[go: up one dir, main page]

KR19980018089A - Stereoselective Preparation of Transazetidinone - Google Patents

Stereoselective Preparation of Transazetidinone Download PDF

Info

Publication number
KR19980018089A
KR19980018089A KR1019970016153A KR19970016153A KR19980018089A KR 19980018089 A KR19980018089 A KR 19980018089A KR 1019970016153 A KR1019970016153 A KR 1019970016153A KR 19970016153 A KR19970016153 A KR 19970016153A KR 19980018089 A KR19980018089 A KR 19980018089A
Authority
KR
South Korea
Prior art keywords
compound
formula
reaction
acid
present
Prior art date
Application number
KR1019970016153A
Other languages
Korean (ko)
Other versions
KR100205769B1 (en
Inventor
황태섭
권희안
이미정
이인희
윤택현
이수진
안찬용
Original Assignee
이병언
주식회사 중외제약
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이병언, 주식회사 중외제약 filed Critical 이병언
Publication of KR19980018089A publication Critical patent/KR19980018089A/en
Application granted granted Critical
Publication of KR100205769B1 publication Critical patent/KR100205769B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/06Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D205/08Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/48Compounds containing oxirane rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Epoxy Compounds (AREA)

Abstract

본 발명은 카바페넴 및 페넴계의 β-락탐항생제의 중요 중간체인 (3S, 4S)-3-[(1'R)-1'-히드록시에틸]-4-알콕시카르보닐-알킬-2-아제티디논을 입체선택적으로 제조하는 방법에 관한 것이다.The present invention relates to (3S, 4S) -3-[(1'R) -1'-hydroxyethyl] -4-alkoxycarbonyl-alkyl-2-, an important intermediate of carbapenem and penem-based lactam antibiotics. The present invention relates to a method for stereoselectively preparing azetidinone.

본 발명의 목적화합물은 우수한 경제성과 함께 높은 합성수율을 얻을 수 있는 특징과 장점들이 있는 것이다.The target compound of the present invention has the features and advantages to obtain a high synthetic yield with excellent economy.

Description

트랜스아제티디논의 입체선택적 제조방법Stereoselective Preparation of Transazetidinone

본 발명은 카바페넴 및 페넴계의 β-락탐항생제의 중요 중간체인 하기 일반식(I)의 (3S,4S)-3-[(1'R)-1'-히드록시에틸]-4-알콕시카르보닐-2-아제티디논(이하 트랜스아제티디논으로 약칭)을 천연에 풍부하게 존재하는 α-아미노산인 L-트레오닌을 출발물질로 하여 입체선택적으로 제조하는 방법에 관한 것이다.The present invention relates to (3S, 4S) -3-[(1'R) -1'-hydroxyethyl] -4-alkoxy of the following general formula (I), which is an important intermediate of carbapenem and penem-based lactam antibiotics The present invention relates to a method for stereoselectively preparing carbonyl-2-azetidinone (hereinafter, abbreviated as transazetidinone) using L-threonine, which is an α-amino acid which is abundant in nature, as a starting material.

(식중, R1은 C1~4인 저급알킬기를 나타내고, R2는 β-락탐환 보호기중 아릴기 혹은 치환된 벤질, 특히 4-메톡시페닐기, 2,4-디메톡시벤질을 나타낸다.)(Wherein R 1 represents a lower alkyl group having 1 to 4 carbon atoms, and R 2 represents an aryl group or substituted benzyl, in particular 4-methoxyphenyl group, 2,4-dimethoxybenzyl, in the β-lactam ring protecting group.)

본 발명의 목적물질인 일반식(I)의 트랜스아제티디논은 이미 공지된 화합물로서 그 제조 방법에 대해서는 시오자키등(Tetrahedron, 40권, 1795쪽)에 의해 보고되어 있는 바 그 내용을 간략하게 소개하면 다음과 같다.The transazetidinone of general formula (I), which is the target substance of the present invention, is a known compound and its preparation method has been reported by Shiozaki et al. (Tetrahedron, Vol. 40, p. 1795). Introducing:

하기 도식 1에 나타낸 바와 같이 L-트레오닌을 출발물질로 하여 합성된 하기 구조식(가)의 (2S, 3R)-브로모-3-히드록시-부티릭산을 알킬-N-(아릴 혹은 치환된 벤질)글리시네이트와 커플링 시약(예, 1,3-디시클로헥실카보디아미드; DCC) 존재하에서 반응시켜 하기일반식(나)의 히드록시브로모아미드 화합물을 제조한 후 이를 당량의 알칼리금속류 강염기(예, 리튬헥사메틸디실라자이드; LiHMDS)와 반응시키면 하기일반식(IV)의 에폭시아미드가 수득되고, 다시 동량의 알칼리금속류 강염기로 처리하면 C3-C4β-락탐환 형성반응이 일어나서 하기일반식(I)의 트랜스아제티디논이 합성된다. 이렇게 얻어진 트랜스아제티디논(I)은 필요시 유리수산기를 3급아민 존재하에서 t-부틸디메틸클로로실란으로 보호(Protection)하면 하기 일반식(다)의 실릴에스테르아제티디논을 제조할 수도 있다.As shown in Scheme 1, (2S, 3R) -bromo-3-hydroxy-butyric acid of the following structural formula (A) synthesized with L-threonine as a starting material is alkyl-N- (aryl or substituted benzyl Reaction of glycinate with a coupling reagent (e.g., 1,3-dicyclohexylcarbodiamide; DCC) to prepare a hydroxybromoamide compound of the general formula (I) When reacted with a strong base (e.g., lithium hexamethyldisilazide; LiHMDS), an epoxyamide of the following general formula (IV) is obtained, and when treated with the same amount of an alkali metal strong base, C 3 -C 4 β-lactam ring formation reaction is performed. It arises and the transazetidinone of the following general formula (I) is synthesize | combined. The transazetidinone (I) thus obtained can also be prepared with silyl esterazetidinone of the general formula (C) by protecting the free hydroxyl group with t-butyldimethylchlorosilane in the presence of a tertiary amine if necessary.

도식 1Scheme 1

(식중, R1, R2는 상기 정의한 바와 같으며, TBDMS는 t-부틸디메틸실릴기를 나타낸다.)Wherein R 1 and R 2 are as defined above and TBDMS represents a t-butyldimethylsilyl group.

그러나 본 발명자는 상기 제조방법을 토대로 재현성 실험을 거친 결과 다음과 같은 문제점들을 알아낼 수 있었는데, 첫째 1,3-디시클로헥실카보디이미드를 사용한 축합 반응 수행시 발생되는 부산물(DCU 등)의 제거가 용이하지 않았으며 화합물(나)를 당량의 리튬헥사메틸디실라자이드로 에폭시화(epoxidation)할 때 보고된 수율에 비해 수율이 떨어졌고, 둘째 C3-C4β-락탐환 형성반응에서 상당량의 입체이성체가 발생하여 분리가 어려웠으며, 셋째 합성단계가 까다롭고 복잡하여 상기 일반식(I)의 합성과정에서 심각한 부반응이 일어나 수율이 저하되는 단점이 있었기 때문에 이에 대한 개선의 여지가 남아 있다.However, the present inventors were able to find out the following problems based on the reproducibility experiment based on the preparation method. First, the removal of by-products (DCU, etc.) generated when performing the condensation reaction using 1,3-dicyclohexylcarbodiimide It was not easy and the yield was lower than the reported yield when the compound (b) was epoxidized with the equivalent of lithium hexamethyldisilazide, and secondly, a considerable amount of C 3 -C 4 β-lactam ring formation reaction was observed. Separation was difficult due to the generation of stereoisomers, and since the third synthesis step was difficult and complicated, serious side reactions occurred in the synthesis process of Formula (I), resulting in a decrease in yield.

이에 본 발명자는 상기와 같은 종래의 제조방법상의 문제점들을 해결하기 위해 연구 노력한 결과 본 발명을 완성하게 되었다.The present inventors have completed the present invention as a result of research efforts to solve the problems of the conventional manufacturing method as described above.

본 발명은 천연에 풍부하게 존재하는 저렴한 α-아미노산인 L-트레오닌을 출발물질로 하여 목적 화합물인 트랜스아제티디논(I)을 입체선택적으로 제조하는데 있어서 기존의 제조방법에 비해 전체수율이 높아지고, 공지의 제조방법의 문제점들을 해결한 새로운 제조방법을 제공하는데 그 목적이 있다.In the present invention, the overall yield is higher than that of the conventional manufacturing method for stereoselectively preparing the desired compound, transazetidinone (I), using L-threonine, an inexpensive α-amino acid, which is present in abundance in nature, as a starting material. It is an object of the present invention to provide a new manufacturing method that solves the problems of known manufacturing methods.

이하 본 발명을 합성단계별로 반응식들을 도식화하여 좀더 상세하게 설명하면 하기 도식 2와 같다.Hereinafter, the present invention will be described in more detail by schematizing the reaction schemes for each synthesis step, as shown in Scheme 2 below.

도식 2Scheme 2

(식중, R1, R2는 상기 정의한 바와 같다.)Wherein R 1 and R 2 are as defined above.

먼저 L-트레오닌으로 상기 구조식(II)의 (2R, 3R)-에폭시부틸산을 얻고, 이것을 아릴아민 및 알킬 할로아세테이트로부터 합성된 상기 일반식(III)의 N-아릴알킬글리시네이트와 반응시켜 상기 일반식(IV)의 (2R, 3R)-N-(알킬옥시카보닐)메틸-N-아릴-2,3-에폭시부틸릭아미드(이하, 에폭시아미드로 약칭)을 얻고 이렇게 합성된 일반식(IV)의 화합물을 입체선택적인 아제티디논 고리화 반응을 시키면 상기 일반식(I)의 트랜스아제티디논이 얻어진다.First, L-threonine is used to obtain (2R, 3R) -epoxybutyl acid of formula (II), which is reacted with N-arylalkylglycinate of formula (III) synthesized from arylamine and alkyl haloacetate. (2R, 3R) -N- (alkyloxycarbonyl) methyl-N-aryl-2,3-epoxybutylamide (hereinafter abbreviated as epoxyamide) of the above general formula (IV) and thus synthesized A stereoselective azetidinone cyclization reaction of the compound of (IV) affords the transazetidinone of the general formula (I).

본 발명의 반응식들을 상세히 단계별로 설명하면 다음과 같은데, 먼저 합성 단계 1은 L-트레오닌의 α-아미노기가 반응 중에 생성된 아질산에 의해 디아조화가 일어나고 입체배향의 반전(inversion)없이 할로겐원자로 치환된 후, 강염기에 의해 할로히드린이 에폭사이드로 전환되고 이를 다시 산성화시키면 일반식(II)의 (2R, 3R)-에폭시부틸산이 하나의 반응관내에서 일원화반응(one-pot reaction)으로 제조되는 단계로서, 이미 본 발명자 등이 국내에 출원한 특허[황태섭 등, 한국특허 공개번호 제96-41161호]에 자세한 내용이 수록되어 있으나 본 발명에서는 선행 합성방법을 좀 더 효율적이고 경제적으로 수행하였다. 단계 1의 반응용액 중에서 아질산을 발생시킬 수 있는 시약으로는 황산과 소디움나이트라이트(NaNO2), 황산과 포타슘나이트라이트, 염산과 소디움나이트라이트 혹은 염산과 포타슘나이트라이트 등이 사용될 수 있는데, 이중에서 특히 1 내지 10노르말 염산을 2 내지 10당량 사용하고, 1 내지 8당량의 소디움나이트라이트를 사용했을 때 아질산의 발생이 더욱 효율적이었으며, 할로겐 원자, 특히 클로로 원자의 공급은 염산에 의해 생성된 클로로 음이온(C1-)이 친핵(nucleophile)시약으로 작용함으로써 부가적인 시약의 공급없이 (2S, 3R)-2-클로로-3-히드록시부틸산이 합성되어지며, in situ상태에서 1 내지 10 당량의 가성소다로 처리하면 곧바로 에폭시화가 일어나는데 이때 초기 발열을 잡기 위해 0℃ 내지 실온으로 냉각하는 것이 바람직하다. 그리고 상기 반응용액을 과량의 산, 즉 염산 혹은 황산으로 산성화하여 일반적인 불활성 유기용매로 추출한 후 유기용매를 감압농축하면 다음 반응에 그대로 사용할 수 있는 비교적 순수한 일반식(II)의 (2R, 3R)-에폭시부틸산이 높은 수율로 얻어지는 제조단계이다.The reaction scheme of the present invention will be described in detail as follows. First, in the synthesis step 1, the a-amino group of L-threonine is diazotized by nitrous acid generated during the reaction and is substituted with a halogen atom without inversion of stereo alignment. Thereafter, the halohydrin is converted to the epoxide by a strong base and acidified again so that (2R, 3R) -epoxybutyl acid of the general formula (II) is prepared in a one-pot reaction in one reaction tube. As the present invention, the present inventors have already applied for domestic patents [Hwang Tae-seop et al., Korean Patent Publication No. 96-41161], but the details are included in the present invention, the prior synthesis method was performed more efficiently and economically. As a reagent capable of generating nitrous acid in the reaction solution of step 1, sulfuric acid and sodium nitrite (NaNO 2 ), sulfuric acid and potassium nitrite, hydrochloric acid and sodium nitrite or hydrochloric acid and potassium nitrite may be used. In particular, the use of 2 to 10 equivalents of normal hydrochloric acid and 1 to 8 equivalents of sodium nitrite was more efficient in the generation of nitrous acid, and the supply of halogen atoms, in particular chloro atoms, resulted in chloro anions produced by hydrochloric acid. (C1 -) the nucleophilic (nucleophile) without additional reagent in a reagent supply (2S, 3R) -2- chloro-3-hydroxy-butyl becomes acid is synthesized, 1 to 10 equivalents in the in situ condition caustic soda by acting The epoxidation takes place immediately after treatment with, in which case cooling to 0 ° C. to room temperature is preferred in order to catch initial heat generation. The reaction solution is acidified with an excess of acid, that is, hydrochloric acid or sulfuric acid, extracted with a general inert organic solvent, and the organic solvent is concentrated under reduced pressure to obtain (2R, 3R)- Epoxybutyl acid is a production step obtained in high yield.

본 발명의 단계 2는 아릴아민과 알킬할로아세테이트를 유기용매 존재하에서 탈할로겐화제와 반응시키거나 혹은 유기용매 없이 탈할로겐화제 단독으로 사용하여 일반식(III)의 N-아릴알킬글리시네이트를 제조하는 단계로서, 본 합성에 사용된 아릴아민류들은 아닐린, p-아니시딘, 2,4-디메톡시아닐린, 3,4-디메톡시아닐린 등이 사용될 수 있으나 본 발명에서는 p-아니시딘을 사용하였으며, 알킬할로아세테이트류들은 메틸클로로아세테이트, 메틸브로모아세테이트, 에틸클로로아세테이트, 에틸브로모아세테이트, 에틸요오드아세테이트, n-프로필클로로아세테이트, n-프로필브로모아세테이트, n-부틸클로로아세테이트, n-부틸브로모아세테이트, 이소프로필클로로아세테이트, 이소프로필브로모아세테이트, t-부틸클로로아세테이트 혹은 t-부틸브로모아세테이트 등이 사용될 수 있으나 본 발명에서는 에틸클로로아세테이트를 선택하여 사용하였다. 상기에서 '불활성 유기용매'란 반응에 참가하는 모든 화합물을 용해시킬 수 있고, 반응조건하에서 반응에 참여하지 않거나 또는 반응성을 저하시키지 않으며 부반응을 최소로 억제시키는 유기용매를 의미하며, 헥산 혹은 벤젠 등의 탄화수소류, 디에틸에테르, 테트라히드로퓨란 등의 에테르화합물, 디클로로메탄, 사염화탄소, 1,2-디클로로에탄, 클로로포름 등의 할로겐화 탄화수소류, 메틸아세테이트, 에틸아세테이트 등의 에스테르류, 아세토니트릴, 톨루엔, N,N-디메틸포름아미드 및 메탄올, 에탄올 등의 저급 알콜류 등을 지칭하고 있으며, 탈할로겐화제, 즉 염기로는 n-부틸리튬, 리튬아미드, 소디움아미드, 소디움히드라이드, 포타슘히드라이드 등과 같은 알칼리금속 염기류, 트리에틸아민, 피리딘, DBN, DBU 등과 같은 3급 유기아민류, 암모늄히드록사이드, 가성소다, 포타슘 히드록사이드 등과 같은 알칼리금속 수산화물 등을 사용할 수 있으나, 본 합성 단계에서는 불활성 유기용매를 사용하지 않고 트리에틸아민을 유기용매 및 탈할로겐화제로 단독 사용하였을 때 가장 좋은 결과를 얻었고, 바람직하기로는 트리에틸아민을 2 내지 6당량 사용하는 것이 가장 좋다. 반응 온도는 특별히 한정되지 않지만 실온 내지 환류온도가 일반적이다.In step 2 of the present invention, N-arylalkylglycinate of general formula (III) is reacted by reacting arylamine and alkylhaloacetate with a dehalogenating agent in the presence of an organic solvent or using a dehalogenating agent alone without an organic solvent. As the preparing step, the arylamines used in the synthesis may be aniline, p-anisidine, 2,4-dimethoxyaniline, 3,4-dimethoxyaniline, etc., but p-anisidine was used in the present invention. The alkyl halo acetates include methyl chloro acetate, methyl bromo acetate, ethyl chloro acetate, ethyl bromo acetate, ethyl iodine acetate, n-propylchloro acetate, n-propyl bromoacetate, n-butylchloro acetate, n- Butylbromoacetate, isopropylchloroacetate, isopropylbromoacetate, t-butylchloroacetate or t-butylbromoacetate The agent or the like can be used, but in the present invention was used to select the ethyl chloroacetate. As used herein, the term 'inert organic solvent' refers to an organic solvent capable of dissolving all compounds participating in a reaction, not participating in a reaction under reaction conditions or reducing reactivity, and minimizing side reactions, such as hexane or benzene. Ether compounds such as hydrocarbons, diethyl ether, tetrahydrofuran, halogenated hydrocarbons such as dichloromethane, carbon tetrachloride, 1,2-dichloroethane, chloroform, esters such as methyl acetate, ethyl acetate, acetonitrile, toluene, N, N-dimethylformamide and lower alcohols such as methanol and ethanol, and the like, and dehalogenation agents, i.e., alkali such as n-butyllithium, lithiumamide, sodium amide, sodium hydride, potassium hydride, etc. Tertiary organic amines such as metal bases, triethylamine, pyridine, DBN, DBU, etc., ammonium hydroxide Alkali metal hydroxides such as sodium hydroxide, caustic soda, potassium hydroxide and the like can be used. However, the best results were obtained when triethylamine was used alone as an organic solvent and a dehalogenation agent without using an inert organic solvent. Preferably, 2 to 6 equivalents of triethylamine are used. Although reaction temperature is not specifically limited, Room temperature to reflux temperature is common.

본 발명의 단계 3은 단계 1과 단계 2에서 각각 수득된 (2R,3R)-에폭시부틸산(II) 및 N-아릴알킬글리시네이트(III)를 아미드 결합 커플링 시약을 이용하여 일반식(IV)의 에폭시아미드 화합물을 합성하는 단계로서, 본 반응에 일반적으로 적용될 수 있는 아미드 커플링 방법들은 산-할라이드(acid halide)법, 혼합 무수물(mixed anhydride)법 혹은 활성 에스테르(active ester)법 등이 있으나 본 합성단계에서는 특히 혼합무수물법이 부반응을 최소한으로 줄이면서 완화된 반응조건하에서 수율을 증가시키는 방법임을 알 수 있었다. 이러한 혼합무수물법에 사용되는 활성화제로는 에틸클로로포메이트, 이소프로필클로로포메이트, 이소부틸클로로포메이트 등이 사용될 수 있으나 본 발명에서는 에틸클로로포메이트를 1 내지 3당량 사용했을 때 가장 좋은 결과가 얻어졌고, 사용되는 유기용매는 상기 언급한 불활성 유기용매들 중에서 특히 디클로로메탄, 클로로포름 또는 에틸아세테이트를 사용함이 바람직하고 발생되는 염산(HCl)을 제거하기 위한 스케빈져(scavenger)로는 트리에틸아민, 피리딘, N,N-디메틸아미노피리딘, N-메틸몰폴린, 바이싸이클릭 아민류(DBN, DBU 등) 등의 3급 아민류가 사용될 수 있으며, 이중에서 트리에틸아민 혹은 N-메틸몰폴린을 1 내지 5당량 사용하는 것이 좋고 반응온도는 -40℃ 내지 실온에서 실시함이 바람직하다.In step 3 of the present invention, (2R, 3R) -epoxybutyl acid (II) and N-arylalkylglycinate (III) obtained in steps 1 and 2, respectively, are prepared using an amide bond coupling reagent. In the step of synthesizing the epoxyamide compound of IV), the amide coupling methods that can be generally applied to the reaction include an acid halide method, a mixed anhydride method or an active ester method. In this synthesis step, however, the mixed anhydride method was found to increase the yield under moderate reaction conditions with minimal side reactions. Ethylchloroformate, isopropylchloroformate, isobutylchloroformate and the like may be used as the activator used in the mixed anhydride method, but in the present invention, the best results are obtained when 1 to 3 equivalents of ethylchloroformate are used. The organic solvent used is preferably dichloromethane, chloroform or ethyl acetate among the above-mentioned inert organic solvents, and triethylamine, as a scavenger for removing hydrochloric acid (HCl) generated, Tertiary amines such as pyridine, N, N-dimethylaminopyridine, N-methylmorpholine, bicyclic amines (DBN, DBU, etc.) may be used, among which triethylamine or N-methylmorpholine is 1 to It is preferable to use 5 equivalents, and it is preferable to carry out reaction temperature at -40 degreeC to room temperature.

본 발명의 단계 4는 시오자키 등이 보고한 공지의 기술과 맥락은 같이하고 있으나 경제적인 측면 및 산업화 관점에서 우수함을 보여주는 합성단계로서 앞서 합성된 에폭시아미드(IV)를 알칼리금속 아미드류와 촉매량의 루이스산(Lewis acid)을 사용하거나 혹은 알칼리금속 아미드류와 촉매량의 2급 아민류를 사용하여 반응시킴으로써 일반식(I)의 트랜스아제티디논을 높은 수율로 합성하는 단계이다. 여기에 사용된 알칼리금속 아민류는 리튬아미드, 소디움아미드, 리튬헥사메틸디실라자이드, 리튬디이소프로필아미드, 리튬디시클로헥실아미드 등이 사용될 수 있다. 루이스산은 아연, 망간, 주석, 티타늄, 알루미늄 혹은 보론 등의 양쪽성 원소 혹은 천이 원소의 할라이드류가 사용될 수 있는데 이중에서 특히 ZnCl2및 ZnBr2가 우수한 결과를 나타냈으며, 2급 아민류는 디메틸아민, 디에틸아민, 디시클로펜틸아민, 디시클로헥산아민, 헥사메틸디살라잔 등이 사용될 수 있으나, 특히 헥사메틸디실라잔을 촉매(catalyst)로 사용하는 것이 바람직하다. 상기 단계 4에 사용되는 불활성 유기용매로는 디클로로메탄 혹은 THF 등이 사용될 수 있으며 반응온도는 -20℃ 내지 환류온도 범위내에서 진행하는 것이 바람직하다. 본 발명의 4단계는 공지이 기술에 비해 여러 측면에서 강점을 나타내고 있는데 첫째 공지의 기술에 의하면 고가의 리튬헥사메틸디실라자이드(LiHMDS)를 1당량 사용하여 61%의 수율밖에는 얻지 못했으나 본 발명에서는 당량의 LiHMDS와 촉매량의 ZnBr2를 사용하여 수율을 대폭 향상시켰으며, 또한 상업적으로 널리 이용되는 저렴한 리튬 아미드(LiNH2)를 주 염기로 작용시키고 헥사메틸디실라잔을 촉매량 사용함으로써 합성원가 차원에서 우수한 결과를 얻을 수 있었다. 둘째, 반응 수율에 있어서도 본 발명의 단계 4는 반응 수율이 86% 혹은 84%로서 공지 기술의 61%에 비해 수율이 월등히 개선되었다. 셋째, 반응기전면에서 비교해보면 공지기술은 THF 용매상에서 열역학적 조절(thermodynamic control)에 의해 원하지 않는 이성체가 상당량 발생하나 본 발명의 방법은 CH2Cl2용매하에서 운동역학적 조절(Kinetic control)을 함으로써 이성체 발생을 근본적으로 제거한 장점이 있다.Step 4 of the present invention is a synthesizing step that shows the same technology and context as known by Shiozaki et al., But is superior in terms of economics and industrialization. It is a step of synthesizing transazetidinone of general formula (I) in a high yield by using Lewis acid or by using an alkali metal amide and a catalytic amount of secondary amines. As the alkali metal amines used herein, lithium amide, sodium amide, lithium hexamethyldisilazide, lithium diisopropylamide, lithium dicyclohexylamide, and the like can be used. Lewis acids may be halides of amphoteric or transition elements such as zinc, manganese, tin, titanium, aluminum, or boron. Among these, ZnCl 2 and ZnBr 2 have excellent results. Secondary amines are dimethylamine, Diethylamine, dicyclopentylamine, dicyclohexaneamine, hexamethyldisalazan and the like can be used, but it is particularly preferable to use hexamethyldisilazane as a catalyst. Dichloromethane or THF may be used as the inert organic solvent used in step 4, and the reaction temperature is preferably in the range of -20 ° C to reflux temperature. The fourth step of the present invention shows strengths in several aspects compared to the known technique. According to the first known technique, only 61% yield was obtained by using 1 equivalent of expensive lithium hexamethyldisilazide (LiHMDS). using the equivalent of LiHMDS and a catalytic amount of ZnBr 2 in stylized significantly improve the yield, and also in the synthesis cost level by acting an inexpensive lithium amide (LiNH 2) which are widely used commercially as a main base and using hexamethyldisilazane catalytic amount Excellent results were obtained. Second, also in the reaction yield, step 4 of the present invention, the reaction yield is 86% or 84%, the yield is significantly improved compared to 61% of the known technology. Third, in comparison with the front of the reactor, the known technique generates a considerable amount of unwanted isomers by thermodynamic control in THF solvent, but the method of the present invention generates isomers by performing kinetic control in CH 2 Cl 2 solvent. There is an advantage that eliminated fundamentally.

본 발명을 다음 실시예에 의하여 보다 상세히 설명하나, 본 발명이 이에 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

실시예 1 : (2R, 3R)-에폭시부틸릭산의제조Example 1 Preparation of (2R, 3R) -Epoxybutylic Acid

7,5N-HCl 90ml를 냉각하고 여기에 L-트레오닌 20g(0.15몰)을 투입하여 완전히 용해시킨 후 반응온도를 5~10℃로 유지하면서 NaNO218.2g을 소량씩 5시간에 걸쳐 투입하였다. 상기 반응온도의 내부온도를 0℃로 냉각시키고 40% NaOH 용액을 서서히 적가한 후 실온에서 15시간 동안 교반한 다음, 반응온도의 상승을 억제하면서 6N-HCl로 산성화(pH 2.0)하고 에틸아세테이트 400ml씩 2회 추출한 다음 합쳐진 유기층을 망초 10g으로 건조한 후 감압농축하면 비교적 순수한 표제화합물 14.3g(90%)이 얻어진다. 이것은 더 이상의 정제과정없이 다음 반응에 사용하였다.After cooling 90 ml of 7,5N-HCl, 20 g (0.15 mol) of L-threonine was completely dissolved therein, 18.2 g of NaNO 2 was added in small portions over 5 hours while maintaining the reaction temperature at 5 to 10 ° C. After cooling the internal temperature of the reaction temperature to 0 ℃ and slowly added dropwise 40% NaOH solution and stirred for 15 hours at room temperature, acidified with 6N-HCl (pH 2.0) while inhibiting the increase of the reaction temperature and 400ml of ethyl acetate After extracting twice, the combined organic layers were dried over 10 g of forget-me-not and concentrated under reduced pressure to obtain 14.3 g (90%) of a relatively pure title compound. This was used for the next reaction without further purification.

1H-NMR(300MHz, CDCl3) δ ; 1.44(3H, d, J=5.33Hz), 3.38(1H, m), 1 H-NMR (300 MHz, CDCl 3 ) δ; 1.44 (3H, d, J = 5.33 Hz), 3.38 (1H, m),

3.57(1H, d, J=4.72Hz), 9~10(acid-H, brs) ppm.3.57 (1H, d, J = 4.72 Hz), 9-10 (acid-H, brs) ppm.

[α]D=-10.2(c=0.5, MeOH)[a] D = -10.2 (c = 0.5, MeOH)

실시예 2~6 : (2R, 3R)-에폭시부틸릭산의 제조Examples 2-6: Preparation of (2R, 3R) -Epoxybutylic Acid

출발물질로서 1당량의 L-트레오닌을 사용하고 실시예 1의 공정과 같이 반응을 진행시킨 결과 표제화합물이 하기 표 1의 수율로 얻어졌다.The reaction was carried out in the same manner as in Example 1 using 1 equivalent of L-threonine as a starting material, and the title compound was obtained in the yield shown in Table 1 below.

실시예 7 : 에틸 N-p-메톡시페닐 글리시네이트의 제조Example 7 Preparation of Ethyl N-p-methoxyphenyl Glycinate

p-아니시딘 20g(0.16몰)을 트리에틸아민 100ml에 가열 용해시키고 내부온도 50℃를 유지하면서 에틸클로로아세테이트 23.3ml(0.22몰)를 가하고 환류조건하에서 30분간 교반하였다. 반응이 종결된 후 반응 내부온도를 서서히 내리고 물/메탄올(2/1)용액 500ml를 가해 격렬하게 교반하면 엷은 황색을 띈 결정이 생성된다. 이렇게 생성된 고체를 감압여과한 후 진공건조하여 황갈색의 표제화합물을 순수하게 얻었다.20 g (0.16 mole) of p-anisidine was dissolved in 100 ml of triethylamine, and 23.3 ml (0.22 mole) of ethylchloroacetate was added while maintaining an internal temperature of 50 占 폚 and stirred for 30 minutes under reflux conditions. After completion of the reaction, the temperature inside the reaction is slowly lowered and vigorously stirred with 500 ml of water / methanol (2/1) solution to form pale yellow crystals. The solid thus produced was filtered under reduced pressure and dried in vacuo to afford the title compound as a tan.

1H-NMR(300MHz, CDCl3) δ ; 1.26(3H, t, J=7.2Hz), 3.74(3H, s), 3.86(2H, s), 4.23(2H, m), 6.6(2H, d, J=10Hz), 6.78(2H, d, J=10Hz) ppm. 1 H-NMR (300 MHz, CDCl 3 ) δ; 1.26 (3H, t, J = 7.2 Hz), 3.74 (3H, s), 3.86 (2H, s), 4.23 (2H, m), 6.6 (2H, d, J = 10 Hz), 6.78 (2H, d, J = 10 Hz) ppm.

실시예 8~12 : 알킬 N-p-메톡시페닐 글리시네이트의 제조Examples 8-12: Preparation of Alkyl N-p-methoxyphenyl Glycinate

p-아니시딘을 1당량 사용하고 알킬 할로 아세테이트를 1.33당량 사용했을 때 하기 표 2의 다양한 반응조건 하에서 표제화합물이 다음과 같은 수율로 얻어졌다.When 1 equivalent of p-anisidine and 1.33 equivalent of alkyl halo acetate were used, the title compound was obtained in the following yield under various reaction conditions shown in Table 2 below.

실시예 13 : (2R, 3R)-N-(에톡시카르보닐)메틸-N-p-메톡시페닐-2,3-에폭시 부틸릭아미드의 제조Example 13: Preparation of (2R, 3R) -N- (ethoxycarbonyl) methyl-N-p-methoxyphenyl-2,3-epoxy butyrylamide

(2R, 3R)-에폭시부틸릭산 14.3g(0.1몰)을 클로로포름 300ml에 용해시키고 -30℃로 냉각한 후 N-메틸몰폴린 20ml(0.18몰)을 가하고 에틸클로로포메이트 17.4ml(0.18몰)를 서서히 적가한 다음 30분간 강하게 교반하였다. 상기 용액에 실시예 7에서 합성된 에틸 N-p-메톡시페닐 글리시네이트 29.2g(0.14몰)을 투입하고 반응온도를 실온으로 올린 후 10시간 동안 교반하면 반응이 종결되는데 반응이 끝난 후 묽은 염산 적당량을 가해 유기층을 세척하고, 연속적으로 5% NaHCO3및 포화 소금물로 세척한 다음 망초로 건조하고 감압농축하면 불순한 표제화합물 45g이 얻어진다. 이렇게 얻어진 불순물 표제화합물 45g을 컬럼 크로마토그래피법(EA/Hex=1/2)으로 정제하여 순수한 미황색 오일상의 표제화합물 34.5g(84%)을 얻었다.14.3 g (0.1 mol) of (2R, 3R) -epoxybutylic acid was dissolved in 300 ml of chloroform, cooled to -30 ° C, 20 ml (0.18 mol) of N-methylmorpholine was added, and 17.4 ml (0.18 mol) of ethylchloroformate. Was slowly added dropwise and stirred vigorously for 30 minutes. 29.2 g (0.14 mol) of ethyl Np-methoxyphenyl glycinate synthesized in Example 7 was added to the solution and the reaction temperature was raised to room temperature, followed by stirring for 10 hours. The reaction was terminated. The organic layer was added, washed successively with 5% NaHCO 3 and saturated brine, dried over forget-me-not and concentrated under reduced pressure to yield 45 g of impure title compound. 45 g of the impurity title compound thus obtained was purified by column chromatography (EA / Hex = 1/2) to obtain 34.5 g (84%) of the title compound as a pure pale yellow oil.

1H-NMR(300MHz, CDCl3) δ ; 1.27(3H, t, J=7.2Hz), 1.42(3H, d, J=5.4Hz), 3.05(1H, m), 3.30(1H, d, J=4.5Hz), 3.83(3H, s), 4.14(1H, d, J=17.1Hz), 4.19(2H, q, J=7.2Hz), 4.66(1H, d, J=17.1Hz), 6.95(2H, d, J=10Hz), 7.29(2H, d, J=10Hz) ppm. 1 H-NMR (300 MHz, CDCl 3 ) δ; 1.27 (3H, t, J = 7.2 Hz), 1.42 (3H, d, J = 5.4 Hz), 3.05 (1H, m), 3.30 (1H, d, J = 4.5 Hz), 3.83 (3H, s), 4.14 (1H, d, J = 17.1 Hz), 4.19 (2H, q, J = 7.2 Hz), 4.66 (1H, d, J = 17.1 Hz), 6.95 (2H, d, J = 10 Hz), 7.29 (2H , d, J = 10 Hz) ppm.

실시예 14~21 : (2R, 3R)-N-(에톡시카르보닐)메틸-N-p-메톡시페닐-2,3-에폭시부틸릭아미드의 제조Examples 14-21: Preparation of (2R, 3R) -N- (ethoxycarbonyl) methyl-N-p-methoxyphenyl-2,3-epoxybutylarylamide

(2R, 3R)-에폭시부틸릭산을 1당량 사용하고 다양한 커플링 방법을 적용하여 실시예 13을 토대로 반응을 진행시킨 결과 표제화합물이 하기 표 3의 수율로 얻어졌다.The reaction was carried out based on Example 13 using 1 equivalent of (2R, 3R) -epoxybutylic acid and various coupling methods to obtain the title compound in the yield shown in Table 3.

실시예 22 : (3S, 4S)-3-[(1'R)-1'-히드록시에틸]-4-에톡시카르보닐-1-p-메톡시페닐-2-아제티디논의 제조Example 22 Preparation of (3S, 4S) -3-[(1'R) -1'-hydroxyethyl] -4-ethoxycarbonyl-1-p-methoxyphenyl-2-azetidinone

(방법 A)(Method A)

질소 존재하에서 에폭시아미드(IV) 20g(68밀리몰)을 THF 300ml에 용해시키고 ZnBr22.3g(10밀리몰)을 가한 다음 반응용액을 -10℃로 냉각시키고 1몰-리튬 헥사메틸디실라자이드 80ml(80밀리몰)를 빠르게 적가한 다음 반응온도를 서서히 0℃까지 올린 후 묽은 염산 적당량을 가해 반응을 종결시키고 디클로로메탄 600ml로 희석한 다음 유기층을 분리하고 10% NaHCO3용액 및 포화 소금물로 세척하고 감압농축하면 불순한 표제화합물이 얻어진다. 이 잔사를 짧은 관 크로마토그래피법(CH2Cl2/acetone=20/1)으로 정제하여 미황색의 침상결정상의 순수한 표제화합물 17.2g(86%)을 얻었다.20 g (68 mmol) of epoxyamide (IV) was dissolved in 300 ml of THF in the presence of nitrogen, 2.3 g (10 mmol) of ZnBr 2 were added, the reaction solution was cooled to -10 DEG C and 80 ml (1 mol-lithium hexamethyldisilazide). 80 mmol) was added drop wise and the reaction temperature was gradually raised to 0 ° C. and the reaction was terminated by adding an appropriate amount of dilute hydrochloric acid, diluted with 600 ml of dichloromethane. The organic layer was separated, washed with 10% NaHCO 3 solution and saturated brine, and concentrated under reduced pressure. This gives an impure title compound. The residue was purified by short column chromatography (CH 2 Cl 2 / acetone = 20/1) to give 17.2 g (86%) of the title compound as a slightly yellow needle.

1H-NMR(300MHz, CDCl3) δ ; 1.27(3H, t, J=7.2Hz), 1.39(3H, d, J=6.4Hz), 2.51(1H, d, J=4.5Hz), 3.36(1H, dd, J=2.5 and 4.0Hz), 3.77(3H, s), 4.27(2H, m), 4.35(1H, m), 4.57(1H, d, J=2.5Hz), 6.85(2H, d, J=10Hz), 7.23(2H, d, J=10Hz) ppm. 1 H-NMR (300 MHz, CDCl 3 ) δ; 1.27 (3H, t, J = 7.2 Hz), 1.39 (3H, d, J = 6.4 Hz), 2.51 (1H, d, J = 4.5 Hz), 3.36 (1H, dd, J = 2.5 and 4.0 Hz), 3.77 (3H, s), 4.27 (2H, m), 4.35 (1H, m), 4.57 (1H, d, J = 2.5 Hz), 6.85 (2H, d, J = 10 Hz), 7.23 (2H, d, J = 10 Hz) ppm.

(방법 B)(Method B)

질소 존재하에서 에폭시아미드(IV) 20g(68밀리몰)을 CH2Cl2400ml에 용해시키고 리튬아미드 3.1g(136 밀리몰)과 헥사메틸디실라잔 1.6ml(7.48 밀리몰)을 가한 후 환류가 시작되는 시점에 에탄올 1ml를 가한 다음 5시간 동안 환류시킨다. 반응이 완결된 후 상기(방법 A)의 후처리 방법과 동일하게 진행하여 순수한 표제화합물 14.4g(84%)을 얻었다.20 g (68 mmol) of epoxyamide (IV) was dissolved in 400 ml of CH 2 Cl 2 in the presence of nitrogen, and 3.1 g (136 mmol) of lithium amide and 1.6 ml (7.48 mmol) of hexamethyldisilazane were added to reflux. 1 ml of ethanol was added thereto and then refluxed for 5 hours. After the reaction was completed, the process was carried out in the same manner as the post-treatment method of (A) to obtain 14.4 g (84%) of the pure title compound.

Claims (5)

일반식(IV)의 화합물을 입체선택적인 아제티디논 고리화 반응을 시켜 일반식(I)의 화합물을 얻는 것을 특징으로 하는 제조방법.A process for producing a compound of formula (I) by subjecting a compound of formula (IV) to a stereoselective azetidinone cyclization reaction. (식중, R1는 C1~4인 저급알킬기를 나타내고, R2는 β-락탐환 보호기중 아릴기 혹은 치환된 벤질을 나타낸다.)(Wherein R 1 represents a lower alkyl group having 1 to 4 carbon atoms, and R 2 represents an aryl group or substituted benzyl in a β-lactam ring protecting group.) 제1항에 있어서, 아제티디논 고리화 반응은 알카리금속아미드류와 촉매량의 루이스산 또는 알칼리금속 아미드류와 촉매량의 2급 아민류를 사용하여 수행되는 것을 특징으로 하는 제조방법.The process according to claim 1, wherein the azetidinone cyclization reaction is carried out using alkali metal amides and catalytic amounts of Lewis acid or alkali metal amides and catalytic amount of secondary amines. 제1항에 있어서, 일반식(IV)의 화합물이 일반식(II)의 화합물과 일반식(III)의 화합물을 반응시켜 얻는 것을 특징으로 하는 제조방법.The process according to claim 1, wherein the compound of formula (IV) is obtained by reacting a compound of formula (II) with a compound of formula (III). (식중, R1및 R2는 상기 정의한 바와 같다.)Wherein R 1 and R 2 are as defined above. 제3항에 있어서, 일반식(II)의 화합물은 L-트레오닌을 산과 아질산염을 반응시켜 얻는 것을 특징으로 하는 제조방법.4. A process according to claim 3, wherein the compound of formula (II) is obtained by reacting L-threonine with an acid and nitrite. 제3항에 있어서, 일반식(III)의 화합물은 아릴아민과 알킬할로아세테이트를 탈할로겐화제와 반응시켜 얻는 것을 특징으로 하는 제조방법.4. A process according to claim 3, wherein the compound of formula (III) is obtained by reacting an arylamine with an alkylhaloacetate with a dehalogenating agent.
KR1019970016153A 1996-08-24 1997-04-29 Stereoselective preparation method of transazetidinone KR100205769B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR101996035355 1996-08-24
KR1019960035355A KR100205768B1 (en) 1996-08-24 1996-08-24 Stereo-selective composition of 4-acetoxyazetidinone

Publications (2)

Publication Number Publication Date
KR19980018089A true KR19980018089A (en) 1998-06-05
KR100205769B1 KR100205769B1 (en) 1999-07-01

Family

ID=19470687

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1019960035355A KR100205768B1 (en) 1996-08-24 1996-08-24 Stereo-selective composition of 4-acetoxyazetidinone
KR1019970016152A KR19980018088A (en) 1996-08-24 1997-04-29 Stereoselective Preparation of 4-acetoxyazetidinone
KR1019970016153A KR100205769B1 (en) 1996-08-24 1997-04-29 Stereoselective preparation method of transazetidinone

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1019960035355A KR100205768B1 (en) 1996-08-24 1996-08-24 Stereo-selective composition of 4-acetoxyazetidinone
KR1019970016152A KR19980018088A (en) 1996-08-24 1997-04-29 Stereoselective Preparation of 4-acetoxyazetidinone

Country Status (4)

Country Link
JP (2) JP4108130B2 (en)
KR (3) KR100205768B1 (en)
AU (2) AU2713297A (en)
WO (2) WO1998007690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100654963B1 (en) * 2004-08-24 2006-12-06 임광민 Method for preparing an amide compound

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087500A (en) * 2000-12-23 2002-11-23 주식회사대웅제약 A process for preparing 3-substituted azetidinone
WO2002100341A2 (en) * 2001-06-12 2002-12-19 Wellstat Therapeutics Corporation Compounds for the treatment of metabolic disorders
WO2007004028A2 (en) * 2005-06-30 2007-01-11 Ranbaxy Laboratories Limited Processes for the preparation of penems and its intermediate
CN101177416B (en) * 2006-11-06 2011-06-08 上海医药工业研究院 (2'S,3'R,4S)-3-[2'-(N-substituted aminomethyl)-3'-hydroxy butyryl]-4-substituted oxazolidin-2-ketone derivative and preparation method thereof
CN101684110B (en) * 2008-09-22 2014-02-12 浙江九洲药业股份有限公司 A kind of preparation method of azetidinone derivative
US9637746B2 (en) 2008-12-15 2017-05-02 Greenlight Biosciences, Inc. Methods for control of flux in metabolic pathways
ES2718844T3 (en) 2010-05-07 2019-07-04 Greenlight Biosciences Inc Methods to control the flow in metabolic pathways by relocating enzymes
DK3219796T3 (en) 2010-08-31 2020-12-21 Greenlight Biosciences Inc PROCEDURES FOR MONITORING FLOW IN METABOLIC REACTIONS BY PROTEASE MANIPULATION
CN102002066B (en) * 2010-11-01 2013-10-02 山东鑫泉医药中间体有限公司 Synthesis method of 4-acetoxyl-2-azetidinone
KR101314955B1 (en) 2011-02-21 2013-10-04 강원대학교산학협력단 Process for the preparation of intermediate of penem antibiotic
CN102336696A (en) * 2011-07-15 2012-02-01 浙江海翔川南药业有限公司 Intermediate for synthesizing 4-AA and preparation method and application thereof
SG2014014377A (en) 2011-09-09 2014-05-29 Greenlight Biosciences Inc Cell-free preparation of carbapenems
CN102432632A (en) * 2011-09-16 2012-05-02 上海悦昂化学有限公司 Method for preparing (3R,4R)-3-[(1R)tert-butyl-dimethyl-silyloxyethyl]-4-acetoxyl-2-azetidinone
SG11201600898YA (en) 2013-08-05 2016-03-30 Greenlight Biosciences Inc Engineered proteins with a protease cleavage site
MY193444A (en) 2015-03-30 2022-10-13 Greenlight Biosciences Inc Cell-free production of ribonucleic acid
CN105153075A (en) * 2015-08-31 2015-12-16 江苏瑞克医药科技有限公司 After-treatment method for improving purity of imipenem key midbody 2, 3-epoxybutylate
KR102536687B1 (en) 2016-04-06 2023-05-25 그린라이트 바이오사이언시스, 아이엔씨. Cell-free production of ribonucleic acid
CN106008585B (en) * 2016-05-20 2018-07-17 上海应用技术学院 The synthesis technology and device of one kind (3R, 4R) -4- acetoxy-3s-[(R) -1- tert-butyl dimethyl silica ethyls] -2- aza cyclo-butanones
JP2020536570A (en) 2017-10-11 2020-12-17 グリーンライト バイオサイエンシーズ インコーポレーテッドGreenlight Biosciences,Inc. Methods and Compositions for the Production of Nucleoside Triphosphates and Ribonucleic Acids
CN113549102B (en) * 2021-09-22 2021-12-17 凯莱英医药集团(天津)股份有限公司 Method for removing p-methoxyphenyl protecting group on amide group
CN115385950B (en) * 2022-10-27 2023-04-28 天津凯莱英医药科技发展有限公司 System and method for preparing 4-acetoxyazetidinone by continuous ozone oxidation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8321004D0 (en) * 1983-08-04 1983-09-07 Erba Farmitalia Azetidinones
CA1256443A (en) * 1984-07-05 1989-06-27 Takehisa Ohashi Process for preparing 4-acetoxy-3- hydroxyethylazetidin-2-one derivatives
EP0279781A3 (en) * 1987-02-17 1989-07-26 Ciba-Geigy Ag Process for the preparation of 4-acetoxy-3-hydroxyethyl-acetidinone
JPH01211560A (en) * 1988-02-18 1989-08-24 Sagami Chem Res Center Production of beta-lactam derivative
EP0371875B1 (en) * 1988-11-29 1994-12-28 Takasago International Corporation Process for preparing 4-acetoxyazetidinones
JPH02306973A (en) * 1989-05-19 1990-12-20 Otsuka Pharmaceut Co Ltd Production of carbonyl compound
US4952288A (en) * 1989-06-21 1990-08-28 Merck & Co., Inc. Process for the preparation of 4-acyloxyazetidin-2-one by electrochemical methods
JPH03115279A (en) * 1989-06-21 1991-05-16 Merck & Co Inc Protectively denitrified 4-acyloxyazetidine-2- one
JP3052580B2 (en) * 1992-06-23 2000-06-12 住友化学工業株式会社 Method for producing optically active 4-acyloxy-2-azetidinone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100654963B1 (en) * 2004-08-24 2006-12-06 임광민 Method for preparing an amide compound

Also Published As

Publication number Publication date
AU2713297A (en) 1998-03-06
KR100205769B1 (en) 1999-07-01
JP4108130B2 (en) 2008-06-25
JP2000516628A (en) 2000-12-12
KR100205768B1 (en) 1999-07-01
WO1998007691A1 (en) 1998-02-26
WO1998007690A1 (en) 1998-02-26
AU2713197A (en) 1998-03-06
JP2000516934A (en) 2000-12-19
KR19980018088A (en) 1998-06-05

Similar Documents

Publication Publication Date Title
KR100205769B1 (en) Stereoselective preparation method of transazetidinone
IE64687B1 (en) Process for the enantioselective preparation of phenylisoserine derivatives
KR20040027404A (en) Process for preparing glycidylphthalimide
JP5139104B2 (en) Method for producing dibenzooxepin compound
CN111777538A (en) Preparation method of bimatoprost
KR100205767B1 (en) Stereoselective preparation method of azetidinone
KR101327866B1 (en) Improved process for preparing Mitiglinide calcium salt
JP3831954B2 (en) Process for producing 4-hydroxy-2-pyrrolidone
US20100317868A1 (en) Method of preparing taxane derivatives and intermediates used therein
KR100856133B1 (en) Improved process for preparing atorvastatin
JP4181233B2 (en) Method for producing pyrrolidine-2,4-dione derivative
JPH04198175A (en) Production of optically active atenolol and its intermediate
US6806384B2 (en) Production method of β-amino-α-hydroxycarboxylic acid
JPH05221947A (en) Production of cyclopropane derivative
KR0182192B1 (en) Selective preparation of optically active (3R, 4S) -3-alkoxy-4-phenyl-2-azetidinone
KR100413172B1 (en) A process for the preparation of quinolinone derivatives
US6506907B1 (en) Process
CN115925615A (en) A kind of preparation method of optically pure 2-methylpiperidin-5-amine
CN119504830A (en) A key intermediate of monepantel and its splitting method
KR20030055304A (en) Process for the preparation of protected 1-(1-aminoalkyl)-oxiranes
JPH0341062A (en) Preparation of halolactone, preparation of 5- amino-4-hydroxyvaleric acid derivative and oxazolidinone
JP2002275138A (en) Method for producing 2-aminoindane derivative and intermediate thereof
KR20010009846A (en) Intermediates useful for manufacturing simvastatin and processes for the preparation thereof
KR20050006671A (en) New synthetic process of aminolevlunic acid derivatives
JPH11279154A (en) Production of alfa,alfa'-diaminoalcohol derivative

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19970429

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19970429

Comment text: Request for Examination of Application

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19990218

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19990406

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19990407

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20020322

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20030401

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20040402

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20050117

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20060302

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20070402

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20080109

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20090128

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20100112

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20110321

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20120113

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20130114

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20130114

Start annual number: 15

End annual number: 15

FPAY Annual fee payment

Payment date: 20140319

Year of fee payment: 16

PR1001 Payment of annual fee

Payment date: 20140319

Start annual number: 16

End annual number: 16

FPAY Annual fee payment

Payment date: 20150115

Year of fee payment: 17

PR1001 Payment of annual fee

Payment date: 20150115

Start annual number: 17

End annual number: 17

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee