KR19990009587A - Recovery method of heavy metal ions (copper, nickel, cobalt) using deep sea manganese nodule as adsorbent - Google Patents
Recovery method of heavy metal ions (copper, nickel, cobalt) using deep sea manganese nodule as adsorbent Download PDFInfo
- Publication number
- KR19990009587A KR19990009587A KR1019970032030A KR19970032030A KR19990009587A KR 19990009587 A KR19990009587 A KR 19990009587A KR 1019970032030 A KR1019970032030 A KR 1019970032030A KR 19970032030 A KR19970032030 A KR 19970032030A KR 19990009587 A KR19990009587 A KR 19990009587A
- Authority
- KR
- South Korea
- Prior art keywords
- heavy metal
- metal ions
- adsorption
- manganese
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
망간단괴는 주로 철산화물(Goethite등), 망간산화물(Todorokite 등) 그리고 규산염광물로 구성되어 있고 구리, 니켈 그리고 코발트 등의 유가금속들은 이들 산화물중에 결합 또는 흡착되어 있으며 단일광물로써 존재하지 않는 것으로 알려져 있다.Manganese nodules are mainly composed of iron oxides (Goethite, etc.), manganese oxides (Todorokite, etc.), and silicate minerals. Valuable metals such as copper, nickel, and cobalt are bound or adsorbed among these oxides and are not known as single minerals. have.
가공율은 0.5-0.6 정도 그리고 비표면적은 100-200㎡/g 으로 매우 크며 중금속 흡착능력이 우수한 δ-MnO2주성분으로 되어 있어 중금속 흡착제로서 활용할 수 있다.The processing rate is about 0.5-0.6 and the specific surface area is 100-200㎡ / g, which is very large, and it is composed of δ-MnO 2 main component with excellent heavy metal adsorption ability.
한편 중금속 흡착제로서 사용한 망간단괴는 제련공정을 통하여 이들 금속들을 다시 회수 할 수 있다.On the other hand, manganese nodules used as heavy metal adsorbents can be recovered again through the smelting process.
본 발명은 중금속 이온을 함유하고 있는 폐액의 pH를 조절하고 여기에 일정량의 망간단괴 시료를 첨가한 후 일정시간이 경과한 후에 용액을 여과하여 여액과 흡착잔사를 고액분리하여 여액중에 중금속 이온이 나타나지 않을때까지 반복하여 흡착을 실시함으로서 중금속 이온을 모두 제거하고 흡착에 사용된 망간단괴로부터 제련공정을 통하여 금속이온을 회수 할 수 있는 방법을 특징으로 하고 있다.The present invention adjusts the pH of the waste liquid containing heavy metal ions, and after adding a certain amount of manganese nodules to the sample, after a certain period of time, the solution is filtered to separate the filtrate and the adsorption residue, and heavy metal ions appear in the filtrate. By repeating the adsorption until the heavy metal ions are removed, the metal ions can be recovered through the smelting process from the manganese nodules used for the adsorption.
중금속 이온들의 망간단괴 1g당 최대 흡착능력은 상온에서 pH를 4.5로 하여 24시간 반응시 구리 40.0mg, 니켈, 28.0mg 그리고 코발트가 36.0mg 이었으며 pH가 증가함에 따라 중금속 이온의 흡착량도 증가하였다.The maximum adsorption capacity of heavy metal ions per 1g of manganese nodules was 40.0mg of copper, 28.0mg of cobalt and 36.0mg of cobalt in 24 hours with pH of 4.5 at room temperature, and the adsorption of heavy metal ions increased with increasing pH.
또한 시료의 입도가 작을수록 흡착량이 증가하였고, 흡착상태가 평형조건에 도달하는 시간은 반응온도에 따라 별 차이가 없었으며 온도가 높을수록 중금속 이온들의 최대 흡착량은 증가하였다.In addition, the smaller the particle size of the sample, the higher the adsorption amount, and the time to reach the equilibrium condition was not different depending on the reaction temperature. The higher the temperature, the higher the maximum adsorption amount of the heavy metal ions.
본 발명에 의한 중금속 이온의 흡착방법은 폐액중의 중금속 이온을 제거하기 때문에 환경오염을 일으키는 폐수를 처리할 수 있을 뿐만 아니라 망간단괴에 흡착된 중금속 이온을 제련공정을 통하여 분리 회수 할 수 있기 때문에 장기적인 광물자원 확보에도 기여 할 수 있는 이중적인 효과가 기대되는 것이다.The adsorption method of heavy metal ions according to the present invention removes heavy metal ions from the waste liquid, so that not only the wastewater causing environmental pollution can be treated, but also the heavy metal ions adsorbed on the manganese nodule can be separated and recovered through a smelting process. A dual effect is expected to contribute to mineral resources.
Description
본 발명은 심해저 망간단괴를 중금속 흡착제로 활용하여 중금속 이온(구리, 니켈, 코발트 등)을 함유하고 있는 폐액으로부터 이들을 흡착·분리하는데 사용하고 이렇게 흡착된 중금속 이온을 기존의 망간단괴내에 함유되어 있는 금속들과 더불어 제련공정을 적용하여 재회수하고자 하는 것이다.The present invention utilizes the deep sea manganese nodule as a heavy metal adsorbent, and is used to adsorb and separate them from the waste liquid containing heavy metal ions (copper, nickel, cobalt, etc.) and the metals contained in the existing manganese nodules. In addition to this, the smelting process is to be applied to recover.
망간단괴는 주로 철산화물(Goethite등), 망간산화물(Todorokite 등) 그리고 규산염광물로 구성되어 있고 구리, 니켈 그리고 코발트 등의 유가금속들은 이들 산화물중에 결합 또는 흡착되어 있으며 단일광물로써 존재하지 않는다.Manganese nodules consist mainly of iron oxides (Goethite, etc.), manganese oxides (Todorokite, etc.) and silicate minerals. Valuable metals such as copper, nickel and cobalt are bound or adsorbed among these oxides and do not exist as single minerals.
가공율은 0.5-0.6 정도 그리고 비표면적은 100-200㎡/g 으로 매우 크며 중금속 흡착능력이 우수한 δ-MnO2주성분으로 되어 있어 중금속 흡착제로서 활용할 수 있다.The processing rate is about 0.5-0.6 and the specific surface area is 100-200㎡ / g, which is very large, and it is composed of δ-MnO 2 main component with excellent heavy metal adsorption ability.
한편 중금속 흡착제로서 사용한 망간단괴는 제련공정을 통하여 이들 금속들을 다시 회수 할 수 있다.On the other hand, manganese nodules used as heavy metal adsorbents can be recovered again through the smelting process.
따라서 본 발명은 망간단괴를 중금속 흡착제로 사용함으로서 망간단괴의 새로운 활용용도를 개발하는데 그 목적이 있다.Accordingly, an object of the present invention is to develop a new application of manganese nodules by using manganese nodules as a heavy metal adsorbent.
상기와 같은 목적을 달성하기 위하여 본 발명은 중금속 이온을 함유하고 있는 폐액의 pH를 조절하고 여기에 일정량의 망간단괴 시료를 첨가하여 일정시간동안 중금속을 흡착시킴으로서 폐액내의 중금속 이온을 분리, 회수하고 흡착제로 활용한 망간단괴는 제련공정을 적용함으로서 흡착된 중금속과 망간단괴내 금속들을 재회수하는 내용을 특징으로 하고 있다.In order to achieve the above object, the present invention adjusts the pH of the waste liquid containing heavy metal ions, and adds a certain amount of manganese nodule sample to adsorb the heavy metal for a predetermined time, thereby separating and recovering the heavy metal ions in the waste liquid and adsorbent. The manganese nodules utilized as a refining process are characterized by the re-recovery of the adsorbed heavy metals and the metals in the manganese nodules.
도 1은 본 발명의 공정도1 is a process diagram of the present invention
도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings
(1) : 파쇄기(2) : 분쇄기(1): shredder (2): grinder
(3) : 저장홉바(4) : 사분기(3): storage hop bar (4): quarter
(5) : 교반기(5): Stirrer
이하 본 발명을 첨부도면에 연계하여 그 공정 및 실시예를 상세히 설명하면 다음과 같다.Hereinafter, the process and the embodiment will be described in detail with reference to the accompanying drawings.
제1도는 본 발명의 공정도로써, 심해저 망간단괴(주로 10~50mm의 크기)의 원광석을 일정량씩 파쇄기(1)에 의해서 파쇄(5mm정도 크기)하고, 이를 다시 분쇄기(2)로 분쇄하여 망간단괴 광석의 입도를 1mm크기 이하로 한 후 사분기(3)를 사용하여 입도별로 사분하여 홉바(4)에 저장한다.1 is a process chart of the present invention, a deep ore manganese nodules (mainly 10 ~ 50mm size) of ore crushed by a crusher 1 by a predetermined amount (about 5mm size), and crushed again by a crusher (2) to the manganese nodules The particle size of the ore is less than 1mm size and then stored in the hop bar 4 by dividing by the particle size using the quarters (3).
이렇게 준비된 시료를 pH를 조절한 중금속 함유 수용액에 첨가하면 용액중의 중금속 이온이 망간단괴 시료에 흡착하게 된다.The sample prepared in this way is added to the aqueous solution containing the heavy metal containing pH, and the heavy metal ions in the solution are adsorbed to the manganese nodule sample.
흡착반응이 완료되면 이를 여액과 망간단괴로 고액 분리하여 여액중에 중금속 이온이 나타나지 않을때까지 반복하여 흡착을 실시함으로서 중금속 이온을 모두 제거하고 제련공정을 통하여 흡착에 사용된 망간단괴로부터 금속이온을 분리 회수한다.After the adsorption reaction is completed, the solid solution is separated into filtrate and manganese nodules, and the adsorption is repeated until heavy metal ions do not appear in the filtrate, thereby removing all heavy metal ions and separating metal ions from the manganese nodules used for adsorption through smelting. Recover.
[실시예]EXAMPLE
본 연구에서는 태평양 Clarion-Clipperton Zone의 심해저(수심 4,500-5,00m)에서 채취한 망간단괴 시료를 Bal Mill을 이용하여 -100mesh로 습식분쇄한 것을 시료로 사용하였으며 그 화학조성은 다음 표 1과 같다.In this study, samples of manganese nodules collected from the deep seabed (4,500-5,00m depth) of the Pacific Clarion-Clipperton Zone were wet milled to -100mesh using a Bal Mill as the samples. .
[표 1] 본 발명에 사용된 망간단괴의 원광품위[Table 1] Ores of Manganese Nodles Used in the Present Invention
제1도에서 보는 바와 같이 원광석을 먼저 파쇄(1)하고, 이를 다시 분쇄(2)하여 망간단괴 광석의 입도를 1mm크기 이하로 준비하여 일정량(1g)을 CuSO4, NiSO4, CoSO4를 이용하여 제조한 각각의 Cu, Ni, Co 용액에 H2SO4와 HCl를 첨가하여 pH를 조절한 후 250ml 플라스크에 혼합하여 넣고 Shker baths에서 일정시간 동안 일정 온도를 유지하면서 교반시켜 흡착을 하였다.As shown in FIG. 1, ore is first crushed (1), and then crushed again (2) to prepare a particle size of manganese nodite ore less than 1 mm in size (1 g) using CuSO 4 , NiSO 4 , and CoSO 4 . H 2 SO 4 and HCl were added to each of Cu, Ni, and Co solutions prepared to adjust the pH, and then mixed in a 250 ml flask, followed by stirring while maintaining a constant temperature in Shker baths for a predetermined time.
흡착실험 후에 고액분리를 행한 후 여액중의 중금속 이온의 잔류농도를 측정하여 망간단괴중에 흡착된 중금속 이온의 양을 계산하였다.After the adsorption experiment, the solid-liquid separation was performed and the residual concentration of heavy metal ions in the filtrate was measured to calculate the amount of heavy metal ions adsorbed in the manganese nodules.
중금속 이온들의 망간단괴 1g당 최대 흡착량은 용액의 pH 4.5일 때 24시간 반응시 20℃에서 구리 40.0mg, 니켈, 28.0mg 그리고 코발트는 36.0mg 이었다.The maximum adsorption amount of heavy metal ions per 1 g of manganese nodule was 40.0 mg of copper, 28.0 mg of copper, and 36.0 mg of copper at 20 ° C. for 24 hours at pH 4.5 of the solution.
흡착상태가 평형조건에 도달하는 시간은 반응온도에 따라 별 차이가 없었으며 반응온도가 높을수록 흡착량이 증가하여 80℃에서는 12시간 반응시 구리 48.7mg, 니켈 36.0mg 그리고 코발트가 45.0mg의 흡착량을 나타내었다.The time to reach equilibrium conditions did not differ according to the reaction temperature. The higher the reaction temperature, the higher the adsorption amount. At 80 ℃, the adsorption amount of copper 48.7mg, nickel 36.0mg and cobalt was 45.0mg for 12 hours. Indicated.
pH 변화에 따른 흡착량은 표 2에서 보는 바와 같이 pH가 증가함에 따라 증가하였고 pH 조절제로 사용한 H2SO4와 HCl의 차이는 없었다.As shown in Table 2, the amount of adsorption increased as pH was increased, and there was no difference between H 2 SO 4 and HCl used as a pH regulator.
[표 2] pH에 변화에 따른 중금속 이온의 흡착량(mg/g)[Table 2] Adsorption amount of heavy metal ions according to pH change (mg / g)
입자크기에 따른 흡착량은 표 3에서 보는 바와 같이 시료의 입도가 작을수록 흡착량이 증가하였다.As shown in Table 3, the adsorption amount according to the particle size increased as the particle size of the sample was smaller.
[표 3] 망간단괴 입도변화에 따른 중금속 이온의 흡착량(mg/g)[Table 3] Adsorption amount of heavy metal ions according to the particle size change of manganese nodules (mg / g)
본 발명에 의한 중금속 이온의 흡착방법은 폐액중의 중금속 이온을 제거하기 때문에 환경오염을 일으키는 폐수를 처리할 수 있을 뿐만 아니라 망간단괴에 흡착된 중금속 이온을 후의 제련공정에서 회수 할 수 있기 때문에 장기적인 광물자원 확보에도 기여할 수 있는 이중적인 효과가 기대된다.The method of adsorption of heavy metal ions according to the present invention removes heavy metal ions from the waste liquid, so that not only the wastewater causing environmental pollution can be treated, but also heavy metal ions adsorbed on the manganese nodule can be recovered in a subsequent smelting process. A dual effect is expected to contribute to resource acquisition.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970032030A KR100225477B1 (en) | 1997-07-10 | 1997-07-10 | Method for absorption, exclusion heavy metal from waste water using mn ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970032030A KR100225477B1 (en) | 1997-07-10 | 1997-07-10 | Method for absorption, exclusion heavy metal from waste water using mn ore |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990009587A true KR19990009587A (en) | 1999-02-05 |
KR100225477B1 KR100225477B1 (en) | 1999-10-15 |
Family
ID=19514044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970032030A Expired - Fee Related KR100225477B1 (en) | 1997-07-10 | 1997-07-10 | Method for absorption, exclusion heavy metal from waste water using mn ore |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100225477B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113634577A (en) * | 2021-06-11 | 2021-11-12 | 深圳市长隆科技有限公司 | Medicament for acid catalysis of heavy metals in long-period stable fly ash and use method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2565600B1 (en) * | 1984-06-07 | 1992-08-14 | Commissariat Energie Atomique | PROCESS FOR THE TREATMENT OF COMPLEX MANGANESE ORES SUCH AS MARINE NODULES |
-
1997
- 1997-07-10 KR KR1019970032030A patent/KR100225477B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113634577A (en) * | 2021-06-11 | 2021-11-12 | 深圳市长隆科技有限公司 | Medicament for acid catalysis of heavy metals in long-period stable fly ash and use method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100225477B1 (en) | 1999-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jeon et al. | Enhanced cementation of gold via galvanic interactions using activated carbon and zero-valent aluminum: A novel approach to recover gold ions from ammonium thiosulfate medium | |
KR100727719B1 (en) | Resin-in-pulp recovery of nickel and cobalt from oxide ore filtration slurry | |
CN100398676C (en) | Process for the recovery of nickel and cobalt from low-grade nickel- and cobalt-bearing bauxites by heap leaching | |
Su et al. | Reductive leaching of manganese from low-grade manganese ore in H2SO4 using cane molasses as reductant | |
Silva et al. | Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media | |
RU2086682C1 (en) | Hydrometallurgical method of extracting precious metals from persistent sulfide ore | |
CA3025458C (en) | Method for the extraction and recovery of vanadium | |
Urosevic et al. | Recovery of copper from copper slag and copper slag flotation tailings by oxidative leaching | |
CN102286661A (en) | Method for direct electrolysis of laterite nickel ore by sulfuric acid leaching | |
AU2014272804B2 (en) | Method for arsenic oxidation and removal from process and waste solutions | |
JP2020523485A (en) | How to recover precious metals from secondary resources | |
Bachiller et al. | Cyanide recovery by ion exchange from gold ore waste effluents containing copper | |
RU2178342C1 (en) | Method for processing copper containing products | |
Xie et al. | Studies on solvent extraction of copper and cyanide from waste cyanide solution | |
EP3482811B1 (en) | Alternative additives to enhance slurry dewatering | |
US4435369A (en) | Hydrometallurgical process for extraction of nickel | |
Browner | The use of bauxite waste mud in the treatment of gold ores | |
KR19990009587A (en) | Recovery method of heavy metal ions (copper, nickel, cobalt) using deep sea manganese nodule as adsorbent | |
AU732381B2 (en) | Process for cleaning mercury-contaminated soils | |
Ma et al. | Alkaline leaching of low grade complex zinc oxide ore | |
WO2014134681A1 (en) | Metal extraction from fines | |
RU2149709C1 (en) | Method of processing oxidized copper ores | |
RU2196183C2 (en) | Method of manganese ores processing | |
CN110036123A (en) | The method for controlling iron via the formation of magnetic iron ore in hydrometallurgical processes | |
Charewicz et al. | The leaching behavior of ocean polymetallic nodules in chloride solutions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20030625 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20040721 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20040721 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |