[go: up one dir, main page]

KR102756086B1 - The manufacturing method of the germanium doped gallium oxide using the alkali base - Google Patents

The manufacturing method of the germanium doped gallium oxide using the alkali base Download PDF

Info

Publication number
KR102756086B1
KR102756086B1 KR1020230087141A KR20230087141A KR102756086B1 KR 102756086 B1 KR102756086 B1 KR 102756086B1 KR 1020230087141 A KR1020230087141 A KR 1020230087141A KR 20230087141 A KR20230087141 A KR 20230087141A KR 102756086 B1 KR102756086 B1 KR 102756086B1
Authority
KR
South Korea
Prior art keywords
germanium
gallium oxide
gallium
manufacturing
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020230087141A
Other languages
Korean (ko)
Other versions
KR20250007256A (en
Inventor
김지은
지선우
김완중
정진한
Original Assignee
(주)케이원솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)케이원솔루션 filed Critical (주)케이원솔루션
Priority to KR1020230087141A priority Critical patent/KR102756086B1/en
Publication of KR20250007256A publication Critical patent/KR20250007256A/en
Application granted granted Critical
Publication of KR102756086B1 publication Critical patent/KR102756086B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/04Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion materials in the liquid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은 알칼리 염기를 이용하여 14족 원소가 도핑된 산화갈륨을 제조하는 제조방법 및 제조물에 관한 것으로, 보다 구체적으로, 산화갈륨에 알칼리 염기인 수산화칼륨을 넣고 이어서 도핑 물질을 넣어 일정시간 교반 후에 염산 용액을 가하여 수산그룹 (-OH)를 형성하고 높은 온도에서 수분을 제거하면서 결정화시켜 게르마늄 도핑된 베타-산화갈륨 단결정을 제조한다. The present invention relates to a method and a product for producing gallium oxide doped with a group 14 element using an alkaline base, and more specifically, to a method for producing a germanium-doped beta-gallium oxide single crystal, in which potassium hydroxide, which is an alkaline base, is added to gallium oxide, then a doping material is added, the mixture is stirred for a predetermined period of time, a hydrochloric acid solution is added to form a hydroxyl group (-OH), and the mixture is crystallized at a high temperature while removing moisture.

Description

알칼리 염기를 이용하여 도핑된 산화갈륨 제조방법 {The manufacturing method of the germanium doped gallium oxide using the alkali base}{The manufacturing method of the germanium doped gallium oxide using the alkali base}

본 발명은 대한민국 중소기업청의 지원 하에서 과제번호 S3140590에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 중소기업기술정보진흥원, 연구과제명은 `고품질 단결정 성장을 위한 산화갈륨 제조`, 수행기관은 ㈜ 케이원솔루션, 연구기간은 2022. 09. 26 ~ 2023. 09. 26이다.The present invention was made under the support of the Small and Medium Business Administration of the Republic of Korea under project number S3140590. The research management specialized institution of the project is the Small and Medium Business Technology Information Promotion Agency, the research project name is ‘Manufacturing of Gallium Oxide for High-Quality Single Crystal Growth’, the implementing institution is K1 Solution Co., Ltd., and the research period is September 26, 2022 to September 26, 2023.

본 발명은 초광대역 밴드갭 반도체 소자인 산화갈륨을 알칼리 염기를 이용하여 게르마늄이 도핑된 산화갈륨 제조방법에 관한 것으로, 보다 구체적으로, 산화갈륨에 알칼리 염기인 수산화칼륨을 넣고 이어서 도핑 물질인 산화 게르마늄 (혹은 실리콘)을 넣어 일정시간 교반 후에 염산을 가하여 결정화시켜 게르마늄 (혹은 실리콘) 도핑된 산화갈륨을 제조 방법에 관한 것이다. The present invention relates to a method for manufacturing gallium oxide doped with germanium using an alkaline base, which is an ultra-wide bandgap semiconductor element. More specifically, the present invention relates to a method for manufacturing gallium oxide doped with germanium (or silicon) by adding potassium hydroxide, which is an alkaline base, to gallium oxide, then adding germanium oxide (or silicon), which is a doping material, and stirring the mixture for a certain period of time, followed by adding hydrochloric acid to crystallize the mixture.

반도체는 진성반도체(instrinsic semiconductor)와 불순물 반도체(impurity semiconductor)로 나눌 수 있고 불순물 반도체는 불순물의 종류에 따라 N형 반도체와 P형 반도체로 구분된다. Semiconductors can be divided into intrinsic semiconductors and impurity semiconductors, and impurity semiconductors are divided into N-type semiconductors and P-type semiconductors depending on the type of impurity.

진성 반도체는 실리콘과 게르마늄의 한가지 원소의 단결정으로서 원자핵에 결합되어 있는 전자가 움직일 수 없기 때문에 전류가 흐르지 않는다. Intrinsic semiconductors are single crystals of one element, such as silicon or germanium, and do not conduct electricity because the electrons bound to the nucleus cannot move.

진성 반도체에 특정 불순물을 첨가하여 전자(electron)나 정공(Hole)의 수를 증가시켜 전기전도도를 조절할 수 있는데, 이러한 반도체를 불순물 반도체라고 한다.Electrical conductivity can be controlled by adding specific impurities to an intrinsic semiconductor to increase the number of electrons or holes. Such a semiconductor is called an impurity semiconductor.

14족 원소인 실리콘 단결정에 최외각 전자가 5개인 15족인 질소(N), 인(P), 비소(As), 안티모닌(Sb) 원소를 불순물로 첨가하면 실리콘 원자와 공유결합 후, 전자가 남는 상태, 즉 실리콘 결정에 전압을 걸어주면 자유전자가 되어 전류가 흐른다. When nitrogen (N), phosphorus (P), arsenic (As), and antimony (Sb), which are elements of group 15 and have 5 outermost electrons, are added as impurities to a silicon single crystal, which is an element of group 14, the electrons remain after covalent bonding with the silicon atoms, that is, when voltage is applied to the silicon crystal, they become free electrons and current flows.

15족 원소가 추가된 반도체는 전자가 전하를 나르는 캐리어(carrier)로 동작하기 ‹š문에 전자의 극성을 따서 N형, Negative 형 반도체라고 한다.Semiconductors with added group 15 elements are called N-type, negative type semiconductors, according to the polarity of the electrons, because electrons act as charge carriers.

또한 14족 원소인 탄소 (C), 실리콘 (Si), 게르마늄(Ge), 주석(Sn)에 불순물로 13족 원소인 붕소(B), 알루미늄(Al), 갈륨(Ga), 인듐(In)을 첨가하여 P-형 반도체를 만든다. Additionally, P-type semiconductors are created by adding Group 13 elements such as boron (B), aluminum (Al), gallium (Ga), and indium (In) as impurities to Group 14 elements such as carbon (C), silicon (Si), germanium (Ge), and tin (Sn).

실리콘 기반의 반도체는 지난 수십년간 반도체 기기 전자제품에 근본적이고 필수적인 역할을 담당해왔다. 하지만, 최근 기술이 빠르게 발전함에 따라 실리콘 기반 반도체는 성능적 한계를 맞이했고, 더 빠른 속도, 더 높은 성능의 반도체가 요구되고 있다. 반도체의 성능은 보통 원재료 에너지 밴드 차이에 의해 결정되는데, 밴드 갭의 차이가 클수록 전원장치 (power device), 스위칭 장치 (switching device) 등의 활용 가능성이 높아지게 된다. Silicon-based semiconductors have played a fundamental and essential role in semiconductor device electronics for the past several decades. However, with the rapid development of technology, silicon-based semiconductors have reached their performance limits, and semiconductors with faster speeds and higher performance are required. The performance of semiconductors is usually determined by the difference in the energy bands of the raw materials, and the larger the difference in the band gap, the higher the possibility of using them in power devices and switching devices.

실리콘의 한계를 극복하기 위해 화합물 반도체인 실리콘카바이드 (SiC), 갈륨나이트라이드 (GaN)과 같은 넓은 밴드 갭 (WBG, wide band gap) 물질이 주목받고 상용화 단계에 접어들고 있다. To overcome the limitations of silicon, wide band gap (WBG) materials such as compound semiconductors silicon carbide (SiC) and gallium nitride (GaN) are attracting attention and are approaching the commercialization stage.

하지만 최근, 넓은 밴드겝을 넘어 울트라 와이드 밴드 갭(UWBG) 라는 새로운 카테고리가 많은 관심을 받고 있는데, 이들은 기존 와이드밴드 갭 반도체보다 큰 밴드 갭으로 인해 높은 항복강도, 빠른 스위칭 속도 등의 특징을 가지고 있다. However, recently, a new category called ultra-wide bandgap (UWBG) has been receiving a lot of attention beyond wide bandgap, and they have characteristics such as high breakdown strength and fast switching speed due to the larger bandgap than existing wide bandgap semiconductors.

그 중 산화갈륨은 실리콘카바이드 (3.3eV), 갈륨나이트라이드 (3.4eV)에 비해 높은 (4.9eV) 밴드 갭을 보유하고 있을 뿐 아니라 기존 실리콘 기반 반도체와 같이 용융 성장 (melting growth) 방법을 통해 쉽게 제조가 가능하다는 장점을 보유하고 있다. Among them, gallium oxide not only has a higher band gap (4.9 eV) than silicon carbide (3.3 eV) and gallium nitride (3.4 eV), but also has the advantage of being easily manufactured through the melting growth method, like existing silicon-based semiconductors.

또한, 일반적으로 반도체의 전기적, 화학적 성능을 향상을 위해 도핑 (doping)공정이 사용되는데, 산화 갈륨의 경우 실리콘 (Si), 게르마늄 (Ge), 주석 (Sn) 등의 4족 원소가 N형 불순물 (n-type dopant)로서 활용되고 있으며, 다양한 합성 방법과 도핑 방법이 활발하게 연구 개발되고 있다.In addition, a doping process is generally used to improve the electrical and chemical performance of semiconductors. In the case of gallium oxide, group 4 elements such as silicon (Si), germanium (Ge), and tin (Sn) are utilized as N-type dopants, and various synthesis methods and doping methods are being actively researched and developed.

대한민국 공개특허공보 제 10-2022-0036255 호(2022. 3. 22)Republic of Korea Patent Publication No. 10-2022-0036255 (March 22, 2022)

그러나, 기존의 산화갈륨 복합체(Ge doped) 수열합성, 금속 유기 화학 증착법 ((MOCVD, metal organic chemical vapor deposition)등을 이용한 도핑 방법은, 수열합성의 경우 결정 성장의 메커니즘이 복잡해 최종 생성물의 형상 및 크기를 이론적으로 예측하기 어렵다. However, in the case of hydrothermal synthesis, it is difficult to theoretically predict the shape and size of the final product in doping methods such as hydrothermal synthesis of gallium oxide complexes (Ge doped) and metal organic chemical vapor deposition (MOCVD), because the mechanism of crystal growth is complex.

또한, 금속 유기 화학 증착법 공정의 경우 공정 중 사용하는 물질과 가스가 유해한 독성 물질을 주로 사용하여 인체에 문제를 유발할 수 있으며 기판과 증착 물질간의 열팽창 계수 차이로 인해 도핑 시 격자크기 차이로 인한 결함이 발생 할 수 있다는 단점이 있다. In addition, in the case of the metal organic chemical vapor deposition process, there is a disadvantage in that the materials and gases used during the process mainly use harmful toxic substances, which may cause problems to the human body, and defects may occur due to differences in lattice sizes during doping due to differences in thermal expansion coefficients between the substrate and the deposition material.

그리고 제한된 합성 조건으로 인해 설비와 환경적으로 대용량 합성이 용이하지 않다.And due to limited synthesis conditions, large-scale synthesis is not easy due to equipment and environmental constraints.

상기와 같은 문제를 해결하기 위하여, 기존 수열합성과 금속 유기 화학 증착법 공정이 아닌, 알칼리 염기를 이용하여 게르마늄을 포함하는 14족 원소가 도핑된 산화갈륨 제조방법인 새로운 방법을 제안한다. To solve the above problems, we propose a new method for producing gallium oxide doped with a Group 14 element including germanium using an alkaline base rather than the existing hydrothermal synthesis and metal organic chemical vapor deposition processes.

본 특허 발명은 상기와 같은 제조 방법에 의해 제조 공정이 간편하고, 대용량으로 합성 및 도핑이 가능하다는 장점이 예상된다. The present invention is expected to have the advantage of a simple manufacturing process and large-scale synthesis and doping through the above-mentioned manufacturing method.

도 1 은 본 발명에 따른 게르마늄 도핑된 베타-산화갈륨 합성 모식도이다.
도 2 는 본 발명에 따른 산화갈륨과 산화게르마늄으로 부터 게르마늄 도핑된 산화갈륨 제안하는 반응 식이다.
도 3 는 본 발명에 따른 도펀트인 산화게르마늄 농도별 도핑된 게르마늄, 갈륨, 산소 원자 % 이다.
도 4 는 본 발명에 따른 전자현미경 (FE-SEM)장비로 확인된 이미지이다.
Figure 1 is a schematic diagram of the synthesis of germanium-doped beta-gallium oxide according to the present invention.
Figure 2 is a reaction formula suggesting germanium-doped gallium oxide from gallium oxide and germanium oxide according to the present invention.
Figure 3 shows the doped germanium, gallium, and oxygen atomic % according to the concentration of germanium oxide, a dopant according to the present invention.
Figure 4 is an image confirmed by field emission scanning electron microscope (FE-SEM) equipment according to the present invention.

이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있는 바람직한 실시 예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시 예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다. Hereinafter, with reference to the attached drawings, preferred embodiments of the present invention will be described in detail so that those with ordinary skill in the art can easily implement the present invention. However, when describing preferred embodiments of the present invention in detail, if it is determined that a specific description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the same reference numerals are used throughout the drawings for parts that perform similar functions and actions.

도 1은 게르마늄 도핑된 베타-산화갈륨 합성 모식도이다. Figure 1 is a schematic diagram of the synthesis of germanium-doped beta-gallium oxide.

먼저, 산화갈륨과 일정량의 산화게르마늄을 수산화칼륨 용액에 넣어 수산화갈륨염과 수산화게르마늄염 혼합용액을 제조한다. First, a mixed solution of gallium hydroxide salt and germanium hydroxide salt is prepared by adding gallium oxide and a certain amount of germanium oxide to a potassium hydroxide solution.

일정시간을 교반 후에 염산을 넣어 수산화갈륨과 수산화게르마늄을 합성한다. After stirring for a certain period of time, hydrochloric acid is added to synthesize gallium hydroxide and germanium hydroxide.

이어서 열을 가하여 게르마늄 도핑된 베타-산화갈륨을 제조한다. Next, heat is applied to produce germanium-doped beta-gallium oxide.

자세한 방법은 5.12g 산화갈륨(Ga2O3)과 2.06g 산화게르마늄(GeO2), 그리고 34g 수산화 칼륨(KOH)을 100mL 증류수에 넣고 68~72°C에서 7~8 시간 교반한다. The detailed method is to add 5.12 g of gallium oxide ( Ga2O3 ), 2.06 g of germanium oxide ( GeO2 ), and 34 g of potassium hydroxide (KOH) to 100 mL of distilled water and stir at 68–72°C for 7–8 hours.

산화갈륨과 이산화게르마늄의 혼합물이 수산화칼륨과 반응하여 수산화갈륨염(K4Ga2O5)과 수산화게르마늄염(K4GeO4)이 생성된다.(S110) A mixture of gallium oxide and germanium dioxide reacts with potassium hydroxide to produce gallium hydroxide salt (K 4 Ga 2 O 5 ) and germanium hydroxide salt (K 4 GeO 4 ). (S110)

다음으로 생성된 수산화갈륨염(K4Ga2O5)과 수산화게르마늄염 (K4GeO4) 혼합용액에 진한염산(HCl) 6mL를 넣는다. Next, add 6 mL of concentrated hydrochloric acid (HCl) to the mixed solution of gallium hydroxide salt (K 4 Ga 2 O 5 ) and germanium hydroxide salt (K 4 GeO 4 ).

고체가 형성되면 여과기에 넣고 증류수로 수회 반복하여 세정을 한 후에 수산화갈륨(Ga2O(OH)4)과 수산화게르마늄(Ge(OH)4)이 형성된다. (S120) When a solid is formed, it is placed in a filter and washed several times with distilled water, after which gallium hydroxide (Ga 2 O(OH) 4 ) and germanium hydroxide (Ge(OH) 4 ) are formed. (S120)

수산화갈륨(Ga2O(OH)4)과 수산화게르마늄(Ge(OH)4)은 90~110°C 오븐에서 11~13 시간 건조과정을 통해 재료 내부의 수분 제거한다. Gallium hydroxide (Ga 2 O(OH) 4 ) and germanium hydroxide (Ge(OH) 4 ) are dried in an oven at 90–110°C for 11–13 hours to remove moisture inside the materials.

수분이 제거된 파우더를 다시 750~850°C 온도에서 3~5 시간의 하소과정을 거처 게르마늄이 도핑된 베타-산화갈륨을 제조한다. (S130)The powder from which moisture has been removed is calcined again at a temperature of 750 to 850°C for 3 to 5 hours to produce beta-gallium oxide doped with germanium. (S130)

도 2는 산화갈륨과 산화게르마늄으로부터 게르마늄 도핑된 산화갈륨을 제조하는 반응 메카니즘을 제안한다. Figure 2 proposes a reaction mechanism for producing germanium-doped gallium oxide from gallium oxide and germanium oxide.

제1식(S210) 에서, 산화갈륨과 산화게르마늄이 수산화칼륨(KOH)에 의한 친핵적 반응으로 수산그룹(-OH)이 갈륨과 게르마늄을 공격하여 갈륨 및 게르마늄과 산소 사이의 이중결합 (즉, 파이결합)이 끊어지면서 산소에 칼륨이 결합되어 salt 형태로 물에 용해된다. In the first equation (S210), gallium oxide and germanium oxide undergo a nucleophilic reaction with potassium hydroxide (KOH), and the hydroxyl group (-OH) attacks gallium and germanium, breaking the double bond (i.e., pi bond) between gallium and germanium and oxygen, and potassium binds to oxygen, which dissolves in water in the form of a salt.

제2식(S220) 에서, 염산 (HCl)를 가하여 수산기 (-OH)를 형성한다. In the second formula (S220), hydrochloric acid (HCl) is added to form a hydroxyl group (-OH).

제3식(S230) 에서, 800도의 열을 가하여 물(H2O)을 제거하여 산화갈륨에 게르마늄이 결합된 단결정이 만들어진다.In the third formula (S230), a single crystal of germanium combined with gallium oxide is created by removing water ( H2O ) by applying heat of 800 degrees.

도 3은 도펀트인 산화게르마늄 농도별 도핑된 게르마늄, 갈륨, 산소 원자 % 이다. 전자현미경/에너지 분산 엑스선 원소분석 (SEM/EDX)장비로 확인한 결과이다. Figure 3 shows the doped germanium, gallium, and oxygen atomic % according to the concentration of dopant germanium oxide. This is the result confirmed by scanning electron microscope/energy dispersive X-ray elemental analysis (SEM/EDX) equipment.

도펀트인 산화게르마늄 5% (중량%) 일 때 갈륨 원자 37.35 원자%, 게르마늄원자 2.94 원자%, 산소원자 59.71 원자%이다. When the dopant germanium oxide is 5% (weight %), the gallium atoms are 37.35 atomic%, the germanium atoms are 2.94 atomic%, and the oxygen atoms are 59.71 atomic%.

도펀트인 산화게르마늄 10% (중량%)일 때 갈륨 원자 36.82 원자%, 게르마늄원자 5.36 원자%, 산소원자 57.82 원자%이다. When the dopant germanium oxide is 10% (weight %), the gallium atoms are 36.82 atomic%, the germanium atoms are 5.36 atomic%, and the oxygen atoms are 57.82 atomic%.

도펀트인 산화게르마늄 15% (중량%)일 때 갈륨 원자 39.57 원자%, 게르마늄원자 9.50 원자%, 산소원자 50.93 원자%이다. When the dopant germanium oxide is 15% (weight %), the gallium atoms are 39.57 atomic%, the germanium atoms are 9.50 atomic%, and the oxygen atoms are 50.93 atomic%.

도펀트인 산화게르마늄 20% (중량%)일 때 갈륨 원자 42.04 원자%, 게르마늄원자 11.09 원자%, 산소원자 46.87 원자%이다. When the dopant germanium oxide is 20% (weight %), the gallium atoms are 42.04 atomic%, the germanium atoms are 11.09 atomic%, and the oxygen atoms are 46.87 atomic%.

이 결과는 도펀트인 산화게르마늄의 농도가 증가함에 따라 도핑된 게르마늄원자가 2.94 원자%, 5.36 원자%, 9.50 원자%, 11.09 원자%로 상승하는 결과를 얻었다. These results showed that as the concentration of the dopant, germanium oxide, increased, the doped germanium atoms increased from 2.94 at%, 5.36 at%, 9.50 at%, and 11.09 at%.

도 4는 전자현미경 (FE-SEM)장비로 확인된 이미지이다. 가)는 도펀트 5%(중량%), 나)는 도펀트 10%(중량%), 다)는 도펀트 15%(중량%), 라)는 도펀트 20%(중량%)일 때 전자현미경 사진이다.Figure 4 is an image confirmed by a field emission scanning electron microscope (FE-SEM). a) is an electron microscope photograph when the dopant content is 5% (weight %), b) is an electron microscope photograph when the dopant content is 10% (weight %), c) is an electron microscope photograph when the dopant content is 15% (weight %), and d) is an electron microscope photograph when the dopant content is 20% (weight %).

한편, 상기 실시예에서는 산화게르마늄을 도펀트로 사용하여 게르마늄이 도핑된 베타-산화갈륨을 제조하였으며, Meanwhile, in the above example, germanium oxide was used as a dopant to manufacture beta-gallium oxide doped with germanium.

통상의 기술자는 게르마늄(Ge)과 같은 14족 원소인 탄소(C), 실리콘(Si), 및 주석(Sn)을 불순물로 사용하여 도 1 의 합성 모식도 및 도 2의 화학반응식과 동일한 순서로 베타-산화갈륨을 제조할 수 있다. A person skilled in the art can manufacture beta-gallium oxide using carbon (C), silicon (Si), and tin (Sn), which are Group 14 elements such as germanium (Ge), as impurities, in the same sequence as the synthetic schematic diagram of Fig. 1 and the chemical reaction formula of Fig. 2.

Claims (3)

산화갈륨(Ga2O3)과 산화게르마늄(GeO2)을 수산화칼륨(KOH) 용액에 혼합하여 교반하는 단계;
수산화갈륨염(K4Ga2O5)과 수산화게르마늄염(K4GeO4)이 생성되는 단계;
염산을 넣어 수산화갈륨(Ga2O(OH)4)과 수산화게르마늄(Ge(OH)4)을 형성하는 단계;
90~110°C 오븐에서 11~13 시간 건조과정을 통해 재료 내부의 수분 제거하고 수분이 제거된 파우더를 다시 750~850°C 온도에서 3~5 시간의 하소과정을 거쳐 게르마늄 도핑된 베타-산화갈륨(β-Ga2O3)을 제조하는 단계;를 포함하는 산화갈륨 제조방법
A step of mixing gallium oxide (Ga 2 O 3 ) and germanium oxide (GeO 2 ) in a potassium hydroxide (KOH) solution and stirring;
A step in which gallium hydroxide salt (K 4 Ga 2 O 5 ) and germanium hydroxide salt (K 4 GeO 4 ) are formed;
A step of forming gallium hydroxide (Ga 2 O(OH) 4 ) and germanium hydroxide (Ge(OH) 4 ) by adding hydrochloric acid;
A method for manufacturing gallium oxide, comprising the steps of: removing moisture inside a material through a drying process in an oven at 90 to 110°C for 11 to 13 hours; and then manufacturing germanium-doped beta-gallium oxide (β-Ga 2 O 3 ) through a calcination process at a temperature of 750 to 850°C for 3 to 5 hours on the powder from which moisture has been removed;
제1항에 있어서,
게르마늄 대신에 14족 원소인 탄소(C), 실리콘(Si), 및 주석(Sn) 중 선택된 한가지 원소를 불순물로 사용하는 산화갈륨 제조방법
In the first paragraph,
A method for manufacturing gallium oxide using one element selected from the 14th group elements carbon (C), silicon (Si), and tin (Sn) as an impurity instead of germanium
제1항 또는 제2항 중 어느 하나의 항에 기재된 제조방법에 의해 제조된 산화갈륨
Gallium oxide manufactured by the manufacturing method described in either of paragraphs 1 and 2
KR1020230087141A 2023-07-05 2023-07-05 The manufacturing method of the germanium doped gallium oxide using the alkali base Active KR102756086B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230087141A KR102756086B1 (en) 2023-07-05 2023-07-05 The manufacturing method of the germanium doped gallium oxide using the alkali base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230087141A KR102756086B1 (en) 2023-07-05 2023-07-05 The manufacturing method of the germanium doped gallium oxide using the alkali base

Publications (2)

Publication Number Publication Date
KR20250007256A KR20250007256A (en) 2025-01-14
KR102756086B1 true KR102756086B1 (en) 2025-01-21

Family

ID=94239732

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230087141A Active KR102756086B1 (en) 2023-07-05 2023-07-05 The manufacturing method of the germanium doped gallium oxide using the alkali base

Country Status (1)

Country Link
KR (1) KR102756086B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895742A (en) * 2016-10-03 2018-04-10 流慧株式会社 Semiconductor device and the semiconductor system including semiconductor device
JP2020011858A (en) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 Film deposition method, and manufacturing method of semiconductor device
CN113830820A (en) * 2021-10-20 2021-12-24 安徽工程大学 Tubular gallium oxide nano material and preparation method and application thereof
WO2022230342A1 (en) * 2021-04-27 2022-11-03 日本碍子株式会社 Composite substrate, method for manufacturing composite substrate, and method for manufacturing gallium oxide crystal film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220036255A (en) 2020-09-15 2022-03-22 현대자동차주식회사 Gallium oxide photocatalyst complex, method for manufacturing the complex, and filter comprising the complex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895742A (en) * 2016-10-03 2018-04-10 流慧株式会社 Semiconductor device and the semiconductor system including semiconductor device
JP2020011858A (en) * 2018-07-17 2020-01-23 トヨタ自動車株式会社 Film deposition method, and manufacturing method of semiconductor device
WO2022230342A1 (en) * 2021-04-27 2022-11-03 日本碍子株式会社 Composite substrate, method for manufacturing composite substrate, and method for manufacturing gallium oxide crystal film
CN113830820A (en) * 2021-10-20 2021-12-24 安徽工程大学 Tubular gallium oxide nano material and preparation method and application thereof

Also Published As

Publication number Publication date
KR20250007256A (en) 2025-01-14

Similar Documents

Publication Publication Date Title
CN110498445B (en) Layered GaAs, preparation method thereof and GaAs nanosheet stripped therefrom
JP6688832B2 (en) Antimony-doped nanoparticles
Mokurala et al. Single step synthesis of chalcogenide nanoparticles Cu2ZnSnS4, Cu2FeSnS4 by thermal decomposition of metal precursors
Guo et al. Chemical intercalations in layered transition metal chalcogenides: syntheses, structures, and related properties
JPWO2012023519A1 (en) COMPOUND SEMICONDUCTOR THIN FILM PREPARATION INK, COMPOUND SEMICONDUCTOR THIN FILM OBTAINED BY USING THE INK, SOLAR CELL PROVIDED WITH THE COMPOUND SEMICONDUCTOR THIN FILM, AND METHOD FOR PRODUCING THE SOLAR CELL
US7915146B2 (en) Controlled doping of semiconductor nanowires
US20130037110A1 (en) Particle-Based Precursor Formation Method and Photovoltaic Device Thereof
US20180334759A1 (en) Method for preparing perovskite crystal
Bouznit et al. New co-spray way to synthesize high quality ZnS films
CN109437124B (en) A kind of method for synthesizing monolayer transition metal chalcogenides
KR102756086B1 (en) The manufacturing method of the germanium doped gallium oxide using the alkali base
Sun et al. In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures
CN113046692A (en) Preparation method of single-crystal tungsten diselenide monolayer film
CN109264769B (en) A kind of preparation method of IGZO superlattice nanowire array
CN109023296B (en) A method for growing molybdenum-tungsten-selenium alloy by chemical vapor deposition on a fluorophlogopite substrate
TWI595680B (en) Method for preparing diselenide/copper indium gallium disulfide (CIGS) nano particles, CIGS nano particles prepared by the method, and photovoltaic device based thereon
US8728434B2 (en) Preparation of nanocrystals for thermoelectric and solar cell applications using sulfide-based nanocrystal precursors in colloidal systems
KR102790555B1 (en) The manufacturing method of the tin-doped gallium oxide
KR101723096B1 (en) FORMING METHOD FOR SnS FILM AND MANUFACTURING METHOD FOR SOLAR CELL BY USING THE FORMING METHOD
Yan Probing the Stability and Solution Processability of Metal Chalcogenide Semiconducting Materials
Munir et al. Non-sulfurization single solution approach to synthesize CZTS thin films
JP5765632B2 (en) Method for producing compound semiconductor ultrafine particles
KR101872095B1 (en) A-Bi-Te COMPOUND AND METHOD OF FORMING THE SAME
CN116154037A (en) Preparation method of molybdenum sulfide/molybdenum nitride two-dimensional in-plane heterojunction and product thereof
KR101164797B1 (en) Water-based Preparation Method of CIGSCuInxGa1-xSe2 Nano Particles using Carboxylic Derivatives

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20230705

PA0201 Request for examination

Patent event code: PA02011R01I

Patent event date: 20230705

Comment text: Patent Application

PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240522

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20241230

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20250113

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20250114

End annual number: 3

Start annual number: 1

PG1501 Laying open of application
PG1601 Publication of registration