KR19980036419A - Substrate glass composition for image display panel - Google Patents
Substrate glass composition for image display panel Download PDFInfo
- Publication number
- KR19980036419A KR19980036419A KR1019960054985A KR19960054985A KR19980036419A KR 19980036419 A KR19980036419 A KR 19980036419A KR 1019960054985 A KR1019960054985 A KR 1019960054985A KR 19960054985 A KR19960054985 A KR 19960054985A KR 19980036419 A KR19980036419 A KR 19980036419A
- Authority
- KR
- South Korea
- Prior art keywords
- temperature
- glass
- display panel
- glass composition
- image display
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 83
- 239000000203 mixture Substances 0.000 title claims abstract description 43
- 239000000758 substrate Substances 0.000 title claims abstract description 35
- 238000000465 moulding Methods 0.000 claims abstract description 23
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 17
- 239000007791 liquid phase Substances 0.000 claims abstract description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 238000006124 Pilkington process Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- 239000005357 flat glass Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- 230000003628 erosive effect Effects 0.000 description 7
- 238000007496 glass forming Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000004031 devitrification Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000010583 slow cooling Methods 0.000 description 4
- 229910018068 Li 2 O Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005352 clarification Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/20—Constructional details
- H01J11/34—Vessels, containers or parts thereof, e.g. substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J17/00—Gas-filled discharge tubes with solid cathode
- H01J17/38—Cold-cathode tubes
- H01J17/48—Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
- H01J17/49—Display panels, e.g. with crossed electrodes, e.g. making use of direct current
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Glass Compositions (AREA)
Abstract
본 발명은 영상표시판넬용 기판유리조성물에 관한 것으로서, 더욱 상세하게는 유리의 변형점이 570 ∼ 600℃이고, 열팽창계수가 80 ∼ 85×10-7/℃이며, 100 포아즈에 해당하는 용융온도가 1500℃ 이하이고, 10000 포아즈에 해당하는 성형온도가 1150℃ 이하이며, 액상온도는 1000℃ 이하이고, 액상온도에서의 점도는 20000 포아즈(poises) 이상이 되게 하여 생산성을 향상시킨 프라즈마 영상표시판넬용 기판유리조성물에 관한 것이다.The present invention relates to a substrate glass composition for an image display panel, and more particularly, the glass has a strain point of 570 to 600 ° C., a thermal expansion coefficient of 80 to 85 × 10 −7 / ° C., and a melting temperature corresponding to 100 poises. Is a temperature of 1500 ° C. or less, a molding temperature corresponding to 10000 poise is 1150 ° C. or less, a liquid phase temperature of 1000 ° C. or less, and a viscosity at the liquid phase temperature of 20000 poises or more, thereby improving productivity. A substrate glass composition for a display panel.
Description
본 발명은 영상표시판넬용 기판유리조성물에 관한 것으로서, 더욱 상세하게는 유리의 변형점이 570 ∼ 600℃이고, 열팽창계수가 80 ∼ 85×10-7/℃이며, 100 포아즈에 해당하는 용융온도가 1500℃ 이하이고, 10000 포아즈에 해당하는 성형온도가 1150℃ 이하이며, 액상온도는 1000℃ 이하이고, 액상온도에서의 점도는 20000 포아즈(poises) 이상이 되게 하여 생산성을 향상시킨 프라즈마 영상표시판넬용 기판유리조성물에 관한 것이다.The present invention relates to a substrate glass composition for an image display panel, and more particularly, the glass has a strain point of 570 to 600 ° C., a thermal expansion coefficient of 80 to 85 × 10 −7 / ° C., and a melting temperature corresponding to 100 poises. Is a temperature of 1500 ° C. or less, a molding temperature corresponding to 10000 poise is 1150 ° C. or less, a liquid phase temperature of 1000 ° C. or less, and a viscosity at the liquid phase temperature of 20000 poises or more, thereby improving productivity. A substrate glass composition for a display panel.
프라즈마 영상표시 판넬은 진공형광 디스플레이 기술의 일종으로서, 기밀의 진공상태로 유지된 2장의 유리기판 사이에 충전된 가스가 전기적인 방전에 의해 이온화하여 자외선을 방출하며, 방출된 자외선이 유리판의 내면에 도포된 형광물질과 충돌하여 가시광선으로 전환되면서 화면에 영상을 나타내게 된다. 영상을 표시하기 위해 가하는 전압에 따라 AC 및 DC 방식이 있으며, 이에 따라 가스의 종류도 다르다. 도1에는 일반적인 AC방식 프라즈마 영상표시판넬의 구조 및 작동원리를 나타내었다. 프라즈마 영상표시 판넬의 기본구성을 살펴보면, 3 ∼ 4 mm의 두께를 지니는 2장의 전후면 기판유리가 100 ∼ 150 ㎛ 간격을 지니고 있으며 테두리는 프리트의 봉착에 의해 기밀이 되며, 영상이 나타나는 전면유리의 내부에는 음극의 역할을 하는 ITO(Indium Tin Oxide)가 코팅되어 있으며, 후면유리의 내부에는 양극의 Ni, Ag 페이스트 및 적, 녹, 청의 칼라를 발현시키는 형광물질이 도포되어 있다.Plasma image display panel is a kind of vacuum fluorescent display technology. The gas filled between two glass substrates kept in airtight vacuum is ionized by electric discharge to emit ultraviolet rays, and the emitted ultraviolet rays are applied to the inner surface of the glass plate. It collides with the applied fluorescent material and is converted into visible light to display an image on the screen. There are AC and DC methods depending on the voltage applied to display an image, and accordingly, the type of gas is different. Figure 1 shows the structure and operation principle of a typical AC plasma image display panel. Looking at the basic configuration of the plasma image display panel, two pieces of front and rear substrate glass having a thickness of 3 to 4 mm are spaced 100 to 150 μm, and the edge is hermetically sealed by frit sealing. The inside is coated with ITO (Indium Tin Oxide), which serves as a cathode, and the inside of the rear glass is coated with Ni, Ag paste of the anode and a fluorescent material expressing the colors of red, green, and blue.
프라즈마 영상표시 판넬의 전후면 기판유리로서는 초기에 Float Process에 의해 생산된 건축 및 자동차용 소다라임 실리케이트계 판유리(SiO2: 70 ∼ 72 중량%, Al2O3: 1 ∼ 2 중량%, Na2O : 12 ∼ 14 중량%, K2O : 0 ∼ 1 중량%, CaO : 8 ∼ 9 중량%, MgO : 4 ∼ 5 중량%)를 소형(21) 프라즈마 영상표시 판넬에 적용하였으며, 프라즈마 영상표시 판넬의 제조공정에서 소성되는 페이스트나 프리트의 성질, 특히 열팽창계수 및 융점이 소다라임 실리케이트계 유리에 맞추어 제조되었다. 그러나 디스플레이의 대형화 추세와 고해상도에 대한 요구가 증대되면서, 전후면 유리의 수축에 의한 치수와 평탄도의 변화 및 이에 따른 해상도의 저하가 프라즈마 영상표시 판넬 제조공정에서 발생함으로 인해 소다라임 실리케이트계 판유리로는 이러한 프라즈마 영상표시판넬용 기판유리의 요구를 충족시키지 못하게 되었다.As the front and rear substrate glass of the plasma image display panel, soda-lime silicate-based glass plates for building and automobiles (SiO 2 : 70-72 wt%, Al 2 O 3 : 1-2 wt%, Na 2) initially produced by Float Process O: 12 to 14% by weight, K 2 O: 0 to 1% by weight, CaO: 8 to 9% by weight, MgO: 4 to 5% by weight) were applied to the small (21) plasma image display panel. The properties of the paste or frit fired in the panel manufacturing process, in particular the coefficient of thermal expansion and melting point, were prepared for the soda-lime silicate-based glass. However, with the trend toward larger displays and higher demands for high resolution, soda-lime silicate-based glass has been produced due to the change in dimensions and flatness due to shrinkage of the front and rear glass and the resulting decrease in resolution in the plasma image display panel manufacturing process. Is unable to meet the requirements of substrate glass for plasma image display panels.
프라즈마 영상표시 판넬의 제조공정 온도는 570℃ 이상이며, 유리의 열에 대한 변형이 시작되는 온도인 변형점(Strain point: 점도로는 1014.5포아즈에 해당하는 온도)이 소다라임 실리케이트 판유리의 경우 510 ∼ 530℃이기 때문에 열처리 공정중에 기판유리에 치수와 평탄도의 변화가 발생하며, 특히 대형 기판으로 전환될 경우 기판유리 자중에 의해 치수 및 평탄도의 변화는 더 심해진다. 따라서 프라즈마 영상표시판넬용 기판유리로서는 변형점이 570℃ 이상이 되어야 바람직하며, 열팽창계수는 기존의 페이스트와 프리트에 적합한 80 ∼ 85×10-7/℃ 범위에 있어야 한다.The manufacturing process temperature of the plasma image display panel is 570 ° C or higher, and the strain point (temperature corresponding to 10 14.5 poise by viscosity) is the temperature at which deformation of the glass starts to be 510 in the case of soda-lime silicate glass. Since it is -530 DEG C, a change in dimensions and flatness occurs in the substrate glass during the heat treatment process. In particular, when the substrate glass is converted to a large substrate, the change in dimensions and flatness becomes more severe due to the weight of the substrate glass. Therefore, the substrate glass for the plasma image display panel is preferably a strain point of 570 ℃ or more, the thermal expansion coefficient should be in the range of 80 ~ 85 × 10 -7 / ℃ suitable for the conventional paste and frit.
한편, 판유리 성형기술로는 Fourcault, Float 및 Fusion 공법이 있으며, 프라즈마 영상표시판넬용 기판유리의 표면품질과 유리의 생산성을 고려할 때, Float 공법이 가장 경제적인 것으로 알려진 바, 기판유리의 조성은 상기의 변형점, 열팽창계수 뿐만 아니라 Float 공법의 특성을 만족시켜야 한다. Float 공법은 원료가 용융 및 청징되는 용융청징조와 용융된 유리가 액체주석 위에서 판상으로 성형되는 환원분위기의 주석조(Tin Bath)로 구성되었으며, 환원분위기는 주석의 산화방지를 위한 것이다. 유럽특허 제559,389호에서는 Float공법에 바람직한 조성은 성형온도인 10000 포아즈에서의 온도가 1200℃이하로서 액상온도에서의 점도가 20000 포아즈 이상인 것으로 알려져 있다.On the other hand, the plate glass forming techniques include the Fourcault, Float, and Fusion methods, and considering the surface quality and glass productivity of the substrate glass for plasma image display panels, the Float method is known to be the most economical. Not only the strain point and thermal expansion coefficient of but also the characteristics of Float method should be satisfied. Float process consists of a melt clarification tank where raw materials are melted and clarified, and a tin bath in a reducing atmosphere in which molten glass is plated on a liquid tin, and the reducing atmosphere is for preventing oxidation of tin. In European Patent No. 559,389, it is known that the preferred composition for the Float process is a temperature at 10000 poise, which is a molding temperature, of 1200 ° C or less, and a viscosity at liquidus temperature of 20000 poise or more.
프라즈마 영상표시판넬용 기판유리조성물에 관한 종래기술은 미국특허 제5,459,109호와 일본공개특허 평3-40933호, 평8-133778호에 게시되어 있으며, 그 조성은 다음 표1과 같다.Prior arts relating to substrate glass compositions for plasma image display panels have been published in U.S. Patent Nos. 5,459,109 and Japanese Patent Laid-Open Nos. 3-40933 and 8-133778, the composition of which is shown in Table 1 below.
이 중 미국특허 제5,459,109호는 기본적으로 알카리금속 산화물을 함유하지 않는 조성으로 변형점 600℃ 이상, 0 ∼ 300℃ 범위에서 열팽창계수는 70 ∼ 90×10-7/℃, 10000×106포아즈에서의 온도는 1240℃ 이하, 액상온도에서의 점도는 3000×106포아즈 이상이며, Float 공법에 의한 판유리 성형기술에 초점을 맞추었다.Among them, U.S. Patent No. 5,459,109 is basically a composition containing no alkali metal oxide, and the thermal expansion coefficient is 70 to 90 × 10 −7 / ° C., 10000 × 10 6 poise in the strain point of 600 ° C. or higher and 0 to 300 ° C. The temperature at is 1240 ° C or less, the viscosity at the liquidus temperature is 3000 × 10 6 poise or more, focusing on plate glass forming technology by Float method.
일본공개특허 평3-40933호에는 표1에 나타낸 조성범위만을 제시하고 있으며 실시예에 몇개의 조성에 대한 변형점, 연화점, 열팽창계수, 전기저항 및 열변형량의 결과가 표시되어 있으나 적용하고자 하는 판유리 성형기술에 대한 언급이 전혀 없다.Japanese Patent Application Laid-Open No. 3-40933 shows only the composition ranges shown in Table 1, and the results of strain points, softening points, coefficients of thermal expansion, electrical resistance, and thermal strain for several compositions are shown in Examples, but the glass sheet to be applied There is no mention of molding technology.
일본공개특허 평8-133778호는 기본적으로 ZrO2가 없는 조성으로 560℃ 이상의 변형점과 50 ∼ 300℃ 범위에서 열팽창계수는 80 ∼ 95×10-7/℃으로 청구되었으며, 다만 실시예에 100과 10000 포아즈에서의 온도, 액상온도, 화학적 내구성과 경도에 대한 결과를 표시하였고 Float 공법의 적용이 암시적으로 서술되었다.Japanese Patent Application Laid-open No. Hei 8-133778 is basically a composition without ZrO 2 and has a thermal expansion coefficient of 80 to 95 × 10 −7 / ° C. in a strain point of 560 ° C. or higher and a range of 50 to 300 ° C., except that in Example 100 The results for temperature, liquidus temperature, chemical durability and hardness at and 10000 poise were presented and the application of the Float method was implicitly described.
미국특허 제5,459,109호의 경우, 변형점은 600℃ 이상으로 청구되었으나, 실시예에 나타난 변형점들은 630℃ 이상으로 과도하게 높으며, 열팽창계수 또한 80×10-7/℃ 미만으로 지나치게 낮고, 액상온도는 성형온도보다 낮게 나타나지만 액상온도에서의 점도는 판유리 성형기술에 바람직한 20000 포아즈에 훨씬 못미치는 15000 포아즈 미만을 나타내고 있다. 액상온도에서의 점도는 유리조성물의 실투와 밀접한 관련이 있어 생산성에 매우 중요한 지표로 작용한다. 첨부한 도2는 액상온도와 점도의 관계를 나타낸 것으로서 유리의 성형은 10000 포아즈 정도의 점도(η2)를 가지는 온도(T2)에서 이루어지는데, 이 온도와 액상온도(T1)의 차이가 크거나 액상온도에서의 점도(η1)가 크지 않으면 성형과정에서 실투가 일어날 가능성이 매우 높다. 따라서, 액상온도에서의 점도가 15000 포아즈 미만의 유리조성물을 Float 생산기술에 적용할 경우, 특히 초 박판이 아닌 3 ∼ 4 ㎜ 두께의 판유리를 생산할 경우, 주석조에 머무는 시간이 증가하여 실투에 의한 생산성 저하가 예상된다. 그밖에 성형온도와 액상온도에서의 청구된 점도값인 10000×106포아즈와 3000×106포아즈는 실시예와 전혀 부합되지 않는 생산에 적용할 수 없는 비현실적인 값이다. 뿐만 아니라 실시예에 나타낸 바와 같이 청징제로서 환경문제를 야기시키는 할라이드(F, Cl)를 사용하고 있다.In the case of U.S. Patent No. 5,459,109, the strain point was claimed to be 600 ° C. or higher, but the strain points shown in the examples were excessively high above 630 ° C., and the thermal expansion coefficient was too low, below 80 × 10 −7 / ° C., and the liquidus temperature was Although lower than the molding temperature, the viscosity at the liquidus temperature is less than 15000 poise, well below the 20000 poise desirable for sheet glass forming technology. Viscosity at liquidus temperature is closely related to the devitrification of the glass composition, which is a very important indicator of productivity. FIG. 2 shows the relationship between the liquidus temperature and the viscosity. The shaping of the glass is carried out at a temperature T 2 having a viscosity (η 2 ) of about 10000 poise, and the difference between the temperature and the liquidus temperature (T1) If the viscosity is large or the viscosity at the liquidus temperature (η 1 ) is not large, the chance of devitrification in the molding process is very high. Therefore, when the glass composition having a viscosity at liquidus temperature of less than 15000 poise is applied to the float production technology, especially when producing plate glass having a thickness of 3 to 4 mm rather than ultra thin plate, the residence time in the tin bath is increased, resulting in devitrification. A decrease in productivity is expected. In addition, the claimed viscosity values of 10000 × 10 6 poises and 3000 × 10 6 poises at molding and liquidus temperatures are unrealistic values that cannot be applied to production which is inconsistent with the examples. In addition, as shown in the examples, halides (F, Cl) that cause environmental problems are used as clarifiers.
또, 미국특허 제5,459,109호는 다음 표1에서 보는 바와 같이 알카리토인 MgO, CaO, SrO 및 BaO의 총함량이 45.5 ∼ 52.5 중량%이며, 그 중 천연원료인 MgO와 CaO 보다는 값이 매우 비싼 화학원료인 SrO와 BaO가 80% 이상을 차지하고 있는 바, 전체적으로 원료가가 매우 상승하여 경제성이 크지 않을 것으로 예상된다. 뿐만 아니라 과도한 알카리토의 함량은 내화물침식을 촉진하고 상기와 같이 변형점 및 열팽창계수를 필요없이 높이거나 낮추게 된다. 게다가 B2O3의 함유량이 최대 4.5 중량%로 비교적 높아 용융공정 중에 B2O3가 휘발하여 용융조의 내화물침식과 Float 공법에 의해 판유리 생산시 주석조의 내화물침식 및 판유리에 결함발생을 유발시킬 것으로 예상된다.In addition, U.S. Patent No. 5,459,109 has a total content of alkaline earth MgO, CaO, SrO and BaO of 45.5 to 52.5% by weight, as shown in Table 1, of which the chemical material is much more expensive than natural materials MgO and CaO Phosphorus SrO and BaO account for more than 80%, and as a result, raw material prices are expected to rise so much that economic feasibility is not high. In addition, excessive alkaline content will promote refractory erosion and increase or decrease the strain point and coefficient of thermal expansion as described above. In addition, the content of B 2 O 3 is up to 4.5% by weight, so that B 2 O 3 volatilizes during the melting process, causing refractory erosion of the tin bath and defects in the plate glass during the production of plate glass by the refractory erosion of the melting tank and the float method. It is expected.
일본공개특허 평3-40933호에서는 각 성분의 역할이 기술되어 있으나 알카리 산화물은 Li2O, Na2O 및 K2O의 총함량만이 기재되어 있고, 알카리토 산화물의 경우는 CaO의 범위는 구체적으로 명기 되었으나 CaO를 포함하여 MgO, SrO, BaO의 총함량만이 기재되어 있다. 실제로, 소다라임 실리케이트 유리와 비교하여 실시예에 나타난 8개의 조성중 7개의 조성에 대해서는 프라즈마 영상표시판넬용 기판유리와 관련된 특성인 변형점 및 열팽창계수가 전혀 제시되지 않았다.In Japanese Patent Application Laid-Open No. 3-40933, the role of each component is described, but only the total content of Li 2 O, Na 2 O and K 2 O is described for the alkali oxide, and in the case of alkaline oxide, the range of CaO is Although specifically specified, only the total contents of MgO, SrO, BaO, including CaO are described. In fact, seven of the eight compositions shown in the examples compared to the soda-lime silicate glass were not shown any strain point and thermal expansion coefficient, which are characteristics related to the substrate glass for plasma image display panel.
일본공개특허 평8-133778호는 기본적으로 ZrO2를 함유하지 않는 대신 ZnO를 0 ∼ 6 중량% 추가하여 유리의 경도를 증진시키고자 하였으나, 유럽특허 제559,389호와 제510,543호 및 미국특허 제5,387,560호에 따르면 ZnO는 판유리 성형기술인 Float 공정의 주석조에서 환원되어 판유리 표면에 결함을 유발시키는 성분으로 알려져 있으며, 실시예와 비교예에 제시된 경도값으로는 경도에 미치는 ZrO2와 ZnO의 상관관계가 불분명할 뿐만 아니라 Chemical Approach to Glass(Mllos Volf, Elsevier, 1984년, 페이지 306 ∼ 314)에 따르면 ZrO2는 오히려 유리의 경도를 증진시키는 것으로 알려져 있다. 또한 ZrO2를 전혀 함유하고 있지 않기 때문에 열팽창계수를 낮게 조정할시 일방적으로 Al2O3에 의존하는 조성상의 한계가 있을 것으로 예상된다. 또한 실시예에 나타난 액상온도는 성형온도 보다 낮지만, 액상온도에서의 점도는 전혀 언급이 없어 생산성 예측이 불가능하며, 원료의 용융과 관련된 100 포아즈에 해당하는 온도가 150℃ 이상으로 높아 내화물침식이 증가하여 결함발생의 원인이 될 뿐만 아니라 로수명 감소의 원인도 된다.Japanese Patent Application Laid-Open No. Hei 8-133778 basically does not contain ZrO 2 , but instead of ZnO is added 0 to 6% by weight to improve the hardness of the glass, European Patent Nos. 559,389 and 510,543 and US Patent 5,387,560 According to the call ZnO is a correlation between the flat glass forming technique Float is reduced in the tin bath of the process is known as a component that causes a defect in the glass surface, carried ZrO 2 and ZnO on the examples and the hardness value to the hardness shown in the comparative example related In addition to being unclear, according to Chemical Approach to Glass (Mllos Volf, Elsevier, 1984, pages 306-314), ZrO 2 is known to enhance the hardness of glass. In addition, since ZrO 2 is not contained at all, it is expected that there will be a compositional limit depending on Al 2 O 3 unilaterally when the coefficient of thermal expansion is adjusted low. In addition, the liquidus temperature shown in the embodiment is lower than the molding temperature, but the viscosity at the liquidus temperature is not mentioned at all, and productivity is impossible to predict, and the temperature corresponding to 100 poises related to the melting of the raw material is higher than 150 ° C, thus refractory erosion. This increase causes not only the occurrence of defects but also the reduction of furnace life.
이와같이 소다라임 실리케이트 조성에 비해 변형점을 높이고 열팽창계수를 낮추고자 Na2O, K2O 같은 알카리의 함량을 낮추고 SrO, BaO 같은 알카리토 및 ZrO2, Al2O3등의 성분을 추가시킬 경우 유리의 용융 및 성형에 관련된 온도가 전반적으로 상승하며, 액상온도 또한 상승하여 결과적으로 유리의 생산성에 악영향을 미친다. B2O3를 추가할 경우 유리의 용융은 용이해지나 함량이 증가하면 휘발에 의한 내화물침식과 그에 따른 불량의 원인이 될 수 있으며, 특히 ZnO의 첨가는 판유리 성형기술인 Float 공정에 바람직하지 않다.As such, in order to increase the strain point and lower the coefficient of thermal expansion compared to the soda-lime silicate composition, to lower the content of alkalis such as Na 2 O and K 2 O and to add components such as SrO and BaO and ZrO 2 and Al 2 O 3, etc. The temperatures associated with melting and forming of the glass generally rise, and the liquidus temperature also rises, which in turn adversely affects the productivity of the glass. When B 2 O 3 is added, the melting of the glass becomes easy, but if the content is increased, it may cause the refractory erosion due to volatilization and its defects. In particular, the addition of ZnO is not preferable for the float process, which is a glass forming technology.
이에 본 발명자들은 유리의 변형점을 증가시키고 열팽창계수를 감소시키면서 Float 공정에 의한 판유리 성형기술을 만족시킬 수 있는 유리조성물을 개발하고자 연구 노력하였다. 그 결과 용융성 향상 및 실투발생을 방지하기 위하여 100 포아즈에서의 온도가 1500℃ 이하, 성형온도가 1200℃ 이하, 그리고 액상온도에서의 점도가 2000 포아즈 이상 되도록 하고, 투과율이 저하되지 않도록 착색제를 첨가하지 않으면서 동시에 프라즈마 영상표시판넬용 기판유리로서 필요한 제반특성을 향상시킨 유리조성물을 제조함으로써 본 발명을 완성하였다.The present inventors have tried to develop a glass composition that can satisfy the plate glass forming technology by the Float process while increasing the strain point of the glass and reducing the coefficient of thermal expansion. As a result, in order to improve meltability and prevent devitrification, the temperature at 100 poise is 1500 ° C. or less, the molding temperature is 1200 ° C. or less, and the viscosity at the liquidus temperature is 2000 poise or more, and the colorant does not decrease the transmittance. The present invention has been completed by producing a glass composition having improved various properties required as a substrate glass for a plasma image display panel without addition of.
따라서, 본 발명은 액상온도가 성형온도보다 낮으면서 액상온도에서의 점도가 높아 생산성이 높으며, 일반 소다라임 실리케이트계 판유리와 비교해서 고변형점 및 저팽창성을 나타내는 프라즈마 영상표시판넬용 기판유리로서의 제반특성을 만족시키는 유리조성물을 제공하는데 그 목적이 있다.Therefore, the present invention is high in productivity because the liquidus temperature is lower than the molding temperature and the viscosity at the liquidus temperature is high. The object is to provide a glass composition that satisfies the characteristics.
도1은 AC방식 프라즈마 영상표시 판넬의 구조 및 작동원리를 나타낸 도면이고,1 is a view showing the structure and operation principle of the AC type plasma image display panel,
도2는 액상온도와 점도 관계를 나타낸 그래프이다.2 is a graph showing the relationship between liquid temperature and viscosity.
도면의 주요부호에 대한 자세한 설명Detailed description of the major symbols in the drawings
1a : 전면기판유리1b : 후면기판유리1a: front substrate glass 1b: rear substrate glass
2 : 음극(ITO 투명전도막)3 : 유전체층2: cathode (ITO transparent conductive film) 3: dielectric layer
4 : 보호층5 : 격벽(Rib)4: protective layer 5: rib
6 : 양극(Ag, Ni)7 : 자외선6: anode (Ag, Ni) 7: ultraviolet
8 : 형광체8: phosphor
T1: 액상온도T2: 성형온도T 1 : Liquid Temperature T 2 : Molding Temperature
η1: 액상온도에서의 점도η2: 액상온도에서의 점도η 1 : viscosity at liquidus temperature η 2 : viscosity at liquidus temperature
본 발명은 영상표시판넬용 기판유리조성물에 있어서, SiO254 ∼ 62 중량%, Al2O30.5 ∼ 2.0 중량%, B2O32 중량% 이하, Na2O 4 ∼ 7 중량%, K2O 3 ∼ 7 중량%, MgO 2 ∼ 6 중량%, CaO 3 ∼ 8 중량%, SrO 0.1 ∼ 7.0 중량%, BaO 4 ∼ 10 중량%, ZrO27 ∼ 10 중량%, P2O50.1 ∼ 0.5 중량%, Sb2O3와 SO3의 총함량 0.3 ∼ 0.7 중량%로 이루어진 것을 그 특징으로 한다.In the substrate glass composition for an image display panel, 54 to 62 wt% of SiO 2 , 0.5 to 2.0 wt% of Al 2 O 3 , 2 wt% or less of B 2 O 3 , Na 2 O 4 to 7 wt%, and K 2 O 3-7 wt%, MgO 2-6 wt%, CaO 3-8 wt%, SrO 0.1-7.0 wt%, BaO 4-10 wt%, ZrO 2 7-10 wt%, P 2 O 5 0.1- It is characterized by consisting of 0.5% by weight, the total content of Sb 2 O 3 and SO 3 0.3 to 0.7% by weight.
또한, 상기와 같은 조성으로 이루어진 본 발명의 영상표시판넬용 기판유리조성물이 100 포아즈에 해당하는 용융점가 1500℃ 이하이고, 10000 포아즈에 해당하는 성형온도가 1150℃ 이하이며, 변형점이 570℃ 이상이고, 30 ∼ 350℃ 사이의 열팽창계수가 80 ∼ 85×10-7/℃ 범위인 것을 또 다른 특징으로 한다.In addition, the substrate glass composition for an image display panel of the present invention having the composition described above has a melting point of 1500 ° C. or lower, a molding temperature of 10000 poise of 1150 ° C. or lower, and a strain point of 570 ° C. or higher. It is another feature that the thermal expansion coefficient between 30 and 350 ° C is in the range of 80 to 85 × 10 −7 / ° C.
본 발명에 따른 유리조성물을 구성하는 각각의 성분에 대해 설명하면 다음과 같다.Referring to each component constituting the glass composition according to the present invention.
본 발명의 영상표시판넬용 기판유리조성물은 판유리 성형기술인 Float 공정의 주석조에 적합하지 않은 ZnO와 청징제로서 환경문제를 야기시키는 As2O3와 F를 함유하지 않는다.The substrate glass composition for an image display panel of the present invention does not contain ZnO and As 2 O 3 and F which cause environmental problems as a fining agent which is not suitable for the tin bath of the float process, which is a sheet glass forming technology.
SiO2는 유리형성에 관여하는 필수적인 산화물로서 유리의 망목구조를 안정시켜주는 성분이다. SiO2는 유리조성물중에 54 ~ 62 중량% 함유되며, 그 함량이 54 중량% 미만이면 유리의 화학적인 내구성이 저하하고 열팽창계수가 증가하며, 62 중량%를 초과하면 용융성이 저하하고 액상온도가 증가하는 경향이 있다. 바람직하기로는 SiO2가 54 ∼ 59 중량% 범위로 함유되는 것이다.SiO 2 is an essential oxide involved in glass formation and is a component that stabilizes the network structure of glass. SiO 2 is contained in the glass composition 54 ~ 62% by weight, if the content is less than 54% by weight of glass, the chemical durability of the glass is lowered and the coefficient of thermal expansion is increased. There is a tendency to increase. Preferably, SiO 2 is contained in the range of 54 to 59 wt%.
Al2O3는 유리의 실투를 억제하고 팽창계수를 낮추며 변형점을 높이기 위해서 첨가하는 성분으로서, 그 함량이 2 중량%를 초과하면 용융성이 저하하고 팽창계수가 급격히 감소한다. 바람직하기로는 Al2O3가 0.5 ∼ 2.0 중량% 범위로 함유되는 것이다.Al 2 O 3 is a component added to suppress the devitrification of the glass, lower the expansion coefficient and increase the strain point. If the content exceeds 2% by weight, the Al 2 O 3 is melted and the coefficient of expansion is sharply reduced. Preferably Al 2 O 3 is contained in the range of 0.5 to 2.0% by weight.
B2O3역시 유리형성에 관여하며, 용융성을 증진시키고 열팽창계수를 낮추며 화학적인 내구성을 증진시키는 효과는 있으나, 용융시 휘발하여 내화물을 강하게 침식시키기 때문에 그 함량이 2 중량%를 초과하지 않도록 한다.B 2 O 3 also plays a role in glass formation, enhances meltability, lowers the coefficient of thermal expansion and enhances chemical durability, but does not exceed 2% by weight because it volatilizes strongly to erode refractory. do.
Na2O와 K2O는 유리의 열팽창계수와 고온 및 저온에서의 점도를 조절하는데 매우 효과적인 성분으로서, Na2O는 4 ∼ 7 중량% 범위로 함유되고, K2O는 3 ∼ 7 중량% 범위내로 함유되는 것이 바람직하다. 또한 Na2O와 K2O의 총함량은 8 ~ 11 중량%를 유지하도록 한다. Na2O와 K2O의 총함량이 8 중량% 미만이면 용융성이 저하되며, 11 중량%를 초과할 경우 열팽창계수가 증가하고 변형점은 감소한다.Na 2 O and K 2 O are very effective components for controlling the coefficient of thermal expansion of the glass and the viscosity at high and low temperatures. Na 2 O is contained in the range of 4 to 7% by weight, and K 2 O is 3 to 7% by weight. It is preferable to contain in the range. In addition, the total content of Na 2 O and K 2 O to maintain 8 to 11% by weight. If the total content of Na 2 O and K 2 O is less than 8% by weight, the meltability is lowered. If it exceeds 11% by weight, the coefficient of thermal expansion increases and the strain point decreases.
MgO, CaO, SrO 및 BaO는 고온에서 유리의 점도를 낮추고 저온에서는 유리의 점도를 높이는 효과 때문에, 용융성 향상 및 변형점의 증가를 목적으로 투입되어진다. 그러나, MgO와 CaO의 함량이 과량이면 상분리 및 실투경향이 증가하기 때문에 MgO는 3 ∼ 5 중량%, CaO는 4 ∼ 7 중량% 함유되는 것이 바람직하며, 출발원료로서 값이 싼 천연원료인 돌로마이드(CaCO3MgCO3)의 사용이 가능하도록 CaO와 MgO를 1 : 1 비율로 첨가하며 이로써 CaO/(MgO+CaO)의 몰비가 0.5 되도록 한다. SrO와 BaO는 오히려 상분리 억제효과가 있으나 화학원료로서 가격이 비싸며, 특히 SrO는 BaO에 비해 2배정도로 가격이 비싸기 때문에 BaO의 함량이 항상 SrO 보다 크도록 한다. SrO는 0.1 ~ 7.0 중량% 바람직하기로는 0.5 ∼ 6.0 중량% 함유하고, BaO는 4 ~ 10 중량% 바람직하기로는 5 ∼ 9 중량% 함유한다. MgO, CaO, SrO 및 BaO의 총함량은 18.0 ∼ 25.5 중량%가 적당하다.MgO, CaO, SrO and BaO are introduced for the purpose of improving meltability and increasing strain point because of the effect of lowering the viscosity of the glass at high temperature and increasing the viscosity of the glass at low temperature. However, if the content of MgO and CaO is excessive, phase separation and loss of devitrification tend to increase, so MgO is preferably contained in an amount of 3 to 5% by weight and CaO is in an amount of 4 to 7% by weight. CaO and MgO are added in a ratio of 1: 1 to enable the use of (CaCO 3 MgCO 3 ), so that the molar ratio of CaO / (MgO + CaO) is 0.5. SrO and BaO have a phase separation inhibitory effect, but are expensive as a chemical raw material. Especially, since SrO is twice as expensive as BaO, the content of BaO is always larger than SrO. SrO is contained 0.1 to 7.0% by weight, preferably 0.5 to 6.0% by weight, and BaO is contained 4 to 10% by weight, preferably 5 to 9% by weight. As for the total content of MgO, CaO, SrO, and BaO, 18.0-25.5 weight% is suitable.
ZrO2는 Al2O3와 유사한 역할을 한다. 팽창계수를 낮추며, 또한 유리표면의 경도를 증진시키는 효과도 있으나, 다량 첨가시 용융성이 저하되며, 유리의 고온점도를 증가시킨다. ZrO2는 7 ∼ 10 중량% 범위내에 첨가하는 것이 바람직하다.ZrO 2 plays a similar role to Al 2 O 3 . Although it has an effect of lowering the coefficient of expansion and also improving the hardness of the glass surface, the meltability decreases when a large amount is added, and the high temperature viscosity of the glass is increased. ZrO 2 is preferably added in the range of 7 to 10% by weight.
P2O5는 ZrO2와 Al2O3에 기인한 융점의 상승을 방지하여 내화물의 침식을 억제할 뿐만 아니라 액상온도를 저하시키기 위해 소량 첨가하는데 0.5 중량% 초과시 상분리 현상이 발생하여 유리의 투명성이 저하된다. P2O5는 0.1 ∼ 0.5 중량% 범위에 첨가하는 것이 바람직하다.P 2 O 5 not only prevents the increase of melting point due to ZrO 2 and Al 2 O 3 , but also suppresses the erosion of refractory materials, and adds a small amount to lower the liquidus temperature. Is lowered. P 2 O 5 is preferably added in the range of 0.1 to 0.5% by weight.
그리고, Sb2O3와 SO3는 용융시 발생하는 기포를 제거할 목적으로, 즉 청징의 목적으로 사용한다. Sb2O3와 SO3의 총함량은 0.3 ∼ 0.7 중량% 범위, 바람직하기로는 0.3 ~ 0.5 중량% 범위를 유지하는 것이다.Sb 2 O 3 and SO 3 are used for the purpose of removing bubbles generated during melting, that is, for the purpose of clarification. The total content of Sb 2 O 3 and SO 3 is in the range of 0.3 to 0.7% by weight, preferably 0.3 to 0.5% by weight.
본 발명에 따른 유리조성물은 상기와 같은 조성성분들로 이루어짐으로써 프라즈마 영상표시 판넬 방식에 의한 영상표시 기판유리의 제반특성을 향상시키게 된다. 이때, 제반특성이라 함은 100 포아즈에 해당하는 용융온도가 1500℃ 이하, 10000 포아즈에 해당하는 성형온도는 1150℃ 이하, 액상온도는 1100℃ 이하, 유리성형 생산성을 위한 액상온도에서의 점도값이 20000 포아즈 이상, 프라즈마 영상표시 판넬 제조공정중 발생하는 기판의 변형방지를 위한 변형점이 570 ∼ 600℃, 30 ~ 350℃에서의 열팽창계수가 80 ∼ 85×10-7/℃인 것을 말한다.The glass composition according to the present invention is made of the above composition components to improve the overall characteristics of the image display substrate glass by the plasma image display panel method. In this case, the general characteristics are the melting temperature corresponding to 100 poise is 1500 ℃ or less, the molding temperature corresponding to 10000 poise is 1150 ℃ or less, the liquidus temperature is 1100 ℃ or less, the viscosity at the liquidus temperature for glass molding productivity The value is 20000 poise or more, and the strain point for preventing deformation of the substrate generated during the plasma image display panel manufacturing process is 80 to 85 × 10 −7 / ° C. at 570 to 600 ° C. and 30 to 350 ° C. .
이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.
실시예 1 ∼ 9Examples 1-9
다음 표2의 조성비율에 따라 뱃치당 500 g되게 각 성분원료를 평량하여 V-믹서에서 혼합한 후, 500 cc 백금도가니에 넣어 전기로를 이용하여 1450 ∼ 1550℃에서 3시간동안 용융시킨 후 100×100×20 mm 흑연돌에 부어 성형한 후, 전기로에서 650℃의 온도에서 2시간 유지 및 350℃까지는 온도를 분당 5℃씩 하강시키는 방법으로 완전 서냉시켜서 유리조성물을 제조하였다.According to the composition ratio in Table 2, each ingredient is weighed to 500 g per batch, mixed in a V-mixer, and then put into a 500 cc platinum crucible and melted for 3 hours at 1450 to 1550 ° C. using an electric furnace. After molding by pouring into 100 × 20 mm graphite stone, the glass composition was prepared by completely cooling by holding the electric furnace for 2 hours at a temperature of 650 ℃ and lowering the temperature up to 350 ℃ by 5 ℃ per minute.
건축 및 자동차용 소다라임 실리케이트계 후로트 판유리는 비교예 1, 미국특허 제5,459,109호는 비교예 2, 일본공개특허 평3-40933호와 평8-133778호의 조성은 각각 비교예 3 ∼ 5와 6 ∼ 7로 하여 다음 표3에 나타내었다.Soda-lime silicate-based float glass for construction and automotive, Comparative Example 1, U.S. Patent No. 5,459,109, Comparative Example 2, Japanese Patent Application Laid-Open Nos. 7 is shown in Table 3 below.
그리고 실시예 및 비교예에서 제조한 각각의 유리조성물에 대한 변형점, 서냉점, 연화점, 열팽창계수, 고온점도 및 액상온도를 측정하여 다음 표2와 표3에 나타내었다. 여기서, 1014.5포아즈에 해당하는 온도인 변형점과 1013포아즈에 해당하는 온도인 서냉점은 ASTM C336-71 방법으로 측정하였고, 107.6포아즈에 해당하는 온도인 연화점은 ASTM C338-73과 연관된 미국특허 제4,259,860호에서 제시한 방법으로 측정하였고, 30 ∼ 350℃ 사이의 열팽창계수는 DIN 51045에서 제시한 방법으로 측정하였다. 그리고, 고온점도는 DIN 42312의 로테이션법에 의해 측정하였으며, 액상온도는 ASTM C829-81 방법으로 측정하였다.And the strain point, the slow cooling point, the softening point, the coefficient of thermal expansion, the high temperature viscosity and the liquidus temperature for each glass composition prepared in Examples and Comparative Examples were measured and shown in the following Table 2 and Table 3. Here, the strain point corresponding to the temperature of 10 14.5 poise and the slow cooling point corresponding to the temperature of 10 13 poise were measured by the ASTM C336-71 method, and the softening point corresponding to the temperature of 10 7.6 poise is ASTM C338-73. The thermal expansion coefficient between 30 and 350 ° C. was measured by the method given in DIN 51045. The high temperature viscosity was measured by the rotation method of DIN 42312, and the liquidus temperature was measured by the ASTM C829-81 method.
또한, 표2와 표3에서 용융온도라 함은 100 포아즈에 해당하는 온도를 뜻하며, 성형온도라 함은 10000 포아즈에 해당하는 온도를 의미한다. 액상온도에서의 점도값은 점도의 온도의존식, logη=A+B/(T-T0)를 이용하여 계산하였다. 여기서 η는 점도이고, A, B 및 To는 상수이고, T는 온도(℃)이다.In addition, in Table 2 and Table 3, the melting temperature means a temperature corresponding to 100 poise, and the molding temperature means a temperature corresponding to 10000 poise. The viscosity value at the liquidus temperature was calculated using the temperature dependent equation of the viscosity, logη = A + B / (TT 0 ). Where η is the viscosity, A, B and T o are constants and T is the temperature (° C.).
실시예 1 ∼ 9에 나타나는 변형점과 열팽창계수는 프라즈마 기판유리의 특성을 충분히 만족시킴과 동시에 100 포아즈에 해당하는 용융온도는 비교예 1의 Float 판유리처럼 1500℃ 이하를 보이고 있으며, 10000 포아즈에 해당하는 성형온도는 1150℃ 이하로써 Float 공법에 적합하다. 실시예 1 ~ 3에 나타난 성형온도와 액상온도간의 작은 차이와 액상온도에서의 적은 점도값은 P2O5를 미량 첨가함으로써 실시예 7 ∼ 9에 나타난 바와 같이 액상온도가 성형온도 보다 매우 낮게 개선되어 액상온도에서의 점도가 20000 포아즈 이상이 되어 우수한 생산성을 나타내고, 특히 실시예 7이 가장 바람직한 것으로 판단된다. 비교예 4 ∼ 6은 1500℃ 이상의 온도를 나타내고 있어 내화물침식에 의한 용해로 수명에 큰 영향이 있을 것으로 예상되며, 비교예 2, 3 및 7은 용융온도가 매우 낮지만 액상온도가 성형온도 보다 높아 생산성이 매우 낮다. 특히, 비교예 7은 ZnO를 첨가함으로써 오히려 유리의 특성이 전반적으로 열악하게 되어 프라즈마 기판유리로서는 적합치 않음을 보여주고 있다.The strain point and thermal expansion coefficient shown in Examples 1 to 9 satisfactorily satisfy the properties of the plasma substrate glass, and the melting temperature corresponding to 100 poise shows 1500 ° C or lower, similar to the float plate glass of Comparative Example 1, and 10000 poise. Corresponding molding temperature is 1150 ℃ or less, which is suitable for Float process. The small difference between the molding temperature and the liquidus temperature and the small viscosity value in the liquidus temperature shown in Examples 1 to 3 were improved by the addition of a small amount of P 2 O 5 so that the liquidus temperature was much lower than the molding temperature as shown in Examples 7 to 9. The viscosity at the liquidus temperature was 20,000 poises or more, indicating excellent productivity, and in particular, Example 7 was determined to be the most preferable. Comparative Examples 4 to 6 exhibit a temperature of 1500 ° C. or higher, which is expected to have a significant effect on the life of the furnace due to refractory erosion. Comparative Examples 2, 3, and 7 have a low melting temperature but a higher liquidus temperature than the molding temperature, resulting in higher productivity. This is very low. In particular, Comparative Example 7 shows that the addition of ZnO makes the glass generally poor, which is not suitable as a plasma substrate glass.
본 발명의 영상표시판넬용 기판유리조성물은 액상온도가 성형온도보다 낮으면서 액상온도에서의 점도가 높아 생산성이 높으며, 일반 소다라임 실리케이트계 판유리와 비교해서 고변형점 및 저팽창성이어서 프라즈마 영상표시판넬용 기판유리로서 매우 유용하다.The substrate glass composition for an image display panel of the present invention has a high productivity due to its low liquidus temperature at a liquidus temperature and high viscosity at a liquidus temperature. It is very useful as substrate glass.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960054985A KR100274375B1 (en) | 1996-11-18 | 1996-11-18 | Glass composition for display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960054985A KR100274375B1 (en) | 1996-11-18 | 1996-11-18 | Glass composition for display panel |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980036419A true KR19980036419A (en) | 1998-08-05 |
KR100274375B1 KR100274375B1 (en) | 2000-12-15 |
Family
ID=19482260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960054985A KR100274375B1 (en) | 1996-11-18 | 1996-11-18 | Glass composition for display panel |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100274375B1 (en) |
-
1996
- 1996-11-18 KR KR1019960054985A patent/KR100274375B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100274375B1 (en) | 2000-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5958812A (en) | Compositions of silico-sodo-calcic glasses and their applications | |
US5925583A (en) | Heat-resistant glass composition | |
US6313052B1 (en) | Glass for a substrate | |
US8377834B2 (en) | Glass composition for substrates and process for its production | |
KR100395116B1 (en) | Substrate Glasses for Plasma Displays | |
JPH10291833A (en) | Silica-soda-line glass composition | |
US20090325777A1 (en) | Silico-sodo-calcic glass composition for the production of substrates | |
JP4898792B2 (en) | High-deformation point glass composition for substrates | |
KR20080055969A (en) | Display panel | |
EP0729922A1 (en) | Glasses for display panels | |
JP2001226138A (en) | Glass substrate for flat panel display device | |
KR100238117B1 (en) | Substrate glasses for plasma display panel | |
JP2000072472A (en) | Heat-resistant glass composition and plasma display panel using it | |
KR100274375B1 (en) | Glass composition for display panel | |
KR100437139B1 (en) | Glass Composition for Plasma Image Display Panel | |
KR20060129020A (en) | Glass sheets for the use of metallic deposits and resists for coloring that can be induced by such deposits | |
KR100431727B1 (en) | Substrate glasses for plasma display panel | |
KR100394094B1 (en) | Substrate glass composition for plasma image display panel | |
JP4183697B2 (en) | Manufacturing method of substrate glass for display devices | |
JP2008044834A (en) | Glass substrate for flat panel display, method of manufacturing the same and display panel using the same | |
JP3456631B2 (en) | Low melting point glass for forming transparent insulating film | |
KR100431728B1 (en) | Glass Composition for Plasma Image Display Panel | |
KR20050096653A (en) | Glass composition for plasma display panel | |
KR20050045480A (en) | A composition of substrate glass for plasma display panel | |
KR20030018361A (en) | Glass for Plasma Display Panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19961118 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19971014 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 19961118 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 19991028 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20000609 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20000908 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20000909 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20030421 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20040331 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20050321 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20060330 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20070809 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20080901 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20090611 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20100617 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20110616 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20120711 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20120711 Start annual number: 13 End annual number: 13 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20140809 |