmosis membrane - Google Patents

Manufacturing method of polyamide reverse osmosis membrane Download PDF

Info

Publication number
KR19990019009A
KR19990019009A KR1019970042305A KR19970042305A KR19990019009A KR 19990019009 A KR19990019009 A KR 19990019009A KR 1019970042305 A KR1019970042305 A KR 1019970042305A KR 19970042305 A KR19970042305 A KR 19970042305A KR 19990019009 A KR19990019009 A KR 19990019009A
Authority
KR
South Korea
Prior art keywords
reverse osmosis
solution
osmosis membrane
polyamide
membrane
Prior art date
Application number
KR1019970042305A
Other languages
Korean (ko)
Other versions
KR100238700B1 (en
Inventor
김종언
임대우
김순식
구자영
Original Assignee
한형수
주식회사 새한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한형수, 주식회사 새한 filed Critical 한형수
Priority to KR1019970042305A priority Critical patent/KR100238700B1/en
Publication of KR19990019009A publication Critical patent/KR19990019009A/en
Application granted granted Critical
Publication of KR100238700B1 publication Critical patent/KR100238700B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21826Acids, e.g. acetic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21834Amines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 용질의 농축 또는 중금속 흡착에 의한 정수 기능을 지닌 폴리아미드계 역삼투분리막의 제조에 관한 것으로서, 특히 기존의 분리막에 비해 고유량의 성능을 나타내도록 하는 것을 그 목적으로 한 것이다.The present invention relates to the production of polyamide-based reverse osmosis membranes having a water purification function by solute concentration or heavy metal adsorption, and in particular, its purpose is to show high-performance performance compared to conventional separators.

본 발명은 상기목적을 달성하는 일 방법으로 미세다공 기질표면에 다관능성 아민용액을 도포시키고 표면을 건조시킨 후 다관능성 산할로겐화합물 용액을 계면중합시켜 폴리아마드계 역삼투 분리막 제조시, 다관능성 아민용액에 첨가제로 비스피롤리돈 카르복실산과 3급 아민을 첨가하는 것을 특징으로 한 것으로서, 이와 같은 제조법을 사용하는 경우 염배제율과 같은 성능을 기존과 동일하게 유지하면서도 고유량을 나타내는 분리막을 얻을 수 있다.The present invention is a method for achieving the above object by applying a polyfunctional amine solution to the surface of the microporous substrate and drying the surface, and then interfacial polymerization of the polyfunctional acid halide compound solution to prepare a polyamide reverse osmosis membrane, polyfunctional amine It is characterized by adding bispyrrolidone carboxylic acid and tertiary amine as an additive to the solution. When using this method, a membrane showing a high flow rate can be obtained while maintaining the same performance as the salt excretion rate. Can be.

Description

폴리아미드계 역삼투 분리막의 제조방법Manufacturing method of polyamide reverse osmosis membrane

본 발명은 폴리아미드계 역삼투 복합막의 제조에 관한 것으로서, 특히 기존의 역삼투 분리막에 비해 고유량의 성능을 지닌 역삼투 분리막 제조하는 방법에 관한 것이다.The present invention relates to the production of a polyamide reverse osmosis composite membrane, and more particularly to a method for producing a reverse osmosis membrane having a high flow rate performance compared to the conventional reverse osmosis membrane.

역삼투 공정은 유해물질의 배출이 전혀 없으며 에너지 면에서도 경제적인 공정으로 역삼투 공정의 가장 핵심 부분인 역삼투막은 반투과막으로 염들이 녹아있는 수용액의 한쪽 방향에서 가압을 할 경우 용액과 용질의 분리가 일정 방향으로 일어난다는 원리를 이용한 것으로서 고압에도 견디고 내구성, 내화학성이 뛰어난 재질의 고기능 분리막이다.The reverse osmosis process has no emission of harmful substances and is economical in terms of energy. The reverse osmosis membrane, which is the core part of the reverse osmosis process, is a semi-permeable membrane and is separated from the solution and the solute when pressurized in one direction of an aqueous solution in which salts are dissolved. Is a high-performance separator made of a material that withstands high pressure and has excellent durability and chemical resistance.

최초의 역삼투막으로 1960년대 초에 로브(Loeb)와 소리라잔(Sourirajan)에 의해 비대칭형 셀룰로우즈디아세테이트막이 개발되었다. 셀룰로우즈디아세테이트막은 가격이 저렴하다는 장점이 있으나 미생물에 대해 취약하고 강염기하에서 쉽게 가수분해되며 사용온도와 pH의 범위가 좁다는 단점이 있어 셀룰로우즈의 개질과 여러 셀룰로우즈의 합금을 통해 사용되고 있지만, 이들 단점을 완전히 극복할 수는 없었다. 그 후 셀룰로우즈막의 단점을 보완하기 위해 폴리아미드계, 폴리우레탄계, 방향족 폴리술폰계, 방향족 폴리아미드계 등을 대상으로 연구가 활발히 진행되었다.As the first reverse osmosis membrane, an asymmetric cellulose diacetate membrane was developed by Loeb and Sourirajan in the early 1960s. Cellulose diacetate membranes have the advantages of low cost, but they are vulnerable to microorganisms, easily hydrolyzed under strong bases, and have a narrow range of temperature and pH, resulting in the modification of cellulose and alloys of various celluloses. Although used, these disadvantages could not be completely overcome. Since then, studies have been actively conducted on polyamides, polyurethanes, aromatic polysulfones, aromatic polyamides, and the like to compensate for the disadvantages of the cellulose membrane.

현재 이들 중에서 방향족 폴리술폰을 다공성 지지층으로 하고 폴리아미드를 활성층으로 하는 복합막이 개발되어 상업화가 이루어지고 있다. 즉, 복합막은 기계적 강도를 유지하기 위한 지지층과 선택적 투과성을 갖는 활성층으로 이루어져 있는데, 대부분의 역삼투 복합막은 미국특허 4,277,344에 개시되어 있는 바와 같이 계면 중합법에 의해 제조되고 있다. 계면 중합법에 의한 복합막의 시초는 North Star Research Institute의 NS-100으로 다공성 폴리술폰 지지체에 폴리에틸렌아민 수용액과 핵산중의 톨루엔 디아이소시아네이트를 반응시켜 제조하였다. 그 후에 에피아민과 프탈로일 클로라이드의 반응에 의한 PA-300이 개발되었으며, 이어서, 미국특허 4,277,344의 방법대로 meta-페닐렌디아민과 트리메조일 클로라이드를 계면중합시킨 FT-30이 상품화 되었다.Currently, composite membranes having aromatic polysulfone as a porous support layer and polyamide as an active layer have been developed and commercialized. That is, the composite membrane is composed of a support layer for maintaining mechanical strength and an active layer having selective permeability. Most reverse osmosis composite membranes are prepared by interfacial polymerization as disclosed in US Pat. No. 4,277,344. The initial membrane of the composite membrane by the interfacial polymerization method was prepared by reacting toluene diisocyanate in a nucleic acid with aqueous polyethyleneamine solution to a porous polysulfone support with NS-100 of North Star Research Institute. Subsequently, PA-300 was developed by the reaction of epiamine and phthaloyl chloride, followed by commercialization of FT-30 which interfacially polymerized meta-phenylenediamine and trimezoyl chloride according to the method of US Pat. No. 4,277,344.

역삼투 분리막의 물성평가인자는 염배제율(SALT REJECTION : 용매로부터 용질의 분리능 정도를 나타내는 수치)과 유량(FLUX : 일정시간동안 일정 압력에서 분리막을 통하여 나오는 용매의 유량)이 있다. 박막 복합 재료의 역삼투 분리막으로는 계면 중합에서 얻어지는 폴리아미드가 일반적으로 사용되며, 수용성 아민에서 미세 고분자 지지층을 잠기게 한 후 얻어진 층을 다시 유기층의 아실클로라이드가 녹은 용액층에 잠기게 함으로서 계면중합을 실시하는 메카니즘이 사용된다. 이때 유기용매는 폴리아미드화 반응에 영향을 주지 않으며 적당량의 기질을 녹일 수 있는 용매가 선택된다. 지금까지 가장 널리 사용되어진 용매는 프레온(1,1,2-TRICHLOROTRIFLUOROETHANE)으로 일반적으로 CFC-113으로 불리어지는 용매이다. 그러나 값이 비싸고 환경에 악영향을 끼쳐 그 사용에 제한을 받는다. 한편 새로운 대체 용매로 n-헥산이 주로 사용되어지나 n-헥산의 경우 인체에 유해하고 폭발성이 있어 취급이 불편한 문제가 있다. 이로인해 대체 용매에 관한 연구가 최근 활발히 진행되었는데, 예를들어 미국특허 4,005,012 , 미국특허 4,259,813 , 미국특허 4,360,434 , 미국특허 4,606,943 , 미국특허 4,737,325 , 미국특허 4,282,708 , 미국특허 5,258,203등은 1,1,2-트리클로로트리플로오르에탄 (1,1,2- TRICHLOROTRIFLUOROETHANE)을 사용하지 않고 지방족 탄화수소 용매로 대체하여 분리막을 제조하는 방법을 제시하였으나, 헥산 같은 지방족 용매들의 사용은 유량을 감소시키는 결과를 초래하여 분리막 연구의 주요 과제가 되어 왔다. 따라서 좋은 염배제율과 충분한 유량을 얻기위한 연구들이 진행되어 왔는데, 그 예로서는 물성을 향상시키기 위해 첨가제를 가하는 방법(미국특허 4,761,234 , 미국특허 4,643,829 , 미국특허 5,019,264 , 미국특허 5,160,619 , 미국특허 5,271,843 , 미국특허 5,336,409), 산과 염기 혹은 염소에 의한 후처리를 통한 유량증가 방법(미국특허 4,938,872 , 미국특허 4,927,540) 등이 활발하게 발표되었다. 이전까지는 유량을 증가시키기 위해서는 폴리아미드층의 두께를 최소의 한계치까지 얇게 제조하는 것이 목적이었으나, 현재 AFM, SEM과 분석기기의 발달로 인해 계면중합시 생성되는 폴리아미드층 표면에 존재하는 특유의 리쯔엔드발리(RIDGE VALLEY)구조의 확인에 따라 러프니스(roughness)가 크면 클수록 표면적이 늘어나 유량이 증가하게 되고 반대로 표면층의 러프니스가 감소하면 표면적이 줄어들어 유량이 감소하게 되는 현상을 발견하면서 이에 대한 연구가 활발히 이루어지고 있다. 이러한 구조의 러프니스는 여러인자에 영향을 받는데, 그 예로서는, 계면중합시 단량체의 확산, 지지층의 소수성으로 인한 수용층의 습윤(WETTING)효과 등을 들 수 있다. 특히 습윤효과는 디핑(DIPPING) 시간을 단축시키므로 그 역할이 중요한데 주로 디핑 시간을 단축시키기 위해 계면활성제를 사용하고 있으나, 이는 계면중합시 불순물로 작용하여 막의 물성을 저하하는 요인으로 작용한다.Factors for evaluating the properties of reverse osmosis membranes are salt rejection (SALT REJECTION) and flow rate (FLUX: solvent flow through the membrane at constant pressure for a certain time). As the reverse osmosis membrane of the thin film composite material, a polyamide obtained by interfacial polymerization is generally used, and the surface polymerization is performed by immersing the fine polymer support layer in a water-soluble amine and then immersing the obtained layer in the solution layer in which the acyl chloride of the organic layer is dissolved. The mechanism for implementing this is used. At this time, the organic solvent does not affect the polyamide reaction, and a solvent capable of dissolving an appropriate amount of substrate is selected. The most widely used solvent so far is Freon (1,1,2-TRICHLOROTRIFLUOROETHANE), a solvent commonly referred to as CFC-113. However, they are expensive and adversely affect the environment, limiting their use. Meanwhile, n-hexane is mainly used as a new alternative solvent, but n-hexane has a problem that it is inconvenient to handle because it is harmful to the human body and explosive. As a result, studies on alternative solvents have been actively conducted, for example, US Patent 4,005,012, US Patent 4,259,813, US Patent 4,360,434, US Patent 4,606,943, US Patent 4,737,325, US Patent 4,282,708, US Patent 5,258,203, and the like. Although a method of preparing a separator by replacing with an aliphatic hydrocarbon solvent without using trichlorotrifluoroethane (1,1,2-TRIICHLOROTRIFLUOROETHANE) has been proposed, the use of an aliphatic solvent such as hexane results in a decrease in flow rate. Membrane research has been a major challenge. Therefore, studies have been conducted to obtain a good salt rejection rate and a sufficient flow rate, for example, a method of adding an additive to improve physical properties (US Patent 4,761,234, US Patent 4,643,829, US Patent 5,019,264, US Patent 5,160,619, US Patent 5,271,843, USA Patent 5,336, 409, a method of increasing the flow rate through post-treatment with acid and base or chlorine (US Patent 4,938,872, US Patent 4,927,540), and the like has been actively published. Previously, in order to increase the flow rate, the purpose was to make the thickness of the polyamide layer thin to the minimum limit. However, due to the development of AFM, SEM, and analyzer, the unique Ritz existing on the surface of the polyamide layer produced during interfacial polymerization According to the confirmation of RIDGE VALLEY structure, the larger the roughness, the more the surface area increases and the flow rate increases. On the contrary, when the roughness of the surface layer decreases, the surface area decreases and the flow rate decreases. Is actively being done. Roughness of such a structure is affected by several factors, and examples thereof include diffusion of monomers during interfacial polymerization and a wetting effect of the water-receiving layer due to hydrophobicity of the support layer. In particular, the wetting effect is important because it shortens the dipping time, but mainly used to shorten the dipping time, but the surfactant is used as an impurity during the interfacial polymerization to reduce the physical properties of the film.

본 발명은 지방족 탄화수소 용매를 사용하여 고유량 박막 역삼투 복합막 제조시 아민혼합용액에 첨가제를 사용하여 유량을 증가시키는 것을 목적으로 하여 안출된 것이다.The present invention is devised for the purpose of increasing the flow rate by using an additive in the amine mixture solution when preparing a high flow rate reverse osmosis composite membrane using an aliphatic hydrocarbon solvent.

본 발명은 구체적으로 미세다공 기질표면에 다관능성아민용액을 도포시키고 표면을 건조시킨 후 다관능성 산할로겐화합물 용액과 계면중합시켜서 폴리아미드계 역삼투 분리막을 제조하는 공지의 공정에서, 다관능성아민용액에 첨가제로 탄소수가 1-5의 비스피롤리돈카르복실산과 3급아민을 아민혼합용액 총중량의 1-10중량% 및 0.05-5중량% 함유하도록 첨가하는 것을 특징으로 한 폴리아미드계 역삼투 분리막의 제조방법에 관한 것이다.Specifically, the present invention is a multifunctional amine solution in a known process for preparing a polyamide reverse osmosis membrane by applying a polyfunctional amine solution to the surface of a microporous substrate, drying the surface, and then interfacially polymerizing the polyfunctional acid halide compound solution. Polyamide-based reverse osmosis membrane, characterized in that the addition of 1 to 5% by weight of bispyrrolidonecarboxylic acid and tertiary amine having 1-5% by weight and 0.05-5% by weight of the total weight of the amine mixture solution as an additive to It relates to a manufacturing method of.

이하에서 본 발명은 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

일반적으로 역삼투 분리막은 고분자 기질에 안착된 수용액층의 첫번째 성분과 유기용매의 두번째 성분의 계면 중합으로 제조되어 지는데, 본 발명에서는 수용액층으로 아민혼합용액이 사용되며 유기용매로 지방족 탄화 수소를 사용한다.In general, the reverse osmosis membrane is prepared by the interfacial polymerization of the first component of the aqueous solution layer deposited on the polymer substrate and the second component of the organic solvent. In the present invention, an amine mixture solution is used as the aqueous solution layer and aliphatic hydrocarbon is used as the organic solvent. do.

본 발명에서 분리막 제조시 폴리에스터 부직포상에 폴리술폰을 캐스팅한 후 이 지지층을 0.1∼10중량%의 아민 수용액(pH5∼9)에 30초∼10분간 침지한 후 압착기로 수분을 충분히 제거하는 단계를 거치는데, 이 때 사용되는 디아민의 수용액층은 주로 메타페닐렌디아민, 파라페닐렌디아민이 사용되며, 이때 아민용액에는 성능향상을 위하여 첨가제로 산과 그 짝염기를 넣어주는 것이 보통으로 본 발명에는 그 첨가제로 비스옥소피롤리딘카르복실산과 그 염기로서 3급 아민류를 사용하는 것을 특징으로 한다. 이때 그 사용량은 산이 1-10중량% 그 짝염기가 0.005-5중량% 함유되도록 하는 것이 좋은데, 너무 적게 첨가하면 그 효과가 미미하고 과량 첨가하면 오히려 물성이 나쁘게 되는 문제가 있다.Casting polysulfone on a polyester nonwoven fabric in the preparation of the separator in the present invention, and then immersing the support layer in 0.1 to 10% by weight of an amine aqueous solution (pH 5 to 9) for 30 seconds to 10 minutes and then sufficiently removing the moisture with a compress. In this case, the aqueous solution layer of the diamine used at this time is mainly metaphenylenediamine, paraphenylenediamine is used, in which the acid and its base is added to the amine solution as an additive to improve the performance of the diamine. Bisoxopyrrolidinecarboxylic acid as an additive and tertiary amines are used as the base. At this time, the amount of the acid is preferably 1 to 10% by weight of the base is contained 0.005-5% by weight, but if too little is added, the effect is insignificant, if excessively added, there is a problem that the physical properties worse.

본 발명에 적당한 산할로겐화합물로는 트리메조일클로라이드, 이소프탈로일클로라이드 등이 있으며, 주로 트리메조일클로라이드를 사용한다. 그 외 1,3,5-시클로헥산트리카보닐클로라이드, 1,2,3,4-시클로헥산트리카보닐클로라이드 등이 쉽게 별다른 제약없이 사용되어질 수 있다. 또한 이 때 사용되는 지방족 탄화수소는 상기의 아실할라이드를 0.1∼1% 이상 녹일 수 있어야하고 계면 중합 반응에 참가하지 않아야 하고 아실할라이드와 화합적 결합이 없어야 하며 다공성 지지층에 손상을 입혀서는 안되는 조건을 지녀야 하는데, 본 발명에서는 탄소수 5-12개인 n-알칸과 탄소수 8개인 포화 및 불포화 탄화수소의 구조이성질체 또는 탄소수 5-7개의 고리탄화수소가 사용될 수 있다.Suitable acid halide compounds for the present invention include trimezoyl chloride, isophthaloyl chloride and the like, and mainly trimezoyl chloride is used. Other 1,3,5-cyclohexanetricarbonyl chloride, 1,2,3,4-cyclohexanetricarbonyl chloride and the like can be easily used without any restriction. In addition, the aliphatic hydrocarbons used at this time must be capable of dissolving the acyl halide above 0.1-1% or more, must not participate in interfacial polymerization reactions, be free of acryl halide-compatible bonds, and must not damage the porous support layer. In the present invention, structural isomers of n-alkanes having 5-12 carbon atoms and saturated and unsaturated hydrocarbons having 8 carbon atoms or cyclic hydrocarbons having 5-7 carbon atoms may be used.

아실할라이드가 0.01∼1중량% 녹아있는 비극성 지방족 유기용액에 아민 수용액층이 침지되어 있는 막을 1∼10분간 침지 시킨 후 꺼내어 상온에서 말린 후 용매가 어느정도 증발 되었다고 여겨지면 60∼120℃의 온도 조건에서 30초∼10분간 완전건조 시키고, 이막을 다시 상온으로 식힌 후 40∼90℃의 탄산 나트륨 수용액에서 30분∼4시간 동안 세정한 후 순수에 넣어서 보관하는 후처리 공정을 거쳐 역삼투 분리막의 제조가 완료되는 것이다.After immersing the membrane in which the amine aqueous solution layer is immersed in a nonpolar aliphatic organic solution containing 0.01 to 1% by weight of acyl halide for 1 to 10 minutes, taking it out and drying at room temperature, the solvent is evaporated to a certain extent. After complete drying for 30 seconds to 10 minutes, the membrane was cooled to room temperature again, washed in an aqueous sodium carbonate solution at 40 to 90 ° C. for 30 minutes to 4 hours, and then prepared in a reverse osmosis membrane through a post-treatment step of storing in pure water. It's done.

이하에서 실시예 및 비교예를 들어 본 발명을 좀 더 구체적으로 설명한다. 이때 제조된 역삼투 분리막의 성능측정의 유량은 농도가 2,000ppm인 염화나트륨 수용액을 25℃,225psig에서 측정하였고, 염배제율은 다음의 식에 의하여 계산하였다. 여기에서 R은 염배제율, Cf공급수중의 용질의 농도이며 Cp는 투과수중의 용질 농도이다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. At this time, the flow rate of the performance measurement of the prepared reverse osmosis membrane was measured at 25 ℃, 225 psig sodium chloride aqueous solution having a concentration of 2,000ppm, the salt excretion rate was calculated by the following equation. Where R is the salt rejection rate, the concentration of the solute in the C f feed, and C p is the concentration of the solute in the permeate.

(실시예 1-4)(Example 1-4)

폴리에스터 부직포상에 N-메칠-2-피롤리돈과 폴리술폰 18중량%, 폴리피롤리돈 10중량% 용액을 두께가 약 125±10㎛로 캐스트하고, 즉시 이것을 상온의 증류수욕중에 침지하여 고형화시킨 후 부직포 보강 폴리술폰 미세다공성 기질을 충분히 수세하여 기질중의 용매와 물을 치환한 후 순수에 보관하였다.A solution of 18% by weight of N-methyl-2-pyrrolidone, polysulfone, and 10% by weight of polypyrrolidone on a polyester nonwoven fabric was cast to a thickness of about 125 ± 10 μm and immediately immersed in a distilled water bath at room temperature to solidify. Subsequently, the nonwoven fabric-reinforced polysulfone microporous substrate was sufficiently washed with water to replace the solvent and water in the substrate, and then stored in pure water.

이렇게 얻은 폴리술폰 미세다공성 기질을 다음 표1에 나타난 조성과 같은 아민 혼합용액에 40초간 침지시킨후 0.5중량% 트리메조일 클로라이드 n-헥산 용액에 3분간 함침시킨 후 꺼내어 95℃에서 5분간 건조하고 60℃ 약알카리 수용액으로 충분히 수세한 후 증류수로 다시 수세하였다.The polysulfone microporous substrate thus obtained was immersed in an amine mixture solution as shown in Table 1 for 40 seconds, impregnated with 0.5% by weight of trimezoyl chloride n-hexane solution for 3 minutes, then taken out and dried at 95 ° C for 5 minutes. After washing sufficiently with a weak alkaline aqueous solution 60 ℃ washed with distilled water again.

상기 실시예에서 얻어진 역삼투 분리막의 성능을 측정하여 하기 표1에 나타내었다.The performance of the reverse osmosis membrane obtained in the above example was measured and shown in Table 1 below.

-MPD : meta-phenylene diamine-MPD: meta-phenylene diamine

-PPD : para-phenylene diamine-PPD: para-phenylene diamine

-EBOP : 1,1-ethylene-bis-(5-oxo-pyrrolidine-3-carboxylic acid)-EBOP: 1,1-ethylene-bis- (5-oxo-pyrrolidine-3-carboxylic acid)

-TEA : triethylamine-TEA: triethylamine

(비교예 1-4)(Comparative Example 1-4)

폴리에스터 부직포상에 N-메칠-2-피롤리돈과 폴리술폰 18중량%, 폴리피롤리돈 10중량% 용액을 두께가 125±10㎛로 캐스트하고, 즉시 이것을 상온의 증류수 욕중에침지하여 고형화 시킨 후 부직포 보강 폴리술폰 미세다공성 기질을 충분히 수세하여 기질중의 용매와 물을 치환한 후 순수에 보관 하였다.After casting 18% by weight of N-methyl-2-pyrrolidone, polysulfone, and 10% by weight polypyrrolidone solution on a polyester nonwoven fabric to a thickness of 125 ± 10 μm, immediately solidify it by immersion in a distilled water bath at room temperature. The nonwoven fabric-reinforced polysulfone microporous substrate was washed with water sufficiently to replace the solvent and water in the substrate and then stored in pure water.

이렇게 얻은 폴리술폰 미세다공성 기질을 다음 표2에 나타난 조성과 같은 아민 혼합 용액에 40초간 침지시킨 후 0.5중량% 트리메조일 클로라이드 n-헥산 용액에 3분간 함친시킨 후 꺼내어 95℃에서 5분간 건조하고 60℃ 약알카리 수용액으로 충분히 수세한 후 증류수로 다시 수세하였다.The polysulfone microporous substrate thus obtained was immersed in an amine mixed solution as shown in the following Table 2 for 40 seconds, and then impregnated with 0.5 wt% trimezoyl chloride n-hexane solution for 3 minutes, then taken out and dried at 95 ° C. for 5 minutes. After washing sufficiently with a weak alkaline aqueous solution 60 ℃ washed with distilled water again.

상기 비교예에서 얻어진 역삼투 분리막의 성능을 측정하여 하기 표 2에 나타내었다.The performance of the reverse osmosis membrane obtained in the comparative example was measured and shown in Table 2 below.

상기 실시예 및 비교예에서도 확인되듯이 본 발명에 따라 제조된 역삼투 분리막은 기존 분리막에 비해 염배제율을 동일 수준으로 유지하면서 고유량의 특성을 지닌다.As can be seen from the above examples and comparative examples, the reverse osmosis membrane prepared according to the present invention has a high flow rate characteristic while maintaining the salt rejection rate at the same level as that of the conventional membrane.

Claims (3)

미세다공 기질표면에 다관능성 아민용액을 도포시키고 표면을 건조시킨 후 다관능성 산할로겐화합물 용액을 계면중합시켜서 폴리아미드계 역삼투 분리막 제조시, 다관능성 아민용액에 첨가제로 탄소수가 1∼5의 비스피롤리돈카르복실산을 함량이 1∼10중량%, 3급 아민을 함량이 0.05∼5중량% 되도록 첨가하는 것을 특징으로 하는 폴리아미드계 역삼투 분리막의 제조방법.When polyfunctional amine solution is coated on the surface of microporous substrate, the surface is dried, and polyfunctional acid halide compound solution is interfacially polymerized to prepare polyamide-based reverse osmosis membrane. A method for producing a polyamide reverse osmosis membrane, comprising adding spirolidoncarboxylic acid in an amount of 1 to 10% by weight and tertiary amine in an amount of 0.05 to 5% by weight. 제 1 항에 있어서, 다관능성아민은 메타페닐렌디아민 혹은 파라페닐렌 디아민임을 특징으로 하는 폴리아미드계 역삼투 분리막의 제조방법.The method of manufacturing a polyamide-based reverse osmosis membrane according to claim 1, wherein the polyfunctional amine is metaphenylenediamine or paraphenylene diamine. 제 1 항에 있어서, 산할로겐화합물은 이소프탈로일클로라이드, 테레프탈로일클로라이드 또는 트리메조일클로라이드 중에서 선택된 화합물임을 특징으로 하는 역삼투 분리막의 제조방법.The method of claim 1, wherein the acid halide compound is a compound selected from isophthaloyl chloride, terephthaloyl chloride or trimezoyl chloride.
KR1019970042305A 1997-08-28 1997-08-28 Manufacturing method of polyamide reverse osmosis membrane KR100238700B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970042305A KR100238700B1 (en) 1997-08-28 1997-08-28 Manufacturing method of polyamide reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970042305A KR100238700B1 (en) 1997-08-28 1997-08-28 Manufacturing method of polyamide reverse osmosis membrane

Publications (2)

Publication Number Publication Date
KR19990019009A true KR19990019009A (en) 1999-03-15
KR100238700B1 KR100238700B1 (en) 2000-01-15

Family

ID=19519201

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970042305A KR100238700B1 (en) 1997-08-28 1997-08-28 Manufacturing method of polyamide reverse osmosis membrane

Country Status (1)

Country Link
KR (1) KR100238700B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813893B1 (en) * 2006-08-25 2008-03-18 주식회사 코오롱 Method of manufacturing reverse osmosis composite membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946983B1 (en) * 2015-09-08 2019-02-12 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813893B1 (en) * 2006-08-25 2008-03-18 주식회사 코오롱 Method of manufacturing reverse osmosis composite membrane

Also Published As

Publication number Publication date
KR100238700B1 (en) 2000-01-15

Similar Documents

Publication Publication Date Title
US4960517A (en) Treatment of composite polyamide membranes via substitution with amine reactive reagents
EP0085111B1 (en) Composite semipermeable membrane, process for its production, and method of its use
EP2576027B1 (en) Thin film composite membranes
KR19990019008A (en) Manufacturing method of high flow rate reverse osmosis membrane
US5015380A (en) Microporous support layer with interfacially polymerized copolyamide membrane thereon
US6833073B2 (en) Composite nanofiltration and reverse osmosis membranes and method for producing the same
US20150151255A1 (en) Composite polyamide membrane
JPH07102311B2 (en) Thin-film composite membrane manufacturing method
WO2011149571A1 (en) Polyamide membrane with coating comprising polyalkylene oxide and biguanide compounds
JP2017513703A (en) Composite polyamide membrane post-treated with nitrous acid
KR100733199B1 (en) Composite semipermeable membrane and process for producing the same
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
EP0432358A1 (en) Treated composite polyamide membranes to separate concentrated solute
US4960518A (en) Treatment of composite polyamide membranes with compatible oxidants
KR100211338B1 (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane
EP0308153B1 (en) P-xylylenediamide/diimide composite ro membranes
KR102101061B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
US4749488A (en) Multilayer reverse osmosis membrane in which one layer is poly-meta-phenylene tetrahydrofuran-2,3,4,5-tetracarboxamide
KR100238700B1 (en) Manufacturing method of polyamide reverse osmosis membrane
KR100632871B1 (en) Composite Semipermeable Membrane and Manufacturing Method Thereof
KR100506537B1 (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane
KR20120077997A (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
KR20070018529A (en) Method for preparing reverse osmosis membrane with boron removal function
KR102337164B1 (en) Excellent removing nitrate polyamide reverse osmosis membrane, Method of manufacturing the same and Membrane module comprising the same
KR100477587B1 (en) Polyamide Composite Membrane Manufacturing Method

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19970828

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19970828

Comment text: Request for Examination of Application

PG1501 Laying open of application
E801 Decision on dismissal of amendment
PE0801 Dismissal of amendment

Patent event code: PE08012E01D

Comment text: Decision on Dismissal of Amendment

Patent event date: 19990619

Patent event code: PE08011R01I

Comment text: Amendment to Specification, etc.

Patent event date: 19970910

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19990929

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19991015

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19991015

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20020828

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20030923

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20041001

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20041001

Start annual number: 6

End annual number: 6

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee