[go: up one dir, main page]

KR102750259B1 - Method for preparing DLC coated-product by using TiAl alloy buffer layer and DLC coated-product comprising the buffer layer - Google Patents

Method for preparing DLC coated-product by using TiAl alloy buffer layer and DLC coated-product comprising the buffer layer Download PDF

Info

Publication number
KR102750259B1
KR102750259B1 KR1020210143634A KR20210143634A KR102750259B1 KR 102750259 B1 KR102750259 B1 KR 102750259B1 KR 1020210143634 A KR1020210143634 A KR 1020210143634A KR 20210143634 A KR20210143634 A KR 20210143634A KR 102750259 B1 KR102750259 B1 KR 102750259B1
Authority
KR
South Korea
Prior art keywords
buffer layer
dlc
dlc coating
present
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020210143634A
Other languages
Korean (ko)
Other versions
KR20230059436A (en
Inventor
신형준
여행운
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020210143634A priority Critical patent/KR102750259B1/en
Publication of KR20230059436A publication Critical patent/KR20230059436A/en
Application granted granted Critical
Publication of KR102750259B1 publication Critical patent/KR102750259B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 티타늄 알루미늄 합금 버퍼층을 이용한 DLC 코팅 방법 및 상기 버퍼층을 포함하는 DLC 코팅물에 관한 것이다. 본 발명에서는 모재와 DLC 박막 사이에 티타늄 알루미늄 합금물질을 이용한 버퍼층을 형성하여 DLC 박막의 잔류응력을 완화시키고 모재와의 부착력을 향상시킬 수 있으며, 이에 따라 코팅층의 응용성 및 내구성도 증가시킬 수 있다. 본 발명에 따른 버퍼층을 증착한 DLC 코팅은 다양한 산업부품의 내구성 및 수명 증대에 기여할 수 있다.The present invention relates to a DLC coating method using a titanium aluminum alloy buffer layer and a DLC coating including the buffer layer. In the present invention, a buffer layer using a titanium aluminum alloy material is formed between a base material and a DLC film, thereby alleviating residual stress of the DLC film and improving adhesion to the base material, thereby increasing the applicability and durability of the coating layer. The DLC coating having a buffer layer deposited according to the present invention can contribute to increasing the durability and lifespan of various industrial components.

Description

티타늄 알루미늄 합금 버퍼층을 이용한 DLC 코팅 방법 및 상기 버퍼층을 포함하는 DLC 코팅물 {Method for preparing DLC coated-product by using TiAl alloy buffer layer and DLC coated-product comprising the buffer layer}DLC coating method using a titanium aluminum alloy buffer layer and a DLC coated product comprising the buffer layer {Method for preparing DLC coated-product by using TiAl alloy buffer layer and DLC coated-product comprising the buffer layer}

본 발명은 DLC 코팅 방법 및 DLC 코팅물에 관한 것으로서, 구체적으로는 티타늄 알루미늄 합금 버퍼층을 이용한 DLC 코팅 방법 및 상기 버퍼층을 포함하는 DLC 코팅물에 관한 것이다. The present invention relates to a DLC coating method and a DLC coating material, and more particularly, to a DLC coating method using a titanium aluminum alloy buffer layer and a DLC coating material including the buffer layer.

DLC 코팅은 비정질 카본 박막으로 다이아몬드와 유사한 높은 경도와 흑연(graphite)의 낮은 마찰계수 특징을 모두 가지고 있다. 특히, DLC 코팅은 부품에 코팅되었을 때 내마모성, 내부식성, 윤활성과 같은 특징을 가지게 한다. 이에 따라, DLC 코팅은 다양한 전자, 기계, 자동차, 항공, 선박용 부품 및 장치에 적용 가능하며 강한 경도와 내마모성으로 인해 부품의 내구성과 안정성을 향상시킬 수 있으며 소재의 비용 절감에 기여할 수 있다.DLC coating is an amorphous carbon film that has both high hardness similar to diamond and low friction coefficient of graphite. In particular, DLC coating has characteristics such as wear resistance, corrosion resistance, and lubricity when coated on parts. Accordingly, DLC coating can be applied to various electronic, mechanical, automotive, aviation, and marine parts and devices, and can improve the durability and stability of parts due to its strong hardness and wear resistance, and can contribute to reducing the cost of materials.

다만, DLC 박막은 박막 내부에 형성되는 잔류응력이 높고 이로 인해 모재와의 접착력 저하현상이 존재하여 박리가 일어나는 문제점이 있다. 이 문제는 재료의 다양한 응용분야 확대를 위해 반드시 해결되어야 한다. 그러나, DLC 박막 형성시 발생되는 잔류응력은 높은 에너지의 탄소 이온충돌로 생성되는데 이와 같이 높은 에너지의 이온 충돌은 상대적으로 높은 sp3 결합비를 가지는 고경도 DLC 박막 제작에 필요한 부분이 된다. 따라서, 높은 sp3 결합 비 및 고경도의 특성을 가짐과 동시에 이온 충돌에 의한 잔류 응력이 낮도록 DLC 박막을 제작하는 것은 그러한 기술적 모순 문제를 해결해야 하는 점에서 어려움이 있었다. However, DLC films have a problem in that the residual stress formed inside the film is high, which causes a decrease in the adhesion with the base material, resulting in peeling. This problem must be solved in order to expand the various applications of the material. However, the residual stress generated during the formation of the DLC film is generated by high-energy carbon ion collisions, and such high-energy ion collisions are necessary for producing high-hardness DLC films with a relatively high sp 3 bonding ratio. Therefore, it has been difficult to produce a DLC film that has the characteristics of a high sp 3 bonding ratio and high hardness while having low residual stress due to ion collisions because such technical contradictions must be resolved.

본 발명은 DLC 코팅시 발생하는 잔류응력 문제로 인해 모재와 DLC 막 사이의 부착력이 저하되는 현상을 해결하는 것, 구체적으로, 접착력이 우수한 DLC 코팅물 및 이의 제조 방법을 제공하는 것을 목적으로 한다.The present invention aims to solve the phenomenon of reduced adhesion between a base material and a DLC film due to residual stress occurring during DLC coating, and specifically, to provide a DLC coating having excellent adhesion and a method for manufacturing the same.

본 발명에서는 티타늄 알루미늄 합금 버퍼층을 모재와 DLC 코팅층 사이에 형성시킴으로써 전술한 목적을 달성시킬 수 있었다. In the present invention, the above-described purpose could be achieved by forming a titanium aluminum alloy buffer layer between the base material and the DLC coating layer.

이에, 본 발명의 일 양태에 따르면 모재 상에 티타늄 알루미늄 합금 버퍼층을 형성하는 단계; 및 상기 버퍼층 상에 DLC (Diamond Like Carbon) 코팅막을 형성하는 단계를 포함하는, DLC 코팅 방법이 제공된다.Accordingly, according to one aspect of the present invention, a DLC coating method is provided, comprising the steps of forming a titanium aluminum alloy buffer layer on a base material; and the steps of forming a DLC (Diamond Like Carbon) coating film on the buffer layer.

본 발명의 일 구현예에 따르면 상기 버퍼층은 티타늄 40 내지 60 원자% 및 알루미늄 60 내지 40 원자%로 이루어진 티타늄 알루미늄 합금(TiAl)로 이루어질 수 있다.According to one embodiment of the present invention, the buffer layer may be made of a titanium aluminum alloy (TiAl) composed of 40 to 60 atomic % of titanium and 60 to 40 atomic % of aluminum.

본 발명의 다른 일 구현예에 따르면 상기 버퍼층은 스퍼터링 방식으로 형성될 수 있다.According to another embodiment of the present invention, the buffer layer can be formed by sputtering.

본 발명의 다른 일 구현예에 따르면 상기 모재는 텅스텐 또는 텅스텐 합금을 포함할 수 있다.According to another embodiment of the present invention, the parent material may include tungsten or a tungsten alloy.

본 발명의 다른 일 구현예에 따르면 상기 DLC 코팅막은 PECVD법에 의해 수행될 수 있다.According to another embodiment of the present invention, the DLC coating film can be formed by a PECVD method.

본 발명의 다른 일 양태에 따르면 모재; 상기 모재 상의 티타늄 알루미늄 합금 버퍼층; 및 상기 버퍼층 상의 DLC 층을 포함하는 DLC 코팅물이 제공된다.According to another aspect of the present invention, a DLC coating is provided, which comprises: a base material; a titanium aluminum alloy buffer layer on the base material; and a DLC layer on the buffer layer.

본 발명의 일 구현예에 따르면 상기 버퍼층은 티타늄 40 내지 60 원자% 및 알루미늄 60 내지 40 원자%로 이루어진 티타늄 알루미늄 합금(TiAl)로 이루어진 것일 수 잇다.According to one embodiment of the present invention, the buffer layer may be made of a titanium aluminum alloy (TiAl) composed of 40 to 60 atomic % of titanium and 60 to 40 atomic % of aluminum.

본 발명의 다른 일 구현예에 따르면 상기 버퍼층은 티타늄 50 원자% 및 알루미늄 50 원자%로 이루어진 티타늄 알루미늄 합금(TiAl)로 이루어질 수 있다.According to another embodiment of the present invention, the buffer layer may be made of a titanium aluminum alloy (TiAl) composed of 50 atomic% titanium and 50 atomic% aluminum.

본 발명의 다른 일 구현예에 따르면 상기 버퍼층은 50 내지 100 nm 범위 내의 두께를 갖는 것일 수 있다.According to another embodiment of the present invention, the buffer layer may have a thickness within a range of 50 to 100 nm.

본 발명의 다른 일 구현예에 따르면 상기 모재는 텅스텐 또는 텅스텐 합금을 포함할 수 있다.According to another embodiment of the present invention, the parent material may include tungsten or a tungsten alloy.

본 발명의 다른 일 구현예에 따르면 상기 모재는 텅스텐 카바이드(WC)를 포함할 수 있다.According to another embodiment of the present invention, the base material may include tungsten carbide (WC).

본 발명의 다른 일 구현예에 따르면 상기 DLC 층은 0.5 내지 2 ㎛ 범위 내의 두께를 갖는 것일 수 있다.According to another embodiment of the present invention, the DLC layer may have a thickness within a range of 0.5 to 2 ㎛.

본 발명의 다른 일 구현예에 따르면 상기 DLC 층의 접착력이 29 N 이상일 수 있다.According to another embodiment of the present invention, the adhesion of the DLC layer may be 29 N or more.

DLC 코팅막은 고경도, 내마모성, 내부식성 화학적 안정성이 우수하여 자동차 및 전자 부품 산업을 비롯한 산업 전반에 있어서 내마모성이 요구되는 부위에 적용할 수 있으나, 모재와의 부착력 저하 현상으로 다양한 응용이 제한되고 있다. 이러한 DLC 박막의 부착력 저하에 따른 박리 현상을 방지하는 기술은 DLC 박막의 응용 분야를 넓히기 위한 핵심 기술이라고 할 수 있다. 본 발명에서는 모재와 DLC 박막 사이에 티타늄 알루미늄 합금물질을 이용한 버퍼층을 형성하여 DLC 박막의 잔류응력을 완화시키고 모재와의 부착력을 향상시킬 수 있으며, 이에 따라 코팅층의 응용성 및 내구성도 증가시킬 수 있다. 본 발명에 따른 버퍼층을 증착한 DLC 코팅은 다양한 산업부품의 내구성 및 수명 증대에 기여할 수 있다.DLC coating films have excellent hardness, wear resistance, corrosion resistance, and chemical stability, and can be applied to areas requiring wear resistance in a wide range of industries including the automobile and electronic parts industries. However, their various applications are limited due to the phenomenon of reduced adhesion to the base material. The technology for preventing the peeling phenomenon caused by the reduced adhesion of the DLC film can be said to be a key technology for expanding the application fields of the DLC film. In the present invention, a buffer layer using a titanium aluminum alloy material is formed between the base material and the DLC film to relieve the residual stress of the DLC film and improve the adhesion to the base material, thereby increasing the applicability and durability of the coating layer. The DLC coating having a buffer layer deposited according to the present invention can contribute to increasing the durability and lifespan of various industrial parts.

도 1은 버퍼층으로서 본 발명에 따른 TiAl (50/50 원자%)를 사용하여 제작한 DLC 코팅물에 대해 스크레치 테스트를 3회 실시했던 결과로서 스크레치 이미지, 스크레치 라인 이미지, 및 부착력을 보여주는 도면이다.
도 2는 버퍼층으로서 비교용 Ti를 사용하여 제작한 DLC 코팅물에 대해 스크레치 테스트를 3회 실시했던 결과로서 스크레치 이미지, 스크레치 라인 이미지, 및 부착력을 보여주는 도면이다.
도 3은 버퍼층으로서 비교용 Al을 사용하여 제작한 DLC 코팅물에 대해 스크레치 테스트를 3회 실시했던 결과로서 스크레치 이미지, 스크레치 라인 이미지, 및 부착력을 보여주는 도면이다.
도 4는 버퍼층으로서 비교용 Al6061을 사용하여 제작한 DLC 코팅물에 대해 스크레치 테스트를 3회 실시했던 결과로서 스크레치 이미지, 스크레치 라인 이미지, 및 부착력을 보여주는 도면이다.
FIG. 1 is a drawing showing a scratch image, a scratch line image, and adhesion as a result of performing a scratch test three times on a DLC coating manufactured using TiAl (50/50 atomic%) according to the present invention as a buffer layer.
Figure 2 is a drawing showing a scratch image, a scratch line image, and adhesion as a result of performing a scratch test three times on a DLC coating manufactured using Ti for comparison as a buffer layer.
Figure 3 is a drawing showing a scratch image, a scratch line image, and adhesion as a result of performing a scratch test three times on a DLC coating manufactured using comparative Al as a buffer layer.
Figure 4 is a drawing showing a scratch image, a scratch line image, and adhesion as a result of performing a scratch test three times on a DLC coating manufactured using Al6061 for comparison as a buffer layer.

이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 출원에서 사용한 용어는 단지 특정한 구현예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. The terminology used in this application is used only to describe specific embodiments and is not intended to limit the present invention. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다, "함유”한다, “가지다”라고 할 때, 이는 특별히 달리 정의되지 않는 한, 다른 구성 요소를 더 포함할 수 있다는 것을 의미한다.Throughout the specification, whenever a part is said to "include," "contain," or "have" a component, this means that it may include other components, unless specifically stated otherwise.

층, 막 등의 어떤 부분이 다른 부분 “위에” 또는 “상에” 있다고 할 때, 이는 다른 부분 “바로 위에” 또는 “바로 상에” 있어서 어떤 부분과 다른 부분이 서로 접해 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 존재하는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 “바로 위에” 또는 “바로 상에” 있다고 할 때는 중간에 다른 부분이 없는 것을 의미한다.When we say that a part of a layer, film, etc. is “over” or “on” another part, this means that it is “directly over” or “directly on” that other part, and that the part and the other part are in contact with each other, as well as when there is another part in between. Conversely, when we say that a part is “directly over” or “directly on” another part, it means that there is no other part in between.

본 발명에 따른 DLC 코팅물 및 DLC 코팅 방법은 모재와 DLC 코팅막 사이에 티타늄 알루미늄 합금 버퍼층을 형성시키는 것을 특징으로 한다.The DLC coating material and DLC coating method according to the present invention are characterized by forming a titanium aluminum alloy buffer layer between a base material and a DLC coating film.

본 발명에서 상기 '모재'란 철강, 스테인리스 스틸, 세라믹 소재, 금속 합금과 같은 소재 그 자체일 수도 있고, 또는 소재를 선삭가공, 홈가공, 연삭가공 등의 기계가공을 완료하여 베어링용 디스크 등과 같은 부품으로 1차 가공한 것일 수도 있다. 이에, 상기 모재는 특정 물품이나 소재에 한정되지 않고 철강, 세라믹, 합금 등으로 이루어진 모든 물품을 포함한다. 본 발명의 일 구현예에 따르면 상기 모재는 텅스텐 또는 텅스텐 합금을 포함하는 것일 수 있으며, 예를 들어 텅스텐 카바이드(WC)를 포함하는 것일 수 있다.In the present invention, the 'base material' may be the material itself, such as steel, stainless steel, a ceramic material, or a metal alloy, or may be a material that has been first processed into a component, such as a bearing disk, by completing mechanical processing, such as turning, grooving, or grinding. Accordingly, the base material is not limited to a specific article or material, and includes all articles made of steel, ceramic, or an alloy. According to one embodiment of the present invention, the base material may include tungsten or a tungsten alloy, and may include, for example, tungsten carbide (WC).

본 발명에서 상기 모재 상에는 티타늄 알루미늄 합금 버퍼층이 형성된다. 상기 티타늄 알루미늄 합금은 티타늄 40 내지 60 원자% 및 알루미늄 60 내지 40 원자%로 이루어진 티타늄 알루미늄 합금(TiAl), 예를 들어 티타늄 50 원자% 및 알루미늄 50 원자%로 이루어진 티타늄 알루미늄 합금(TiAl)일 수 있다. 상기 버퍼층은 50 내지 100 nm 범위 내의 두께를 가질 수 있으며, 상기 범위의 두께를 가짐으로써 DLC 층과 모재 사이의 접착력이 우수해질 수 있다. 상기 버퍼층은 스퍼터링 방식으로 형성될 수 있다. 예를 들어 상기 스퍼터링은 티타늄과 알루미늄이 소정의 원자비로 이루어진 TiAl 합금을 타겟으로 하고 아르곤 플라즈마를 이용해 발생된 이온들이 타겟에 충돌하고, 떨어져 나오는 타겟 원자들은 시간이 지남에 따라 기판 위에 쌓여서 얇은 박막인 버퍼층이 형성되는 것이다.In the present invention, a titanium-aluminum alloy buffer layer is formed on the base material. The titanium-aluminum alloy may be a titanium-aluminum alloy (TiAl) composed of 40 to 60 atomic% of titanium and 60 to 40 atomic% of aluminum, for example, a titanium-aluminum alloy (TiAl) composed of 50 atomic% of titanium and 50 atomic% of aluminum. The buffer layer may have a thickness in a range of 50 to 100 nm, and by having a thickness in the above range, the adhesion between the DLC layer and the base material may be excellent. The buffer layer may be formed by a sputtering method. For example, the sputtering uses a TiAl alloy composed of titanium and aluminum at a predetermined atomic ratio as a target, and ions generated using argon plasma collide with the target, and the target atoms that fall off are accumulated on the substrate over time to form a buffer layer, which is a thin film.

본 발명에서 상기 버퍼층 상에는 DLC 코팅막이 형성된다. 상기 DLC 코팅막은 0.5 내지 2 ㎛ 범위 내의 두께로 형성될 수 있으며, 예를 들어 0.8 내지 1.2 ㎛ 범위 내의 두께로 형성될 수 있다. 상기 두께가 전술한 범위 내일 때 경도, 마찰계수 등과 같은 물리적 특성이 만족될 수 있으며, 너무 두꺼울 경우에는 생산 효율이 저하될 우려가 있다. 상기 DLC 코팅막은 이를 형성하기 위한 공지된 다양한 방법, 예를 들어 CVD(Chemical Vapor Deposition)법, 연소화염법, 스퍼터링 법, 이온빔 증착법 및 PECVD(Plasma Enhanced Chemical Vapor Deposition)법 등을 적용할 수 있으며, 예를 들어 본 발명의 일 구현예에 따르면 PECVD 법에 의해 형성될 수 있다. 본 발명의 일 구현예에 따른 PECVD 법에 의한 DLC 박막의 코팅은 아세틸렌(C2H2)과 아르곤(Ar) 가스를 이용한다. 고전압을 통해 형성된 플라즈마에 의해 아르곤 이온들이 아세틸렌을 탄소와 수소 원자로 분해하고 분해된 원자들이 기판에 충돌하여 DLC 박막을 형성하며, 반응하지 못한 탄소와 수소 원자들은 아르곤 가스와 함께 진공 펌프로 배출된다.In the present invention, a DLC coating film is formed on the buffer layer. The DLC coating film can be formed with a thickness within a range of 0.5 to 2 ㎛, for example, can be formed with a thickness within a range of 0.8 to 1.2 ㎛. When the thickness is within the above-mentioned range, physical properties such as hardness and coefficient of friction can be satisfied, and if it is too thick, there is a concern that production efficiency may be reduced. The DLC coating film can be formed by various known methods, for example, a CVD (Chemical Vapor Deposition) method, a combustion flame method, a sputtering method, an ion beam deposition method, and a PECVD (Plasma Enhanced Chemical Vapor Deposition) method, and for example, according to one embodiment of the present invention, it can be formed by a PECVD method. Coating of a DLC thin film by a PECVD method according to one embodiment of the present invention uses acetylene (C 2 H 2 ) and argon (Ar) gas. Argon ions formed by plasma through high voltage decompose acetylene into carbon and hydrogen atoms, and the decomposed atoms collide with the substrate to form a DLC film, and the unreacted carbon and hydrogen atoms are discharged through a vacuum pump together with argon gas.

DLC 코팅은 여러 종류의 보호막이나 마찰부품에 많이 응용되고 있고, 구조적으로 비정질 이지만 물리적, 화학적 특성은 다이아몬드나 흑연과 비슷하여 부식이 일어날 수 있는 가혹한 환경에서도 다중의 장점을 지닌다. 본 발명에 따라 버퍼층을 모재와 DLC 층 사이에 형성시킴으로써 DLC 코팅은 모재와의 높은 접착력을 가지며, 내마모성, 윤활성, 내부식성, 화학적 안정성의 특징을 가질 수 있다. 본 발명의 일 구현예에 따르면 DLC 층의 접착력은 29 N 이상, 예를 들어 29.5 내지 30 N일 수 있다. DLC coatings are widely applied to various types of protective films or friction parts, and although structurally amorphous, their physical and chemical properties are similar to those of diamond or graphite, so they have multiple advantages even in harsh environments where corrosion may occur. By forming a buffer layer between the base material and the DLC layer according to the present invention, the DLC coating can have high adhesion to the base material and can have characteristics of wear resistance, lubricity, corrosion resistance, and chemical stability. According to one embodiment of the present invention, the adhesion of the DLC layer can be 29 N or more, for example, 29.5 to 30 N.

본 발명에 따른 티타늄 알루미늄 합금 버퍼층을 이용한 DLC 코팅 방법은 금속, 비금속 표면 개질층, 표면 윤활층, 칼, 가위 및 공구 코팅층, 금형 표면층의 표면 특성 향상 및 내구성 증진 기술로 적용 가능하다. 또한, DLC 코팅은 최근 의료기구 및 생활 용품, 반도체, 디스플레이, 이차전지 재료 등 다양한 산업계에 폭넓게 활용할 수 있으므로 그 수요가 증가할 것으로 기대된다.The DLC coating method using the titanium aluminum alloy buffer layer according to the present invention can be applied as a technology for improving surface properties and enhancing durability of metal and non-metal surface modification layers, surface lubrication layers, knife, scissors and tool coating layers, and mold surface layers. In addition, since DLC coating can be widely used in various industries such as medical devices and daily necessities, semiconductors, displays, and secondary battery materials, the demand for it is expected to increase.

이하에서는 본 발명의 실시예를 참조하여 발명을 더욱 구체적으로 설명하겠다. 실시예는 발명의 설명을 위해 제시되는 것이므로, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the invention will be described in more detail with reference to examples of the present invention. Since the examples are presented for the purpose of explaining the invention, the present invention is not limited thereto.

[실시예] 티타늄 알루미늄 합금 버퍼층이 있는 DLC 코팅물의 제조[Example] Manufacturing of DLC coating with titanium aluminum alloy buffer layer

C2H2, Ar, N2 등 gas line이 chamber와 연결되어 있는 KaDLC-800(PVD-PECVD hybrid chamber) 장비를 이용하여 티타늄 알루미늄 합금 버퍼층과 DLC 코팅층을 증착하였다. 구체적으로 다음의 단계에 따라 DLC 코팅을 실시하였다. A titanium aluminum alloy buffer layer and a DLC coating layer were deposited using KaDLC-800 (PVD-PECVD hybrid chamber) equipment in which gas lines such as C2H2 , Ar, and N2 are connected to the chamber. Specifically, the DLC coating was performed according to the following steps.

(a) 증착할 모재 (텅스텐 카바이드)를 챔버(진공 분위기에서 버퍼층-DLC 반응이 일어나는 공간)에 넣고 고정시킨 후 내부를 진공 상태로 만들었다.(a) The substrate to be deposited (tungsten carbide) was placed in a chamber (a space where the buffer layer-DLC reaction occurs in a vacuum atmosphere) and fixed, and then the interior was made into a vacuum state.

(b) 진공상태에서 아르곤 플라즈마를 형성하여 기판 표면에 남아있는 잔여물을 제거하였다.(b) Argon plasma was formed in a vacuum to remove any residue remaining on the substrate surface.

(c) 챔버 내부에 위치한 티타늄 알루미늄 합금 타겟을 아르곤 플라즈마를 이용한 이온충돌방법인 스퍼터링 방식에 적용하여 상기 모재 상에 TiAl 버퍼층이 50 ~ 100nm 두께로 증착되게 하였다.(c) A titanium aluminum alloy target located inside the chamber was applied to the sputtering method, which is an ion bombardment method using argon plasma, so that a TiAl buffer layer was deposited on the base material with a thickness of 50 to 100 nm.

(d) 상기 TiAl 버퍼층이 형성된 모재 위에 플라즈마 화학 기상 증착(PECVD) 방식을 이용하여 C2H2, Ar line의 가스 유량을 조절하여 DLC 박막을 1 ㎛의 두께로 증착하였다.(d) A DLC thin film was deposited with a thickness of 1 ㎛ on the base material on which the TiAl buffer layer was formed using the plasma enhanced chemical vapor deposition (PECVD) method by controlling the gas flow rate of the C 2 H 2 and Ar lines.

[평가예] 스크레치 테스트 - 부착력 측정[Evaluation Example] Scratch Test - Adhesion Measurement

앞서 실시예에서 제작된 DLC 코팅물 및 하기 [표 1]에 나타낸 비교 시편을 사용하여 스크레치 테스트를 실시하였다. 테스트시 1 내지 30 N의 힘을 58 N/분 (loading rate)로 측정하였으며 스크레치 테스트를 3회 반복 실시하고 그 평균을 구하였다. 스크레치 테스트 결과를 하기 [표 1]에 정리하였으며, 도 1 내지 도 4에 스크레치 이미지 및 스크레이 라인 이미지를 도시하였다.A scratch test was performed using the DLC coatings produced in the above examples and the comparative specimens shown in [Table 1] below. During the test, a force of 1 to 30 N was measured at 58 N/min (loading rate), and the scratch test was repeated three times and the average was calculated. The scratch test results are summarized in [Table 1] below, and scratch images and scratch line images are illustrated in FIGS. 1 to 4.

버퍼층의 종류Types of buffer layers TiAl (50/50 원자%)
(본 발명)
TiAl (50/50 atomic%)
(the present invention)
TI 층
(두께 120 nm)
TI layer
(120 nm thick)
Al 층
(120 nm)
Al layer
(120 nm)
Al6061 층
(120 nm)
Al6061 floor
(120 nm)
부착력Adhesion 29.9 N29.9 N 19.5 N19.5 N 9.4 N9.4 N 7.5 N7.5 N

위의 표 1로부터 본 발명에 따른 버퍼층을 사용하였을 때 부착력의 개선을 확인할 수 있다. TiAl 버퍼층의 삽입으로 시간이 지남에 따른 DLC 박막의 박리도 일어나지 않았다.From Table 1 above, it can be confirmed that the adhesion was improved when the buffer layer according to the present invention was used. With the insertion of the TiAl buffer layer, peeling of the DLC thin film did not occur over time.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the present invention has been described above with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various modifications and changes may be made to the present invention without departing from the spirit and scope of the present invention as set forth in the claims below.

Claims (13)

모재 상에 티타늄 알루미늄 합금 버퍼층을 형성하는 단계; 및 상기 버퍼층 상에 DLC (Diamond Like Carbon) 코팅막을 형성하는 단계를 포함하고,
상기 버퍼층은 티타늄 40 내지 60 원자% 및 알루미늄 60 내지 40 원자%로 이루어진 티타늄 알루미늄 합금(TiAl)으로 이루어지고,
상기 버퍼층은 스퍼터링 방식으로 형성되는 것이고,
상기 모재는 텅스텐 또는 텅스텐 합금을 포함하는 것이고,
상기 DLC 코팅막은 PECVD법에 의해 수행되는 것인,
DLC 코팅 방법.
A step of forming a titanium aluminum alloy buffer layer on a base material; and a step of forming a DLC (Diamond Like Carbon) coating film on the buffer layer,
The above buffer layer is made of a titanium aluminum alloy (TiAl) composed of 40 to 60 atomic% of titanium and 60 to 40 atomic% of aluminum.
The above buffer layer is formed by sputtering,
The above-mentioned parent material comprises tungsten or a tungsten alloy,
The above DLC coating film is performed by PECVD method.
DLC coating method.
삭제delete 삭제delete 삭제delete 삭제delete 제1항의 방법에 의해 제조된 DLC 코팅물로서,
모재; 상기 모재 상의 티타늄 알루미늄 합금 버퍼층; 및 상기 버퍼층 상의 DLC 층을 포함하는 DLC 코팅물.
A DLC coating manufactured by the method of claim 1,
A DLC coating comprising: a base material; a titanium aluminum alloy buffer layer on the base material; and a DLC layer on the buffer layer.
삭제delete 제6항에 있어서, 상기 버퍼층은 티타늄 50 원자% 및 알루미늄 50 원자%로 이루어진 티타늄 알루미늄 합금(TiAl)로 이루어진 것을 특징으로 하는 DLC 코팅물.A DLC coating, characterized in that in claim 6, the buffer layer is made of a titanium aluminum alloy (TiAl) composed of 50 atomic% titanium and 50 atomic% aluminum. 제6항에 있어서, 상기 버퍼층은 50 내지 100 nm 범위 내의 두께를 갖는 것을 특징으로 하는 DLC 코팅물.A DLC coating according to claim 6, characterized in that the buffer layer has a thickness in the range of 50 to 100 nm. 삭제delete 제6항에 있어서, 상기 모재는 텅스텐 카바이드(WC)를 포함하는 것을 특징으로 하는 DLC 코팅물.A DLC coating according to claim 6, characterized in that the base material comprises tungsten carbide (WC). 제6항에 있어서, 상기 DLC 층은 0.5 내지 2㎛ 범위 내의 두께를 갖는 것을 특징으로 하는 DLC 코팅물.A DLC coating according to claim 6, characterized in that the DLC layer has a thickness within a range of 0.5 to 2 ㎛. 제6항에 있어서, 상기 DLC 층의 접착력이 29 N 이상인 것을 특징으로 하는 DLC 코팅물.A DLC coating, characterized in that in claim 6, the adhesive strength of the DLC layer is 29 N or more.
KR1020210143634A 2021-10-26 2021-10-26 Method for preparing DLC coated-product by using TiAl alloy buffer layer and DLC coated-product comprising the buffer layer Active KR102750259B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210143634A KR102750259B1 (en) 2021-10-26 2021-10-26 Method for preparing DLC coated-product by using TiAl alloy buffer layer and DLC coated-product comprising the buffer layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210143634A KR102750259B1 (en) 2021-10-26 2021-10-26 Method for preparing DLC coated-product by using TiAl alloy buffer layer and DLC coated-product comprising the buffer layer

Publications (2)

Publication Number Publication Date
KR20230059436A KR20230059436A (en) 2023-05-03
KR102750259B1 true KR102750259B1 (en) 2025-01-03

Family

ID=86380923

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210143634A Active KR102750259B1 (en) 2021-10-26 2021-10-26 Method for preparing DLC coated-product by using TiAl alloy buffer layer and DLC coated-product comprising the buffer layer

Country Status (1)

Country Link
KR (1) KR102750259B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087218A (en) * 1998-09-10 2000-03-28 Kobe Steel Ltd High adhesion carbon film forming material and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429645B1 (en) * 2012-10-15 2014-08-13 재단법인 포항산업과학연구원 Hard coating layer and method for forming the same
KR102223177B1 (en) * 2018-01-23 2021-03-04 엘지전자 주식회사 Component containibg buffer layer and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087218A (en) * 1998-09-10 2000-03-28 Kobe Steel Ltd High adhesion carbon film forming material and its production

Also Published As

Publication number Publication date
KR20230059436A (en) 2023-05-03

Similar Documents

Publication Publication Date Title
US7816011B2 (en) Structural material of diamond like carbon composite layers
US8039096B2 (en) Friction- and wear-reducing coating
US20120315453A1 (en) Coating layer structure of basic material of mold
CN1836058A (en) New metal strip product
SG191981A1 (en) Hot metal sheet forming or stamping tools with cr-si-n coatings
US8372524B2 (en) Coated article
WO2022073631A9 (en) Hard carbon coatings with improved adhesion strength by means of hipims and method thereof
US9061479B2 (en) Coating layer with low-friction for vehicle component and method for producing the same
US6274257B1 (en) Forming members for shaping a reactive metal and methods for their fabrication
KR102750259B1 (en) Method for preparing DLC coated-product by using TiAl alloy buffer layer and DLC coated-product comprising the buffer layer
US20150284843A1 (en) Coating layer of zirconium composite material and method of forming coating layer
CN102560339B (en) Film-coated part and preparation method thereof
EP0160202A2 (en) Microwave plasma deposition of coatings and the microwave plasma applied coatings applied thereby
KR20150118665A (en) Coating material having improved mechanical properties and low friction for sliding part of vehicle and coating method thereof
JP4388152B2 (en) Thin film laminate covering member
CN1661132A (en) Hard coating and manufacturing method thereof
US12331397B2 (en) Coated forming tools with enhanced performance and increased service life
Teixeira et al. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique
US20120164481A1 (en) Coated article and method for making same
KR20240088195A (en) Manufacturing method of TiCrN coating film with improved corrosion resistance
CN117418201A (en) A multi-component refractory high-entropy alloy nitride film and its preparation method
KR20160070308A (en) Coating method for engine moving parts
KR100779303B1 (en) Diamond-like carbon film coating method of hydraulic generator piston
KR20120059276A (en) Molding device having surface of multi thin film
KR20120118581A (en) Low friction coating film and manufacturing thereof

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20211026

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20230621

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20231227

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20230621

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240530

Patent event code: PE09021S01D

PX0701 Decision of registration after re-examination

Patent event date: 20241223

Comment text: Decision to Grant Registration

Patent event code: PX07013S01D

X701 Decision to grant (after re-examination)
GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20241231

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20241231

End annual number: 3

Start annual number: 1

PG1601 Publication of registration