KR102780110B1 - Preparation method of crystallized fiber using alkali halide and halogen compounds - Google Patents
Preparation method of crystallized fiber using alkali halide and halogen compounds Download PDFInfo
- Publication number
- KR102780110B1 KR102780110B1 KR1020220174511A KR20220174511A KR102780110B1 KR 102780110 B1 KR102780110 B1 KR 102780110B1 KR 1020220174511 A KR1020220174511 A KR 1020220174511A KR 20220174511 A KR20220174511 A KR 20220174511A KR 102780110 B1 KR102780110 B1 KR 102780110B1
- Authority
- KR
- South Korea
- Prior art keywords
- halide
- crystalline fiber
- alkali halide
- halide compound
- iodide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 121
- 150000004820 halides Chemical class 0.000 title claims abstract description 48
- 239000003513 alkali Substances 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims description 7
- 150000002366 halogen compounds Chemical class 0.000 title 1
- -1 halide compound Chemical class 0.000 claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 claims abstract description 47
- 238000001704 evaporation Methods 0.000 claims abstract description 26
- 230000008020 evaporation Effects 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 238000001035 drying Methods 0.000 claims abstract description 13
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 80
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 46
- 239000001103 potassium chloride Substances 0.000 claims description 40
- 235000011164 potassium chloride Nutrition 0.000 claims description 40
- 239000013078 crystal Substances 0.000 claims description 35
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 34
- 239000002904 solvent Substances 0.000 claims description 34
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 claims description 28
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 claims description 25
- 239000002002 slurry Substances 0.000 claims description 25
- 239000011780 sodium chloride Substances 0.000 claims description 25
- 239000011343 solid material Substances 0.000 claims description 22
- 239000013535 sea water Substances 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 18
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 14
- 239000011148 porous material Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 claims description 12
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 12
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 12
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 claims description 12
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Substances [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 12
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 claims description 12
- AHLATJUETSFVIM-UHFFFAOYSA-M rubidium fluoride Chemical compound [F-].[Rb+] AHLATJUETSFVIM-UHFFFAOYSA-M 0.000 claims description 12
- WFUBYPSJBBQSOU-UHFFFAOYSA-M rubidium iodide Chemical compound [Rb+].[I-] WFUBYPSJBBQSOU-UHFFFAOYSA-M 0.000 claims description 12
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 claims description 12
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 12
- 230000006911 nucleation Effects 0.000 claims description 10
- 238000010899 nucleation Methods 0.000 claims description 10
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 claims description 9
- 238000012856 packing Methods 0.000 claims description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004115 Sodium Silicate Substances 0.000 claims description 6
- 229910052898 antigorite Inorganic materials 0.000 claims description 6
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 claims description 6
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 claims description 6
- KLRHPHDUDFIRKB-UHFFFAOYSA-M indium(i) bromide Chemical compound [Br-].[In+] KLRHPHDUDFIRKB-UHFFFAOYSA-M 0.000 claims description 6
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 6
- 239000011698 potassium fluoride Substances 0.000 claims description 6
- 239000011775 sodium fluoride Substances 0.000 claims description 6
- 235000013024 sodium fluoride Nutrition 0.000 claims description 6
- 235000009518 sodium iodide Nutrition 0.000 claims description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 6
- GBECUEIQVRDUKB-UHFFFAOYSA-M thallium monochloride Chemical compound [Tl]Cl GBECUEIQVRDUKB-UHFFFAOYSA-M 0.000 claims description 6
- CMJCEVKJYRZMIA-UHFFFAOYSA-M thallium(i) iodide Chemical compound [Tl]I CMJCEVKJYRZMIA-UHFFFAOYSA-M 0.000 claims description 6
- ZSUXOVNWDZTCFN-UHFFFAOYSA-L tin(ii) bromide Chemical compound Br[Sn]Br ZSUXOVNWDZTCFN-UHFFFAOYSA-L 0.000 claims description 6
- JTDNNCYXCFHBGG-UHFFFAOYSA-L tin(ii) iodide Chemical compound I[Sn]I JTDNNCYXCFHBGG-UHFFFAOYSA-L 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 5
- 229910021485 fumed silica Inorganic materials 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- 238000003306 harvesting Methods 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 229920003043 Cellulose fiber Polymers 0.000 claims description 3
- 229910021617 Indium monochloride Inorganic materials 0.000 claims description 3
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 3
- 239000004113 Sepiolite Substances 0.000 claims description 3
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- RJDOZRNNYVAULJ-UHFFFAOYSA-L [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[F-].[F-].[Mg++].[Mg++].[Mg++].[Al+3].[Si+4].[Si+4].[Si+4].[K+] RJDOZRNNYVAULJ-UHFFFAOYSA-L 0.000 claims description 3
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 claims description 3
- TXKAQZRUJUNDHI-UHFFFAOYSA-K bismuth tribromide Chemical compound Br[Bi](Br)Br TXKAQZRUJUNDHI-UHFFFAOYSA-K 0.000 claims description 3
- 229910001919 chlorite Inorganic materials 0.000 claims description 3
- 229910052619 chlorite group Inorganic materials 0.000 claims description 3
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052620 chrysotile Inorganic materials 0.000 claims description 3
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 claims description 3
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052631 glauconite Inorganic materials 0.000 claims description 3
- 229910000271 hectorite Inorganic materials 0.000 claims description 3
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 claims description 3
- 229910052900 illite Inorganic materials 0.000 claims description 3
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 claims description 3
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052622 kaolinite Inorganic materials 0.000 claims description 3
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052912 lithium silicate Inorganic materials 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 3
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 3
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 3
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 3
- 229910052627 muscovite Inorganic materials 0.000 claims description 3
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 claims description 3
- 229910000273 nontronite Inorganic materials 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 235000003270 potassium fluoride Nutrition 0.000 claims description 3
- 229910052903 pyrophyllite Inorganic materials 0.000 claims description 3
- 229940102127 rubidium chloride Drugs 0.000 claims description 3
- 229910000275 saponite Inorganic materials 0.000 claims description 3
- 229910052624 sepiolite Inorganic materials 0.000 claims description 3
- 235000019355 sepiolite Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 229910021647 smectite Inorganic materials 0.000 claims description 3
- 235000019795 sodium metasilicate Nutrition 0.000 claims description 3
- 235000011150 stannous chloride Nutrition 0.000 claims description 3
- PGAPATLGJSQQBU-UHFFFAOYSA-M thallium(i) bromide Chemical compound [Tl]Br PGAPATLGJSQQBU-UHFFFAOYSA-M 0.000 claims description 3
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 claims description 3
- JKNHZOAONLKYQL-UHFFFAOYSA-K tribromoindigane Chemical compound Br[In](Br)Br JKNHZOAONLKYQL-UHFFFAOYSA-K 0.000 claims description 3
- KOECRLKKXSXCPB-UHFFFAOYSA-K triiodobismuthane Chemical compound I[Bi](I)I KOECRLKKXSXCPB-UHFFFAOYSA-K 0.000 claims description 3
- RMUKCGUDVKEQPL-UHFFFAOYSA-K triiodoindigane Chemical compound I[In](I)I RMUKCGUDVKEQPL-UHFFFAOYSA-K 0.000 claims description 3
- CWBIFDGMOSWLRQ-UHFFFAOYSA-N trimagnesium;hydroxy(trioxido)silane;hydrate Chemical compound O.[Mg+2].[Mg+2].[Mg+2].O[Si]([O-])([O-])[O-].O[Si]([O-])([O-])[O-] CWBIFDGMOSWLRQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052902 vermiculite Inorganic materials 0.000 claims description 3
- 239000010455 vermiculite Substances 0.000 claims description 3
- 235000019354 vermiculite Nutrition 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 19
- 239000012153 distilled water Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 11
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000004210 ether based solvent Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000005453 ketone based solvent Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000003759 ester based solvent Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000005456 alcohol based solvent Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Natural products CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- NGAZZOYFWWSOGK-UHFFFAOYSA-N heptan-3-one Chemical compound CCCCC(=O)CC NGAZZOYFWWSOGK-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- VIDOPANCAUPXNH-UHFFFAOYSA-N 1,2,3-triethylbenzene Chemical compound CCC1=CC=CC(CC)=C1CC VIDOPANCAUPXNH-UHFFFAOYSA-N 0.000 description 1
- OKIRBHVFJGXOIS-UHFFFAOYSA-N 1,2-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC=C1C(C)C OKIRBHVFJGXOIS-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- HYFLWBNQFMXCPA-UHFFFAOYSA-N 1-ethyl-2-methylbenzene Chemical compound CCC1=CC=CC=C1C HYFLWBNQFMXCPA-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 1
- BRRVXFOKWJKTGG-UHFFFAOYSA-N 3,3,5-trimethylcyclohexanol Chemical compound CC1CC(O)CC(C)(C)C1 BRRVXFOKWJKTGG-UHFFFAOYSA-N 0.000 description 1
- PKNKULBDCRZSBT-UHFFFAOYSA-N 3,4,5-trimethylnonan-2-one Chemical compound CCCCC(C)C(C)C(C)C(C)=O PKNKULBDCRZSBT-UHFFFAOYSA-N 0.000 description 1
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- ZFXVRMSLJDYJCH-UHFFFAOYSA-N calcium magnesium Chemical compound [Mg].[Ca] ZFXVRMSLJDYJCH-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 150000003950 cyclic amides Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 150000003997 cyclic ketones Chemical class 0.000 description 1
- CGZZMOTZOONQIA-UHFFFAOYSA-N cycloheptanone Chemical compound O=C1CCCCCC1 CGZZMOTZOONQIA-UHFFFAOYSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- IIRFCWANHMSDCG-UHFFFAOYSA-N cyclooctanone Chemical compound O=C1CCCCCCC1 IIRFCWANHMSDCG-UHFFFAOYSA-N 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- IQDXNHZDRQHKEF-UHFFFAOYSA-N dialuminum;dicalcium;dioxido(oxo)silane Chemical compound [Al+3].[Al+3].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O IQDXNHZDRQHKEF-UHFFFAOYSA-N 0.000 description 1
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003256 environmental substance Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- IJUHLFUALMUWOM-UHFFFAOYSA-N ethyl 3-methoxypropanoate Chemical compound CCOC(=O)CCOC IJUHLFUALMUWOM-UHFFFAOYSA-N 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- KXUHSQYYJYAXGZ-UHFFFAOYSA-N isobutylbenzene Chemical compound CC(C)CC1=CC=CC=C1 KXUHSQYYJYAXGZ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- QJQAMHYHNCADNR-UHFFFAOYSA-N n-methylpropanamide Chemical compound CCC(=O)NC QJQAMHYHNCADNR-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/12—Halides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B9/00—Single-crystal growth from melt solutions using molten solvents
- C30B9/02—Single-crystal growth from melt solutions using molten solvents by evaporation of the molten solvent
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/095—Forming inorganic materials by melting
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
본 발명은 알칼리할라이드계 화합물 또는 할로겐화물의 이온성 용융액을 가열로 증발건조하면서 담지체 사이로 연속적으로 통과시키는 증발 건조방법에 의해 고순도의 결정성 파이버를 제조하는 방법에 관한 것으로, 본 발명에 의하면 고가의 장비를 이용하지 않고 상압과 낮은 온도에서 고순도로 연속 성장된 결정성 파이버를 제조할 수 있어 비용 및 에너지 측면에서 경제적으로 생체적합성, 생분해성, 압전성이 우수한 결정성 파이버를 제조할 수 있다. The present invention relates to a method for producing a high-purity crystalline fiber by an evaporation drying method in which an ionic molten solution of an alkali halide compound or a halide is continuously passed between supports while being evaporated and dried by heating. According to the present invention, a crystalline fiber continuously grown with high purity at normal pressure and low temperature can be produced without using expensive equipment, and thus a crystalline fiber having excellent biocompatibility, biodegradability, and piezoelectricity can be produced economically in terms of cost and energy.
Description
본 발명은 알칼리할라이드계 화합물 및 할로겐화물을 이용한 결정성 파이버의 제조방법에 관한 것으로, 더욱 상세하게는 수용액에서 이온성 물질이 전단응력을 받는 공간을 통해 증발 건조방법으로 확산되어 결정성 파이버를 제조하는 결정성 파이버의 제조방법, 상기 결정성 파이버를 이용한 압전체 및 상기 압전체를 포함하는 압전소자 응용제품에 관한 것이다.The present invention relates to a method for manufacturing a crystalline fiber using an alkali halide compound and a halide, and more specifically, to a method for manufacturing a crystalline fiber in which an ionic substance in an aqueous solution diffuses through a space subjected to a shear stress by an evaporation drying method to manufacture the crystalline fiber, a piezoelectric body using the crystalline fiber, and a piezoelectric element application product including the piezoelectric body.
압전(piezoelectricity)은 압력으로 만들어진 분극에서 발생되는 전기 및 그 현상을 의미한다. 압전소자는 압력을 가함으로써 전압을 발생(압전 효과)시키거나, 전압을 가함으로써 변형(역압전 효과)시키는 소자이다. Piezoelectricity refers to electricity and its phenomenon that is generated from polarization created by pressure. A piezoelectric element is an element that generates voltage by applying pressure (piezoelectric effect) or deforms by applying voltage (inverse piezoelectric effect).
압전 재료는 통신기기 분야(레조네이터, 필터, 압전 스피커, 압전 트랜스포머 등), 의료기기 분야(초음파 혈류기, 초음파 세척기 등), 센서 분야(가속도 센서, 압력 센서 등), 디스플레이 분야(압전모터, 초정밀 액츄에이터, 프린터 헤드 등), 및 에너지 하베스팅 분야 등 다양한 분야에 응용되고 있다.Piezoelectric materials are applied in various fields such as communication devices (resonators, filters, piezoelectric speakers, piezoelectric transformers, etc.), medical devices (ultrasonic blood flow meters, ultrasonic cleaners, etc.), sensors (acceleration sensors, pressure sensors, etc.), displays (piezoelectric motors, ultra-precision actuators, printer heads, etc.), and energy harvesting.
압전 재료는 단결정, 세라믹스, 박막 등으로 분류된다. 현재, 주류를 이루고 있는 압전 세라믹 재료는 PZT [Pb(Zr,Ti)O3]계 재료로서 납을 기본으로 한 페로브스카이트 구조의 강유전체 화합물이다. PZT계 재료는 인체에 치명적인 중독 문제를 야기시키며, 납의 휘발은 환경오염을 유발시키기 때문에 이를 원천적으로 해결하기 위해 환경 친화적인 무연 압전 재료의 개발에 대한 관심이 점차 고조되고 있다.Piezoelectric materials are classified into single crystals, ceramics, and thin films. Currently, the mainstream piezoelectric ceramic material is PZT [Pb(Zr,Ti)O 3 ], which is a ferroelectric compound with a perovskite structure based on lead. PZT materials cause fatal poisoning problems in the human body, and lead volatilization causes environmental pollution. Therefore, interest in the development of environmentally friendly lead-free piezoelectric materials is gradually increasing to fundamentally solve this problem.
기존의 압전 단결정은 브릿지만법, 베르누이법, 초크랄스키법, 용융법, 트래블링 히터 방법(traveling heater method, THM), 승화법, kyropoulos법, 융제법, 수열합성법, 대역용융법, 물리증기수송법, 화학증기수송법, 열교환 방법 등의 방법에 의해 제조되고 있다. 이러한 기존의 단결정 성장방법은 대부분 고온 또는 고압 조건에서 진행되어야 하고, 해당 조건의 공정 진행을 위해서 고가의 장비를 이용해야 하기 때문에 제조비용이 많이 드는 문제가 있다. Conventional piezoelectric single crystals are manufactured by methods such as the Bridgman method, Bernoulli method, Czochralski method, melting method, traveling heater method (THM), sublimation method, Kyropoulos method, flux method, hydrothermal synthesis method, zone melting method, physical vapor transport method, chemical vapor transport method, and heat exchange method. Most of these conventional single crystal growth methods must be performed under high temperature or high pressure conditions, and expensive equipment must be used to perform the process under such conditions, which results in high manufacturing costs.
한편, 염전에서 해수를 이용해서 소금을 제조하는 경우에는 반복적인 해수의 가열과 회수에 많은 노동력과 에너지가 필요하고, 증발과정에서 지속적으로 쌓이는 결정은 증발 표면과 펌프 부분에 쌓여 효율 저하와 고장을 유발할 뿐만 아니라, 이렇게 제조되는 소금에는 염전 바닥재에서 유래되는 중금속, 환경물질, 미량의 세균 등의 오염물질이 포함될 수 있어 안전성에 문제가 제기되고 있다.Meanwhile, when producing salt using seawater in a salt farm, a lot of labor and energy are required for the repeated heating and recovery of the seawater, and the crystals that continuously accumulate during the evaporation process accumulate on the evaporation surface and pump parts, which not only reduces efficiency and causes malfunctions, but the salt produced in this way may contain contaminants such as heavy metals, environmental substances, and trace bacteria derived from the salt farm bottom material, raising safety issues.
삭제delete
본 발명의 하나의 목적은 알칼리할라이드계 화합물 또는 할로겐화물의 용융액을 이용하여 상압과 낮은 온도에서 연속 성장된 결정성 파이버를 경제적으로 만드는 방법을 제공하는 것이다.One object of the present invention is to provide an economical method for producing a continuously grown crystalline fiber at atmospheric pressure and low temperature using a molten solution of an alkali halide compound or a halide.
본 발명의 다른 목적은 새로운 친환경 소재로 응용 분야의 목적에 맞는 새로운 성능을 구현할 수 있는 고순도의 결정성 파이버의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing a high-purity crystalline fiber that can implement new performances suitable for the purpose of an application field as a new eco-friendly material.
본 발명의 다른 목적은 할로겐화물의 수용액의 대표적인 예인 해수로부터 염화나트륨을 결정화하여 많은 노동력과 에너지를 들이지 않고 염전 바닥재에서 유래하는 유해 성분을 포함하지 않는 안전하고 위생적인 소금을 경제적으로 제조하는 방법을 제공하는 것이다. Another object of the present invention is to provide an economical method for producing safe and hygienic salt that does not contain harmful components derived from salt pan bottom materials without requiring much labor and energy by crystallizing sodium chloride from seawater, which is a representative example of an aqueous solution of halides.
본 발명의 또 다른 목적은 본 발명의 방법에 의해서 제조되는 결정성 파이버를 포함하는 생체적합성, 생분해성 및 압전성이 우수한 압전체를 제공하는 것이다.Another object of the present invention is to provide a piezoelectric material having excellent biocompatibility, biodegradability and piezoelectricity, comprising a crystalline fiber manufactured by the method of the present invention.
본 발명의 또 다른 목적은 본 발명의 방법에 의해서 제조되는 결정성 파이버를 이용한 압전소자에 관한 것이다.Another object of the present invention relates to a piezoelectric element using a crystalline fiber manufactured by the method of the present invention.
상술한 목적을 달성하기 위한 본 발명의 하나의 양상은, One aspect of the present invention to achieve the above-described purpose is:
알칼리할라이드계 화합물 또는 할로겐화물을 용매에 혼합하여 이온성 용융액을 제조하는 단계;A step of preparing an ionic molten solution by mixing an alkali halide compound or a halide into a solvent;
전 단계에서 수득된 이온성 용융액에 다공성 고체 재료를 혼합하여 슬러리를 제조하는 단계;A step of preparing a slurry by mixing a porous solid material into the ionic melt obtained in the previous step;
상기 슬러리를 기공이 없도록 담지체 내부에 압축패킹하는 단계;A step of compressing and packing the above slurry inside a carrier so that there are no pores;
슬러리가 압축패킹된 담지체를 가열하여 증발건조하면서 결정을 성장시켜 결정성 파이버를 수득하는 단계를 포함하는 알칼리할라이드계 화합물 또는 할로겐화물을 이용한 결정성 파이버의 제조방법에 관한 것이다.The present invention relates to a method for producing a crystalline fiber using an alkali halide compound or a halide, including a step of heating a slurry-compressed packing support to grow crystals while evaporating and drying to obtain a crystalline fiber.
상기 알칼리할라이드계 화합물은 LiF(불화리튬), LiCl(염화리튬), LiBr(브롬화리튬), LiI(요오드화리튬), NaF(불화나트륨), NaCl(염화나트륨), NaBr(브롬화나트륨), NaI(요오드화나트륨), KF(불화칼륨), KCl(염화칼륨), KBr(브롬화칼륨), KI(요오드화칼륨), RbF(불화루비듐), RbCl(염화루비듐), RbBr(브롬화 루비듐), RbI(요오드화루비듐), CsF(불화세슘), CsCl(염화세슘), CsBr(브롬화세슘), CsI(요오드화세슘), 및 이들의 혼합물로 구성되는 그룹으로부터 선택된 것일 수 있다.The above alkali halide compound may be selected from the group consisting of LiF (lithium fluoride), LiCl (lithium chloride), LiBr (lithium bromide), LiI (lithium iodide), NaF (sodium fluoride), NaCl (sodium chloride), NaBr (sodium bromide), NaI (sodium iodide), KF (potassium fluoride), KCl (potassium chloride), KBr (potassium bromide), KI (potassium iodide), RbF (rubidium fluoride), RbCl (rubidium chloride), RbBr (rubidium bromide), RbI (rubidium iodide), CsF (cesium fluoride), CsCl (cesium chloride), CsBr (cesium bromide), CsI (cesium iodide), and mixtures thereof.
상기 할로겐화물은 TlCl(염화탈륨), TlBr(브롬화탈륨), TlI(요오드화탈륨), InCl(염화인듐), InBr(브롬화인듐), InI(요오드화인듐), SnCl2(염화주석(Ⅱ)), SnBr2 (브롬화주석(Ⅱ)), SnI2(요오드화주석(Ⅱ)), BiCl3(염화비스무트(Ⅲ)), BiBr3 (브롬화비스무트(Ⅲ)), BiI3(요오드화비스무트(Ⅲ)), 및 CuI(요오드화구리)로 이루어지는 그룹으로부터 선택되는 것일 수 있다. The above halide may be selected from the group consisting of TlCl (thallium chloride), TlBr (thallium bromide), TlI (thallium iodide), InCl (indium chloride), InBr (indium bromide), InI (indium iodide), SnCl 2 (tin (II) chloride), SnBr 2 (tin (II) bromide), SnI 2 (tin (II) iodide), BiCl 3 (bismuth (III) chloride), BiBr 3 (bismuth (III) bromide), BiI 3 (bismuth (III) iodide), and CuI (copper iodide).
이온성 용융액 제조에 사용가능한 용매는 알코올계 용매, 에테르계 용매에, 케톤계 용매, 아미드계 용매, 에스테르계 용매, 및 탄화수소계 용매로 구성되는 그룹에서 선택되는 1종 이상일 수 있다.The solvent usable for producing the ionic molten solution may be at least one selected from the group consisting of alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, and hydrocarbon solvents.
상기 알칼리할라이드계 화합물 또는 할로겐화물의 이온성 용융액의 농도는 5~40 중량%일 수 있다. 상기 알칼리할라이드계 화합물 또는 할로겐화물을 용매에 혼합할 때에는 필요에 따라서 가열하거나 교반할 수 있다. 예컨대, 25℃ 내지 70℃의 상온 또는 고온에서 0.5 내지 2시간 동안 약350~450 rpm으로 혼합할 수 있다. The concentration of the ionic melt of the above alkali halide compound or halide may be 5 to 40 wt%. When mixing the above alkali halide compound or halide with a solvent, heating or stirring may be performed as necessary. For example, mixing may be performed at room temperature or high temperature of 25°C to 70°C for 0.5 to 2 hours at about 350 to 450 rpm.
본 발명에서 사용가능한 다공성 고체 재료는 실리케이트(silicate), 소듐실리케이트(sodium silicate), 소듐메타실리케이트(sodium meta silicate), 리튬실리케이트(lithium silicate), 흄드 실리카(fumed silica), 이산화 규소(silicon dioxide), 마그네슘알루미늄실리케이트, 마그네슘칼슘실리케이트, 알루미늄칼슘실리케이트, 마그네슘알루미늄칼슘실리케이트, 산화 알루미늄(aluminum oxide), 이산화 게르마늄(germanium oxide), 이산화 지르코늄 (zirconium oxide), 무수붕산 (boric anhydride), 활성탄(activated carbon), 슈퍼 활성탄 (super activated carbon), 마이크로크리스탈린 셀룰로오스(microcrystalline cellulose), 셀룰로오스 파이버(cellulose fiber), 제올라이트 (zeolite), 몬모릴로나이트 (montmorillonite), 핵토라이트(hectorite), 마가다이트(magadite), 케냐이트(kenyaite), 카올린나이트 (kaolinite), 사포나이트 (saponite), 바이델라이트(beidelite), 논트로나이트(nontronite), 버미큘라이트(vermicullite), 팽윤성 운모(mica), 합성 운모(synthetic mica), 카네마이트(kanemite), 스멕타이트 (smectite), 일라이트(illite), 클로라이트(chlorite), 무스코바이트(muscovite), 파이로필라이트 (pyrophyllite), 안티고라이트(antigorite), 해록석(glauconite), 질석 (vermiculite), 세피올라이트(sepiolite), 이모골라이트(imogolite), 소복카이트(sobockite), 나크라이트(nacrite), 아녹사이트 (anauxite), 견운모 (sericite), 레디카이트(ledikite), 온석면(chrysotile), 안티고라이트 (antigorite)로 구성되는 그룹으로부터 선택되는 재료로 구성되는 나노입자를 들 수 있으나, 반드시 이들로 제한되는 것은 아니다.Porous solid materials usable in the present invention include silicate, sodium silicate, sodium meta silicate, lithium silicate, fumed silica, silicon dioxide, magnesium aluminum silicate, magnesium calcium silicate, aluminum calcium silicate, magnesium aluminum calcium silicate, aluminum oxide, germanium oxide, zirconium oxide, boric anhydride, activated carbon, super activated carbon, microcrystalline cellulose, cellulose fiber, zeolite, montmorillonite, hectorite, It consists of magadite, kenyaite, kaolinite, saponite, beidelite, nontronite, vermicullite, swellable mica, synthetic mica, kanemite, smectite, illite, chlorite, muscovite, pyrophyllite, antigorite, glauconite, vermiculite, sepiolite, imogolite, sobockite, nacrite, anauxite, sericite, ledikite, chrysotile, and antigorite. Nanoparticles may be composed of materials selected from the group consisting of, but are not necessarily limited to, these.
이온성 용융액은 다공성 고체 재료와 중량비로 7:2 내지 9:2의 혼합비로 투입하여 약100 rpm 내지 200 rpm으로 균일하게 혼합하여 상온에서 점도가 100,000~200,000 cP인 슬러리를 제조한다. The ionic molten liquid is mixed with the porous solid material in a weight ratio of 7:2 to 9:2 and uniformly mixed at about 100 to 200 rpm to produce a slurry having a viscosity of 100,000 to 200,000 cP at room temperature.
상기 담지체는 다공성 고체 재료를 포함하는 슬러리가 수용되는 기둥형(channel) 담지체로서, 담지체의 직경은 10 mm 내지 50 mm이고, 담지체의 길이는 3~6 ㎝의 범위 내이다. The above-mentioned carrier is a columnar (channel) carrier that accommodates a slurry containing a porous solid material, the diameter of the carrier is 10 mm to 50 mm, and the length of the carrier is within the range of 3 to 6 cm.
상기 담지체의 증발 건조 단계는 미세부피 기공에서 발생하는 이온성 수용액의 물질 이동을 유발하는 열확산에 따른 가열온도를 25~100℃로 하고, 상기 증발 건조 단계에서 습도는 10~50%로 하는 것이 바람직하다. In the evaporation drying step of the above-mentioned carrier, the heating temperature due to thermal diffusion that causes material movement of the ionic aqueous solution occurring in the microvolume pores is preferably set to 25 to 100°C, and the humidity in the evaporation drying step is preferably set to 10 to 50%.
상술한 과제를 해결하기 위한 본 발명의 다른 양상은, 상술한 방법에 의해 수득되는 알칼리할라이드계 화합물 또는 할로겐화물 결정성 파이버를 포함하는 압전소자에 관한 것이다.Another aspect of the present invention for solving the above-described problem relates to a piezoelectric element comprising an alkali halide compound or a halide crystalline fiber obtained by the above-described method.
상기 압전소자는 에너지 하베스팅 소자(energy harvesting device), 센서(sensor), 액츄에이터(actuator), 트랜스듀서(transducer), 트랜스포머 (transformer) 또는 소나(sonar)등일 수 있다. The above piezoelectric element may be an energy harvesting device, a sensor, an actuator, a transducer, a transformer, or a sonar.
본 발명의 또 다른 양상은,Another aspect of the present invention is:
해수를 다공성 고체 재료와 혼합하여 슬러리를 제조하는 단계;A step of preparing a slurry by mixing seawater with a porous solid material;
상기 슬러리를 기공이 없도록 담지체 내부에 압축패킹하는 단계;A step of compressing and packing the above slurry inside a carrier so that there are no pores;
슬러리가 압축패킹된 담지체를 태양열에 의해 가열하여 증발건조하면서 결정을 성장시켜 소금 결정을 수득하는 단계를 포함하는 소금의 제조방법에 관한 것이다. The present invention relates to a method for producing salt, including a step of obtaining salt crystals by heating a slurry-compressed packing support with solar heat to evaporate and dry the crystals while growing the crystals.
본 발명의 방법에 의하면 고가의 장비나 극한 조건을 조성하지 않고 상압과 낮은 온도에서 연속 성장된 고밀도의 알칼리할라이드계 화합물 또는 할로겐화물 결정성 파이버를 저렴한 비용으로 에너지를 절감하여 경제적으로 제조할 수 있다.According to the method of the present invention, a high-density alkali halide compound or halide crystalline fiber can be economically manufactured by continuously growing it at atmospheric pressure and low temperature without expensive equipment or creating extreme conditions, saving energy and at low cost.
또한 본 발명의 담지체를 이용한 증발 건조법에 의하면 인체에 해가 될 수 있는 중금속, 환경호르몬, 세균 등의 이물질을 포함하지 않는 소금을 저렴한 비용으로 제조할 수 있다. 이렇게 제조되는 소금은 연성금속의 소화기, 방부제, 소독제, 해동제, 곰팡이 방지제, 얼룩제거제 등으로 용도 전개가 가능하다. In addition, according to the evaporation drying method using the carrier of the present invention, salt that does not contain foreign substances such as heavy metals, environmental hormones, and bacteria that may be harmful to the human body can be manufactured at a low cost. The salt manufactured in this way can be used as a fire extinguisher for soft metals, a preservative, a disinfectant, a defrosting agent, an anti-fungal agent, a stain remover, etc.
도 1은 본 발명에 따른 알칼리할라이드계 화합물 및 할로겐화물을 이용한 결정성 파이버의 제조방법을 설명하는 순서도이다.
도 2는 본 발명의 실시예에서 제조된 LiCl 결정성 파이버의 주사전자현미경 (SEM) 사진을 나타낸다.
도 3은 본 발명의 실시예에서 제조된 NaCl 결정성 파이버의 SEM 사진을 나타낸다.
도 4는 본 발명의 실시예에서 제조된 KCl 결정성 파이버의 SEM 사진을 나타낸다.
도 5는 본 발명의 실시예에서 제조된 KCl 결정성 파이버의 주사전자현미경 (SEM) 사진을 나타낸다.
도 6은 본 발명의 실시예에서 제조된 KCl 결정성 파이버의 EDS 스펙트럼을 나타낸 것이다.
도 7은 본 발명의 실시예에서 제조된 KCl 결정성 파이버의 압력 인
가에 따른 전압특성 그래프이다.
도 8은 본 발명의 실시예에서 해수에서 대량 생산된 NaCl 결정성 파이버의 X선 회절(XRD) 분석 결과를 나타내는 그래프이다.
도 9는 본 발명의 실시예에서 제조된 RbCl 결정성 파이버의 SEM 사진을 나타낸다.
도 10은 본 발명의 실시예에서 제조된 CsCl 결정성 파이버의 SEM 사진을 나타낸다.
도 11은 본 발명의 실시예에서 제조된 NaCl 결정성 파이버를 해수를 이용하여 해수(바닷물) 고정유도체와 태양열 집열판을 포함하여 양산할 수 있는 장치의 개략 사시도이다. Figure 1 is a flow chart explaining a method for manufacturing a crystalline fiber using an alkali halide compound and a halide according to the present invention.
Figure 2 shows a scanning electron microscope (SEM) photograph of a LiCl crystalline fiber manufactured in an embodiment of the present invention.
Figure 3 shows an SEM photograph of a NaCl crystalline fiber manufactured in an embodiment of the present invention.
Figure 4 shows an SEM photograph of a KCl crystalline fiber manufactured in an embodiment of the present invention.
FIG. 5 shows a scanning electron microscope (SEM) photograph of a KCl crystalline fiber manufactured in an embodiment of the present invention.
Figure 6 shows an EDS spectrum of a KCl crystalline fiber manufactured in an embodiment of the present invention.
Figure 7 shows the pressure of KCl crystalline fibers manufactured in an embodiment of the present invention.
This is a graph of voltage characteristics according to the voltage.
FIG. 8 is a graph showing the results of X-ray diffraction (XRD) analysis of NaCl crystalline fibers mass-produced in seawater in an embodiment of the present invention.
Figure 9 shows an SEM photograph of an RbCl crystalline fiber manufactured in an embodiment of the present invention.
Figure 10 shows an SEM photograph of a CsCl crystalline fiber manufactured in an embodiment of the present invention.
FIG. 11 is a schematic perspective view of a device capable of mass-producing NaCl crystalline fibers manufactured in an embodiment of the present invention using seawater, a seawater (seawater) fixative, and a solar thermal collector.
이하에서 본 발명에 대해서 더욱 상세하게 설명한다.The present invention is described in more detail below.
본 명세서에서 용어 ‘다공성 고체 재료’는 평균입경 10 nm 내지 30 nm의 나노입자들로 구성되고, 담지체에 수용되어 결정성 파이버 성장을 위한 공극(미세 부피 공간)을 형성하는 고체 재료를 의미한다. The term ‘porous solid material’ in this specification means a solid material composed of nanoparticles having an average particle diameter of 10 nm to 30 nm, which are accommodated in a support to form pores (microscopic volume spaces) for crystalline fiber growth.
본 명세서에서 ‘담지체’는 금속, 플라스틱, 세라믹, 및/또는 유리로 제조되는 직경이 약 10 ㎜ 내지 50 ㎜이고, 길이는 약 3~6 ㎝의 범위인 다공성 고체 재료를 수용하는 기둥형 케이스이다. In this specification, the ‘carrier’ is a columnar case that accommodates a porous solid material made of metal, plastic, ceramic, and/or glass, having a diameter of about 10 mm to 50 mm and a length of about 3 to 6 cm.
도 1은 본 발명에 따른 알칼리할라이드계 화합물 및 할로겐화물을 이용한 결정성 파이버의 제조방법을 설명하는 순서도이다.Figure 1 is a flow chart explaining a method for manufacturing a crystalline fiber using an alkali halide compound and a halide according to the present invention.
도 1을 참조하면, 본 발명의 일 실시예의 알칼리할라이드계 화합물 또는 할로겐화물을 이용한 결정성 파이버의 제조방법에서는 우선 알칼리할라이드계 화합물 또는 할로겐화물을 용매에 혼합하여 이온성 용융액을 제조한다(S10). 이어서 전 단계에서 수득된 이온성 용융액에 다공성 고체 재료를 혼합하여 슬러리를 제조한다(S20). 상기 슬러리를 기공이 없도록 담지체 내부에 압축 패킹한다(S30). 슬러리가 압축패킹된 담지체를 가열하여 온도 및 농도 구배에 따라 증발 건조하면서 결정을 성장시켜 결정성 파이버를 수득한다(S40).Referring to FIG. 1, in a method for manufacturing a crystalline fiber using an alkali halide compound or halide of one embodiment of the present invention, first, an alkali halide compound or halide is mixed with a solvent to manufacture an ionic molten liquid (S10). Next, a porous solid material is mixed with the ionic molten liquid obtained in the previous step to manufacture a slurry (S20). The slurry is compressed and packed inside a carrier so that there are no pores (S30). The carrier in which the slurry is compressed and packed is heated to grow crystals while evaporating and drying according to a temperature and concentration gradient to obtain a crystalline fiber (S40).
본 발명의 방법에서는 알칼리할라이드계 화합물 또는 할로겐화물의 이온성 물질을 용매에 혼합하여 용융액을 가열하면서 담지체 사이로 연속적으로 통과시키는 증발 건조방법에 의해 고순도의 결정성 파이버를 제조한다. In the method of the present invention, a high-purity crystalline fiber is manufactured by an evaporation drying method in which an ionic substance of an alkali halide compound or a halide is mixed in a solvent and the molten solution is continuously passed between carriers while heating.
담지체의 상단부는 개방되어 있는데, 상단부의 온도는 증발이 일어나 온도가 낮고, 상단부에서는 결정핵이 형성되기 때문에 농도는 상단부로 갈수록 농도가 높아진다. 이와 같이 본 발명에서는 알칼리할라이드계 화합물 또는 할로겐화물을 포함하는 용융액이 담지체를 통과할 때 담지체의 미세 공간 사이에서 모세관 현상에 의해서 증산됨에 따라 담지체의 높이 차이에 따라 온도 및 농도 구배가 형성된다. 이때 미세 기공을 통해 전단응력을 받아 이온 결정이 배열되어 자기조립되는 효과로 연속적인 결정성 파이버를 제조할 수 있다. 따라서 고도로 결정화되어 정돈된 입자로서 공간에서 규칙적인 3차원 배열(array)을 이룬다. The upper part of the carrier is open, and the temperature of the upper part is low due to evaporation, and since crystal nuclei are formed at the upper part, the concentration increases as it goes toward the upper part. In this way, in the present invention, when a molten solution containing an alkali halide compound or a halide passes through the carrier, temperature and concentration gradients are formed according to the height difference of the carrier as it evaporates by capillary phenomenon between the micro spaces of the carrier. At this time, a continuous crystalline fiber can be manufactured due to the effect of arranging and self-assembling the ion crystals by receiving shear stress through the micro pores. Therefore, it forms a regular three-dimensional array in space as a highly crystallized and well-organized particle.
상기 알칼리할라이드계 화합물의 비제한적인 예들은 LiF(불화리튬), LiCl(염화리튬), LiBr(브롬화리튬), LiI(요오드화리튬), NaF(불화나트륨), NaCl(염화나트륨), NaBr(브롬화나트륨), NaI(요오드화나트륨), KF(불화칼륨), KCl(염화칼륨), KBr(브롬화칼륨), KI(요오드화칼륨), RbF(불화루비듐), RbCl(염화루비듐), RbBr(브롬화 루비듐), RbI(요오드화루비듐), CsF(불화세슘), CsCl(염화세슘), CsBr(브롬화세슘), CsI(요오드화세슘), 및 이들의 혼합물을 포함할 수 있다.Non-limiting examples of the above alkali halide compounds may include LiF (lithium fluoride), LiCl (lithium chloride), LiBr (lithium bromide), LiI (lithium iodide), NaF (sodium fluoride), NaCl (sodium chloride), NaBr (sodium bromide), NaI (sodium iodide), KF (potassium fluoride), KCl (potassium chloride), KBr (potassium bromide), KI (potassium iodide), RbF (rubidium fluoride), RbCl (rubidium chloride), RbBr (rubidium bromide), RbI (rubidium iodide), CsF (cesium fluoride), CsCl (cesium chloride), CsBr (cesium bromide), CsI (cesium iodide), and mixtures thereof.
또한, 할로겐화물로는 TlCl(염화탈륨), TlBr(브롬화탈륨), TlI(요오드화탈륨), InCl(염화인듐), InBr(브롬화인듐), InI(요오드화인듐), SnCl2(염화주석(ⅱ)), SnBr2(브롬화주석(ⅱ)), SnI2(요오드화주석(ⅱ)), BiCl3(염화비스무트(ⅲ)), BiBr3(브롬화비스무트(ⅲ)), BiI3(요오드화비스무트(ⅲ)), CuI (요오드화구리) 및 이들의 혼합물을 사용할 수 있다. In addition, halides that can be used include TlCl (thallium chloride), TlBr (thallium bromide), TlI (thallium iodide), InCl (indium chloride), InBr (indium bromide), InI (indium iodide), SnCl 2 (tin (ii) chloride), SnBr 2 (tin (ii) bromide), SnI 2 (tin (ii) iodide), BiCl 3 (bismuth (iii) chloride), BiBr 3 (bismuth (iii) bromide), BiI 3 (bismuth (iii) iodide), CuI (copper iodide), and mixtures thereof.
본 발명에서 알칼리할라이드계 화합물 또는 할로겐화물의 이온성 용융액 형성에 이용되어 증발속도를 조정하기 위해 사용가능한 용매는, 알코올계 용매, 에테르계 용매, 케톤계 용매, 아미드계 용매, 에스테르계 용매 등의 극성 유기 용매와 탄화수소계 용매 등을 들 수 있다. 알코올계 용매로는 에탄올, 이소프로필알코올, 아밀알코올, 4-메틸-2-펜탄올, 시클로헥산올, 3,3,5-트리메틸시클로헥산올, 푸르푸릴알코올, 벤질알코올, 디아세톤 알코올 등의 탄소수 1 내지 18의 1가 알코올, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 트리에틸렌글리콜, 트리프로필렌글리콜 등의 탄소수 2 내지 12의 2가 알코올이나 이들의 부분 에테르 등을 들 수 있다. 에테르계 용매로는 디에틸에테르, 디프로필에테르, 디부틸에테르, 디이소아밀에테르 등의 디알킬에테르계 용매, 테트라히드로푸란, 테트라히드로피란 등의 환상 에테르계 용매, 디페닐에테르, 아니솔 등의 방향환 함유 에테르계 용매 등을 들 수 있다. 케톤계 용매로는 아세톤, 메틸에틸케톤, 메틸-n-프로필케톤, 메틸-n-부틸케톤, 디에틸케톤, 메틸iso-부틸케톤, 2-헵타논, 에틸-n-부틸케톤, 메틸-n-헥실케톤, 디-iso-부틸케톤, 트리메틸노나논 등의 쇄상 케톤계 용매, 시클로펜타논, 시클로헥사논, 시클로헵타논, 시클로옥타논, 메틸시클로헥사논 등의 환상 케톤계 용매, 2,4-펜탄디온, 아세토닐아세톤, 아세토페논 등을 들 수 있다. 아미드계 용매로는 N,N'-디메틸이미다졸리디논, n-메틸피롤리돈 등의 환상 아미드계 용매, n-메틸포름아미드, N,N-디메틸포름아미드, N,N-디에틸포름아미드, 아세트아미드, N-메틸아세트아미드, N,N-디메틸아세트아미드, n-메틸프로피온아미드 등의 쇄상 아미드계 용매 등을 들 수 있다. 에스테르계 용매로는 아세트산 에틸, 아세트산 부틸, 아세트산 벤질, 아세트산 시클로헥실, 락트산 에틸, 3-메톡시프로피온산 에틸 등의 1가 알코올 카르복실레이트계 용매나, 알킬렌글리콜모노알킬에테르의 모노카르복실레이트, 디알킬렌글리콜모노알킬에테르의 모노카르복실레이트 등의 다가 알코올 부분 에테르 카르복실레이트계 용매, 부티로락톤 등의 환상 에스테르계 용매, 디에틸카르보네이트 등의 카르보네이트계 용매, 옥살산디에틸, 프탈산 디에틸 등의 다가 카르복실산 알킬에스테르계 용매를 들 수 있다. 탄화수소계 용매로는 n-펜탄, iso-펜탄, n-헥산, iso-헥산, n-헵탄, iso-헵탄, 2,2,4-트리메틸펜탄, n옥탄, iso-옥탄, 시클로헥산, 메틸시클로헥산 등의 지방족 탄화수소계 용매, 벤젠, 톨루엔, 크실렌, 메시틸렌, 에틸벤젠, 트리메틸벤젠, 메틸에틸벤젠, n-프로필벤젠, iso-프로필벤젠, 디에틸벤젠, iso-부틸벤젠, 트리에틸벤젠, 디-iso-프로필벤젠, n-아밀나프탈렌 등의 방향족 탄화수소계 용매 등을 들 수 있다. In the present invention, solvents that can be used to form an ionic melt of an alkali halide compound or a halide and to adjust the evaporation rate include polar organic solvents such as alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, etc., and hydrocarbon solvents. As alcohol solvents, monohydric alcohols having 1 to 18 carbon atoms such as ethanol, isopropyl alcohol, amyl alcohol, 4-methyl-2-pentanol, cyclohexanol, 3,3,5-trimethylcyclohexanol, furfuryl alcohol, benzyl alcohol, diacetone alcohol, dihydric alcohols having 2 to 12 carbon atoms such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, and partial ethers thereof. Examples of ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, and diisoamyl ether; cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; and aromatic ring-containing ether solvents such as diphenyl ether and anisole. Examples of ketone solvents include chain ketone solvents such as acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, di-iso-butyl ketone, and trimethylnonanone; cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, and methylcyclohexanone; and 2,4-pentanedione, acetonylacetone, and acetophenone. Amide solvents include cyclic amide solvents such as N,N'-dimethylimidazolidinone and n-methylpyrrolidone; chain amide solvents such as n-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, and n-methylpropionamide. Examples of the ester solvent include monohydric alcohol carboxylate solvents such as ethyl acetate, butyl acetate, benzyl acetate, cyclohexyl acetate, ethyl lactate, and ethyl 3-methoxypropionate; polyhydric alcohol partial ether carboxylate solvents such as monocarboxylate of alkylene glycol monoalkyl ether and monocarboxylate of dialkylene glycol monoalkyl ether; cyclic ester solvents such as butyrolactone; carbonate solvents such as diethyl carbonate; and polyhydric carboxylic acid alkyl ester solvents such as diethyl oxalate and diethyl phthalate. Examples of the hydrocarbon solvents include aliphatic hydrocarbon solvents such as n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, and methylcyclohexane; and aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, and n-amylnaphthalene.
본 발명에서 사용되는 용매는 각기 다른 비열용량으로 인해 증발 시 필요 열에너지가 다르다. 따라서 증발 확산되는 정도가 달라져서 결정성장 속도를 조절할 수 있다. 이를 통해 알칼리할라이드계 화합물 또는 할로겐화물에 따른 결정성장 에너지를 공급해줄 수 있다. 기본적으로 용매로는 비열용량 1 Cal/g·℃인 증류수를 기본으로 사용한다. 증발 확산 정도를 조절하기 위해서 수용액에 다른 종류의 용매를 혼합하는 경우, 아세톤, 테트라히드로푸란, 에탄올, N,N-디메틸포름아미드를 사용할 수 있으며 혼합된 용매 중의 증류수의 함유율은 10~50 중량%가 바람직하다.The solvents used in the present invention have different specific heat capacities and thus require different heat energy for evaporation. Therefore, the degree of evaporation and diffusion is different, so that the crystal growth speed can be controlled. Through this, crystal growth energy can be supplied according to the alkali halide compound or halide. Basically, distilled water with a specific heat capacity of 1 Cal/g·℃ is used as the basic solvent. When mixing a different type of solvent in the aqueous solution to control the degree of evaporation and diffusion, acetone, tetrahydrofuran, ethanol, and N,N-dimethylformamide can be used, and the content of distilled water in the mixed solvent is preferably 10 to 50 wt%.
알칼리할라이드계 화합물 또는 할로겐화물의 이온성 용융액의 농도는 5~40 중량%일 수 있다. 상기 알칼리할라이드계 화합물 또는 할로겐화물의 이온성 용융액의 농도가 5 중량% 미만이면 핵화 후 결정이 성장하여 파이버 형태로 나올 수 있는 최소 정량 기준에 미치지 못하여 결정성 파이버를 수득할 수 없고, 반대로 40 중량%를 초과하면 핵화가 이뤄지는 임계 농도에 빠르게 도달하며 담지체 내의 나노입자들 사이의 공극 내에서 굳어져 결정성 파이버 형태로 성장할 수가 없다. The concentration of the ionic melt of the alkali halide compound or halide may be 5 to 40 wt%. If the concentration of the ionic melt of the alkali halide compound or halide is less than 5 wt%, the minimum quantitative standard for growing crystals after nucleation and forming a fiber cannot be reached, and thus a crystalline fiber cannot be obtained. On the other hand, if it exceeds 40 wt%, the critical concentration for nucleation is quickly reached, and the crystals solidify in the gaps between the nanoparticles in the carrier and cannot grow in the form of a crystalline fiber.
알칼리할라이드계 화합물 또는 할로겐화물을 용매에 혼합하여 이온성 용융액을 제조한 후에는, 이온성 용융액에 다공성 고체 재료를 혼합하여 슬러리를 제조한다. 이온성 용융액은 다공성 고체 재료와 중량비로 7:2 내지 9:2의 혼합비로 투입하여 100 rpm~200 rpm으로 균일하게 혼합하여 상온에서 점도가 100,000~200,000 cP인 슬러리를 제조한다.After mixing an alkali halide compound or a halide with a solvent to produce an ionic molten solution, a porous solid material is mixed into the ionic molten solution to produce a slurry. The ionic molten solution is mixed with the porous solid material in a weight ratio of 7:2 to 9:2 and uniformly mixed at 100 to 200 rpm to produce a slurry having a viscosity of 100,000 to 200,000 cP at room temperature.
상기 다공성 고체 재료는 담지체 내에서 결정성 파이버 성장을 위한 미세 부피 공간을 제공한다. 본 발명에서 사용가능한 다공성 고체 재료로는 실리케이트(silicate), 소듐실리케이트(sodium silicate), 소듐메타실리케이트(sodium meta silicate), 리튬실리케이트(lithium silicate), 흄드 실리카(fumed silica), 이산화 규소(silicon dioxide), 산화 알루미늄(aluminum oxide), 이산화 게르마늄(germanium oxide), 이산화 지르코늄(zirconium oxide), 무수붕산(boric anhydride), 활성탄(activated carbon), 슈퍼 활성탄(super activated carbon), 마이크로크리스탈린셀룰로오스(microcrystalline cellulose), 셀룰로오스 파이버(cellulose fiber), 제올라이트 (zeolite), 몬모릴로나이트(montmorillonite), 핵토라이트(hectorite), 마가다이트(magadite), 케냐이트(kenyaite), 카올린나이트(kaolinite), 사포나이트(saponite), 바이델라이트(beidelite), 논트로나이트(nontronite), 버미큘라이트(vermicullite), 팽윤성 운모(mica), 합성 운모(synthetic mica), 카네마이트(kanemite), 스멕타이트(smectite), 일라이트(illite), 클로라이트(chlorite), 무스코바이트(muscovite), 파이로필라이트(pyrophyllite), 안티고라이트(antigorite), 해록석(glauconite), 질석(vermiculite), 세피올라이트(sepiolite), 이모골라이트(imogolite), 소복카이트(sobockite), 나크라이트(nacrite), 아녹사이트(anauxite), 견운모(sericite), 레디카이트(ledikite), 온석면(chrysotile) 및 안티고라이트(antigorite)로 구성되는 군에서 선택되는 재료로 구성되는 나노입자를 사용할 수 있다. 상기 다공성 고체 재료로는 하나 이상의 다가 금속 원소를 포함하는 다가 규산염(silicate)으로부터 선택된다. 이때, 상기 다가 금속 원소는 2가 이상의 금속 원소로서, 예를 들어 주기율표 2족~5족에 속하는 금속 원소로부터 선택될 수 있으며, 보다 구체적인 예를 들어 Mg, Al, Ca 및 Ba 등으로부터 선택될 수 있다.The above porous solid material provides microscopic volume spaces for crystalline fiber growth within the support. Porous solid materials usable in the present invention include silicate, sodium silicate, sodium meta silicate, lithium silicate, fumed silica, silicon dioxide, aluminum oxide, germanium oxide, zirconium oxide, boric anhydride, activated carbon, super activated carbon, microcrystalline cellulose, cellulose fiber, zeolite, montmorillonite, hectorite, magadite, kenyaite, kaolinite, saponite, beidelite, Nanoparticles composed of a material selected from the group consisting of nontronite, vermicullite, swellable mica, synthetic mica, kanemite, smectite, illite, chlorite, muscovite, pyrophyllite, antigorite, glauconite, vermiculite, sepiolite, imogolite, sobockite, nacrite, anauxite, sericite, ledikite, chrysotile, and antigorite can be used. The porous solid material is selected from polyvalent silicates containing one or more polyvalent metal elements. At this time, the multivalent metal element is a metal element having a valence of two or more, and may be selected from, for example, metal elements belonging to groups 2 to 5 of the periodic table, and more specifically, may be selected from Mg, Al, Ca, and Ba.
슬러리는 기공이 없도록 담지체 내에 압축패킹되고(S30), 슬러리가 압축패킹된 담지체를 가열 수단에 한 쪽 표면만 노출된 상태로 투입하고 온도와 습도를 조정한다(S40). 이와 같이 온도 및 습도 조건이 설정된 가열수단 내에 슬러리가 압축패킹된 담지체를 일정 시간 동안 놓아두고 반응시키면, 용매가 증발 건조하면서 온도 및 농도 구배가 형성되어 결정을 성장시켜 결정성 파이버가 만들어진다(S50). 가열 수단으로는 강제 순환 건조기 또는 항온항습조 등이 사용될 수 있다. 가열수단은 담지체를 가열하도록 구성된 열원을 포함할 수 있다. 가열 속도, 온도, 시간 및 분위기는 결정성 파이버의 결정도 및 형태에 영향을 미칠 수 있다. 용매가 증발되고 나면 알칼리할라이드계 또는 할로겐화물 활성 물질은 결정화된 상태로 남게 된다. 결정화된 파이버는 담지체로부터 분리해서 사용할 수 있다.The slurry is compressed and packed in a carrier so as to have no pores (S30), and the carrier in which the slurry is compressed and packed is put into a heating means with only one surface exposed, and the temperature and humidity are adjusted (S40). When the carrier in which the slurry is compressed and packed is placed in the heating means with the temperature and humidity conditions set in this way for a certain period of time and reacted, a temperature and concentration gradient are formed as the solvent evaporates and dries, so that crystals grow and crystalline fibers are created (S50). A forced circulation dryer or a constant temperature and humidity chamber can be used as the heating means. The heating means can include a heat source configured to heat the carrier. The heating speed, temperature, time, and atmosphere can affect the crystallinity and shape of the crystalline fiber. After the solvent evaporates, the alkali halide or halide active material remains in a crystallized state. The crystallized fiber can be separated from the carrier and used.
본 발명에서 담지체 내의 다공성 고체 재료들 사이의 기공에 의해서 형성되는 미세 부피는 모세관 현상에 의해 증발 확산되는 알칼리할라이드계 화합물 또는 할로겐화물의 용융액이 전단응력을 받아 배열되면서 결정화에 필요한 핵생성, 과포화, 단일 결정성장을 만드는 기재 역할을 한다. 이때 담지체의 직경은 결정화에 필요한 핵생성, 과포화, 단일 결정 성장을 고려하여 10 ㎜ 내지 50 ㎜ 크기를 갖는다.In the present invention, the micro volume formed by the pores between the porous solid materials in the carrier acts as a substrate that creates nucleation, supersaturation, and single crystal growth necessary for crystallization as the molten solution of an alkali halide compound or a halide, which evaporates and diffuses by capillary phenomenon, is arranged under shear stress. At this time, the diameter of the carrier is 10 mm to 50 mm in consideration of nucleation, supersaturation, and single crystal growth necessary for crystallization.
본 발명에서 담지체의 길이는 3~6 ㎝ 일 수 있다. 담지체의 길이가 3 ㎝ 미만이거나 6 ㎝를 초과하면, 결정화에 필요한 핵생성이 잘 이루어지지 않아서 결정성 파이버가 형성되지 않을 수도 있다. 본 발명에서 다공성 고체 재료의 슬러리가 압축패킹되면 10 nm 내지 30 nm 크기의 기공이 증발과정에서 형성된다.In the present invention, the length of the carrier may be 3 to 6 cm. If the length of the carrier is less than 3 cm or more than 6 cm, nucleation necessary for crystallization may not occur well, so that crystalline fibers may not be formed. In the present invention, when the slurry of the porous solid material is compression-packed, pores having a size of 10 nm to 30 nm are formed during the evaporation process.
본 발명에서, 알칼리할라이드계 화합물 또는 할로겐화물의 용융액의 증발 확산에 필요한 온도는 25~100℃이고, 바람직하게는 50~80℃이다. 온도가 25℃ 미만이거나 100℃를 초과하면, 결정화에 필요한 핵생성, 과포화, 단일 결정성장성에 필요한 결정속도가 달라져서 균일한 결정성 파이버를 얻을 수 없게 된다.In the present invention, the temperature required for evaporation and diffusion of the melt of the alkali halide compound or halide is 25 to 100°C, and preferably 50 to 80°C. If the temperature is less than 25°C or more than 100°C, the nucleation required for crystallization, supersaturation, and crystallization speed required for single crystal growth change, making it impossible to obtain a uniform crystalline fiber.
본 발명에서 알칼리할라이드계 화합물 또는 할로겐화물의 용융액의 증발 확산에 필요한 습도는 10~50%이고, 더욱 바람직하게는 20~40%이다. 습도가 10% 미만이거나 50%를 초과하면, 결정화에 필요한 핵생성, 과포화, 결정성장속도에 필요한 냉각조건이 달라져서 균일한 결정성 파이버를 얻을 수 없게 된다. In the present invention, the humidity required for evaporation and diffusion of the melt of the alkali halide compound or halide is 10 to 50%, more preferably 20 to 40%. If the humidity is less than 10% or more than 50%, the cooling conditions required for nucleation, supersaturation, and crystal growth rate required for crystallization change, making it impossible to obtain a uniform crystalline fiber.
본 발명에서 담지체에 투입한 용융액 중의 수분이 증발되면서 용융액의 농도가 진해지고 결정을 형성하기 위한 핵생성이 형성되는데, 결정화에 필요한 핵생성 가능한 농도는 수용액 대비 알칼리할라이드계 화합물 또는 할로겐화물의 농도가 5~40 중량%이고, 더 바람직하게는 20~30 중량%이다. 핵생성 농도가 5% 미만이거나 40 중량%를 초과하면, 증발 확산에 의해 발생하는 농도 구배로 인한 핵생성, 과포화 조건이 달라져 결정성장속도가 달라져서 균일한 결정성 파이버를 얻을 수 없게 된다.In the present invention, as the moisture in the molten solution injected into the carrier evaporates, the concentration of the molten solution becomes thicker and nuclei are generated for forming crystals. The concentration necessary for crystallization is 5 to 40 wt% of the alkali halide compound or halide relative to the aqueous solution, more preferably 20 to 30 wt%. If the nucleation concentration is less than 5 wt% or more than 40 wt%, the nucleation and supersaturation conditions change due to the concentration gradient generated by evaporation and diffusion, so that the crystal growth rate changes and it becomes impossible to obtain a uniform crystalline fiber.
본 발명의 다른 양상은 상술한 본 발명의 방법에 의해 제조된 결정성 파이버를 적용한 압전 재료 및 이를 이용한 압전 소자에 관한 것이다. 본 발명에 의해 제조되는 결정성 파이버는 우수한 생체적합성, 생분해성 및 압전 특성을 가져 에너지 하베스팅 소자(energy harvesting device), 센서(sensor), 액츄에이터(actuator), 트랜스듀서(transducer), 트랜스포머(transformer), 소나(sonar) 등의 압전 소자의 제조에 유용하게 사용될 수 있다.Another aspect of the present invention relates to a piezoelectric material using the crystalline fiber manufactured by the method of the present invention described above and a piezoelectric element using the same. The crystalline fiber manufactured by the present invention has excellent biocompatibility, biodegradability and piezoelectric properties, and can be usefully used in the manufacture of piezoelectric elements such as energy harvesting devices, sensors, actuators, transducers, transformers, and sonar.
본 발명에 의해 제조되는 결정성 파이버는 표면에 대한 접촉, 압력, 형상 변화, 진동 등을 전기 신호로서 출력할 수 있기 때문에, 결정성 파이버에 인가된 응력의 크기 또는 인가된 위치를 검출하는 센서로서 이용할 수 있다.Since the crystalline fiber manufactured by the present invention can output contact, pressure, shape change, vibration, etc. on a surface as an electric signal, it can be used as a sensor that detects the size of stress applied to the crystalline fiber or the applied position.
본 발명의 또 다른 양상은,Another aspect of the present invention is:
해수를 다공성 고체 재료와 혼합하여 슬러리를 제조하는 단계;A step of preparing a slurry by mixing seawater with a porous solid material;
상기 슬러리를 기공이 없도록 담지체 내부에 압축패킹하는 단계;A step of compressing and packing the above slurry inside a carrier so that there are no pores;
슬러리가 압축패킹된 담지체를 태양열에 의해 가열하여 증발건조하면서 결정을 성장시켜 소금 결정을 수득하는 단계를 포함하는 소금의 제조방법에 관한 것이다. The present invention relates to a method for producing salt, including a step of obtaining salt crystals by heating a slurry-compressed packing support with solar heat to evaporate and dry the crystals while growing the crystals.
본 발명에서는 이온성 용융액으로서 NaCl 수용액 대신에 해수를 사용할 수 있다. 해수를 사용하는 경우에는 해수에 녹아있는 용존 물질에서 염화나트륨을 연속 결정화하여 경제적인 방법으로 소금을 생산할 수 있다. 기존의 증발 기반의 소금 생산은 태양열을 이용하여 해수를 증발시키고 남은 결정을 회수하는 방식인데, 많은 노동력과 에너지 소모를 필요로 한다. 본 발명의 방법에 의하면 해수에 존재하는 염화나트륨을 증발건조 방식을 통해 효율적으로 생산할 수 있다.In the present invention, seawater can be used instead of NaCl aqueous solution as an ionic molten solution. When seawater is used, salt can be produced economically by continuously crystallizing sodium chloride from dissolved substances dissolved in seawater. Existing evaporation-based salt production is a method of evaporating seawater using solar heat and recovering the remaining crystals, which requires a lot of labor and energy consumption. According to the method of the present invention, sodium chloride present in seawater can be efficiently produced through an evaporation drying method.
본 발명의 기술을 소금 생산에 응용하는 경우에는 해수 고정유도체와 태양열 집열판을 포함하는 도 11에 예시한 바와 같은 장치를 이용할 수 있다. 이 경우에는 담지체는 대형화되고, 별도의 가열수단 없이 태양열을 에너지원으로 이용해서 소금을 증발건조법에 의해 대량생산할 수 있다. When the technology of the present invention is applied to salt production, a device such as that illustrated in Fig. 11, which includes a seawater fixing inducer and a solar thermal collector, can be used. In this case, the carrier is enlarged, and salt can be mass-produced by an evaporative drying method using solar heat as an energy source without a separate heating means.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to explain the present invention more specifically, and the scope of the present invention is not limited by these examples.
실시예Example
실시예 1 (LiCl 결정성 파이버제조)Example 1 (Manufacture of LiCl crystalline fiber)
LiCl (ACS 시약, ≥99% 시그마 알드리치)와 증류수를 초기농도 20 중량%로 혼합한 후, 가열교반기에서 25℃, 400 rpm으로 녹여 LiCl 수용액을 제조하였다. LiCl 수용액을 15 nm 크기의 흄드 실리카(fumed silica)에 투입하여 100 rpm으로 균일하게 혼합하여 상온에서 점도가 100,000~200,000 cP인 슬러리를 제조하였다. 이때 상기 수용액은 7g이며, 흄드 실리카는 2g이었다. 이 슬러리를 직경 15 ㎜, 높이 30 ㎜ 크기를 갖는 폴리에틸렌 튜브 내에 실리카 입자들이 채워진 기둥형(channel) 담지체에 투입하고, 담지체 내부에 기공이 없도록 압축패킹하였다. 슬러리가 압축패킹된 담지체를 강제 순환 건조기(forced convection oven)에 한 쪽 표면만 노출된 상태로 세워서 투입하였고, 건조기 내부를 온도 70℃ 및 습도 20%로 설정하여 48시간 동안 놓아두었다. LiCl (ACS reagent, ≥99% Sigma Aldrich) and distilled water were mixed at an initial concentration of 20 wt%, and then melted in a heating stirrer at 25°C and 400 rpm to prepare a LiCl aqueous solution. The LiCl aqueous solution was added to fumed silica having a size of 15 nm and uniformly mixed at 100 rpm to prepare a slurry having a viscosity of 100,000 to 200,000 cP at room temperature. At this time, the aqueous solution was 7 g and the fumed silica was 2 g. The slurry was added to a columnar (channel) carrier filled with silica particles inside a polyethylene tube having a diameter of 15 mm and a height of 30 mm, and compression-packed so that there were no pores inside the carrier. The slurry-packed support was placed upright in a forced convection oven with only one surface exposed, and the inside of the dryer was set to a temperature of 70°C and a humidity of 20%, and left for 48 hours.
상기 조건에서 48시간 동안 상기 온도 및 농도 구배에 따라 결정을 성장시킨 결과 순수한 LiCl 결정성 파이버를 제조하였다. 제조된 LiCl 결정성 파이버의 SEM 사진을 도 2에 나타내었다. Pure LiCl crystalline fibers were produced as a result of crystal growth according to the temperature and concentration gradient for 48 hours under the above conditions. The SEM image of the produced LiCl crystalline fiber is shown in Fig. 2.
실시예 2 (NaCl 결정성 파이버 제조)Example 2 (Preparation of NaCl crystalline fiber)
NaCl 수용액을 이용하고 항온항습조(constant temperature and humid chamber)를 사용한 것을 제외하고 실시예 1과 동일하게 실시하여 결정성 파이버를 제조하였다. 상승된 온도와 습도 환경을 통해 증발 확산 정도를 조절하기 위해 슬러리가 패킹된 담지체를 항온항습조에 한 쪽 표면만 노출된 상태로 세워서 투입하였다. 항온항습조 내부를 온도 80℃ 및 습도 40%로 설정하여 48시간 동안 결정을 성장시킨 결과, 순수한 NaCl 결정성 파이버를 제조하였다. 제조된 NaCl 결정성 파이버의 SEM 사진을 도 3에 나타내었다. 결정성 파이버를 Crystalline fibers were manufactured in the same manner as in Example 1, except that a NaCl aqueous solution was used and a constant temperature and humid chamber was used. In order to control the degree of evaporation and diffusion through an elevated temperature and humidity environment, the slurry-packed carrier was placed upright in the constant temperature and humidity chamber with only one surface exposed. The inside of the constant temperature and humidity chamber was set to a temperature of 80°C and a humidity of 40%, and crystals were grown for 48 hours, resulting in the manufacture of pure NaCl crystalline fibers. The SEM image of the manufactured NaCl crystalline fibers is shown in Fig. 3. The crystalline fibers
실시예 3 (해수에서 NaCl 결정성 파이버 제조)Example 3 (Preparation of NaCl crystalline fibers in seawater)
NaCl 수용액 대신에 1 ㎏의 해수를 회전증발기를 이용하여 20 g으로 농축한 해수를 사용한 것과 담지체로서 직경이 500 mm이고, 길이가 75 cm인 것을 사용한 것을 제외하고는 실시예 2와 동일하게 실시하여 NaCl 결정성파이버를 제조하였다. A NaCl crystalline fiber was manufactured in the same manner as in Example 2, except that 1 kg of seawater was concentrated to 20 g using a rotary evaporator instead of a NaCl aqueous solution, and a carrier having a diameter of 500 mm and a length of 75 cm was used.
실시예 4 (KCl 결정성 파이버 제조)Example 4 (Preparation of KCl crystalline fiber)
KCl 수용액을 사용한 것을 제외하고 실시예 1과 동일하게 실시하여 결정성 파이버를 제조하였다. 제조된 KCl 결정성 파이버의 미세 구조는 주사전자현미경 (Scanning Electron Microscopy, SEM)으로 측정하여, SEM 사진을 도 4 및 도 5에 나타내었다. Crystalline fibers were manufactured in the same manner as in Example 1, except that a KCl aqueous solution was used. The microstructure of the manufactured KCl crystalline fibers was measured using a scanning electron microscope (SEM), and the SEM images are shown in Figs. 4 and 5.
본 실시예에서 제조된 KCl 결정성 파이버의 결정상을 확인하기 위해, x-선 회절 (XRD) 분석을 수행하여, 그 결과를 도 7에 나타내었다. 도 6은 본 실시예에서 제조된 KCl 결정성 파이버의 EDS 스펙트럼이며, 도 8은 본 실시예에서 제조된 KCl 결정성 파이버의 압력 인가에 따른 전압특성 그래프이다. In order to confirm the crystal phase of the KCl crystalline fiber manufactured in this example, X-ray diffraction (XRD) analysis was performed, and the results are shown in Fig. 7. Fig. 6 is an EDS spectrum of the KCl crystalline fiber manufactured in this example, and Fig. 8 is a graph of the voltage characteristics according to the pressure application of the KCl crystalline fiber manufactured in this example.
도 7에 나타난 바와 같이, 본 발명의 KCl 결정성 파이버의 경우에는 결정에 의한 피크들이 나타나지만, KCl 분말의 경우 본 발명의 결정성 KCl 파이버에서 나타나는 피크 외에 결정상이 나타나지 않는 것을 확인할 수 있었다. 본 발명의 제조방법은 SEM, XRD 및 EDS 데이터에 의하여 결정화된 파이버를 만드는 것을 확인할 수 있다.As shown in Fig. 7, in the case of the KCl crystalline fiber of the present invention, peaks due to crystals appear, but in the case of the KCl powder, it was confirmed that no crystal phase appears other than the peaks appearing in the crystalline KCl fiber of the present invention. It was confirmed that the manufacturing method of the present invention produces a crystallized fiber by SEM, XRD, and EDS data.
실시예 5 (RbCl 결정성 파이버 제조)Example 5 (Preparation of RbCl crystalline fiber)
RbCl 수용액을 사용한 것을 제외하고 실시예 1과 동일하게 실시하여 결정성 파이버를 제조하였다. 제조된 RbCl 결정성 파이버의 SEM 사진을 도 5에 나타내었다. Crystalline fibers were manufactured in the same manner as in Example 1, except that an RbCl aqueous solution was used. An SEM image of the manufactured RbCl crystalline fiber is shown in Fig. 5.
실시예 6 (CsCl 결정성 파이버 제조)Example 6 (Preparation of CsCl crystalline fiber)
CsCl 수용액을 사용한 것을 제외하고 실시예 1과 동일하게 실시하여 결정성 파이버를 제조하였다. 제조된 CsCl 결정성 파이버의 SEM 사진을 도 6에 나타내었다. Crystalline fibers were manufactured in the same manner as in Example 1, except that a CsCl aqueous solution was used. An SEM image of the manufactured CsCl crystalline fiber is shown in Fig. 6.
비교예 1 (LiCl 결정성 파이버제조)Comparative Example 1 (Manufacture of LiCl Crystalline Fiber)
강제 순환 건조기 내부의 온도 조건을 90℃로 세팅한 것을 제외하고, 실시예 1과 동일한 방법으로 실시하여 결정성 파이버를 제조하고자 하였으나, LiCl 결정성 파이버가 형성되지 않았다. An attempt was made to manufacture crystalline fibers by the same method as Example 1, except that the temperature conditions inside the forced circulation dryer were set to 90°C, but LiCl crystalline fibers were not formed.
비교예 2 (습도조건이 다른 NaCl 결정성 파이버 제조)Comparative Example 2 (Manufacture of NaCl crystalline fibers under different humidity conditions)
항온항습조 내의 습도 조건을 5%로 세팅한 것을 제외하고, 실시예 2와 동일하게 실시하였으나, NaCl 결정성 파이버가 형성되지 않았다. The same procedure as Example 2 was performed, except that the humidity conditions in the constant temperature and humidity chamber were set to 5%, but NaCl crystalline fibers were not formed.
비교예 3 (담지체 크기가 상이한 KCl 결정성 파이버 제조)Comparative Example 3 (Manufacture of KCl crystalline fibers with different carrier sizes)
담지체로서 직경이 80 mm인 것을 사용한 것을 제외하고, 실시예 3과 동일하게 실시하였으나, KCl 결정성 파이버가 형성되지 않았다. The same procedure as Example 3 was followed, except that a carrier having a diameter of 80 mm was used, but KCl crystalline fibers were not formed.
비교예 4 (온도 조건이 다른 KCl 결정성 파이버 제조)Comparative Example 4 (Manufacture of KCl crystalline fibers under different temperature conditions)
항온항습조 내의 온도를 150℃로 적용한 것을 제외하고, 실시예 3과 동일하게 실시하였으나, KCl 결정성 파이버가 형성되지 않았다.The same procedure as Example 3 was performed, except that the temperature inside the constant temperature and humidity chamber was set to 150°C, but KCl crystalline fibers were not formed.
비교예 5 (습도 조건이 다른 KCl 결정성 파이버 제조)Comparative Example 5 (Manufacture of KCl crystalline fibers under different humidity conditions)
항온항습조 내의 습도를 70%로 세팅한 것을 제외하고, 실시예 3과 동일하게 실시하였으나, KCl 결정성 파이버가 형성되지 않았다. The same procedure as Example 3 was performed, except that the humidity in the constant temperature and humidity chamber was set to 70%, but KCl crystalline fibers were not formed.
비교예 6 (농도 조건이 다른 KCl 결정성 파이버 제조)Comparative Example 6 (Manufacture of KCl crystalline fibers under different concentration conditions)
KCl 수용액으로서 농도가 5 중량%인 것을 사용한 것을 제외하고, 실시예 3과 동일하게 실시하였으나, KCl 결정성 파이버가 형성되지 않았다. The same procedure as Example 3 was followed, except that a KCl aqueous solution having a concentration of 5 wt% was used, but KCl crystalline fibers were not formed.
비교예 7 (담지체 길이 조건이 다른 KCl 결정성 파이버 제조)Comparative Example 7 (Manufacture of KCl crystalline fibers with different carrier length conditions)
담지체로서 길이가 1 ㎝인 담지체를 사용한 것을 제외하고, 실시예 3과 동일하게 실시하였으나, KCl 결정성 파이버가 형성되지 않았다. The same procedure as Example 3 was performed, except that a carrier having a length of 1 cm was used as the carrier, but KCl crystalline fibers were not formed.
비교예 8 (담지체 길이 조건이 다른 RbCl 결정성 파이버 제조)Comparative Example 8 (Manufacture of RbCl crystalline fibers with different carrier length conditions)
담지체로서 길이가 15 ㎝인 것을 사용한 것을 제외하고, 실시예 4와 동일하게 실시하였으나, RbCl 결정성 파이버가 형성되지 않았다. The same procedure as Example 4 was performed, except that a carrier having a length of 15 cm was used, but RbCl crystalline fibers were not formed.
비교예 9 (담지체 크기 조건이 다른 CsCl 결정성 파이버 제조)Comparative Example 9 (Manufacture of CsCl crystalline fibers with different carrier size conditions)
담지체로서 직경이 80 mm인 담지체를 사용한 것을 제외하고, 실시예 5와 동일하게 실시하였으나, CsCl 결정성 파이버가 형성되지 않았다. The same procedure as in Example 5 was repeated except that a carrier having a diameter of 80 mm was used as the carrier, but CsCl crystalline fibers were not formed.
비교예 10 (사용된 용매가 다른 KCl 결정성 파이버 제조)Comparative Example 10 (Manufacture of KCl crystalline fibers using different solvents)
KCl 용액을 제조하는데 용매로서 N,N-디메틸포름아미드만을 사용한 것을 제외하고 실시예 3과 동일한 방법으로 실시하였으나, KCl 결정성 파이버가 형성되지 않았다.The same method as Example 3 was performed except that only N,N-dimethylformamide was used as a solvent to prepare the KCl solution, but KCl crystalline fibers were not formed.
시험예Exam example
실시예 1 내지 6에서 수득된 결정성 파이버의 형태를 확인하기 위하여, 각 실시예에서 제조된 결정성 파이버를 대상으로 주사전자현미경(SEM) 촬영을 수행하였으며, 파이버의 길이를 측정하여 그 결과를 하기 표 1에 나타내었다. In order to confirm the morphology of the crystalline fibers obtained in Examples 1 to 6, scanning electron microscope (SEM) photographs were taken of the crystalline fibers manufactured in each example, and the lengths of the fibers were measured, and the results are shown in Table 1 below.
압전 전위를 측정하기 위해, 결정성 파이버에 PDMS를 부어 실링한 후에 4×4의 0.2-0.5 두께로 필름으로 만들고, 이어서 필름 앞뒤에 Cu 전극 테이프를 붙이고 4×4×0.5의 PLA 기판을 붙여 샘플을 제작하였다. 샘플에 2.0 kV에서 20분 동안 전계를 가하여 압전 특성을 발생시키는 폴링(poling) 공정을 수행한 후에, 압전전위를 측정하여 그 결과를 표 1에 나타내었다.To measure the piezoelectric potential, PDMS was poured onto a crystalline fiber, sealed, and made into a film with a thickness of 0.2-0.5 of 4×4, and then Cu electrode tapes were attached to the front and back of the film, and a 4×4×0.5 PLA substrate was attached to produce a sample. After performing a poling process to generate piezoelectric characteristics by applying an electric field to the sample at 2.0 kV for 20 minutes, the piezoelectric potential was measured, and the results are shown in Table 1.
길이 (㎝)carrier
Length (cm)
(wt%)density
(wt%)
(℃)temperature
(℃)
(v)Piezoelectric potential
(v)
상기 표 1에 나타낸 바와 같이 본 발명에 따른 결정성 파이버는 길이가 2.5 ㎝ 내지 17 ㎝까지 성장하였고, 본 발명에 따라서 제조된 결정성 파이버를 적용한 압전체는 압전 특성을 나타내었다. As shown in Table 1 above, the crystalline fiber according to the present invention grew to a length of 2.5 cm to 17 cm, and the piezoelectric body using the crystalline fiber manufactured according to the present invention exhibited piezoelectric properties.
본 발명의 방법에 의해서 제조되는 결정성 파이버는 고도로 결정화되어 정돈된 입자로서 공간에서 규칙적인 3차원 배열(array)로 이루어진 결정성 파이버로 압전물질 및 다양한 응용을 제공할 수 있다.The crystalline fiber manufactured by the method of the present invention is a crystalline fiber formed of highly crystallized and well-ordered particles in a regular three-dimensional array in space, and can provide a piezoelectric material and various applications.
생체적합성, 생분해성, 및 압전성을 갖는 본 발명의 결정화된 파이버는 일회용 나노모터 및 센서에 사용될 수 있다. 일 구현예에서, 본 발명의 알칼리할라이드계 화합물 또는 할로겐화물 결정성 파이버를 기반으로 하는 압전 물질은 의료 센서 및 나노모터에 사용될 수 있다. 또한 본 발명의 결정화된 파이버는 스피커나 버저 등의 전기 음향 변환기기, 액추에이터, 촉각 디스플레이, 및 발전 디바이스 등으로서 적합하게 사용할 수 있다.The crystallized fiber of the present invention having biocompatibility, biodegradability, and piezoelectricity can be used in disposable nanomotors and sensors. In one embodiment, the piezoelectric material based on the alkali halide compound or halide crystalline fiber of the present invention can be used in medical sensors and nanomotors. In addition, the crystallized fiber of the present invention can be suitably used as an electroacoustic transducer such as a speaker or a buzzer, an actuator, a tactile display, and a power generation device.
이상에서 본 발명의 바람직한 구현예에 대해서 상세하게 설명하였으나, 이러한 실시예는 단지 예시로서 제공된다는 것이 이해될 것이다. 본 발명의 사상에서 벗어남 없이 수많은 변형, 변경 및 대체가 당업자에게 이루어질 것이다. 따라서 첨부된 청구항은 본 발명의 사상 및 범위 내에 속하는 모든 변형을 포함하는 것으로 의도된다.While the preferred embodiments of the present invention have been described in detail above, it will be understood that these embodiments are provided by way of example only. Numerous modifications, changes, and substitutions will occur to those skilled in the art without departing from the spirit of the present invention. Accordingly, the appended claims are intended to cover all modifications that fall within the spirit and scope of the present invention.
Claims (16)
전 단계에서 수득된 이온성 용융액에 다공성 고체 재료를 혼합하여 슬러리를 제조하는 단계;
상기 슬러리를 기공이 없도록 담지체 내부에 압축패킹하는 단계;
슬러리가 압축패킹된 담지체를 가열하여 증발건조하면서 결정을 성장시켜 결정성 파이버를 수득하는 단계를 포함하는 알칼리할라이드계 화합물 또는 할로겐화물을 이용한 결정성 파이버의 제조방법. A step of preparing an ionic molten solution by mixing an alkali halide compound or a halide into a solvent;
A step of preparing a slurry by mixing a porous solid material into the ionic melt obtained in the previous step;
A step of compressing and packing the above slurry inside a carrier so that there are no pores;
A method for producing a crystalline fiber using an alkali halide compound or a halide, comprising the step of heating a slurry-compressed packing support to grow crystals while evaporating and drying to obtain a crystalline fiber.
슬러리가 압축패킹된 담지체를 하나의 표면만 노출된 상태로 가열 수단에 투입하는 단계; 및
결정 성장 온도 및 습도로 세팅된 가열 수단 내에서 슬러리가 압축패킹된 담지체를 소정의 시간 동안 반응시키는 단계를 포함하는 것을 특징으로 하는 알칼리할라이드계 화합물 또는 할로겐화물을 이용한 결정성 파이버의 제조방법. In the first paragraph, the crystal growth step is,
A step of introducing a slurry-packed carrier into a heating means with only one surface exposed; and
A method for manufacturing a crystalline fiber using an alkali halide compound or a halide, characterized by including a step of reacting a slurry-packed support for a predetermined period of time in a heating means set to a crystal growth temperature and humidity.
상기 슬러리를 기공이 없도록 담지체 내부에 압축패킹하는 단계;
슬러리가 압축패킹된 담지체를 태양열에 의해 가열하여 증발건조하면서 결정을 성장시켜 소금 결정을 수득하는 단계를 포함하는 소금의 제조방법. A step of preparing a slurry by mixing seawater with a porous solid material;
A step of compressing and packing the above slurry inside a carrier so that there are no pores;
A method for producing salt, comprising the step of heating a slurry-packed support by solar heat to evaporate and dry while growing crystals to obtain salt crystals.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220174511A KR102780110B1 (en) | 2022-12-14 | 2022-12-14 | Preparation method of crystallized fiber using alkali halide and halogen compounds |
PCT/KR2023/020286 WO2024128711A1 (en) | 2022-12-14 | 2023-12-11 | Method for manufacturing crystalline fiber by using alkali halide-based compound and halide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220174511A KR102780110B1 (en) | 2022-12-14 | 2022-12-14 | Preparation method of crystallized fiber using alkali halide and halogen compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20240092645A KR20240092645A (en) | 2024-06-24 |
KR102780110B1 true KR102780110B1 (en) | 2025-03-13 |
Family
ID=91485279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220174511A Active KR102780110B1 (en) | 2022-12-14 | 2022-12-14 | Preparation method of crystallized fiber using alkali halide and halogen compounds |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102780110B1 (en) |
WO (1) | WO2024128711A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020535259A (en) | 2017-09-27 | 2020-12-03 | アーケマ・インコーポレイテッド | Copolymerization of halogenated olefin and halogenated comonomer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8946974B2 (en) | 2008-08-19 | 2015-02-03 | The Johns Hopkins University | Piezoelectric polymer fibers |
KR101220864B1 (en) * | 2011-09-14 | 2013-01-11 | 강창억 | Salt method and salt fabrication apparatus using the bio salt and solar energy |
FR2987358B1 (en) * | 2012-02-28 | 2016-10-21 | Arkema France | PROCESS FOR THE SYNTHESIS OF TRIFLUOROETHYLENE FROM CHLOROTRIFLUOROETHYLENE |
JP6523342B2 (en) * | 2014-06-11 | 2019-05-29 | サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン | Ceramic body having oriented particles and method of making same |
US10461241B2 (en) * | 2015-03-17 | 2019-10-29 | Canon Kabushiki Kaisha | Method for manufacturing rectangular parallelepiped-shaped single crystal, rectangular parallelepiped-shaped single crystal, method for manufacturing ceramics, ceramics, piezoelectric element, piezoelectric device, and electronic device |
KR101748858B1 (en) | 2016-02-17 | 2017-06-20 | 한국세라믹기술원 | Manufacturing method of nanofiber composite film using lead-free piezoelectric ceramic |
KR20220091669A (en) * | 2020-12-23 | 2022-07-01 | 엘지디스플레이 주식회사 | Composition of lead-free piezoelectric material, method for fabricating the same, lead-free piezoelectric device, and display apparatus comprising lead-free piezoelectric device |
-
2022
- 2022-12-14 KR KR1020220174511A patent/KR102780110B1/en active Active
-
2023
- 2023-12-11 WO PCT/KR2023/020286 patent/WO2024128711A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020535259A (en) | 2017-09-27 | 2020-12-03 | アーケマ・インコーポレイテッド | Copolymerization of halogenated olefin and halogenated comonomer |
Non-Patent Citations (1)
Title |
---|
M.P.Gashti, 'Surface modification of synthetic fibers to improve performance: Recent approaches', Global J.Phys.Chem. (2012) |
Also Published As
Publication number | Publication date |
---|---|
WO2024128711A1 (en) | 2024-06-20 |
KR20240092645A (en) | 2024-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dang et al. | Recent progress in the synthesis of hybrid halide perovskite single crystals | |
Li et al. | Template-confined growth of Ruddlesden–Popper perovskite micro-wire arrays for stable polarized photodetectors | |
Chen et al. | Top seeded solution growth and characterization of piezo-/ferroelectric (1− x) Pb (Zn1/3Nb2/3) O3–xPbTiO3 single crystals | |
KR102780110B1 (en) | Preparation method of crystallized fiber using alkali halide and halogen compounds | |
Gao et al. | The growth mechanism and ferroelectric domains of diisopropylammonium bromide films synthesized via 12-crown-4 addition at room temperature | |
Kazak et al. | Floating layer structure of mesogenic phthalocyanine of A 3 B-type | |
CN103614694B (en) | The template companion matrix rod structure CsI (Tl) that declines glimmers the preparation method of conversion screen and application thereof | |
KR102780109B1 (en) | Preparation method of crystallized fiber using carbonate salt or carbonate salt derivatives | |
CN113970779A (en) | A microstructure scintillation screen formed by filling a microporous panel with perovskite and preparation method thereof | |
KR102822018B1 (en) | Preparation method of crystallized fiber using carboxylic acid, sulfonic acid, phosphoric acid and acid salt derivatives thereof | |
Dumont et al. | Restructuring and reshaping of CsPbX3 perovskites by lithium salts | |
JP2009215167A (en) | Method for producing borate-based crystal and laser oscillation apparatus | |
KR20250089892A (en) | Piezoelectric device using amino acid crystal fiber and method of preparing the same | |
Yadlovker et al. | Reversible electric field induced nonferroelectric to ferroelectric phase transition in single crystal nanorods of potassium nitrate | |
Yang et al. | Synthesis and growth mechanism of lead titanate nanotube arrays by hydrothermal method | |
CN113186590A (en) | Preparation method of centimeter-level molybdenum trioxide single crystal | |
JP2004523116A (en) | Potassium ytterbium potassium ditungstate which may be doped, production method and use thereof | |
Carretero-Genevrier et al. | Preparation of macroporous epitaxial quartz films on silicon by chemical solution deposition | |
Zhou | Microscopic study of crystal defects enriches our knowledge of materials chemistry | |
Guo et al. | Effect of alkalinity on the hydrothermal synthesis of Li2ZrO3 nanotube arrays | |
Nourmohammadi et al. | Sol–gel electrophoretic deposition of PZT nanotubes | |
RU2802302C1 (en) | METHOD FOR MANUFACTURING HIGHLY CRYSTALLINE INORGANIC PEROVSKITE THIN FILMS CsPbBr3 | |
Bi et al. | Construction of coral-like architectures of boron-containing compounds: coral-like boric acid and its application performances | |
Yadlovker et al. | Ferroelectric single-crystal nano-rods grown within a nano-porous aluminum oxide matrix | |
JPH10259094A (en) | Production of calcite-type calcium carbonate single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20221214 |
|
PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20221214 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240902 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20250103 |
|
PG1601 | Publication of registration |