[go: up one dir, main page]

KR102771898B1 - Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same - Google Patents

Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same Download PDF

Info

Publication number
KR102771898B1
KR102771898B1 KR1020210175677A KR20210175677A KR102771898B1 KR 102771898 B1 KR102771898 B1 KR 102771898B1 KR 1020210175677 A KR1020210175677 A KR 1020210175677A KR 20210175677 A KR20210175677 A KR 20210175677A KR 102771898 B1 KR102771898 B1 KR 102771898B1
Authority
KR
South Korea
Prior art keywords
silicon
thin film
low
group
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020210175677A
Other languages
Korean (ko)
Other versions
KR20230087074A (en
Inventor
박종률
강태형
박용주
김상호
황인천
이상경
Original Assignee
에스케이트리켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이트리켐 주식회사 filed Critical 에스케이트리켐 주식회사
Priority to KR1020210175677A priority Critical patent/KR102771898B1/en
Priority to PCT/KR2022/016538 priority patent/WO2023106623A1/en
Priority to TW111145349A priority patent/TWI849595B/en
Publication of KR20230087074A publication Critical patent/KR20230087074A/en
Application granted granted Critical
Publication of KR102771898B1 publication Critical patent/KR102771898B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)

Abstract

본 발명은 화학식 1로 표시되는 실리콘 함유 화합물을 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체 및 상기 전구체를 이용한 박막 형성 방법 및 상기 박막 형성 방법에 의해 제조된 저 유전율 실리콘 함유 박막을 포함하는 것을 특징으로 하는 반도체 소자에 관한 것이다.
[화학식 1]

상기 화학식 1에서,
R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, L은 직쇄형, 분지형, 고리형 알킬기 또는 아릴기 중에서 선택되는 연결기이다.
The present invention relates to a precursor for forming a low-k silicon-containing thin film, characterized in that it includes a silicon-containing compound represented by chemical formula 1, a method for forming a thin film using the precursor, and a semiconductor device characterized in that it includes a low-k silicon-containing thin film manufactured by the thin film forming method.
[Chemical Formula 1]

In the above chemical formula 1,
Each R is independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, an allylic group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a vinyl group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, an alkoxy group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a phenyl group comprising a C 1 -C 6 functional group, and L is a linking group selected from a straight-chain, branched or cyclic alkyl group or an aryl group.

Description

저 유전율 실리콘 함유 박막 형성용 전구체, 이를 이용한 저 유전율 실리콘 함유 박막 형성 방법 및 상기 저 유전율 실리콘 함유 박막을 포함하는 반도체 소자.{PRECURSOR FOR LOW-K SILICON-CONTAINING FILM DEPOSITION, DEPOSITION METHOD OF LOW-K SILICON-CONTAINING FILM AND SEMICONDUCTOR DEVICE OF THE SAME}Precursor for forming a low-k silicon-containing thin film, a method for forming a low-k silicon-containing thin film using the same, and a semiconductor device including the low-k silicon-containing thin film. {PRECURSOR FOR LOW-K SILICON-CONTAINING FILM DEPOSITION, DEPOSITION METHOD OF LOW-K SILICON-CONTAINING FILM AND SEMICONDUCTOR DEVICE OF THE SAME}

본 발명은 실리콘 함유 박막 형성용 전구체, 이를 이용한 실리콘 함유 박막 형성 방법 및 상기 실리콘 함유 박막을 포함하는 반도체 소자에 관한 것으로, 더욱 상세하게는, 다이알콕사이드로 연결된 다이실란(Dialkoxide-bridged disilane) 구조의 실리콘 함유 화합물을 이용하여 저 유전율 박막을 형성할 수 있는 전구체, 이를 이용한 실리콘 함유 박막 형성 방법 및 상기 금속 박막을 포함하는 반도체 소자에 관한 것이다.The present invention relates to a precursor for forming a silicon-containing thin film, a method for forming a silicon-containing thin film using the same, and a semiconductor device including the silicon-containing thin film. More specifically, the present invention relates to a precursor capable of forming a low-k thin film using a silicon-containing compound having a dialkoxide-bridged disilane structure, a method for forming a silicon-containing thin film using the same, and a semiconductor device including the metal thin film.

반도체 소자의 소형화, 고집적화에 따라 기생 커패시턴스가 증가하고 이로 인해 응답 속도 지연(RC delay)이 발생하여 이를 해결하기 위한 연구개발이 진행되고 있다. 상기 기생 커패시턴스는 주로 금속 배선과 금속 배선 사이가 매우 가까워져 상기 금속 배선들의 배치가 커패시터와 동일한 구조를 갖게 되면서 발생하며, 이를 줄이기 위해서는 상기 금속 배선 사이에 형성되는 층간 절연막을 저 유전상수를 갖는 절연 물질로서 형성할 필요가 있다.As semiconductor devices become smaller and more highly integrated, parasitic capacitance increases, which causes a delay in response speed (RC delay). Research and development are being conducted to resolve this. The parasitic capacitance mainly occurs when the metal wirings become very close to each other, and the arrangement of the metal wirings has the same structure as a capacitor. In order to reduce this, it is necessary to form the interlayer insulating film formed between the metal wirings with an insulating material having a low dielectric constant.

상기 저 유전상수를 갖는 절연 물질은 SOD(spin-on dielectric) 방식 및 화학 기상 증착 방식(Chemical vapor deposition, 이하, CVD)으로 형성될 수 있으며, 이러한 예로는 불소를 포함하는 실리콘 산화막(Fluarinated Silicate Glass, 이하 FSG막) 및 SiOC 막을 들 수 있다.The insulating material having the above low dielectric constant can be formed by the spin-on dielectric (SOD) method and the chemical vapor deposition (hereinafter, CVD) method, and examples of this include a fluorinated silicon oxide film (Fluarinated Silicate Glass, hereinafter, FSG film) and a SiOC film.

종래에 저 유전율 박막을 형성하기 위해 사용되는 전구체로는 옥타메틸사이클로테트라실록산(OMCTS), 디에톡시메틸실란(DEMS), 테트라에톡시오르소실리케이트(TEOS) 등을 들 수 있다. 상기 전구체는 액상으로 증착 공정을 위한 기화에 유리하나 형성된 박막에서 충분한 경도를 얻기 어려워 적용범위에 제한이 따른다.Precursors conventionally used to form low-k thin films include octamethylcyclotetrasiloxane (OMCTS), diethoxymethylsilane (DEMS), and tetraethoxyorthosilicate (TEOS). The precursors are in a liquid state, which is advantageous for vaporization for the deposition process, but it is difficult to obtain sufficient hardness in the formed thin film, which limits the scope of application.

예를 들어, 대한민국 공개특허공보 10-2006-0029762호에는 SiH4 및 SiF4 가스를 사용하여 절연막을 형성하는 공정에서 유기 실록산 소스 가스로 MTES, DEMS. DMOMS, TOMCATS, DMDMOS, DMDOSH. Z3MS 등을 사용하고 있으나, 상기 유기 실록산 소스는 전구체에 부가적으로 첨가되는 것으로서 유전율을 낮추는데 한계가 있으며, 상기 유기 실록산 소스를 전구체로 사용하는 경우에는 경도가 낮아지는 문제점이 발생하여 박막 형성 공정에 사용이 제한적인 문제점이 있다.For example, in Korean Patent Publication No. 10-2006-0029762, MTES, DEMS, DMOMS, TOMCATS, DMDMOS, DMDOSH, Z3MS, etc. are used as organosiloxane source gases in a process of forming an insulating film using SiH 4 and SiF 4 gases. However, the organosiloxane source is additionally added to the precursor, so there is a limit to lowering the dielectric constant, and when the organosiloxane source is used as a precursor, there is a problem that the hardness is lowered, which limits its use in the thin film formation process.

대한민국 공개특허공보 10-2006-0029762호Republic of Korea Patent Publication No. 10-2006-0029762

본 발명은 상기와 같은 종래기술들을 감안하여 안출된 것으로, 박막 형성 공정에서 에너지를 인가하여 쉽게 분해될 수 있는 화학구조의 실리콘 함유 화합물을 통해 분자 내의 탄소 함량비를 조절하기 용이하고 형성된 박막의 경도를 개선할 수 있는 저 유전율 실리콘 함유 박막 형성용 전구체를 제공하는 것을 그 목적으로 한다.The present invention has been made in consideration of the above-described prior arts, and its purpose is to provide a precursor for forming a low-k silicon-containing thin film, which is capable of easily controlling the carbon content ratio in a molecule and improving the hardness of the formed thin film through a silicon-containing compound having a chemical structure that can be easily decomposed by applying energy in a thin film forming process.

또한, 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 사용함으로써 저 유전율 실리콘 함유 박막을 형성할 수 있는 방법을 제공하는 것을 그 목적으로 한다.In addition, the purpose is to provide a method for forming a low-k silicon-containing thin film by using the precursor for forming the low-k silicon-containing thin film.

또한, 상기 저 유전율 실리콘 함유 박막을 포함하는 반도체 소자를 제공하는 것을 그 목적으로 한다.In addition, it is an object of the present invention to provide a semiconductor device including the above low-k silicon-containing thin film.

상기와 같은 목적을 달성하기 위한 본 발명의 저 유전율 실리콘 함유 박막 형성용 전구체는 하기 화학식 1로 표시되는 실리콘 함유 화합물을 포함하는 것을 특징으로 한다.In order to achieve the above purpose, the precursor for forming a low-k silicon-containing thin film of the present invention is characterized by including a silicon-containing compound represented by the following chemical formula 1.

[화학식 1][Chemical Formula 1]

상기 화학식 1에서,In the above chemical formula 1,

R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, L은 직쇄형, 분지형, 고리형 알킬기 또는 아릴기 중에서 선택되는 연결기이다.Each R is independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, an allylic group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a vinyl group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, an alkoxy group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a phenyl group comprising a C 1 -C 6 functional group, and L is a linking group selected from a straight-chain, branched or cyclic alkyl group or an aryl group.

구체적으로, 상기 화학식 1로 표시되는 실리콘 함유 화합물은 하기 화학식 2 내지 화학식 4 중 어느 하나로 표시되는 실리콘 함유 화합물일 수 있다.Specifically, the silicon-containing compound represented by the chemical formula 1 may be a silicon-containing compound represented by any one of the chemical formulas 2 to 4 below.

[화학식 2][Chemical formula 2]

[화학식 3][Chemical Formula 3]

[화학식 4][Chemical Formula 4]

상기 화학식 2 내지 화학식 4에서,In the above chemical formulas 2 to 4,

R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, n은 1 내지 8의 정수이다.Each R independently represents a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, an allylic group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a vinyl group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, an alkoxy group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a phenyl group comprising a C 1 -C 6 functional group, and n is an integer from 1 to 8.

또한, 상기 전구체는 용매를 추가적으로 포함하는 것일 수 있다. 이때, 상기 용매는 C1-C16의 포화 또는 불포화 탄화수소, 케톤, 에테르, 글라임, 에스테르, 테트라하이드로퓨란, 3차 아민 중 어느 하나 또는 그 이상일 수 있으며, 상기 저 유전율 실리콘 함유 박막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함될 수 있다.In addition, the precursor may additionally include a solvent. At this time, the solvent may be one or more of a C1-C16 saturated or unsaturated hydrocarbon, a ketone, an ether, a glyme, an ester, tetrahydrofuran, and a tertiary amine, and may be included in an amount of 1 to 99 wt% based on the total weight of the precursor for forming the low-k silicon-containing thin film.

또한, 본 발명의 저 유전율 실리콘 함유 박막 형성 방법은 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 이용하여 기판 상에 박막을 형성하는 단계를 포함한다.In addition, the method for forming a low-k silicon-containing thin film of the present invention includes a step of forming a thin film on a substrate using the precursor for forming the low-k silicon-containing thin film.

또한, 상기 저 유전율 실리콘 함유 박막은 SOD(spin-on dielectric, SOD) 공정, 고밀도 플라즈마 화학 기상 증착(High Density Plasma -Chemical Vapor Deposition, HDPCVD) 공정, 또는 원자층 증착(Atomic Layer Deposition, ALD) 공정에 의해 형성될 수 있다.Additionally, the low-k silicon-containing thin film can be formed by a spin-on dielectric (SOD) process, a high density plasma chemical vapor deposition (HDPCVD) process, or an atomic layer deposition (ALD) process.

또한, 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 DLI(Direct Liquid Injection)을 통해 챔버 내부로 이송시키는 단계를 포함할 수 있다.In addition, it may include a step of transporting the precursor for forming the low-k silicon-containing thin film into the chamber through DLI (Direct Liquid Injection).

또한, 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 기판에 공급하고 플라즈마를 발생시켜 박막을 형성하는 단계를 포함할 수 있다.In addition, it may include a step of supplying a precursor for forming a low-k silicon-containing thin film to a substrate and generating plasma to form a thin film.

또한, 본 발명의 반도체 소자는 상기 저 유전율 실리콘 함유 박막 형성 방법에 의해 제조될 수 있다.In addition, the semiconductor device of the present invention can be manufactured by the method for forming a thin film containing low dielectric constant silicon.

본 발명에 따른 전구체는 박막 형성 공정에서 에너지를 인가하여 쉽게 분해될 수 있는 화학구조로 이루어져 있으므로 저 유전율 실리콘 함유 박막의 형성 공정에 적용하면 분자 내의 탄소 함량비를 조절하기 용이하고 형성된 박막의 경도를 개선하는 효과를 얻을 수 있다.Since the precursor according to the present invention is composed of a chemical structure that can be easily decomposed by applying energy in a thin film formation process, when applied to a process for forming a low-k silicon-containing thin film, it is easy to control the carbon content ratio within the molecule and the effect of improving the hardness of the formed thin film can be obtained.

또한, 상기 전구체를 사용함으로써 저 유전율 실리콘 함유 박막 및 상기 저 유전율 실리콘 함유 박막을 포함하는 반도체 소자를 제조할 수 있다.In addition, by using the above precursor, a low-k silicon-containing thin film and a semiconductor device including the low-k silicon-containing thin film can be manufactured.

도 1은 화학식 1로 표시되는 실리콘 함유 화합물로 이루어진 전구체가 플라즈마 인가에 의해 반응 사이트를 형성하는 과정을 도시한 개념도이다.
도 2는 실시예 1에 따른 실리콘 함유 화합물의 1H-NMR 분석결과이다.
도 3은 실시예 2에 따른 실리콘 함유 화합물의 1H-NMR 분석결과이다.
도 4는 실시예 3에 따른 실리콘 함유 화합물의 1H-NMR 분석결과이다.
도 5는 실시예 4에 따른 실리콘 함유 화합물의 1H-NMR 분석결과이다.
도 6은 실시예 1 내지 4에 따른 실리콘 함유 화합물의 TGA 분석결과이다.
Figure 1 is a conceptual diagram illustrating a process in which a precursor composed of a silicon-containing compound represented by chemical formula 1 forms a reaction site by plasma application.
Figure 2 shows the results of 1 H-NMR analysis of a silicon-containing compound according to Example 1.
Figure 3 shows the results of 1 H-NMR analysis of a silicon-containing compound according to Example 2.
Figure 4 shows the results of 1 H-NMR analysis of a silicon-containing compound according to Example 3.
Figure 5 shows the results of 1 H-NMR analysis of a silicon-containing compound according to Example 4.
Figure 6 shows the TGA analysis results of silicon-containing compounds according to Examples 1 to 4.

이하 본 발명을 보다 상세히 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail. The terms or words used in this specification and claims should not be interpreted as limited to their usual or dictionary meanings, and should be interpreted as meanings and concepts that conform to the technical idea of the present invention based on the principle that the inventor can appropriately define the concept of the term to explain his or her own invention in the best way.

본 발명에 따른 저 유전율 실리콘 함유 박막 형성용 전구체는 하기 화학식 1로 표시되는 실리콘 함유 화합물을 포함하는 것을 특징으로 한다.A precursor for forming a low-k silicon-containing thin film according to the present invention is characterized by including a silicon-containing compound represented by the following chemical formula 1.

[화학식 1][Chemical Formula 1]

상기 화학식 1에서,In the above chemical formula 1,

R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, L은 직쇄형, 분지형, 고리형 알킬기 또는 아릴기 중에서 선택되는 연결기이다.Each R is independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, an allylic group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a vinyl group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, an alkoxy group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a phenyl group comprising a C 1 -C 6 functional group, and L is a linking group selected from a straight-chain, branched or cyclic alkyl group or an aryl group.

상기 화학식 1로 표시되는 실리콘 함유 화합물은 2개의 실란 화합물이 대칭되는 형태로 결합하고 있으므로, 박막 형성 공정의 전구체로 사용할 때 최적의 증착 효율을 얻을 수 있다. Since the silicon-containing compound represented by the above chemical formula 1 is composed of two silane compounds bonded in a symmetrical form, it can obtain optimal deposition efficiency when used as a precursor in a thin film formation process.

도 1에와 같은 구조의 실리콘 함유 화합물을 박막 형성 공정에 적용하는 경우를 예로 들어 설명하면, 2개의 실란 화합물을 연결하고 있는 알콕시기는 낮은 결합에너지를 가지고 있어 절단(break-up)되기 용이하기 때문에 플라즈마를 인가하면 산소 원자에 라디칼이 형성된 중간체로 분해된다. 이를 통해 반응 사이트를 가진 두개의 실리콘 단량체가 형성되기 때문에 박막이 형성되는 속도를 크게 높일 수 있게 된다. 또한, 상기 반응 사이트와 박막 표면의 반응기가 기밀하게 결합될 수 있기 때문에 형성된 박막의 경도를 향상시킬 수 있게 된다. 또한, 상기 화학식 1에서 R은 실리콘 원자에 결합되어 있기 때문에 일단 박막 표면에 흡착한 후 박막 내에 Si-C 결합을 형성하게 된다. 이러한 표면 흡착 과정을 통해 형성되는 실리콘 함유 박막의 유전율을 낮출 수 있게 된다.Hereinafter, when a silicon-containing compound having a structure such as that in FIG. 1 is applied to a thin film formation process, an alkoxy group connecting two silane compounds has low binding energy and is easily broken up, so when plasma is applied, it is decomposed into an intermediate in which a radical is formed at an oxygen atom. Through this, two silicon monomers having a reaction site are formed, so that the speed at which a thin film is formed can be significantly increased. In addition, since the reaction site and the reaction group on the surface of the thin film can be tightly bonded, the hardness of the formed thin film can be improved. In addition, since R in the chemical formula 1 is bonded to a silicon atom, once it is adsorbed on the surface of the thin film, a Si-C bond is formed within the thin film. Through this surface adsorption process, the dielectric constant of the silicon-containing thin film formed can be lowered.

상기 화학식 1로 표시되는 실리콘 화합물의 연결기는 실리콘 원자에 결합한 알콕시기 간의 연결 및 에너지 인가에 의한 분해가 용이한 구조로 이루어진 것으로서, 전술한 바와 같이 직쇄형, 분지형, 고리형 알킬기 또는 아릴기 중에서 선택될 수 있다.The connecting group of the silicon compound represented by the above chemical formula 1 is formed by a structure that is easy to connect alkoxy groups bonded to silicon atoms and decompose by energy application, and as described above, can be selected from a straight-chain, branched, or cyclic alkyl group or aryl group.

구체적으로 상기 연결기가 직쇄형 또는 분지형 알킬기인 경우 상기 화학식 1로 표시되는 실리콘 함유 화합물은 하기 화학식 2로 표시되는 화합물일 수 있다.Specifically, when the connecting group is a straight-chain or branched alkyl group, the silicon-containing compound represented by the chemical formula 1 may be a compound represented by the following chemical formula 2.

[화학식 2][Chemical formula 2]

상기 R은 화학식 1에서 정의된 것과 같으며, 상기 n은 1 내지 8의 정수로서 상기 2개의 알콕시기 사이에 다양한 형태의 알킬기가 결합될 수 있다.The above R is as defined in Chemical Formula 1, and n is an integer from 1 to 8, and various forms of alkyl groups can be bonded between the two alkoxy groups.

또한, 상기 연결기가 고리형 알킬기인 경우 하기 화학식 3과 같은 화학구조의 화합물을 형성할 수 있다.In addition, when the connecting group is a cyclic alkyl group, a compound having a chemical structure as shown in Chemical Formula 3 below can be formed.

[화학식 3][Chemical Formula 3]

상기 R은 화학식 1에서 정의된 것과 같으며, 상기 n은 1 내지 8의 정수로서 상기 2개의 알콕시기 사이에 다양한 형태의 고리형 알킬기가 결합될 수 있다.The above R is as defined in Chemical Formula 1, and n is an integer from 1 to 8, and various types of cyclic alkyl groups can be bonded between the two alkoxy groups.

또한, 상기 연결기가 아릴기인 경우 하기 화학식 4와 같은 화학구조의 화합물을 형성할 수 있다.In addition, when the connecting group is an aryl group, a compound having a chemical structure as shown in Chemical Formula 4 below can be formed.

[화학식 4][Chemical Formula 4]

상기 R은 화학식 1에서 정의된 것과 같은데, 상기 화학구조에서는 에너지가 조사될 때 아릴기와 산소 사이가 절단되면서 라디칼을 형성할 수 있다. 또한, 이와 같이 형성된 아릴기는 박막 내 탄소 함량을 높일 수 있다.The above R is as defined in Chemical Formula 1, and in the above chemical structure, a radical can be formed by cleavage between an aryl group and oxygen when energy is irradiated. In addition, the aryl group formed in this way can increase the carbon content in the thin film.

또한, 본 발명의 전구체는 용매를 추가적으로 포함할 수 있다. 상기 용매로는 C1-C16의 포화 또는 불포화 탄화수소, 케톤, 에테르, 글라임, 에스테르, 테트라하이드로퓨란, 3차 아민 중 어느 하나 또는 이들의 혼합물을 사용할 수 있다. 상기 C1-C16의 포화 또는 불포화 탄화수소의 예로는 톨루엔, 헵탄 등을 들 수 있으며, 3차 아민으로는 디메틸에틸아민을 들 수 있다.In addition, the precursor of the present invention may additionally include a solvent. As the solvent, any one or a mixture thereof may be used among C 1 -C 16 saturated or unsaturated hydrocarbons, ketones, ethers, glyme, esters, tetrahydrofuran, and tertiary amines. Examples of the C 1 -C 16 saturated or unsaturated hydrocarbons include toluene and heptane, and examples of the tertiary amine include dimethylethylamine.

특히, 실리콘 함유 화합물이 실온에서 고체 상태인 경우 이를 용해할 수 있는 용매를 포함하는 것이 바람직하다. 즉, 상기 용매를 포함하는 경우, 상기 상기 실리콘 함유 화합물을 용해할 수 있는 용매 및 함량으로 함유되게 되며, 상기 실리콘 함유 박막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함되는 것이 바람직하다.In particular, it is preferable to include a solvent capable of dissolving the silicon-containing compound when the silicon-containing compound is in a solid state at room temperature. That is, when the solvent is included, it is included in a solvent capable of dissolving the silicon-containing compound and in an amount, and it is preferable to include it in an amount of 1 to 99 wt% with respect to the total weight of the precursor for forming the silicon-containing thin film.

상기 용매를 포함하거나 포함하지 않는 전구체는 기화할 수 있는 것이기 때문에 이를 전구체 가스 형태로 챔버 내로 공급할 수 있다. 따라서, 실리콘 함유 화합물의 종류에 따라 실온에서 액상으로 존재하며, 쉽게 기화될 수 있는 경우에는 별도의 용매 없이도 박막 형성 공정을 수행할 수 있다.Since the precursor containing or not containing the above solvent is vaporizable, it can be supplied into the chamber in the form of precursor gas. Accordingly, depending on the type of silicon-containing compound, if it exists in a liquid state at room temperature and can be easily vaporized, the thin film formation process can be performed without a separate solvent.

또한, 상기 실리콘 함유 화합물을 사용하여 저 유전율 실리콘 함유 박막을 형성할 때, SOD(spin-on dielectric, SOD) 공정, 고밀도 플라즈마 화학 기상 증착(High Density Plasma-Chemical Vapor Deposition, HDP-CVD) 공정, 또는 원자층 증착(Atomic Layer Deposition, ALD) 공정을 이용하여 박막을 형성할 수 있다.In addition, when forming a low-dielectric silicon-containing thin film using the silicon-containing compound, the thin film can be formed using a spin-on dielectric (SOD) process, a high density plasma-chemical vapor deposition (HDP-CVD) process, or an atomic layer deposition (ALD) process.

예를 들어, HDP-CVD 공정을 적용할 경우 상압 화학 기상 증착 공정(AP-CVD), 저압 화학 기상 증착 공정(LP-CVD) 또는 플라즈마 강화 화학 기상 증착 공정(PE-CVD)에 비해 고진공 및 고파워에서 진행될 수 있기 때문에 구조적으로 치밀하고 기계적 특성이 우수한 박막을 형성할 수 있게 된다.For example, when the HDP-CVD process is applied, it can be performed under high vacuum and high power compared to the atmospheric-pressure chemical vapor deposition process (AP-CVD), low-pressure chemical vapor deposition process (LP-CVD), or plasma-enhanced chemical vapor deposition process (PE-CVD), so it is possible to form a thin film that is structurally dense and has excellent mechanical properties.

이를 위하여 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 DLI(Direct Liquid Injection)을 통해 챔버 내부로 이송시키는 단계, 상기 챔버 내부로 이송된 상기 전구체와 다른 소스 가스가 기판에 공급된 상태에서 플라즈마를 인가하여 박막을 형성하는 단계를 포함하여 박막을 형성하게 된다.To this end, the method comprises forming a thin film by including a step of transferring a precursor for forming a low-k silicon-containing thin film into a chamber through DLI (Direct Liquid Injection), and a step of forming a thin film by applying plasma while a source gas different from the precursor transferred into the chamber is supplied to a substrate.

예를 들어, 금속 배선 패턴이 형성된 기판 상에 상기 저 유전율 실리콘 함유 박막 형성용 전구체의 가스, 산소 가스, 캐리어 가스인 수소 가스를 공급하고 여기에 플라즈마를 발생시킴으로써 상기 기판 상에 형성된 금속 배선 패턴 사이의 갭을 채우는 저 유전율의 층간 절연막을 형성할 수 있다. 또한, 불화실리콘 절연막을 형성하고자 하는 경우 불소 소스 가스를 함께 공급하여 박막을 형성할 수도 있다.For example, by supplying a gas of a precursor for forming a low-k silicon-containing thin film, oxygen gas, and a carrier gas, hydrogen gas, onto a substrate on which a metal wiring pattern is formed, and generating plasma therein, a low-k interlayer insulating film that fills the gap between the metal wiring patterns formed on the substrate can be formed. In addition, when it is desired to form a silicon fluoride insulating film, a fluorine source gas may be supplied together to form the thin film.

또한, 층간 절연막의 종류에 따라 기판 상에 실리콘 소스 가스, 불소 소스 가스, 산소 가스, 탄소를 포함하는 가스와 함께 캐리어 가스인 수소 가스를 공급하고 플라즈마를 발생시킴으로써 기판 상의 금속 배선 패턴 사이의 갭을 채우는 저 유전율의 절연막을 형성할 수 있다.In addition, depending on the type of interlayer insulating film, a low-dielectric constant insulating film that fills the gap between metal wiring patterns on the substrate can be formed by supplying hydrogen gas as a carrier gas together with a gas containing silicon source gas, fluorine source gas, oxygen gas, and carbon on the substrate and generating plasma.

상기 불소 소스로는 통상적으로 사용하는 SiF4를 사용할 수 있으며, 탄소를 포함하는 가스로는 CH4, C2H4, C2H6, C2H2, C6H6와 같은 탄화수소 가스나 메틸에톡시실란(MTES), 디에톡시메틸실란(DEMS), 디메톡시메틸실란(DMOMS), 테트라메틸사이클로테트라실록산(TOMCATS), 디메틸디메톡시실란(DMDMOS), 디메틸디옥시실릴사이클로헥산(DMDOSH), 트리메틸실란과 같은 유기실록산 소스 가스를 사용할 수 있다.As the above fluorine source, the commonly used SiF 4 can be used, and as the carbon-containing gas, a hydrocarbon gas such as CH 4 , C 2 H 4 , C 2 H 6 , C 2 H 2 , C 6 H 6 , or an organosiloxane source gas such as methylethoxysilane (MTES), diethoxymethylsilane (DEMS), dimethoxymethylsilane (DMOMS), tetramethylcyclotetrasiloxane (TOMCATS), dimethyldimethoxysilane (DMDMOS), dimethyldeoxysilylcyclohexane (DMDOSH), or trimethylsilane can be used.

상기 박막을 형성하기 위한 공정은 1 내지 1000mTorr의 챔버 내 압력 조건에서 수행할 수 있다. 또한, 상기 챔버 내에 플라즈마를 형성하기 위한 소스 파워는 500 내지 9,000W, 바이어스 파워는 0 내지 5,000W가 적절하다. 또한, 상기 바이어스 파워는 경우에 따라서 가하지 않을 수도 있다.The process for forming the above thin film can be performed under a chamber pressure condition of 1 to 1000 mTorr. In addition, the source power for forming plasma within the chamber is appropriately 500 to 9,000 W, and the bias power is appropriately 0 to 5,000 W. In addition, the bias power may not be applied depending on the case.

상기 박막 형성 공정에서 본 발명에서 사용되는 실리콘 함유 화합물의 구조적 특성 상 층간 절연막이 형성될 때 미세한 공극이 형성되게 된다. 이러한 공극이 형성됨으로써 상기 층간 절연막의 유전율을 더욱 더 낮추어 줄 수 있으며, 기존의 층간 절연막에 비해 더 낮은 유전율을 달성할 수 있게 된다.In the above thin film forming process, due to the structural characteristics of the silicon-containing compound used in the present invention, fine pores are formed when the interlayer insulating film is formed. By forming these pores, the dielectric constant of the interlayer insulating film can be further lowered, and a lower dielectric constant can be achieved compared to existing interlayer insulating films.

또한, 실리콘 함유 화합물과 박막 표면과의 결합력이 향상되기 때문에 형성된 박막의 기계적 특성이 향상되게 된다.In addition, the mechanical properties of the formed thin film are improved because the bonding strength between the silicon-containing compound and the thin film surface is improved.

또한, 상기 수소가 유입됨에 따라 갭필 능력을 향상시킬 수 있으므로 상기 금속 배선 사이에 보이드(void)가 없는 층간 절연막을 형성하게 되며, 이를 통해 보이드에 의해 발생될 수 있는 공정 불량을 방지할 수 있게 된다.In addition, as the hydrogen is introduced, the gap-filling capability can be improved, thereby forming an interlayer insulating film without voids between the metal wirings, thereby preventing process defects that may be caused by voids.

또한, 상기 박막 형성 공정을 적용하면 저 유전율 실리콘 함유 박막을 포함하는 것을 특징으로 하는 반도체 소자를 제조할 수 있다. 이때 상기 저 유전율 실리콘 함유 박막은 층간 절연막으로서 FSG(Fluarinated Silicate Glass)막이나 OSG(Organo Silicate Glass) 막을 형성하게 되며, 이를 통해 반도체 소자의 배선 간 기생 커패시턴스를 감소시켜 고품질의 반도체 소자를 형성하게 된다.In addition, by applying the above thin film formation process, a semiconductor device characterized by including a low-k silicon-containing thin film can be manufactured. At this time, the low-k silicon-containing thin film forms an FSG (Fluarinated Silicate Glass) film or an OSG (Organo Silicate Glass) film as an interlayer insulating film, thereby reducing the parasitic capacitance between wirings of the semiconductor device, thereby forming a high-quality semiconductor device.

이하 실시예를 통하여 본 발명의 효과를 설명한다.The effects of the present invention are explained through the following examples.

실시예 1. 4,4,6,7,9,9-hexamethyl-3,5,8,10-tetraoxa-4,9-disiladodecane의 제조Example 1. Preparation of 4,4,6,7,9,9-hexamethyl-3,5,8,10-tetraoxa-4,9-disiladodecane

다이클로로다이메틸실란 200g(1.55mol)을 헥산 5ℓ로 희석한 용액을 저온(약 0℃)으로 냉각하고 에틸알코올 90.4㎖(1.55mol)와 트라이에틸아민 215㎖ (1.55mol)를 순서대로 천천히 첨가한 뒤, 실온에서 약 6시간 동안 교반하였다. 반응물을 다시 저온(약 0℃)으로 냉각하고, 2,3-부탄다이올 70.7㎖(0.77mol)와 트라이에틸아민 259㎖(1.86mol), 헥산 1ℓ의 혼합물을 첨가한 뒤, 실온에서 약 12시간 동안 교반하였다. 최종 반응물을 필터하고 여과액을 감압 하에서 용매를 제거하여 무색의 액체를 얻었다. 얻어진 액체를 감압 정제[70℃(bath 기준)@0.2torr]하여 무색의 액체인 4,4,6,7,9,9-헥사메틸-3,5,8,10-테트라옥사-4,9-다이실라도데칸 [4,4,6,7,9,9-hexamethyl-3,5,8,10-tetraoxa-4,9-disiladodecane] 159.5g (수율: 70%)을 얻었다.A solution of 200 g (1.55 mol) of dichlorodimethylsilane diluted with 5 L of hexane was cooled to a low temperature (approximately 0°C), 90.4 mL (1.55 mol) of ethyl alcohol and 215 mL (1.55 mol) of triethylamine were slowly added in sequence, and the mixture was stirred at room temperature for about 6 hours. The reaction mass was cooled again to a low temperature (approximately 0°C), and a mixture of 70.7 mL (0.77 mol) of 2,3-butanediol, 259 mL (1.86 mol) of triethylamine, and 1 L of hexane was added, and the mixture was stirred at room temperature for about 12 hours. The final reaction mass was filtered, and the solvent in the filtrate was removed under reduced pressure to obtain a colorless liquid. The obtained liquid was purified under reduced pressure [70℃ (bath standard) @ 0.2 torr] to obtain 159.5 g (yield: 70%) of 4,4,6,7,9,9-hexamethyl-3,5,8,10-tetraoxa-4,9-disiladodecane as a colorless liquid.

생성물의 NMR 분석결과는 도 2와 같으며 특성 피크는 다음과 같다.The NMR analysis results of the product are as shown in Fig. 2, and the characteristic peaks are as follows.

1H-NMR(C6D6): δ 0.16 [s, 12H, -Si(OCH2CH3)(CH3)2], 1.15 [t, J=7.0 Hz, 6H, meso -Si(OCH2CH3)(CH3)2], 1.22-1.25 [m, 6.8H, dl -Si(OCH2CH3)(CH3)2 and -OCH(CH3)], 3.65-3.72 [m, 4H, meso and dl -Si(OCH2CH3)(CH3)2], 3.79-3.86 [m, 1.7H, meso -OCH(CH3)], 3.95-4.02 [m, 0.5H, dl -OCH(CH3)] 1 H-NMR(C 6 D 6 ): δ 0.16 [s, 12H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.15 [t, J=7.0 Hz, 6H, meso -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.22-1.25 [m, 6.8H, dl -Si(OCH 2 CH 3 )(CH 3 ) 2 and -OCH(CH 3 )], 3.65-3.72 [m, 4H, meso and dl -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 3.79-3.86 [m, 1.7H, meso -OCH(CH 3 )], 3.95-4.02 [m, 0.5H, dl -OCH(CH 3 )]

실시예 2. 1,2-bis((ethoxydimethylsilyl)oxy)cyclohexane의 제조Example 2. Preparation of 1,2-bis((ethoxydimethylsilyl)oxy)cyclohexane

다이클로로다이메틸실란 20g(0.15mol)을 헥산 500㎖로 희석한 용액을 저온(약 0℃)으로 냉각하고 에틸알코올 9㎖(0.15mol)와 트라이에틸아민 21.5㎖(0.15mol)를 순서대로 천천히 첨가한 뒤, 실온에서 약 6시간 동안 교반하였다. 반응물을 다시 저온(약 0℃)으로 냉각하고, 1,2-사이클로헥산다이올 8.9g(0.07mol)와 트라이에틸아민 26㎖(0.18mol), 테트라하이드로퓨란 100㎖의 혼합물을 첨가한 뒤, 실온에서 약 12시간 동안 교반하였다. 최종 반응물을 필터하고 여과액을 감압 하에서 용매를 제거하여 무색의 액체를 얻었다. 얻어진 액체를 감압 정제[100℃(bath 기준)@0.2torr]하여 무색의 액체인 1,2-비스((에톡시다이메틸실릴)옥시)사이클로헥산 [1,2-bis((ethoxydimethylsilyl)oxy)cyclohexane] 13.2g (수율: 53%)을 얻었다.A solution of 20 g (0.15 mol) of dichlorodimethylsilane diluted with 500 mL of hexane was cooled to a low temperature (approximately 0°C), 9 mL (0.15 mol) of ethyl alcohol and 21.5 mL (0.15 mol) of triethylamine were slowly added in sequence, and the mixture was stirred at room temperature for about 6 hours. The reaction mass was cooled again to a low temperature (approximately 0°C), and a mixture of 8.9 g (0.07 mol) of 1,2-cyclohexanediol, 26 mL (0.18 mol) of triethylamine, and 100 mL of tetrahydrofuran was added, and the mixture was stirred at room temperature for about 12 hours. The final reaction mass was filtered, and the solvent in the filtrate was removed under reduced pressure to obtain a colorless liquid. The obtained liquid was purified under reduced pressure [100℃ (bath standard) @ 0.2 torr] to obtain 13.2 g (yield: 53%) of 1,2-bis((ethoxydimethylsilyl)oxy)cyclohexane as a colorless liquid.

생성물의 NMR 분석결과는 도 3과 같으며 특성 피크는 다음과 같다.The NMR analysis results of the product are as shown in Figure 3, and the characteristic peaks are as follows.

1H-NMR(C6D6): δ 0.21-0.24 [m, 12H, -Si(OCH2CH3)(CH3)2], 1.16-1.20 [m, 7.3H, -Si(OCH2CH3)(CH3)2], 1.36-1.46 [m, 2.8H, cycle-(CHCH2-CH2)-], 1.51-1.57 [m, 1.1H, cycle-(CHCH2-CH2)-], 1.64-1.72 [m, 1.5H, cycle-(CHCH2-CH2)-], 1.86-1.94 [m, 1.6H, cycle-(CHCH2-CH2)-], 1.96-2.03 [m, 1.1H, cycle-(CHCH2-CH2)-], 3.70-3.76 [m, 4.9H, cycle-(CHCH2-CH2)- and -Si(OCH2CH3)(CH3)2], 3.86-3.88 [m, 1.1H, cycle-(CHCH2-CH2)-] 1 H-NMR(C 6 D 6 ): δ 0.21-0.24 [m, 12H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.16-1.20 [m, 7.3H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.36-1.46 [m, 2.8H, cycle-(CHCH 2 -CH 2 )-], 1.51-1.57 [m, 1.1H, cycle-(CHCH 2 -CH 2 )-], 1.64-1.72 [m, 1.5H, cycle-(CHCH 2 -CH 2 )-], 1.86-1.94 [m, 1.6H, cycle-(CHCH 2 -CH 2 )-], 1.96-2.03 [m, 1.1H, cycle-(CHCH 2 -CH 2 )-], 3.70-3.76 [m, 4.9H, cycle-(CHCH 2 -CH 2 )- and -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 3.86-3.88 [m, 1.1H, cycle-(CHCH 2 -CH 2 )-]

실시예 3. 1,4-bis((ethoxydimethylsilyl)oxy)cyclohexane의 제조Example 3. Preparation of 1,4-bis((ethoxydimethylsilyl)oxy)cyclohexane

다이클로로다이메틸실란 10g(0.08mol)을 헥산 500㎖로 희석한 용액을 저온(약 0℃)으로 냉각하고 에틸알코올 4.5㎖(0.08mol)와 트라이에틸아민 10.8㎖(0.08mol)를 순서대로 천천히 첨가한 뒤, 실온에서 약 6시간 동안 교반하였다. 반응물을 다시 저온(약 0℃)으로 냉각하고, 1,4-사이클로헥산다이올 4.5g(0.04mol)와 트라이에틸아민 11.8㎖(0.09mol), 테트라하이드로퓨란 100㎖의 혼합물을 첨가한 뒤, 실온에서 약 12시간 동안 교반하였다. 최종 반응물을 필터하고 여과액을 감압 하에서 용매를 제거하여 무색의 액체를 얻었다. 얻어진 액체를 감압 정제[100℃(bath 기준)@0.6torr]하여 무색의 액체인 1,4-비스((에톡시다이메틸실릴)옥시)사이클로헥산 [1,4-bis((ethoxydimethylsilyl)oxy)cyclohexane] 7.9g (수율: 62%)을 얻었다.A solution of 10 g (0.08 mol) of dichlorodimethylsilane diluted with 500 mL of hexane was cooled to a low temperature (approximately 0°C), 4.5 mL (0.08 mol) of ethyl alcohol and 10.8 mL (0.08 mol) of triethylamine were slowly added in sequence, and the mixture was stirred at room temperature for about 6 hours. The reaction mass was cooled again to a low temperature (approximately 0°C), and a mixture of 4.5 g (0.04 mol) of 1,4-cyclohexanediol, 11.8 mL (0.09 mol) of triethylamine, and 100 mL of tetrahydrofuran was added, and the mixture was stirred at room temperature for about 12 hours. The final reaction mass was filtered, and the solvent in the filtrate was removed under reduced pressure to obtain a colorless liquid. The obtained liquid was purified under reduced pressure [100℃ (bath standard) @ 0.6 torr] to obtain 7.9 g (yield: 62%) of 1,4-bis((ethoxydimethylsilyl)oxy)cyclohexane as a colorless liquid.

생성물의 NMR 분석결과는 도 4와 같으며 특성 피크는 다음과 같다.The NMR analysis results of the product are as shown in Figure 4, and the characteristic peaks are as follows.

1H-NMR(C6D6): δ 0.15 [d, 12H, J=6.0 Hz -Si(OCH2CH3)(CH3)2], 1.14 [t, J=7.0 Hz, 5.6H, -Si(OCH2CH3)(CH3)2], 1.46-1.55, 1.91-2.00 [m, 4.3H, cycle-CH(CH2-CH2)CH-], 1.91-2.00 [m, 4.3H, cycle-CH(CH2-CH2)CH-], 3.67 [q, 3.9H, -Si(OCH2CH3)(CH3)2], 3.82-3.89 [m, 2.1H, cycle-CH(CH2-CH2)CH-] 1 H-NMR(C 6 D 6 ): δ 0.15 [d, 12H, J=6.0 Hz -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.14 [t, J=7.0 Hz, 5.6H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.46-1.55, 1.91-2.00 [m, 4.3H, cycle-CH(CH 2 -CH 2 )CH-], 1.91-2.00 [m, 4.3H, cycle-CH(CH 2 -CH 2 )CH-], 3.67 [q, 3.9H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 3.82-3.89 [m, 2.1H, cycle-CH(CH 2 -CH 2 )CH-]

실시예 4.1,2-bis((ethoxydimethylsilyl)oxy)benzene의 제조Example 4.1 Preparation of 2-bis((ethoxydimethylsilyl)oxy)benzene

다이클로로다이메틸실란 10g(0.08mol)을 헥산 500㎖로 희석한 용액을 저온(약 0℃)으로 냉각하고 에틸알코올 4.5㎖(0.08mol)와 트라이에틸아민 10.8㎖(0.08mol)를 순서대로 천천히 첨가한 뒤, 실온에서 약 6시간 동안 교반하였다. 반응물을 다시 저온(약 0℃)으로 냉각하고, 1,2-다이하이드록시벤젠 4.2g(0.04mol)와 트라이에틸아민 11.8㎖(0.09mol), 테트라하이드로퓨란 100㎖의 혼합물을 첨가한 뒤, 실온에서 약 12시간 동안 교반하였다. 최종 반응물을 필터하고 여과액을 감압 하에서 용매를 제거하여 무색의 액체를 얻었다. 얻어진 액체를 감압 정제[175℃(bath 기준)@0.4torr]하여 무색의 액체인 1,2-비스((에톡시다이메틸실릴)옥시)벤젠 [1,2-bis((ethoxydimethylsilyl)oxy)benzene] 3.2g (수율: 25%)을 얻었다.A solution of 10 g (0.08 mol) of dichlorodimethylsilane diluted with 500 mL of hexane was cooled to a low temperature (approximately 0°C), 4.5 mL (0.08 mol) of ethyl alcohol and 10.8 mL (0.08 mol) of triethylamine were slowly added in sequence, and the mixture was stirred at room temperature for about 6 hours. The reaction mass was cooled again to a low temperature (approximately 0°C), and a mixture of 4.2 g (0.04 mol) of 1,2-dihydroxybenzene, 11.8 mL (0.09 mol) of triethylamine, and 100 mL of tetrahydrofuran was added, and the mixture was stirred at room temperature for about 12 hours. The final reaction mass was filtered, and the solvent in the filtrate was removed under reduced pressure to obtain a colorless liquid. The obtained liquid was purified under reduced pressure [175℃ (bath standard) @ 0.4 torr] to obtain 3.2 g (yield: 25%) of 1,2-bis((ethoxydimethylsilyl)oxy)benzene as a colorless liquid.

생성물의 NMR 분석결과는 도 5와 같으며 특성 피크는 다음과 같다.The NMR analysis results of the product are as shown in Figure 5, and the characteristic peaks are as follows.

1H-NMR(C6D6): δ 0.26 [s, 12H, -Si(OCH2CH3)(CH3)2], 1.13 [t, 6.5H, J=7.0 Hz, -Si(OCH2CH3)(CH3)2], 3.74 [q, 4.3H, -Si(OCH2CH3)(CH3)2], 6.79-6.83 [m, 2.5H, aromatic-C(CH=CH)-], 7.09-7.13 [m, 2.2H, aromatic-C(CH=CH)-] 1 H-NMR(C 6 D 6 ): δ 0.26 [s, 12H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.13 [t, 6.5H, J=7.0 Hz, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 3.74 [q, 4.3H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 6.79-6.83 [m, 2.5H, aromatic-C(CH=CH)-], 7.09-7.13 [m, 2.2H, aromatic-C(CH=CH)-]

또한, 실시예 1 내지 4의 화합물에 대해 TGA 분석을 실시한 결과 도 6에서와 같이 100 내지 200℃ 영역에서 중량 감소가 나타났다. 이러한 결과로부터 상대적으로 낮은 온도에서 증착이 가능한 것으로 확인되었다.In addition, as a result of TGA analysis performed on the compounds of Examples 1 to 4, a weight loss was observed in the range of 100 to 200°C, as shown in Fig. 6. From these results, it was confirmed that deposition was possible at a relatively low temperature.

실시예 1 내지 4에 따른 화합물을 이용한 증착 공정을 통해 박막을 형성하는 시험평가를 다음과 같이 실시하였다.The following test evaluations were conducted to form a thin film through a deposition process using compounds according to Examples 1 to 4.

[제조예][Manufacturing example]

저 유전율 실리콘 함유 박막의 증착 공정을 수행하기 위하여 반응 챔버 내에 6인치 p-타입 Si 웨이퍼를 장착하고, 반응 챔버 내부를 아르곤(Ar) 가스로 퍼지하였다. 120℃의 vaporizer에서 전구체는 0.4g/min의 속도, 운반 가스는 400sccm, 400W 플라즈마가 인가된 챔버로 공급되었고, 350 내지 400℃의 공정온도 및 2 내지 10sccm의 산소(O2) 주입량에 따른 split을 통해 증착되는 저 유전율 실리콘 함유 박막의 증착율(GPC)을 측정하였고, 그 결과는 하기 표 1 과 같다.In order to perform a deposition process of a low-k silicon-containing thin film, a 6-inch p-type Si wafer was mounted in the reaction chamber, and the inside of the reaction chamber was purged with argon (Ar) gas. The precursor was supplied to the chamber at a rate of 0.4 g/min, the carrier gas was 400 sccm, and 400 W plasma was applied from a vaporizer at 120°C, and the deposition rate (GPC) of the low-k silicon-containing thin film deposited through split according to the process temperature of 350 to 400°C and the oxygen (O 2 ) injection amount of 2 to 10 sccm was measured, and the results are shown in Table 1 below.

공정조건Fair conditions 공정 온도(℃)Process temperature (℃) O2 Gas Flow(sccm)O 2 Gas Flow(sccm) GPC(Å/min)GPC(Å/min) 11 350350 22 113113 22 350350 1010 142142 33 400400 22 9696 44 400400 1010 122122

증착한 박막의 XPS 분석을 통해 박막 내 실리콘 및 산소, 탄소의 함유량을 측정한 결과는 하기 표 2와 같다.The results of measuring the content of silicon, oxygen, and carbon in the thin film through XPS analysis of the deposited thin film are shown in Table 2 below.

공정조건Fair conditions SiSi OO CC 조성비
(Si : O : C)
Composition ratio
(Si:O:C)
11 36.836.8 43.343.3 2020 1 : 1.18 : 0.54 1 : 1.18 : 0.54 22 36.736.7 49.549.5 13.813.8 1 : 1.35 : 0.381 : 1.35 : 0.38 33 37.737.7 42.942.9 19.519.5 1 : 1.14 : 0.521 : 1.14 : 0.52 44 37.237.2 49.549.5 13.413.4 1 : 1.33 : 0.361 : 1.33 : 0.36

또한, 증착한 박막의 k값 및 modulus를 측정한 결과는 하기 표 3과 같다.Additionally, the results of measuring the k value and modulus of the deposited thin film are shown in Table 3 below.

공정 조건Fair conditions kk Modulus(GPa)Modulus(GPa) 11 1.941.94 31.131.1 22 2.462.46 2828 33 1.801.80 4242 44 2.272.27 38.438.4

표 3의 결과를 살펴보면 증착된 박막은 저 유전율을 가지며 높은 기계적 물성을 나타내는 것을 확인할 수 있다. 따라서 본 발명의 실리콘 함유 박막 형성용 전구체를 사용하면 고품질의 저 유전율 박막을 형성할 수 있는 것으로 나타났다.Looking at the results in Table 3, it can be confirmed that the deposited thin film has a low dielectric constant and exhibits high mechanical properties. Therefore, it was shown that a high-quality low-dielectric constant thin film can be formed by using the precursor for forming a silicon-containing thin film of the present invention.

본 발명은 상술한 바와 같이 바람직한 실시형태를 들어 설명하였으나, 상기 실시형태들에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.Although the present invention has been described with reference to preferred embodiments as described above, it is not limited to the above embodiments, and various modifications and changes are possible by those skilled in the art within the scope that does not depart from the spirit of the present invention. Such modifications and changes should be considered to fall within the scope of the present invention and the appended claims.

Claims (10)

하기 화학식 1로 표시되는 실리콘 함유 화합물을 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.

[화학식 1]


상기 화학식 1에서,
R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, R 중 하나 이상은 C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기이며, L은 직쇄형, 분지형, 고리형 알킬기 또는 아릴기 중에서 선택되는 연결기이다.
A precursor for forming a low-k silicon-containing thin film, characterized by comprising a silicon-containing compound represented by the following chemical formula 1.

[Chemical Formula 1]


In the above chemical formula 1,
Each R is independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, an allylic group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a vinyl group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, an alkoxy group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a phenyl group comprising a C 1 -C 6 functional group, at least one of R is an alkoxy group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, and L is a linking group selected from a straight-chain, branched or cyclic alkyl group or an aryl group.
청구항 1에 있어서,
상기 화학식 1로 표시되는 실리콘 함유 화합물은 하기 화학식 2 내지 화학식 4 중 어느 하나로 표시되는 실리콘 함유 화합물인 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.

[화학식 2]


[화학식 3]


[화학식 4]


상기 화학식 2 내지 화학식 4에서,
R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, R 중 하나 이상은 C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기이며, n은 1 내지 8의 정수이다.
In claim 1,
A precursor for forming a low-k silicon-containing thin film, characterized in that the silicon-containing compound represented by the chemical formula 1 is a silicon-containing compound represented by any one of the chemical formulas 2 to 4 below.

[Chemical formula 2]


[Chemical Formula 3]


[Chemical Formula 4]


In the above chemical formulas 2 to 4,
Each R is independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, an allylic group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a vinyl group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, an alkoxy group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a phenyl group comprising a C 1 -C 6 functional group, at least one of R is an alkoxy group comprising a C 1 -C 6 straight-chain, branched or cyclic functional group, and n is an integer from 1 to 8.
청구항 1에 있어서,
용매를 추가적으로 포함하는 조성물인 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.
In claim 1,
A precursor for forming a low-k silicon-containing thin film, characterized in that the composition additionally contains a solvent.
청구항 3에 있어서,
상기 용매는 C1-C16의 포화 또는 불포화 탄화수소, 케톤, 에테르, 글라임, 에스테르, 테트라하이드로퓨란, 3차 아민 중 어느 하나 또는 그 이상인 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.
In claim 3,
A precursor for forming a low-k silicon-containing thin film, characterized in that the solvent is one or more of a C 1 -C 16 saturated or unsaturated hydrocarbon, a ketone, an ether, a glyme, an ester, tetrahydrofuran, and a tertiary amine.
청구항 3에 있어서,
상기 용매는 상기 저 유전율 실리콘 함유 박막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함되는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.
In claim 3,
A precursor for forming a low-k silicon-containing thin film, characterized in that the solvent is contained in an amount of 1 to 99 wt% based on the total weight of the precursor for forming a low-k silicon-containing thin film.
청구항 1 또는 3에 따른 저 유전율 실리콘 함유 박막 형성용 전구체를 이용하여 기판 상에 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성 방법.
A method for forming a low-k silicon-containing thin film, characterized by comprising a step of forming a thin film on a substrate using a precursor for forming a low-k silicon-containing thin film according to claim 1 or 3.
청구항 6에 있어서,
상기 저 유전율 실리콘 함유 박막은 SOD(spin-on dielectric, SOD) 공정, 고밀도 플라즈마 화학 기상 증착(High Density Plasma-Chemical Vapor Deposition, HDP-CVD) 공정, 또는 원자층 증착(Atomic Layer Deposition, ALD) 공정에 의해 형성되는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성 방법.
In claim 6,
A method for forming a low-k silicon-containing thin film, characterized in that the low-k silicon-containing thin film is formed by a spin-on dielectric (SOD) process, a high density plasma-chemical vapor deposition (HDP-CVD) process, or an atomic layer deposition (ALD) process.
청구항 6에 있어서,
상기 저 유전율 실리콘 함유 박막 형성용 전구체를 DLI(Direct Liquid Injection)을 통해 챔버 내부로 이송시키는 단계를 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성 방법.
In claim 6,
A method for forming a low-k silicon-containing thin film, characterized by including a step of transporting a precursor for forming the low-k silicon-containing thin film into the interior of a chamber through DLI (Direct Liquid Injection).
청구항 6에 있어서,
상기 저 유전율 실리콘 함유 박막 형성용 전구체를 기판에 공급하고 플라즈마를 발생시켜 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성 방법.
In claim 6,
A method for forming a low-k silicon-containing thin film, characterized by comprising a step of supplying a precursor for forming the low-k silicon-containing thin film to a substrate and generating plasma to form the thin film.
청구항 6의 저 유전율 실리콘 함유 박막 형성 방법에 의해 제조된 저 유전율 실리콘 함유 박막을 포함하는 것을 특징으로 하는 반도체 소자.
A semiconductor device characterized by including a low-k silicon-containing thin film manufactured by the method for forming a low-k silicon-containing thin film of claim 6.
KR1020210175677A 2021-12-09 2021-12-09 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same Active KR102771898B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210175677A KR102771898B1 (en) 2021-12-09 2021-12-09 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same
PCT/KR2022/016538 WO2023106623A1 (en) 2021-12-09 2022-10-27 Precursor for forming low dielectric constant silicon-containing thin film, method for forming low dielectric constant silicon-containing thin film using same, and semiconductor device including low dielectric constant silicon-containing thin film
TW111145349A TWI849595B (en) 2021-12-09 2022-11-28 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210175677A KR102771898B1 (en) 2021-12-09 2021-12-09 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same

Publications (2)

Publication Number Publication Date
KR20230087074A KR20230087074A (en) 2023-06-16
KR102771898B1 true KR102771898B1 (en) 2025-02-21

Family

ID=86730778

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210175677A Active KR102771898B1 (en) 2021-12-09 2021-12-09 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same

Country Status (3)

Country Link
KR (1) KR102771898B1 (en)
TW (1) TWI849595B (en)
WO (1) WO2023106623A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20250016873A (en) * 2023-07-26 2025-02-04 에스케이트리켐 주식회사 Precursor for low-k film deposition and forming method of silicon-containing low-k film using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447684B1 (en) 2001-01-17 2004-09-08 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Organosilicon precursors for interlayer dielectric films with low dielectric constants
KR101910020B1 (en) 2012-06-01 2018-10-19 버슘머트리얼즈 유에스, 엘엘씨 Organoaminodisilane precursors and methods for depositing films comprising same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583048B2 (en) * 2001-01-17 2003-06-24 Air Products And Chemicals, Inc. Organosilicon precursors for interlayer dielectric films with low dielectric constants
US6716770B2 (en) * 2001-05-23 2004-04-06 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
KR20060029762A (en) 2004-10-04 2006-04-07 삼성전자주식회사 Thin Film Formation Method of Semiconductor Device
US20070299239A1 (en) * 2006-06-27 2007-12-27 Air Products And Chemicals, Inc. Curing Dielectric Films Under A Reducing Atmosphere
US7998536B2 (en) * 2007-07-12 2011-08-16 Applied Materials, Inc. Silicon precursors to make ultra low-K films of K<2.2 with high mechanical properties by plasma enhanced chemical vapor deposition
CN112080098A (en) * 2020-09-22 2020-12-15 东莞市万里行橡胶有限公司 High-strength elastic foaming material and preparation process thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447684B1 (en) 2001-01-17 2004-09-08 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Organosilicon precursors for interlayer dielectric films with low dielectric constants
KR101910020B1 (en) 2012-06-01 2018-10-19 버슘머트리얼즈 유에스, 엘엘씨 Organoaminodisilane precursors and methods for depositing films comprising same

Also Published As

Publication number Publication date
KR20230087074A (en) 2023-06-16
TW202323260A (en) 2023-06-16
WO2023106623A1 (en) 2023-06-15
TWI849595B (en) 2024-07-21

Similar Documents

Publication Publication Date Title
KR100453612B1 (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US6572923B2 (en) Asymmetric organocyclosiloxanes and their use for making organosilicon polymer low-k dielectric film
US6440876B1 (en) Low-K dielectric constant CVD precursors formed of cyclic siloxanes having in-ring SI—O—C, and uses thereof
JP4824823B2 (en) Aminosilane, precursor for forming silicon-containing film, composition for forming silicon-containing film
US20020173172A1 (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US7326444B1 (en) Methods for improving integration performance of low stress CDO films
WO2006007077A2 (en) Composition and method for low temperature chemical vapor deposition of silicon-containing films including silicon carbonitride and silicon oxycarbonitride films
US20100174103A1 (en) Material for forming silicon-containing film, and silicon-containing insulating film and method for forming the same
TW202012419A (en) Silicon compounds and methods for depositing films using same
KR102771898B1 (en) Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same
US20100140754A1 (en) Film-forming material, silicon-containing insulating film and method for forming the same
KR102771918B1 (en) Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same
KR102751501B1 (en) Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same
KR102774666B1 (en) Precursor for low-k silicon-containing film deposition and deposition method of low-k silicon-containing film using the same
US20230123377A1 (en) Silicon Compounds And Methods For Depositing Films Using Same
KR20240174915A (en) Precursor for low-k silicon-containing film deposition and deposition method of low-k silicon-containing film using the same
KR20250016873A (en) Precursor for low-k film deposition and forming method of silicon-containing low-k film using the same
KR20250016832A (en) Precursor for low-k film deposition and forming method of silicon-containing low-k film using the same
KR20250109310A (en) Precursor for low-k silicon-containing film deposition and deposition method of low-k silicon-containing film using the same
US20250201549A1 (en) Precursor for forming silicon-containing thin film with high hardness and low dielectric constant and manufacturing method for silicon-containing thin film using thereof
KR20220061161A (en) Monoalkoxysilane and dialkoxysilane and high-density organosilica film prepared therefrom
KR102829807B1 (en) Precursor for silicon-containing film deposition, deposition method of silicon-containing film and semiconductor device comprising the same
US20200048286A1 (en) Silicon compounds and methods for depositing films using same
TWI747023B (en) Silicon compounds and methods for depositing films using same
JP6993394B2 (en) Silicon compounds and methods of depositing films using silicon compounds

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20211209

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240421

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20250124

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20250219

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20250219

End annual number: 3

Start annual number: 1

PG1601 Publication of registration