[go: up one dir, main page]

KR102774781B1 - Electrolyte additive for manufacturing metal electrode - Google Patents

Electrolyte additive for manufacturing metal electrode Download PDF

Info

Publication number
KR102774781B1
KR102774781B1 KR1020220012853A KR20220012853A KR102774781B1 KR 102774781 B1 KR102774781 B1 KR 102774781B1 KR 1020220012853 A KR1020220012853 A KR 1020220012853A KR 20220012853 A KR20220012853 A KR 20220012853A KR 102774781 B1 KR102774781 B1 KR 102774781B1
Authority
KR
South Korea
Prior art keywords
electrolyte
lithium
electrode
manufacturing
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020220012853A
Other languages
Korean (ko)
Other versions
KR20230116212A (en
Inventor
김점수
이민희
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020220012853A priority Critical patent/KR102774781B1/en
Publication of KR20230116212A publication Critical patent/KR20230116212A/en
Application granted granted Critical
Publication of KR102774781B1 publication Critical patent/KR102774781B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 메탈 전극 제조용 전해액 첨가제, 이를 포함하는 전해액, 이를 이용하여 제조된 메탈 전극, 및 이를 이용하여 메탈 전극을 제조하는 방법을 제공한다. 본 발명의 전해액 첨가제를 포함하는 전해액을 사용하는 경우, 전착 리튬이 크고 둥근 형태를 가져 덴드라이트(dendrite) 형성을 억제하는데 유리할 수 있고, 리튬 이온 반응성 향상으로 인해 전착 과전압이 감소할 수 있다. 또한, 본 발명의 전해액 첨가제를 포함하는 전해액을 사용하는 경우, 전극의 수명 유지율이 향상될 수 있고, 전착된 전극 표면의 기계적 강도 및 유연성이 향상될 수 있다.The present invention provides an electrolyte additive for manufacturing a metal electrode, an electrolyte containing the same, a metal electrode manufactured using the same, and a method for manufacturing a metal electrode using the same. When an electrolyte containing the electrolyte additive of the present invention is used, electrodeposited lithium may have a large and round shape, which may be advantageous in suppressing dendrite formation, and electrodeposition overvoltage may be reduced due to improved lithium ion reactivity. In addition, when an electrolyte containing the electrolyte additive of the present invention is used, the lifespan of the electrode may be improved, and the mechanical strength and flexibility of the electrodeposited surface may be improved.

Description

메탈 전극 제조용 전해액 첨가제{Electrolyte additive for manufacturing metal electrode}Electrolyte additive for manufacturing metal electrode {Electrolyte additive for manufacturing metal electrode}

본 발명은 메탈 전극 제조용 전해액 첨가제에 관한 것이다.The present invention relates to an electrolyte additive for manufacturing a metal electrode.

리튬은 가장 가벼운 금속일 뿐만 아니라 낮은 환원전위와 큰 이론용량을 가지고 있어 차세대 음극 소재로 연구되고 있다. 리튬 금속을 전극으로 사용하는 리튬 이차전지의 경우 전지의 효율과 에너지 밀도 극대화를 위해 얇은 두께의 리튬 전극이 필요하지만 기존의 리튬 박을 제조하는 물리적인 압연 방법으로는 일정수준 이하의 두께를 가지는 리튬 박을 제조하는데 한계가 있다.Lithium is not only the lightest metal, but also has a low reduction potential and a large theoretical capacity, so it is being studied as a next-generation cathode material. In the case of lithium secondary batteries using lithium metal as an electrode, a thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the existing physical rolling method for manufacturing lithium foil has limitations in manufacturing lithium foil with a thickness below a certain level.

이에 따라, 압연 방법이 가지고 있는 박막 두께 구현의 한계를 극복하기 위해 전해도금법을 적용하여 리튬 전극이 제조되고 있다. 이때, 전해도금에 사용되는 전해액의 조성은 전착 리튬의 형상과 리튬 표면 SEI층에 영향을 줄 수 있기 때문에, 리튬 전착 전극의 성능 개선을 위한 전해액 첨가제에 대한 연구가 필요하다.Accordingly, lithium electrodes are being manufactured by applying the electroplating method to overcome the limitations of implementing the thin film thickness of the rolling method. At this time, since the composition of the electrolyte used in the electroplating can affect the shape of the electrodeposited lithium and the lithium surface SEI layer, research on electrolyte additives for improving the performance of the lithium electrodeposited electrode is necessary.

구체적으로, 리튬 덴드라이트(dendrite) 억제에 유리한 형상의 리튬 전착을 유도하며, 리튬 삽입/탈리에 따른 부피변화 수용에 효과적인 SEI 필름을 형성하여 전지의 성능을 향상시킬 수 있는 메탈 전극 제조용 전해액 첨가제 및 이를 포함하는 전해액에 관한 연구가 필요하다.Specifically, research is needed on electrolyte additives for manufacturing metal electrodes and electrolytes containing the same that can improve the performance of batteries by inducing lithium deposition in a shape advantageous for lithium dendrite suppression and forming an SEI film that is effective in accommodating volume changes due to lithium insertion/deinsertion.

1. 임라나, 이민희, 김점수, 다양한 전착조건에서 제작된 리튬 전극의 특성 연구. Journal of the Korean Electrochemical Society, Vol. 22, No. 3, 2019, 128-137.1. Im Rana, Lee Min-hee, and Kim Jeom-soo, Characteristics of lithium electrodes fabricated under various deposition conditions. Journal of the Korean Electrochemical Society, Vol. 22, No. 3, 2019, 128-137.

본 발명은 메탈 전지 성능 향상에 효과적인 표면 피막 유도를 위한 전해액 첨가제를 제공하는 것을 목적으로 한다. 구체적으로, 본 발명은 리튬 금속 전지의 성능 향상에 효과적인 표면 피막 유도를 위한 리튬 전착용 전해액 첨가제를 제공하는 것을 목적으로 한다.The present invention aims to provide an electrolyte additive for inducing a surface film that is effective in improving the performance of a metal battery. Specifically, the present invention aims to provide an electrolyte additive for lithium electrodeposition for inducing a surface film that is effective in improving the performance of a lithium metal battery.

본 발명은 메탈 전극 제조용 전해액을 제공한다.The present invention provides an electrolyte for manufacturing a metal electrode.

이때, 일 구현예로, 상기 전해액은 FEC(Fluoroethylene carbonate) 및 LiDFOB(Lithium Difluoro Oxalato Borate)로 이루어진 군에서 선택되는 1이상의 물질을 포함하는, 메탈 전극 제조용 전해액 첨가제를 제공한다.At this time, as an embodiment, an electrolyte additive for manufacturing a metal electrode is provided, wherein the electrolyte contains at least one material selected from the group consisting of FEC (Fluoroethylene carbonate) and LiDFOB (Lithium Difluoro Oxalato Borate).

일 구현예로, 상기 메탈은 리튬인, 메탈 전극 제조용 전해액 첨가제를 제공한다.In one embodiment, the metal provides an electrolyte additive for manufacturing a metal electrode, wherein the metal is lithium.

또한, 본 발명은 상기 첨가제를 포함하는, 메탈 전극 제조용 전해액을 제공한다.In addition, the present invention provides an electrolyte for manufacturing a metal electrode, comprising the additive.

일 구현예로, 상기 메탈은 리튬인, 메탈 전극 제조용 전해액을 제공한다.In one embodiment, the metal is lithium, and an electrolyte for manufacturing a metal electrode is provided.

일 구현예로, 상기 전해액은 상기 LiDFOB를 0.25 내지 0.37M로 포함하는 것인, 메탈 전극 제조용 전해액을 제공한다.In one embodiment, the electrolyte for manufacturing a metal electrode is provided, wherein the electrolyte contains 0.25 to 0.37 M of the LiDFOB.

일 구현예로, 상기 전해액은 상기 FEC를 0.20 내지 0.30M로 포함하는 것인, 메탈 전극 제조용 전해액을 제공한다.In one embodiment, the electrolyte for manufacturing a metal electrode is provided, wherein the electrolyte contains 0.20 to 0.30 M of the FEC.

또한, 본 발명은 상기 전해액을 이용하여 제조된, 메탈 전극을 제공한다.In addition, the present invention provides a metal electrode manufactured using the above electrolyte.

일 구현예로, 상기 메탈은 리튬인, 메탈 전극을 제공한다.In one embodiment, the metal provides a metal electrode, wherein the metal is lithium.

일 구현예로, 상기 전극의 피막은 LiF, B-O, BF2, 및 B-F로 이루어진 군에서 선택된 하나 이상의 성분을 포함하는 것인, 메탈 전극을 제공한다.In one embodiment, a metal electrode is provided, wherein the film of the electrode includes one or more components selected from the group consisting of LiF, BO, BF 2 , and BF .

일 구현예로, 상기 전극의 피막은 Li 성분 중에서 LiF:LixPFy의 값이 80 : 20 내지 90 : 10 (원소 %)인 것인, 메탈 전극을 제공한다.In one embodiment, a metal electrode is provided, wherein the film of the electrode has a value of LiF:Li x PF y among the Li components of 80:20 to 90:10 (element %).

일 구현예로, 상기 전극의 피막은 B 성분 중에서 B-O 결합이 70 내지 90 원소 %의 비율 값을 갖는 것인, 메탈 전극을 제공한다.In one embodiment, a metal electrode is provided, wherein the film of the electrode has a B-O bond ratio value of 70 to 90 element % among the B components.

일 구현예로, 상기 전극의 피막은 B 원소와 F 원소가 1:3 내지 1:5의 비율로 존재하는 것인, 메탈 전극을 제공한다.In one embodiment, a metal electrode is provided, wherein the film of the electrode contains B elements and F elements in a ratio of 1:3 to 1:5.

또한, 본 발명은 상기 전해액을 이용하여 메탈 전극을 제조하는 방법을 제공한다.In addition, the present invention provides a method for manufacturing a metal electrode using the above electrolyte.

일 구현예로, 상기 메탈은 리튬인 것인, 방법을 제공한다.In one embodiment, a method is provided wherein the metal is lithium.

일 구현예로, 상기 방법은 상기 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 높은 스트리핑(stripping) 효율을 갖는 메탈 전극을 제조하는 것인, 방법을 제공한다.In one embodiment, the method provides a method for manufacturing a metal electrode having a high stripping efficiency compared to using an electrolyte that does not include the additive.

일 구현예로, 상기 방법은 상기 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 전착된 리튬 형상의 둥근 형태를 증가시키는 것인, 방법을 제공한다.In one embodiment, the method provides a method that increases the rounded shape of the deposited lithium shape compared to using an electrolyte that does not include the additive.

일 구현예로, 상기 방법은 상기 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 덴드라이트(dendrite)의 형성이 감소되는 메탈 전극을 제조하는 것인, 방법을 제공한다.In one embodiment, the method provides a method for manufacturing a metal electrode in which the formation of dendrites is reduced compared to using an electrolyte that does not include the additive.

본 발명의 전해액 첨가제를 포함하는 전해액을 사용하는 경우, 전착 리튬이 크고 둥근 형태를 가져 덴드라이트(dendrite) 형성을 억제하는데 유리할 수 있다.When using an electrolyte containing the electrolyte additive of the present invention, the electrodeposited lithium may have a large and round shape, which may be advantageous in suppressing dendrite formation.

본 발명의 전해액 첨가제를 포함하는 전해액을 사용하는 경우, 리튬 이온 반응성 향상으로 인해 전착 과전압이 감소할 수 있다.When using an electrolyte containing the electrolyte additive of the present invention, the electrodeposition overvoltage can be reduced due to improved lithium ion reactivity.

본 발명의 전해액 첨가제를 포함하는 전해액을 사용하는 경우, 전극의 수명 유지율이 향상될 수 있다.When an electrolyte solution containing the electrolyte additive of the present invention is used, the life maintenance rate of the electrode can be improved.

본 발명의 전해액 첨가제를 포함하는 전해액을 사용하는 경우, 전착된 전극 표면의 기계적 강도 및 유연성이 향상될 수 있다.When an electrolyte solution containing the electrolyte additive of the present invention is used, the mechanical strength and flexibility of the electrodeposited electrode surface can be improved.

도 1은 전해액 첨가제 유무 및 종류에 따른 전착 리튬 형상 비교 결과를 나타낸다.
도 2는 전해액 첨가제 유무 및 종류에 따른 초기 과전압 및 스트리핑(stripping) 효율 비교 결과를 나타낸다.
도 3 내지 4는 전해액 첨가제 유무에 따른 하프 셀 테스트 비교 결과를 나타낸다.
도 5 내지 6은 전해액 첨가제 유무 및 조성 비율에 따른 전착 리튬 표면 피막 조성 비교 결과를 나타낸다.
도 7 내지 8은 상용 리튬 호일과 전해액 첨가제가 적용된 전해액을 이용하여 전착된 리튬 음극을 풀 셀 테스트로 비교한 결과이다.
Figure 1 shows the results of comparing the electrodeposited lithium morphology according to the presence and type of electrolyte additive.
Figure 2 shows the results of comparing the initial overvoltage and stripping efficiency according to the presence and type of electrolyte additive.
Figures 3 to 4 show the results of half-cell tests compared with and without electrolyte additives.
Figures 5 to 6 show the results of comparing the composition of the electrodeposited lithium surface film according to the presence or absence of electrolyte additives and the composition ratio.
Figures 7 and 8 show the results of a full cell test comparing lithium negative electrodes electrodeposited using commercial lithium foil and electrolyte with electrolyte additives.

본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 달리 정의되지 않는 한, 본 발명이 속하는 기술분야의 전문가에 의해 통상적으로 이해되는 것과 동일한 의미를 가진다.All technical and scientific terms used herein, unless otherwise defined, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs.

Ⅰ. 전해액 첨가제Ⅰ. Electrolyte additives

본 발명은 전해액 첨가제를 제공한다. 일 예로, 상기 전해액 첨가제는 메탈 전극 제조용 전해액 첨가제일 수 있다. 구체적인 일 예로, 상기 전해액 첨가제는 리튬 전극 제조용 전해액 첨가제일 수 있다. 상기 리튬 전극 제조는 압연기술이 가지고 있는 박막 두께 구현의 한계를 극복하기 위해 이용하는 전해도금법에 의한 리튬 전극 제조를 의미할 수 있다.The present invention provides an electrolyte additive. For example, the electrolyte additive may be an electrolyte additive for manufacturing a metal electrode. For a specific example, the electrolyte additive may be an electrolyte additive for manufacturing a lithium electrode. The lithium electrode manufacturing may refer to the manufacturing of a lithium electrode by an electroplating method used to overcome the limitations of implementing a thin film thickness that a rolling technology has.

이때, 상기 첨가제는 예를 들면, FEC(Fluoroethylene carbonate), LiBOB(Lithium Bis(Oxalate) Borate), LiFSI(Lithium bis(fluorosulfonyl)imide), 및 LiDFOB(Lithium Difluoro Oxalato Borate)로 이루어진 군에서 선택되는 1이상의 물질을 포함할 수 있다. 구체적인 일 예로, 상기 첨가제는 FEC(Fluoroethylene carbonate) 및 LiDFOB(Lithium Difluoro Oxalato Borate)로 이루어진 군에서 선택되는 1이상의 물질을 포함할 수 있다. 상기 첨가제는 리튬 전착에 영향을 줄 수 있고, 이에 따라 리튬 덴드라이트(dendrite)의 형성을 억제하는데 유리한 형상으로 리튬이 전착되는데 도움을 줄 수 있다. 또한, 리튬 삽입/탈리에 따른 부피변화 수용에 효과적인 표면 피막을 형성하여 전지의 성능을 향상시키는데 도움을 줄 수 있다.At this time, the additive may include at least one material selected from the group consisting of, for example, FEC (Fluoroethylene carbonate), LiBOB (Lithium Bis(Oxalate) Borate), LiFSI (Lithium bis(fluorosulfonyl)imide), and LiDFOB (Lithium Difluoro Oxalato Borate). As a specific example, the additive may include at least one material selected from the group consisting of FEC (Fluoroethylene carbonate) and LiDFOB (Lithium Difluoro Oxalato Borate). The additive may affect lithium electrodeposition, and thus may help lithium to be electrodeposited in a shape advantageous for suppressing the formation of lithium dendrites. In addition, it may help improve the performance of the battery by forming a surface film that is effective in accommodating volume changes due to lithium insertion/desorption.

Ⅱ. 전해액Ⅱ. Electrolyte

본 발명은 Ⅰ. 전해액 첨가제를 포함하는 전해액을 제공한다. 일 예로, 상기 전해액은 메탈 전극 제조용 전해액일 수 있으며, 구체적인 일 예로, 리튬 전극 제조용 전해액일 수 있다. The present invention provides Ⅰ. An electrolyte comprising an electrolyte additive. For example, the electrolyte may be an electrolyte for manufacturing a metal electrode, and as a specific example, it may be an electrolyte for manufacturing a lithium electrode.

상기 전해액은 일 예로, EC(ethylene carbonate), DMC(dimethyl carbonate), DEC(diethyl carbonate), 및 EMC(ethyl methyl carbonate)로 이루어진 군에서 선택되는 1이상의 물질, LiPF6, 및 상기 Ⅰ. 전해액 첨가제가 포함된 것일 수 있다. The above electrolyte may include, for example, one or more substances selected from the group consisting of EC (ethylene carbonate), DMC (dimethyl carbonate), DEC (diethyl carbonate), and EMC (ethyl methyl carbonate), LiPF 6 , and the above I. electrolyte additive.

이때, 일 예로, 상기 전해액은 LiDFOB를 0.05 내지 0.70M로 포함할 수 있다. 구체적인 일 예로, 상기 전해액은 LiDFOB를 0.25 내지 0.50M로 포함할 수 있고, 상기 범위의 LiDFOB가 첨가된 경우 높은 스트리핑(stripping)효율을 가진다는 점에서 가장 바람직할 수 있다. 또한, 일 예로, 상기 전해액은 FEC를 0.20 내지 0.30M로 포함할 수 있다. 또한, 일 예로, 상기 전해액은 LiDFOB를 0.25 내지 0.50M로 포함하고, FEC를 0.20 내지 0.30M로 포함할 수 있다.At this time, as an example, the electrolyte may contain LiDFOB at 0.05 to 0.70 M. As a specific example, the electrolyte may contain LiDFOB at 0.25 to 0.50 M, and when LiDFOB in the above range is added, it may be most preferable in that it has high stripping efficiency. In addition, as an example, the electrolyte may contain FEC at 0.20 to 0.30 M. In addition, as an example, the electrolyte may contain LiDFOB at 0.25 to 0.50 M and FEC at 0.20 to 0.30 M.

구체적인 일 예로, 상기 전해액은 1M LiPF6 in EC/DMC와 0.37M LiDFOB 및 0.25M FEC으로 이루어진 첨가제가 혼합된 형태일 수 있다.As a specific example, the electrolyte may be a mixture of 1 M LiPF 6 in EC/DMC and additives including 0.37 M LiDFOB and 0.25 M FEC.

Ⅲ. 전극Ⅲ. Electrode

본 발명은 Ⅱ. 전해액을 이용하여 제조된 메탈 전극을 제공한다. 일 예로, 상기 메탈은 리튬일 수 있다. 이때, 상기 전해액을 이용하여 제조된 리튬 전극은 리튬 덴드라이트(dendrite) 성장 억제에 유리한 둥근 형상의 리튬이 전착되어 있는 것을 특징으로 하고, 리튬 삽입/탈리에 따른 부피변화 수용에 효과적인 표면 피막이 형성되어 있는 것을 특징으로 할 수 있다.The present invention provides a metal electrode manufactured using Ⅱ. an electrolyte. For example, the metal may be lithium. At this time, the lithium electrode manufactured using the electrolyte may be characterized in that lithium having a round shape advantageous for suppressing the growth of lithium dendrites is deposited, and a surface film effective for accommodating volume changes due to lithium insertion/desorption is formed.

이때, 상기 전극의 피막은 일 실시예로, LiF, B-O, BF2, 및 B-F로 이루어진 군에서 선택된 하나 이상의 성분을 포함할 수 있다. At this time, the film of the electrode may include, as an example, one or more components selected from the group consisting of LiF, BO, BF 2 , and BF .

또한, 상기 전극의 피막은 일 실시예로, Li 성분 중에서 LiF:LixPFy의 값이 60 : 40 내지 95 : 5 (원소 %)일 수 있다. 바람직한 일 실시예로, Li 성분 중에서 LiF:LixPFy의 값이 80 : 20 내지 90 : 10 (원소 %)일 수 있다.In addition, the film of the electrode may have, as an example, a value of LiF:Li x PF y among the Li components of 60:40 to 95:5 (in element %). As a preferred example, a value of LiF:Li x PF y among the Li components of 80:20 to 90:10 (in element %).

또한, 상기 전극의 피막은 일 실시예로, B 성분 중에서 B-O 결합이 50 내지 99 원소 %의 비율 값을 가질 수 있다. 바람직한 일 실시예로, B 성분 중에서 B-O 결합이 70 내지 90 원소 %의 비율 값을 가질 수 있다.In addition, the film of the electrode may have, as an example, a ratio value of B-O bonds among the B components of 50 to 99 element %. As a preferred example, the film of the electrode may have, as an example, a ratio value of B-O bonds among the B components of 70 to 90 element %.

또한, 상기 전극의 피막은 일 실시예로, B 원소와 F 원소가 1:1 내지 1:7의 비율로 존재할 수 있다(원소 %). 바람직한 일 실시예로, B 원소와 F 원소가 1:3 내지 1:5의 비율로 존재할 수 있다.In addition, the film of the electrode may, as an example, contain B elements and F elements in a ratio of 1:1 to 1:7 (element %). In a preferred example, contain B elements and F elements in a ratio of 1:3 to 1:5.

이때, 상기 성분 및 조성 비율은 전극 표면의 기계적 강도와 유연성 측면에서 필수적인 조건일 수 있다.At this time, the above components and composition ratio may be essential conditions in terms of mechanical strength and flexibility of the electrode surface.

Ⅳ. 제조 방법Ⅳ. Manufacturing method

본 발명은 Ⅱ. 전해액을 이용하여 메탈 전극을 제조하는 방법을 제공한다. 일 실시예로, 상기 메탈은 리튬일 수 있다. The present invention provides Ⅱ. a method for manufacturing a metal electrode using an electrolyte. In one embodiment, the metal may be lithium.

이때, 상기 방법은 Ⅰ. 전해액 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 높은 스트리핑(stripping)효율을 갖는 메탈 전극을 제조하는 방법일 수 있다. 또한, 상기 방법은 Ⅰ. 전해액 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 전착된 리튬 형상의 둥근 형태를 증가시키는 방법일 수 있다. 또한, 상기 방법은 Ⅰ. 전해액 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 덴드라이트(dendrite)의 형성이 감소되는 메탈 전극을 제조하는 방법일 수 있다. 또한, 상기 방법은 Ⅰ. 전해액 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 리튬 이온의 반응성 향상을 통해 리튬 전착 과전압을 감소시키는 방법일 수 있다. At this time, the method may be Ⅰ. a method for manufacturing a metal electrode having a high stripping efficiency compared to using an electrolyte that does not include an electrolyte additive. In addition, the method may be Ⅰ. a method for increasing a round shape of a deposited lithium shape compared to using an electrolyte that does not include an electrolyte additive. In addition, the method may be Ⅰ. a method for manufacturing a metal electrode in which the formation of dendrites is reduced compared to using an electrolyte that does not include an electrolyte additive. In addition, the method may be Ⅰ. a method for reducing lithium deposition overvoltage by improving the reactivity of lithium ions compared to using an electrolyte that does not include an electrolyte additive.

즉, 상기 Ⅰ. 전해액 첨가제를 포함하는 전해액을 이용하여 메탈 전극을 제조하는 경우 리튬이 덴드라이트(dendrite) 형성 억제에 유리한 둥근 형태로 전착되며, 높은 리튬 스트리핑 효율을 가지며, 피막이 기계적 강도가 우수하면서 유연한 특성을 가지는 메탈 전극을 제조할 수 있고, 이는 전극의 효율 및 수명 성능을 향상시키는데 영향을 미칠 수 있다.That is, when a metal electrode is manufactured using an electrolyte containing the above I. electrolyte additive, lithium is deposited in a round shape that is advantageous for suppressing dendrite formation, and a metal electrode having high lithium stripping efficiency and a film having excellent mechanical strength and flexibility can be manufactured, which can affect the improvement of the efficiency and life performance of the electrode.

Ⅴ. 전지V. Battery

본 발명은 상기 Ⅱ. 전해액을 이용하여 제조된 메탈 전극을 포함하는 2차 전지를 제공한다. 상기 2차 전지는 방전 후에도 다시 충전해 반복 사용이 가능한 배터리를 의미하고, 보다 구체적으로 양극, 음극, 분리막, 전해액을 포함하는 전지를 의미할 수 있다. 상기 양극, 음극, 분리막, 전해액의 형태 및 구성 등에 관하여는 당업계에 공지된 것들을 모두 포함한다. The present invention provides a secondary battery including a metal electrode manufactured using the above II. electrolyte. The secondary battery refers to a battery that can be recharged and used repeatedly even after discharge, and more specifically, it may refer to a battery including a positive electrode, a negative electrode, a separator, and an electrolyte. The shapes and compositions of the positive electrode, the negative electrode, the separator, and the electrolyte include all those known in the art.

상기 2차 전지는 리튬, 아연, 알루미늄, 마그네슘, 철, 칼슘, 나트륨 등을 포함하는 2차 전지일 수 있고, 바람직한 일 실시예로, 리튬 이온 배터리 및 리튬-황 배터리 등을 포함하는 리튬 전지일 수 있다. 이때, 상기 2차 전지는 전지의 형태에 특별한 제한이 없으며, 원통형, 코인형, 파우치형 등을 모두 포함할 수 있다.The secondary battery may be a secondary battery including lithium, zinc, aluminum, magnesium, iron, calcium, sodium, etc., and as a preferred embodiment, may be a lithium battery including a lithium ion battery and a lithium-sulfur battery. At this time, the secondary battery has no particular limitation on the shape of the battery, and may include all of a cylindrical shape, a coin shape, a pouch shape, etc.

본 발명에서 제공하는 상기 2차 전지의 경우, 덴드라이트(dendrite)의 형성이 억제되고, 증가된 사이클 수명을 가질 수 있다. 이에 따라, 상기 2차 전지는 전기차, 하이브리드 전기차, 전기 이륜차 등을 포함하는 고출력 장수명의 2차 전지를 필요로 하는 장치에 적용될 수 있다.In the case of the secondary battery provided in the present invention, the formation of dendrites is suppressed and it can have an increased cycle life. Accordingly, the secondary battery can be applied to devices requiring high-output, long-life secondary batteries, including electric vehicles, hybrid electric vehicles, and electric two-wheeled vehicles.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. It will be apparent to those skilled in the art that these examples are intended only to illustrate the present invention, and the scope of the present invention is not to be construed as being limited by these examples.

실시예 1. 전해액 설계Example 1. Electrolyte design

기존의 리튬 이온 배터리 시스템의 에스터 기반 전해액에 다양한 종류의 첨가제를 적용하여 전착 전해액을 제조하였다.A electrodeposition electrolyte was prepared by applying various types of additives to the ester-based electrolyte of a conventional lithium ion battery system.

FEC(Fluoroethylene carbonate), LiDFOB(Lithium Difluoro Oxalato Borate), LiBOB(Lithium Bis(Oxalate) Borate), LiFSI(Lithium bis(fluorosulfonyl)imide) 중에서 한 가지 물질을 단일로 적용하여 전착 리튬의 형상과 ICE 평가 결과를 기반으로 효과가 가장 우수한 물질을 선정하였다. 도 1에 따르면, LiDFOB와 FEC의 효과가 가장 우수하여 두 가지 물질을 선정하였고, 상기 두 물질을 표 1과 같이 다양한 혼합비로 제조하여 전해액 첨가제로 적용 후 리튬 전극 특성을 비교 분석하였다. 이때, 1M LiPF6 in EC/DMC(3:7 vol%)를 기본 전해액으로 하고, 표 1의 각각의 조성의 첨가제를 첨가하여 실험하였다.Among FEC(Fluoroethylene carbonate), LiDFOB(Lithium Difluoro Oxalato Borate), LiBOB(Lithium Bis(Oxalate) Borate), and LiFSI(Lithium bis(fluorosulfonyl)imide), one material was applied alone, and the material with the best effect was selected based on the shape of the electrodeposited lithium and the ICE evaluation results. According to Fig. 1, LiDFOB and FEC had the best effects, so they were selected as the two materials. The two materials were prepared at various mixing ratios as shown in Table 1, and then applied as electrolyte additives to compare and analyze the lithium electrode characteristics. At this time, 1M LiPF 6 in EC/DMC (3:7 vol%) was used as the base electrolyte, and the additives of each composition in Table 1 were added to conduct the experiment.

LiDFOB[M(mol/L)]LiDFOB[M(mol/L)] FEC[M(mol/L)]FEC[M(mol/L)] 11 0.120.12 LiDFOBLiDFOB 0.250.25 FECFEC 22 0.250.25 LiDFOBLiDFOB 33 0.370.37 LiDFOBLiDFOB 44 0.500.50 LiDFOBLiDFOB

상기 전해액 첨가제를 포함하는 전해액을 이용한 실험은 아래와 같은 조건으로 수행되었다.Experiments using an electrolyte containing the above electrolyte additive were performed under the following conditions.

리튬 플레이팅(Li plating)Lithium plating

전류 밀도: 0.4 mA·cm-2 (4 mAh·cm-2)Current density: 0.4 mA cm -2 (4 mAh cm -2 )

전해액 첨가제 Electrolyte additives

FEC (Fluoroethylene carbonate)FEC (Fluoroethylene carbonate)

LiDFOB (Lithium Difluoro Oxalato Borate)LiDFOB (Lithium Difluoro Oxalato Borate)

리튬 플레이팅 전해액Lithium plating electrolyte

기본 전해액: 1M LiPF6 in EC/DMC(3:7 vol%)Base electrolyte: 1M LiPF 6 in EC/DMC (3:7 vol%)

첨가제 포함: 1M LiPF6 in EC/DMC(3:7 vol%) + [0.37M LiDFOB + 0.25M FEC]Additive included: 1M LiPF 6 in EC/DMC (3:7 vol%) + [0.37M LiDFOB + 0.25M FEC]

리튬 스트리핑(Li Stripping)Lithium Stripping

전류 밀도: 0.2 mA·cm-2 (4 mAh·cm-2)Current density: 0.2 mA cm -2 (4 mAh cm -2 )

종료: 1.0 V cut-offTermination: 1.0 V cut-off

전해액: 1M LiPF6 in EC/DEC/DMC(1:2:1 vol%) + 2 wt% VCElectrolyte: 1M LiPF 6 in EC/DEC/DMC (1:2:1 vol%) + 2 wt% VC

실시예 2. 전착 리튬 형상 비교Example 2. Comparison of electrodeposited lithium shapes

Plating 조건: 4 mA·cm-2 @ 4 mAh·cm-2(7.069 mAh) 및 SEM 분석 조건: 5kV으로 전착 리튬 형상을 비교하였다. 집전체(Cu foil)위에 전해도금 방법으로 4 mAh·cm-2의 용량만큼 리튬을 전착하여 박막의 리튬 전극을 제조하였다. 기본 전해액(1M LiPF6 in EC/DMC) 적용 시, 긴 바늘모양의 불균일한 입자 크기 및 형상을 가진 리튬이 전착되었고, LiDFOB와 FEC를 단일 첨가제로 적용 시, 리튬의 입자가 비교적 둥근 모양으로 형성되는 효과가 나타났다. 복합 첨가제 적용 시, 기본 전해액에 비해 크고 둥근 형상의 리튬 입자를 가지는 효과가 존재함을 확인하였다. 즉, 리튬 입자의 밑변 대비 높이 비율이 감소하였다(도 2 참고).Plating conditions: 4 mA cm -2 @ 4 mAh cm -2 (7.069 mAh) and SEM analysis conditions: 5 kV were used to compare the morphology of electrodeposited lithium. A thin-film lithium electrode was manufactured by electrodepositing lithium in an amount of 4 mAh cm -2 on a current collector (Cu foil) by the electroplating method. When the basic electrolyte (1 M LiPF 6 in EC/DMC) was applied, lithium with an uneven particle size and shape of long needles was electrodeposited, and when LiDFOB and FEC were applied as a single additive, the lithium particles were formed in a relatively round shape. When the composite additive was applied, it was confirmed that there was an effect of having large and round lithium particles compared to the basic electrolyte. That is, the height-to-base ratio of the lithium particles decreased (see Fig. 2).

실시예 3. 전착 과전압 비교Example 3. Comparison of deposition overvoltage

Plating 조건: 4 mA·cm-2 @ 4 mAh·cm-2(7.069 mAh) 및 스트리핑(Stripping) 전해액: 1M LiPF6 in EC/DEC/DMC (1:2:1 vol%) + 2 wt% VC로 전착 과전압을 비교하였다. [LiDFOB+FEC] 조합 첨가제 적용 시, 전착 과전압이 감소하는 것을 확인하였다(초기 IR: -0.11V → -0.09V, 전착 과전압: -0.04V → -0.02V). 1M LiPF6 in EC/DMC+[0.37M LiDFOB+0.25M FEC] 적용 시, 94.4 %의 가장 높은 효율을 보이는 것을 확인하였다. 효율 평가 결과, 최적의 첨가제 비율은 [0.37M LiDFOB + 0.25M FEC]이었다(도 3 참고).The deposition overvoltages were compared under plating conditions: 4 mA cm -2 @ 4 mAh cm -2 (7.069 mAh) and stripping electrolyte: 1 M LiPF 6 in EC/DEC/DMC (1:2:1 vol%) + 2 wt% VC. When the [LiDFOB+FEC] combination additive was applied, the deposition overvoltage was confirmed to decrease (initial IR: -0.11 V → -0.09 V, deposition overvoltage: -0.04 V → -0.02 V). When 1 M LiPF 6 in EC/DMC + [0.37 M LiDFOB + 0.25 M FEC] was applied, the highest efficiency of 94.4% was confirmed. As a result of the efficiency evaluation, the optimal additive ratio was [0.37 M LiDFOB + 0.25 M FEC] (see Fig. 3).

실시예 4. 수명 비교Example 4. Lifespan comparison

전극 이용률: 25% (4 mAh·cm-2 @ 1 mAh·cm-2), Cycle test 전해액 : 1M LiPF6 in EC/EMC/DMC(3:4:3 vol%) + 5 wt% FEC, Pre-cycle 0.1 mA·cm-2 @ 1 mAh·cm-2(0.1C-rate), 0.5 mA·cm-2 @ 1 mAh·cm-2(0.5C-rate) 조건으로 Li/Cu 하프 셀 사이클 테스트를 진행하였다. [0.37M LiDFOB+0.25M FEC]을 전착 전해액으로 적용하여 제조한 전극과 상용 20 ㎛ Li foil의 수명 평가를 진행하였다(Li/Cu half cell). 20cycle 기준으로 [0.37M LiDFOB+0.25M FEC]가 가장 우수한 수명 유지율을 보이는 것을 확인하였다(20㎛ Li : 91.0% vs. 0.37M+0.25M : 95.6%). 동일한 이용률(1 mAh·cm-2 @ 4 mAh·cm-2; 25 %)의 20 ㎛ 상용 Li foil 대비 더 좋은 수명 특성을 보임을 확인하였다(도 4 참고).Li/Cu half-cell cycle test was conducted under the conditions of electrode utilization: 25% (4 mAh cm -2 @ 1 mAh cm -2 ), cycle test electrolyte: 1 M LiPF 6 in EC/EMC/DMC (3:4:3 vol%) + 5 wt% FEC, pre-cycle 0.1 mA cm -2 @ 1 mAh cm -2 (0.1C-rate), 0.5 mA cm -2 @ 1 mAh cm -2 (0.5C-rate). The life evaluation of the electrode manufactured by applying [0.37 M LiDFOB + 0.25 M FEC] as the electrodeposition electrolyte and commercial 20 ㎛ Li foil was performed (Li/Cu half cell). It was confirmed that [0.37M LiDFOB+0.25M FEC] showed the best life maintenance rate based on 20 cycles (20㎛ Li: 91.0% vs. 0.37M+0.25M: 95.6%). It was confirmed to show better life characteristics than the 20㎛ commercial Li foil with the same utilization rate (1 mAh cm -2 @ 4 mAh cm -2 ; 25%) (see Fig. 4).

실시예 5. 전착 리튬 표면 피막 조성 비교Example 5. Comparison of Electrodeposited Lithium Surface Film Compositions

Plating 조건: 4 mA·cm-2 @ 4 mAh·cm-2(7.069 mAh) 및 XPS 분석 조건: 12kV, 72W, monochromated Al Ka, hv=1486.6eV으로 실험을 진행하였다. 전착 리튬 전극의 표면 피막 성분 분석 결과, 기본 전해액 적용 시 유기용매 분해로 인한 생성물이 피막의 주성분이 됨을 확인하였다. 또한, 설계된 전해액으로 전착된 전극 표면은 기계적 강도 및 유연성이 향상되는 것을 확인하였고, 이때의 피막은 LiF, B-O, BF2, B-F 성분이 반드시 존재함을 확인하였다. 구체적으로, LiF의 비율은 LixPFy보다 많아야 하며, 이때의 비율은 LiF : LixPFy = 80-90 : 20-10(원소 %)를 유지하는 것을 확인하였다. 또한, LiDFOB의 분해로 B-F, B-O가 존재하며, 이때, B-O 결합이 약 80 원소 % 정도의 비율을 차지하는 것을 확인하였다(도 5 참고).The experiment was conducted under plating conditions: 4 mA cm -2 @ 4 mAh cm -2 (7.069 mAh) and XPS analysis conditions: 12 kV, 72 W, monochromated Al Ka, hv = 1486.6 eV. The results of the analysis of the surface film components of the electrodeposited lithium electrode showed that the products resulting from the decomposition of the organic solvent when the basic electrolyte was applied became the main component of the film. In addition, it was confirmed that the mechanical strength and flexibility of the electrode surface electrodeposited with the designed electrolyte were improved, and it was confirmed that the film at this time necessarily contained LiF, BO, BF 2 , and BF components. Specifically, the ratio of LiF should be greater than Li x PF y , and it was confirmed that the ratio at this time was maintained as LiF : Li x PF y = 80-90 : 20-10 (element %). In addition, it was confirmed that BF and BO exist through the decomposition of LiDFOB, and at this time, the BO bond accounts for about 80% of the element (see Fig. 5).

또한, 설계한 전해액으로 형성된 리튬 표면 피막의 전체적인 원소 비율 중 B 원소는 3.4 원소 %, F는 12.9 원소 %로 구성됨을 확인하였다. B 원소와 F 원소가 20:80의 비율로 존재하는 경우, 리튬 전극의 초기 효율 및 수명 성능 향상의 원인이 되는 우수한 기계적 강도 및 유연한 특성을 가지는 피막 형성에 유리함을 확인하였다(도 6 참고). In addition, it was confirmed that the overall element ratio of the lithium surface film formed with the designed electrolyte was composed of 3.4 element % of the B element and 12.9 element % of the F element. It was confirmed that when the B element and the F element exist in a ratio of 20:80, it is advantageous for the formation of a film having excellent mechanical strength and flexible properties that are the cause of improved initial efficiency and life performance of the lithium electrode (see Fig. 6).

실시예 6. 풀 셀 테스트Example 6. Full cell test

Li Plating 조건 : 4 mA·cm-2 @ 4 mAh·cm-2(7.069 mAh), Cycle test 전해액 : 1M LiPF6 in EC/EMC/DMC(3:4:3 vol%) + 5 wt% FEC, Voltage range : 2.5 - 4.5 V, Loading(PE) : 11.5 mg·cm-3, Electrode density(PE) : 2.8~2.9 g·cm-3, Capacity(PE) : 180 mAh·g-1의 조건에서 풀 셀 테스트를 수행하였다.Full cell test was performed under the following conditions: Li Plating Condition: 4 mA cm -2 @ 4 mAh cm -2 (7.069 mAh), Cycle test Electrolyte: 1M LiPF 6 in EC/EMC/DMC(3:4:3 vol%) + 5 wt% FEC, Voltage range: 2.5 - 4.5 V, Loading(PE): 11.5 mg cm -3 , Electrode density(PE): 2.8~2.9 g cm -3 , Capacity(PE): 180 mAh g -1 .

LiNi0.6Co0.2Mn0.2O2 (NCM622)을 양극으로 적용하여, 첨가제가 적용된 전해액으로 전착된 리튬과 상용 리튬 full cell 평가를 진행하였다. Formation 평가에서 첨가제 적용 전해액으로 전착된 리튬을 음극으로 사용 시, 상용 Li foil과 동등한 수준의 초기 효율을 보이는 것을 확인하였다(0.1C 기준, 89.7% vs. 89.8%)(도 7 참고).또한, 1C/1C 수명 평가 결과, 20 cycle 기준 상용 리튬과 유사한 수준의 효율 및 용량 유지율을 보이는 것을 확인하였다(97.9% vs. 99.1%). 1M LiPF6 in EC/DMC + [0.37M LiDFOB + 0.25M FEC]를 전착 전해액으로 적용함에 따라 개선된 전착 리튬의 형상과 전극의 초기 효율 향상은 사이클 안정성 유지 및 쿨롱 효율에 긍정적인 효과를 줄 수 있음을 확인하였다(도 8 참고). 즉, Li/Cu half 및 Li/NCM622 full cell 수명 특성 실험을 통해 전착 리튬 전극으로도 상용 리튬 호일과 유사한 수준의 성능을 구현할 수 있음을 확인하였다.LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) was applied as the anode, and the lithium electrodeposited with the electrolyte with the additives and the full cell evaluation were performed. In the formation evaluation, it was confirmed that the lithium electrodeposited with the electrolyte with the additives, when used as the anode, showed the same level of initial efficiency as that of commercial Li foil (89.7% vs. 89.8% at 0.1C) (see Fig. 7). In addition, the result of the 1C/1C life evaluation showed the efficiency and capacity retention rate similar to those of commercial lithium at 20 cycles (97.9% vs. 99.1%). By applying 1 M LiPF 6 in EC/DMC + [0.37 M LiDFOB + 0.25 M FEC] as the electrodeposition electrolyte, it was confirmed that the improved morphology of the electrodeposited lithium and the enhanced initial efficiency of the electrode can have a positive effect on maintaining cycle stability and Coulombic efficiency (see Fig. 8). That is, through Li/Cu half and Li/NCM622 full cell life characteristic experiments, it was confirmed that a similar level of performance as commercial lithium foil can be achieved even with an electrodeposited lithium electrode.

Claims (17)

FEC(Fluoroethylene carbonate) 및 LiDFOB(Lithium Difluoro Oxalato Borate)를 포함하는, 리튬 전극 제조용 전해액 첨가제.
An electrolyte additive for lithium electrode manufacturing, comprising FEC (Fluoroethylene carbonate) and LiDFOB (Lithium Difluoro Oxalato Borate).
삭제delete 제1항의 첨가제를 포함하는, 리튬 전극 제조용 전해액.
An electrolyte for manufacturing a lithium electrode, comprising the additive of claim 1.
삭제delete 제3항에 있어서,
상기 전해액은 상기 LiDFOB를 0.25 내지 0.50M로 포함하는 것인, 리튬 전극 제조용 전해액.
In the third paragraph,
An electrolyte for manufacturing a lithium electrode, wherein the electrolyte contains 0.25 to 0.50 M of the LiDFOB.
제3항에 있어서,
상기 전해액은 상기 FEC를 0.20 내지 0.30M로 포함하는 것인, 리튬 전극 제조용 전해액.
In the third paragraph,
An electrolyte for manufacturing a lithium electrode, wherein the electrolyte contains 0.20 to 0.30 M of the FEC.
제3항의 전해액을 이용하여 제조된, 리튬 전극.
A lithium electrode manufactured using the electrolyte of claim 3.
삭제delete 제7항에 있어서,
상기 전극의 피막은 LiF, B-O, BF2, 및 B-F로 이루어진 군에서 선택된 하나 이상의 성분을 포함하는 것인, 리튬 전극.
In Article 7,
A lithium electrode, wherein the film of the electrode comprises one or more components selected from the group consisting of LiF, BO, BF 2 , and BF .
제7항에 있어서,
상기 전극의 피막은 Li 성분 중에서 LiF:LixPFy의 값이 80 : 20 내지 90 : 10 (원소 %)인 것인, 리튬 전극.
In Article 7,
A lithium electrode, wherein the film of the electrode has a value of LiF:Li x PF y among the Li components of 80:20 to 90:10 (element %).
제7항에 있어서,
상기 전극의 피막은 B 성분 중에서 B-O 결합이 70 내지 90 원소 %의 비율 값을 갖는 것인, 리튬 전극.
In Article 7,
A lithium electrode, wherein the film of the electrode has a ratio value of 70 to 90% of the BO bond among the B components.
제7항에 있어서,
상기 전극의 피막은 B 원소와 F 원소가 1:3 내지 1:5의 비율로 존재하는 것인, 리튬 전극.
In Article 7,
A lithium electrode, wherein the film of the electrode contains B elements and F elements in a ratio of 1:3 to 1:5.
제3항의 전해액을 이용하여 리튬 전극을 제조하는 방법.
A method for manufacturing a lithium electrode using the electrolyte of claim 3.
삭제delete 제13항에 있어서,
상기 방법은 제1항의 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 높은 스트리핑(stripping) 효율을 갖는 리튬 전극을 제조하는 것인, 방법.
In Article 13,
The above method is a method for manufacturing a lithium electrode having a high stripping efficiency compared to using an electrolyte solution that does not include the additive of claim 1.
제13항에 있어서,
상기 방법은 제1항의 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 전착된 리튬 형상의 둥근 형태를 증가시키는 것인, 방법.
In Article 13,
The method is a method for increasing the round shape of the deposited lithium shape compared to using an electrolyte solution that does not include the additive of claim 1.
제13항에 있어서,
상기 방법은 제1항의 첨가제를 포함하지 않는 전해액을 이용하는 것과 비교하여, 덴드라이트(dendrite)의 형성이 감소되는 리튬 전극을 제조하는 것인, 방법.
In Article 13,
The method is a method for manufacturing a lithium electrode in which the formation of dendrites is reduced compared to using an electrolyte that does not include the additive of claim 1.
KR1020220012853A 2022-01-28 2022-01-28 Electrolyte additive for manufacturing metal electrode Active KR102774781B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220012853A KR102774781B1 (en) 2022-01-28 2022-01-28 Electrolyte additive for manufacturing metal electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220012853A KR102774781B1 (en) 2022-01-28 2022-01-28 Electrolyte additive for manufacturing metal electrode

Publications (2)

Publication Number Publication Date
KR20230116212A KR20230116212A (en) 2023-08-04
KR102774781B1 true KR102774781B1 (en) 2025-02-27

Family

ID=87568730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220012853A Active KR102774781B1 (en) 2022-01-28 2022-01-28 Electrolyte additive for manufacturing metal electrode

Country Status (1)

Country Link
KR (1) KR102774781B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337608B1 (en) * 2011-12-23 2013-12-06 한국과학기술원 Electrolyte Solution for Lithium Secondary Battery, Lithium Secondary Battery Using the Same, and Manufacturing Method thereof
KR101982538B1 (en) * 2018-07-02 2019-05-27 주식회사 포스코 Lithium metal anode and manufanturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043776B1 (en) * 2017-10-31 2019-12-02 주식회사 포스코 Lithium metal negative electrode, manufanturing method thereof and lithium metal battery including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337608B1 (en) * 2011-12-23 2013-12-06 한국과학기술원 Electrolyte Solution for Lithium Secondary Battery, Lithium Secondary Battery Using the Same, and Manufacturing Method thereof
KR101982538B1 (en) * 2018-07-02 2019-05-27 주식회사 포스코 Lithium metal anode and manufanturing method thereof

Also Published As

Publication number Publication date
KR20230116212A (en) 2023-08-04

Similar Documents

Publication Publication Date Title
KR102000100B1 (en) Additive for non-aqueous electrolyte, non aqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
CN111712949B (en) Lithium electrode and lithium secondary battery comprising same
KR20190033448A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102142552B1 (en) Negative electrode for lithium metal secondary battery and lithium metal secondary battery comprising the same
CN111816841B (en) Positive plate and lithium ion battery
CN109786708B (en) Lithium metal negative electrode, preparation method thereof and lithium metal secondary battery
CN101036251A (en) Improved lithium cell and method of forming same
CN111313093B (en) Electrolyte and lithium battery
CN113937361A (en) Preparation method and application of long-circulating non-aqueous electrolyte of energy storage battery cell
CN114824270A (en) A lithium metal negative electrode and lithium metal battery
CN112736245A (en) Lithium ion battery cathode material and preparation method and application thereof
Jin et al. Submicron interlayer for stabilizing thin Li metal powder electrode
KR20200049667A (en) Lithium metal electrode and lithium secondary battery comprising the same
KR20140058928A (en) The non-aqueous and high-capacity lithium secondary battery
CN112151759A (en) Lithium metal cathode, preparation method and lithium ion battery
KR102685817B1 (en) Copper plating solution and negative electrode composite current collector manufactured therefrom
CN115441059A (en) Multifunctional electrolyte for lithium metal battery and lithium metal battery
KR102063821B1 (en) Electrolyte system and lithium metal battery comprising the same
KR102375714B1 (en) Electrolyte for lithium metal secondary battery and lithium metal secondary battery using the same
KR102387337B1 (en) Three-dimensional porous-structured electrode and manufacturing method for the same
KR100359605B1 (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same, and method for preparing the same
KR20190012364A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
KR102774781B1 (en) Electrolyte additive for manufacturing metal electrode
CN108987803B (en) Lithium metal negative electrode film-forming electrolyte for lithium-sulfur battery and additive thereof
US12132172B2 (en) Electrolyte for lithium-metal battery having improved stability

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20220128

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240617

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20250221

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20250225

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20250225

End annual number: 3

Start annual number: 1

PG1601 Publication of registration