KR102746499B1 - A manufacturing method of geopolymer using radioactive concrete waste - Google Patents
A manufacturing method of geopolymer using radioactive concrete waste Download PDFInfo
- Publication number
- KR102746499B1 KR102746499B1 KR1020230094994A KR20230094994A KR102746499B1 KR 102746499 B1 KR102746499 B1 KR 102746499B1 KR 1020230094994 A KR1020230094994 A KR 1020230094994A KR 20230094994 A KR20230094994 A KR 20230094994A KR 102746499 B1 KR102746499 B1 KR 102746499B1
- Authority
- KR
- South Korea
- Prior art keywords
- geopolymer
- solid
- mixture
- waste
- produce
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 66
- 229920000876 geopolymer Polymers 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 51
- 230000002285 radioactive effect Effects 0.000 title claims description 20
- 239000012190 activator Substances 0.000 claims abstract description 46
- 239000000203 mixture Substances 0.000 claims abstract description 35
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 20
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 15
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 96
- 239000007787 solid Substances 0.000 claims description 52
- 239000000706 filtrate Substances 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 17
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 239000002901 radioactive waste Substances 0.000 description 44
- 238000000034 method Methods 0.000 description 21
- 238000007711 solidification Methods 0.000 description 16
- 230000008023 solidification Effects 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000002156 mixing Methods 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000010802 sludge Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000002386 leaching Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000004568 cement Substances 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910002800 Si–O–Al Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B12/00—Cements not provided for in groups C04B7/00 - C04B11/00
- C04B12/005—Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/80—Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/0006—Waste inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/06—Oxides, Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/006—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B2101/00—Type of solid waste
- B09B2101/45—Concrete
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/10—Accelerators; Activators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
본 발명은 지오폴리머 제조방법에 관한 것으로서, (a) 메타카올리나이트와 알칼리 활성화제가 제1반응조에 투입되어 제4혼합물이 생성되는 단계를 포함하며, 콘크리트폐기물에서 추출된 이산화규소(SiO2), 산화알루미늄(Al2O3) 및 수산화칼슘(Ca(OH)2)이 제2반응조에 투입되어 상기 알칼리 활성화제가 생성되는 지오폴리머 제조방법에 관한 것이다.The present invention relates to a method for producing a geopolymer, comprising: (a) a step of introducing metakaolinite and an alkaline activator into a first reaction tank to produce a fourth mixture; and (b) a method for producing a geopolymer, wherein silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and calcium hydroxide (Ca(OH) 2 ) extracted from concrete waste are introduced into a second reaction tank to produce the alkaline activator.
Description
본 콘크리트폐기물을 활용하여 지오폴리머를 제조하는 방법, 나아가 콘크리트폐기물을 활용하여 방사성폐기물을 고화하는 방법에 관한 것으로서, 건설폐기물 관련 콘크리트폐기물, 특히 원전 등 방사성 시설 해체에 따라 발생되는 콘크리트폐기물에 포함된 유용한 성분을 추출하고, 추출된 유용한 성분을 지오폴리머를 제조하는데 사용하거나 방사성폐기물을 고화하는데 사용하여 콘크리트폐기물의 활용성을 증대시킬 수 있는 지오폴리머 제조방법 및 이에 따른 방사성폐기물 고화방법에 관한 발명이다.The present invention relates to a method for manufacturing a geopolymer using concrete waste, and further to a method for solidifying radioactive waste using concrete waste. The invention relates to a method for manufacturing a geopolymer and a method for solidifying radioactive waste thereby capable of increasing the usability of concrete waste by extracting useful components contained in concrete waste related to construction waste, particularly concrete waste generated by the dismantling of radioactive facilities such as nuclear power plants, and using the extracted useful components to manufacture a geopolymer or to solidify radioactive waste.
현재까지 건설폐기물 관련 기술개발은 1990년대 초반부터 시작되어 2000년대 초반부터 상당한 활성화가 이루어졌지만 대부분 콘크리트폐기물을 순환골재로 활용하는 분야에만 치중되어 있다. 즉, 콘크리트폐기물을 재활용하기 위해 1차 파쇄 및 분리를 통해 분류된 골재를 순환골재로 재활용하고 있는 실정이다. Up to now, the development of technology related to construction waste has been started in the early 1990s and has been significantly activated since the early 2000s, but most of it has been focused on the field of utilizing concrete waste as recycled aggregate. In other words, aggregates classified through primary crushing and separation for recycling concrete waste are being recycled as recycled aggregates.
또한, 원전 해체시 발생되는 방사성콘크리트폐기물과 관련하여, 우리나라는 방사성폐기물의 처분 면적이 제한되어 있기 때문에, 원전 운영 및 해체 시 발생하는 방사성폐기물을 적절한 방법으로 제염하여, 최종적으로 처분되는 방사성폐기물의 양과 부피를 저감하는 기술이 절실히 필요한 실정이며, 이에 따라 원전 해체 이후 발생하는 방사성콘크리트폐기물에 대해서 전세계적으로 그 양과 부피를 줄이려는 연구가 다방면으로 이루어지고 있다.In addition, with regard to radioactive concrete waste generated during the decommissioning of nuclear power plants, since the disposal area for radioactive waste is limited in our country, there is an urgent need for technology to appropriately decontaminate radioactive waste generated during the operation and decommissioning of nuclear power plants and to reduce the amount and volume of radioactive waste ultimately disposed of. Accordingly, research is being conducted in various fields around the world to reduce the amount and volume of radioactive concrete waste generated after the decommissioning of nuclear power plants.
원전해체시 원전 1기당 폐기물 발생량은 200L 짜리 드럼 8만개 분량에 이른다고 알려져 있다. 원전해체로 인해 발생하는 폐기물 중 70~80% 이상이 방사성콘크리트폐기물일 것으로 추정될 정도로 방사성콘크리트폐기물의 양은 많을 것으로 예상된다. 이렇게 해체시 발생되는 방사성콘크리트폐기물은 대부분 극저준위로 분류된다.It is known that the amount of waste generated from one nuclear power plant during decommissioning is equivalent to 80,000 200-liter drums. The amount of radioactive concrete waste is expected to be large, as it is estimated that more than 70 to 80% of the waste generated from decommissioning nuclear power plants is radioactive concrete waste. Most of the radioactive concrete waste generated during decommissioning is classified as extremely low-level.
이러한 실정에서, 콘크리트폐기물, 더 나아가 방사성콘크리트폐기물을 재활용함으로써 실제 처분되는 콘크리트폐기물의 양을 줄이는 것은 처분비용 절감뿐만 아니라 처분의 안전성 증대 및 자원의 활용 측면에서 긍정적인 효과를 가져올 것으로 보인다.Under these circumstances, reducing the amount of concrete waste actually disposed of by recycling concrete waste, and furthermore radioactive concrete waste, is expected to have positive effects in terms of not only reducing disposal costs but also increasing the safety of disposal and utilizing resources.
한편, 시멘트로 방사성폐기물을 고정화하는 형태는 공정이 쉽고 간단하며 경제성이 우수하여 널리 사용된다. 하지만, 시멘트로 방사성폐기물을 고정화하는 형태는 높은 공극률, 약한 접착력, 낮은 화학적 내구성, 산, 알칼리에 대한 약한 저항성을 가진다. 이에 대체 형태인 지오폴리머에 대한 연구가 진행되고 있다. Meanwhile, the form of fixing radioactive waste with cement is widely used because the process is easy and simple and it is economical. However, the form of fixing radioactive waste with cement has high porosity, weak adhesive strength, low chemical durability, and weak resistance to acid and alkali. Therefore, research on geopolymer, an alternative form, is being conducted.
지오폴리머는 알칼리실리게이트를 기반으로 알칼리 활성화제에 의해 경화되는 무기바인더이다. Geopolymer is an inorganic binder based on alkaline silicate that is cured by an alkaline activator.
이에, 방사성폐기물을 고화하는 방법에 있어서 시멘트가 지오폴리머로 대체되어 가는 상황에서, 실제 처분되는 콘크리트폐기물의 양을 줄이고자 콘크리트폐기물 특히 방사성콘크리트폐기물을 재활용하여 지오폴리머를 제조하거나 방사성폐기물을 고화하는 방법에 대한 연구가 절실히 필요한 실정이다.Accordingly, in a situation where cement is being replaced by geopolymer in the method of solidifying radioactive waste, there is an urgent need to research methods of manufacturing geopolymers by recycling concrete waste, especially radioactive concrete waste, or solidifying radioactive waste in order to reduce the amount of concrete waste actually disposed of.
(특허문헌 1) KR 10-1940033 B (Patent Document 1) KR 10-1940033 B
상술한 종래기술에 따른 문제점을 해결하고자, 방사성콘크리트폐기물을 포함하는 콘크리트폐기물을 재활용하여 지오폴리머를 제조하는 방법, 더 나아가 지오폴리머를 제조하는 방법에 따라 방사성폐기물을 고화하는 방법을 제안하고자 한다.In order to solve the problems of the above-described prior art, the present invention proposes a method for manufacturing geopolymer by recycling concrete waste including radioactive concrete waste, and further a method for solidifying radioactive waste by the method for manufacturing geopolymer.
상술한 종래기술에 따른 문제점을 해결하고자 본 발명에 따른 지오폴리머 제조방법은, (a) 메타카올리나이트와 알칼리 활성화제가 제1반응조에 투입되어 제4혼합물이 생성되는 단계를 포함하며,In order to solve the problems of the above-described prior art, the method for producing a geopolymer according to the present invention comprises the step of (a) introducing metakaolinite and an alkaline activator into a first reaction tank to produce a fourth mixture,
콘크리트폐기물에서 추출된 이산화규소(SiO2), 산화알루미늄(Al2O3) 및 수산화칼슘(Ca(OH)2)이 제2반응조에 투입되어 상기 알칼리 활성화제가 생성될 수 있다.Silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and calcium hydroxide (Ca(OH) 2 ) extracted from concrete waste can be introduced into the second reactor to produce the alkaline activator.
바람직하게는, (a-1) 상기 콘크리트폐기물과 염산(HCl)이 혼합되어 제1혼합물이 생성되는 단계; 및 (a-2) 상기 제1혼합물이 고액분리되어 제1여액과 제1고형분이 생성되는 단계를 더 포함하며,Preferably, (a-1) a step of mixing the concrete waste and hydrochloric acid (HCl) to produce a first mixture; and (a-2) a step of separating the first mixture into solid and liquid to produce a first filtrate and a first solid.
상기 (a-2) 단계 이후 상기 (a) 단계가 진행되며,After the above step (a-2), the above step (a) is performed.
상기 제1고형분에 상기 이산화규소(SiO2) 및 산화알루미늄(Al2O3)이 포함되어 있으며, 상기 제1고형분이 상기 제2반응조에 투입되어 상기 알칼리 활성화제가 생성될 수 있다.The first solid component contains silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ), and the first solid component can be introduced into the second reaction tank to produce the alkaline activator.
바람직하게는, (a-3) 상기 (a-2) 단계 이후, 상기 제1여액과 수산화나트륨(NaOH)이 혼합되어 제2혼합물이 생성되는 단계; (a-4) 상기 제2혼합물이 고액분리되어 제2여액과 제2고형분이 생성되는 단계; (a-5) 상기 제2여액과 수산화나트륨(NaOH)이 혼합되어 제3혼합물이 생성되는 단계; 및 (a-6) 상기 제3혼합물이 고액분리되어 제3여액과 제3고형분이 생성되는 단계를 더 포함하며,Preferably, (a-3) after step (a-2), the step of mixing the first filtrate and sodium hydroxide (NaOH) to generate a second mixture; (a-4) the step of separating the second mixture into solid and liquid to generate a second filtrate and a second solid; (a-5) the step of mixing the second filtrate and sodium hydroxide (NaOH) to generate a third mixture; and (a-6) the step of separating the third mixture into solid and liquid to generate a third filtrate and a third solid.
상기 (a-6) 단계 이후 상기 (a) 단계가 진행되며, 상기 제3고형분에 상기 수산화칼슘(Ca(OH)2)이 포함되어 있으며,After the above step (a-6), the above step (a) is performed, and the third solid component contains calcium hydroxide (Ca(OH) 2 ).
상기 제3고형분이 상기 제2반응조에 투입되어 상기 알칼리 활성화제가 생성될 수 있다.The above third solid component can be injected into the second reactor to produce the alkaline activator.
바람직하게는, 상기 제3여액이 상기 제2반응조에 투입되어 상기 알칼리 활성화제가 생성될 수 있다.Preferably, the third liquid may be injected into the second reaction tank to produce the alkaline activator.
바람직하게는, 상기 제4혼합물 100 중량%에 대해서, 상기 제1반응조에 투입되는 메타카올리나이트의 중량%는 25 내지 35이고, 상기 제2반응조에 투입되는 제1고형분의 중량%는 20 내지 30이고, 상기 제2반응조에 투입되는 제3여액의 중량%는 25 내지 35이고, 상기 제2반응조에 투입되는 제3고형분의 중량%는 0.1 내지 2이며,Preferably, for 100 wt% of the fourth mixture, the wt% of metakaolinite introduced into the first reaction tank is 25 to 35, the wt% of the first solid introduced into the second reaction tank is 20 to 30, the wt% of the third filtrate introduced into the second reaction tank is 25 to 35, and the wt% of the third solid introduced into the second reaction tank is 0.1 to 2.
상기 콘크리트폐기물은 방사성콘크리트폐기물이며,The above concrete waste is radioactive concrete waste.
(b) 상기 제4혼합물이 경화되어 지오폴리머가 제조되는 단계를 더 포함할 수 있다.(b) The method may further include a step of hardening the fourth mixture to produce a geopolymer.
상술한 과제해결수단으로 인하여, 방사성콘크리트폐기물을 포함한 콘크리트폐기물에서 지오폴리머 제조에 사용되는 유용한 성분을 추출할 수 있고, 나아가 콘크리트폐기물에서 추출된 유용한 성분을 방사성폐기물을 고화하는데 사용할 수 있는 바, 콘크리트폐기물의 재활용성을 증대시키고 실제 처분되는 콘크리트폐기물의 양을 최소화할 수 있어, 처분비용 절감뿐만 아니라 처분의 안전성 증대 및 자원의 활용을 증대시킬 수 있다.By means of the above-described problem-solving means, it is possible to extract useful components used in the manufacture of geopolymer from concrete waste including radioactive concrete waste, and furthermore, the useful components extracted from the concrete waste can be used to solidify the radioactive waste, thereby increasing the recyclability of the concrete waste and minimizing the amount of concrete waste actually disposed of, thereby reducing disposal costs as well as increasing the safety of disposal and the utilization of resources.
도 1은 본 발명에 따라 알칼리 활성화제의 원료를 콘크리트폐기물에서 추출하는 과정을 개략적으로 도시한 도면이다.
도 2 내지 도 5는 본 발명에 따라 실행된 시험에 대한 데이터를 도시한 도면이다.Figure 1 is a drawing schematically illustrating a process of extracting a raw material for an alkaline activator from concrete waste according to the present invention.
Figures 2 to 5 are diagrams illustrating data for tests performed according to the present invention.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의성을 위해 과장되게 도시될 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자 또는 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, a preferred embodiment according to the present invention will be described with reference to the attached drawings. In this process, the thickness of lines and the size of components illustrated in the drawings may be exaggerated for clarity and convenience of explanation. In addition, the terms described below are terms defined in consideration of functions in the present invention, and these may vary depending on the intention or custom of the user or operator. Therefore, the definitions of these terms should be made based on the contents throughout this specification.
1. 지올폴리머 제조1. Manufacturing of zeolite polymers
종래기술에 따른 지오폴리머를 제조하는데 일반적으로 메타카올리나이트 및 알칼리 활성화제가 사용되며, 알칼리 활성화제는 수산화나트륨(NaOH), 산화규소(SiO2), 수산화칼슘(Ca(OH)2) 및 물(H2O)이 사용되어 제조된다.In general, metakaolinite and an alkaline activator are used to manufacture geopolymers according to conventional techniques, and the alkaline activator is manufactured using sodium hydroxide (NaOH), silicon oxide (SiO 2 ), calcium hydroxide (Ca(OH) 2 ), and water (H 2 O).
본 발명에 따른 지오폴리머 제조방법에서는, 콘크리트폐기물에서 추출된 산화규소(SiO2), 산화알루미늄(Al2O3) 및 수산화칼슘(Ca(OH)2)이 알칼리 활성화제를 제조하는데 사용될 수 있다. 즉, 종래기술에 따라 지오폴리머를 제조하는데 사용되는 산화규소(SiO2) 및 수산화칼슘(Ca(OH)2)이 콘크리트폐기물에서 추출된 산화규소(SiO2) 및 수산화칼슘(Ca(OH)2)으로 대체될 수 있다.In the method for manufacturing a geopolymer according to the present invention, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ) and calcium hydroxide (Ca(OH) 2 ) extracted from concrete waste can be used to manufacture an alkaline activator. That is, silicon oxide (SiO 2 ) and calcium hydroxide (Ca(OH) 2 ) used in manufacturing a geopolymer according to the prior art can be replaced with silicon oxide (SiO 2 ) and calcium hydroxide (Ca(OH) 2 ) extracted from concrete waste.
나아가, 본 발명에 따른 지오폴리머 제조방법에서는, 종래기술에 따라 지오폴리머를 제조하는데 사용되는 물(H2O)이 콘크리트폐기물에서 산화규소(SiO2), 산화알루미늄(Al2O3) 및 수산화칼슘(Ca(OH)2)을 추출하는 과정 중에 생성되는 알칼리 폐액으로 대체될 수 있다.Furthermore, in the method for producing a geopolymer according to the present invention, water (H 2 O) used in producing a geopolymer according to the prior art can be replaced with alkaline waste liquid generated during the process of extracting silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and calcium hydroxide (Ca(OH) 2 ) from concrete waste.
본 발명에 따라 지오폴리머를 제조하는데 사용되는 산화규소(SiO2), 산화알루미늄(Al2O3) 및 수산화칼슘(Ca(OH)2)은 콘크리트폐기물에서 추출될 수 있으며, 더욱 바람직하게는 방사성콘크리트폐기물에서 추출될 수 있다.Silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ) and calcium hydroxide (Ca(OH) 2 ) used in manufacturing the geopolymer according to the present invention can be extracted from concrete waste, and more preferably from radioactive concrete waste.
상술한 바와 같이, 콘크리트폐기물을 재활용하기 위해 1차 파쇄 및 분리를 통해 분류된 골재를 순환골재로 재활용하고 있는 실정인데, 이와는 별도로 순환골재 생산과정에서 발생되는 시멘트 페이스트와 잔골재 미분과 같은 폐미분말 또한 2차 이상의 파쇄 및 소성 화학처리를 통해 재수화 반응이 일어날 수 있는 것으로 재활용의 여지가 있는 것으로 알려져 있다.As mentioned above, aggregates classified through primary crushing and separation are recycled as recycled aggregates in order to recycle concrete waste. However, it is known that waste fine powders such as cement paste and fine aggregate powder generated in the process of producing recycled aggregates can also be recycled as they can undergo a rehydration reaction through secondary or higher crushing and calcination chemical treatment.
본연구에서는 콘크리트폐기물의 미분말로부터 유용한 자원을 회수하여 지오폴리머 원료로 재활용하고자 한다. 콘크리트폐기물로부터, 특히 방사성콘크리트폐기물로부터 유용한 자원을 활용하여 지오폴리머를 제조하고, 나아가 이러한 지오폴리머 제조방법에 따라 방사성폐기물을 고화체로 고화한다면 방폐장에 처리되어야 할 방사성폐기물의 부피를 최소화할 수 있고 동시에 방사성폐기물을 안전하게 처분할 수 있을 것이다. 즉, 방폐장에 처분되어야 할 방사성콘크리트폐기물이 지오폴리머를 제조하는데 사용된다면, 더 나아가 방사성폐기물 고화체를 제조하는데 사용된다면, 방폐장에서 처분되어야 할 방사성콘크리트폐기물의 양이 현저히 줄어들 수 있으며, 방사성콘크리트폐기물이 방사성폐기물 고화체의 원료로 사용되어 일정한 압축강도를 유지한다면 방사성폐기물을 더욱 안전하게 처분할 수 있을 것이다.This study aims to recover useful resources from fine powder of concrete waste and recycle them as raw materials for geopolymer. If geopolymer is manufactured by utilizing useful resources from concrete waste, especially radioactive concrete waste, and furthermore, if radioactive waste is solidified according to the method for manufacturing the geopolymer, the volume of radioactive waste to be treated at a radioactive waste disposal site can be minimized and at the same time, radioactive waste can be safely disposed of. In other words, if radioactive concrete waste to be disposed of at a radioactive waste disposal site is used to manufacture geopolymer, and furthermore, if it is used to manufacture a solidified body for radioactive waste, the amount of radioactive concrete waste to be disposed of at a radioactive waste disposal site can be significantly reduced, and if radioactive concrete waste is used as a raw material for a solidified body for radioactive waste and maintains a certain compressive strength, radioactive waste can be disposed of more safely.
방사성콘크리트폐기물은 원전 해체시 발생되는 콘크리트폐기물일 수 있다.Radioactive concrete waste may be concrete waste generated during the decommissioning of a nuclear power plant.
i) 본 발명에 따른 알칼리 활성화제 추출i) Extraction of alkaline activator according to the present invention
도 1을 참조하여 본 발명에 따라 알칼리 활성화제의 원료를 콘크리트폐기물에서 추출하는 과정을 설명한다.Referring to FIG. 1, a process for extracting a raw material for an alkaline activator from concrete waste according to the present invention is described.
첫 번째 단계로, 콘크리트폐기물과 염산(HCl)이 혼합되어 교반되어 제1혼합물이 생성될 수 있다. 이때 고액비는 1:8 내지 1:12일 수 있다. 이후, 제1혼합물이 감압필터에서 고액분리되어 제1여액과 제1고형분이 생성될 수 있다.In the first step, concrete waste and hydrochloric acid (HCl) can be mixed and stirred to produce a first mixture. At this time, the solid-liquid ratio can be 1:8 to 1:12. Thereafter, the first mixture can be separated into solid and liquid in a pressure reducing filter to produce a first filtrate and a first solid.
여기에서 제1고형분의 주성분은 산화규소(SiO2) 및 산화알루미늄(Al2O3)으로, 알칼리 활성화제로 사용되는 산화규소(SiO2)가 제1고형분로 대체될 수 있다.Here, the main components of the first solid are silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ), and silicon oxide (SiO 2 ) used as an alkaline activator can be replaced with the first solid.
다음 단계로, 제1여액에 수산화나트륨(NaOH)이 투입되어 제2혼합물이 생성될 수 있다. 제1여액의 pH가 9 내지 11로 조정될 수 있다. 이후, 제2혼합물이 감압필터에서 고액분리되어 제2여액과 제2고형분이 생성될 수 있다.In the next step, sodium hydroxide (NaOH) may be added to the first filtrate to generate a second mixture. The pH of the first filtrate may be adjusted to 9 to 11. Thereafter, the second mixture may be separated into solid and liquid in a pressure reducing filter to generate a second filtrate and a second solid.
다음 단계로, 제2여액에 수산화나트륨(NaOH)이 투입되어 제3혼합물이 생성될 수 있다. 제2여액의 pH가 12 내지 14로 조정될 수 있다. 이후, 제3혼합물이 감압필터에서 고액분리되어 제3여액과 제3고형분이 생성될 수 있다.In the next step, sodium hydroxide (NaOH) may be added to the second filtrate to generate a third mixture. The pH of the second filtrate may be adjusted to 12 to 14. Thereafter, the third mixture may be separated into solid and liquid in a pressure reducing filter to generate a third filtrate and a third solid.
제3고형분에는 수산화칼슘(Ca(OH)2)이 포함될 수 있다. 따라서, 알칼리 활성화제로 사용되는 수산화칼슘(Ca(OH)2)이 제3고형분로 대체될 수 있다.The third solid may include calcium hydroxide (Ca(OH) 2 ). Therefore, calcium hydroxide (Ca(OH) 2 ) used as an alkaline activator may be replaced with the third solid.
나아가, 제3여액은 알칼리 폐액으로, 알칼리 활성화제로 사용되는 물(H2O)이 제3여액으로 대체될 수 있다.Furthermore, the third filtrate is an alkaline waste liquid, and water ( H2O ) used as an alkaline activator can be replaced with the third filtrate.
표 1은 제1고형분 내지 제3고형분의 XRF 분석결과인데, 제1고형분에는 높은 중량비율로의 산화규소(SiO2) 및 산화알루미늄(Al2O3)이 포함되어 있는 것으로 나타나며, 제3고형분에는 높은 중량비율로의 산화칼슘(CaO)이 포함된 것으로 나타나고 있다.Table 1 shows the XRF analysis results of the first to third solid components. The first solid component appears to contain a high weight ratio of silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ), and the third solid component appears to contain a high weight ratio of calcium oxide (CaO).
[표 1][Table 1]
도 2는 제3고형분에 포함된 수산화칼슘(Ca(OH)2)의 입자형상을 분석한 결과이다. 제3고형분에 포함된 수산화칼슘(Ca(OH)2)은 시중에서 판매되고 있는 시약과 비교하여 유사한 특정 형태를 보여주고 있다.Figure 2 shows the results of analyzing the particle shape of calcium hydroxide (Ca(OH) 2 ) included in the third solid component. Calcium hydroxide (Ca(OH) 2 ) included in the third solid component shows a similar specific shape compared to reagents sold on the market.
ii) 종래기술에 따른 지오폴리머 제조 실험ii) Experiment on manufacturing geopolymer according to conventional technology
종래기술에 따라 알칼리 활성화제와 메타카올리나이트를 혼합하여 지오폴리머를 제조하였고, 원료의 혼합비율(중량%)과 혼합물의 구성성분별 몰비율은 아래와 같고, 이에 따라 제조된 지오폴리머의 압축강도에 대한 테스트가 이루어졌다.Geopolymer was manufactured by mixing an alkaline activator and metakaolinite according to conventional technology. The mixing ratio (weight %) of raw materials and the molar ratio of each component of the mixture were as follows. A test was conducted on the compressive strength of the geopolymer manufactured accordingly.
종래기술에 따라 지오폴리머를 제조하기 위한 원료의 혼합비율(중량%)은 다음의 표 2과 같다.The mixing ratio (weight%) of raw materials for manufacturing geopolymer according to conventional technology is as shown in Table 2 below.
종래기술에 따른 지오폴리머를 제조하기 위해 원료가 혼합된 상태의 혼합물의 구성성분별 몰비율은 다음과 같다.The molar ratio of each component of a mixture in which raw materials are mixed to manufacture a geopolymer according to conventional technology is as follows.
Na2O: Al2O3: SiO2: H2O = 1: 1: 4: 11Na 2 O: Al 2 O 3 : SiO 2 : H 2 O = 1: 1: 4: 11
우선적으로, 물(H2O), 수산화나트륨(NaOH), 수산화칼슘(Ca(OH)2) 및 산화규소(SiO2)를 칭량하여 혼합한 후 교반기에서 하루 동안 교반시켜 알칼리 활성화제를 제조하였다.First, water ( H2O ), sodium hydroxide (NaOH), calcium hydroxide (Ca(OH) 2 ), and silicon oxide ( SiO2 ) were weighed and mixed, and then stirred in a stirrer for one day to prepare an alkaline activator.
이후, 제조된 알칼리 활성화제와 메타카올리나이트를 혼합하여 교반시킨 후, 압축강도를 향상시키기 위해 지오폴리머 슬러리를 몰드에 투입하여 70℃ 항온항습기게 하루동안 경화시켰다. 이후 상온에서 6일 동안 경과후 압축강도를 측정하였다.Afterwards, the manufactured alkaline activator and metakaolinite were mixed and stirred, and then the geopolymer slurry was poured into a mold to improve the compressive strength and cured in a constant temperature and humidity chamber at 70℃ for one day. Afterwards, the compressive strength was measured after 6 days at room temperature.
종래기술에 따라 제조된 지오폴리머의 압축강도는 다음 표 3과 같이 나타난다.The compressive strength of geopolymers manufactured according to conventional techniques is shown in Table 3 below.
iii) 본 발명에 따른 지오폴리머 제조iii) Manufacturing of geopolymer according to the present invention
본 발명에 따라 지오폴리머를 제조하기 위해 상술한 과정을 거쳐 제조된 알칼리 활성화제와 메타카올리나이트를 혼합할 수 있다.According to the present invention, to manufacture a geopolymer, an alkaline activator manufactured through the above-described process can be mixed with metakaolinite.
알칼리 활성화제와 메타카올리나이트가 혼합된 상태의 혼합물 100 중량%에 대해서, 메타카올리나이트의 중량%는 25 내지 35일 수 있고, 제1고형분의 중량%는 20 내지 30일 수 있고, 제3여액의 중량%는 25 내지 35일 수 있고, 제3고형분의 중량%는 0.1 내지 2일 수 있고, 수산화나트륨(NaOH)의 중량%는 8 내지 18일 수 있다.For 100 wt% of a mixture in which an alkaline activator and metakaolinite are mixed, the wt% of metakaolinite may be 25 to 35, the wt% of the first solid may be 20 to 30, the wt% of the third filtrate may be 25 to 35, the wt% of the third solid may be 0.1 to 2, and the wt% of sodium hydroxide (NaOH) may be 8 to 18.
알칼리 활성화제와 메타카올리나이트가 혼합된 상태의 혼합물의 구성성분별 몰비율은 다음과 같은 수 있다.The molar ratio of each component of a mixture containing an alkaline activator and metakaolinite may be as follows.
Na2O: Al2O3: SiO2: H2O = 0.5 내지 1.5: 0.5 내지 1.5: 2.5 내지 4: 11Na 2 O: Al 2 O 3 : SiO 2 : H 2 O = 0.5 to 1.5: 0.5 to 1.5: 2.5 to 4: 11
제조과정으로, 우선적으로 제3여액, 수산화나트륨(NaOH), 제1고형분 및 제3고형분을 칭량하여 혼합한 후 교반기에서 하루 동안 교반시켜 알칼리 활성화제를 제조할 수 있다.In the manufacturing process, the third liquid, sodium hydroxide (NaOH), the first solid, and the third solid are first weighed and mixed, and then stirred in a stirrer for one day to manufacture an alkaline activator.
이후, 제조된 알칼리 활성화제와 메타카올리나이트를 혼합한 후 교반시킨 후, 압축강도를 향상시키기 위해 지오폴리머 슬러리를 몰드에 투입하여 50 내지 90℃ 항온항습기게 하루동안 경화시킬 수 있다. Afterwards, the manufactured alkaline activator and metakaolinite are mixed and stirred, and then the geopolymer slurry is poured into a mold to improve the compressive strength and cured in a constant temperature and humidity chamber at 50 to 90°C for one day.
본 발명에 따른 지오폴리머의 제조 실험예를 설명한다.An experimental example of manufacturing a geopolymer according to the present invention is described.
본 발명에 따라 알칼리 활성화제와 메타카올리나이트를 혼합하여 지오폴리머를 제조하였고, 원료의 혼합비율(중량%)과 혼합물의 구성성분별 몰비율은 아래와 같고, 이에 따라 제조된 지오폴리머의 압축강도에 대한 테스트가 이루어졌다.According to the present invention, a geopolymer was manufactured by mixing an alkaline activator and metakaolinite. The mixing ratio (weight %) of the raw materials and the molar ratio of each component of the mixture were as follows. A test was conducted on the compressive strength of the geopolymer manufactured accordingly.
본 발명에 따라 지오폴리머를 제조하기 위한 원료의 혼합비율(중량%)은 다음의 표 3와 같다.The mixing ratio (weight%) of raw materials for manufacturing geopolymer according to the present invention is as shown in Table 3 below.
Alkaline activator
본 발명에 따라 지오폴리머를 제조하기 위해 상술한 중량%로 원료가 혼합된 상태의 혼합물의 구성성분별 몰비율은 다음과 같다.The molar ratio of each component of the mixture in which the raw materials are mixed in the above-described weight % to manufacture the geopolymer according to the present invention is as follows.
Na2O: Al2O3: SiO2: H2O = 1: 1: 3.2: 11Na 2 O: Al 2 O 3 : SiO 2 : H 2 O = 1: 1: 3.2: 11
상술한 중량%로 제3여액, 수산화나트륨(NaOH), 제1고형분 및 제3고형분을 칭량하여 혼합한 후 교반기에서 하루동안 교반시켜 알칼리 활성화제를 제조하였다.The third filtrate, sodium hydroxide (NaOH), the first solid, and the third solid were weighed and mixed in the weight % described above, and stirred in a stirrer for one day to prepare an alkaline activator.
이후, 제조된 알칼리 활성화제와 메타카올리나이트를 혼합하여 교반시킨 후, 압축강도를 향상시키기 위해 지오폴리머 슬러리를 몰드에 투입하여 70℃ 항온항습기게 하루동안 경화시켰다. 이후, 상온에서 6일 동안 경과 후 압축강도를 측정하였다.Afterwards, the manufactured alkaline activator and metakaolinite were mixed and stirred, and then the geopolymer slurry was poured into a mold to improve the compressive strength and cured in a constant temperature and humidity chamber at 70℃ for one day. Afterwards, the compressive strength was measured after 6 days at room temperature.
본 발명에 따른 지오폴리머의 제조 실험예에 따라 제조된 지오폴리머의 압축강도는 다음 표 5와 같다.The compressive strength of the geopolymer manufactured according to the experimental example of manufacturing the geopolymer according to the present invention is as shown in Table 5 below.
도 3은 상술한 종래기술과 본 발명에 따라 제조된 지오폴리머의 FT-IR spectra 분석결과이다.Figure 3 shows the results of FT-IR spectra analysis of geopolymers manufactured according to the above-described conventional technology and the present invention.
도 3에서 3,240cm-1 과 1,640cm-1 의 peak는 물분자와 관련된 피크이며, 본 발명에 따른 지오폴리머의 경우 메타카올리나이트와 알칼리 활성화제 혼합시 종래기술에 따른 지오폴리머보다 교반이 용이하였으며, 모두 고액비는 7:3 정도로 동일하였다. In Fig. 3, the peaks at 3,240 cm -1 and 1,640 cm -1 are peaks related to water molecules. In the case of the geopolymer according to the present invention, mixing was easier than that of the geopolymer according to the prior art when metakaolinite and an alkaline activator were mixed, and the solid-liquid ratio was the same at approximately 7:3.
544cm-1은 Si-O-Al band의 피크이며 956cm-1 또한 Si-O-T(T: Si or Al)의 피크로 확인되었다.544 cm -1 is the peak of the Si-O-Al band, and 956 cm -1 was also identified as the peak of Si-OT (T: Si or Al).
이로써, 콘크리트폐기물로부터 유용한 자원을 추출하여 지오폴리머 제조에 사용된다면, 발생되는 콘크리트폐기물의 부피감량을 획기적으로 줄일 수 있다. 나아가 상술한 지오폴리머 제조방법으로 방사성폐기물 고화체를 제조하는 경우, 방사성폐기물 인도규정에 따른 고화체의 압축강도를 기준치(3.4MPa) 이상으로 유지할 수 있다.Accordingly, if useful resources are extracted from concrete waste and used in the manufacture of geopolymer, the volume reduction of the generated concrete waste can be drastically reduced. Furthermore, when a radioactive waste solidified body is manufactured using the above-described geopolymer manufacturing method, the compressive strength of the solidified body according to the radioactive waste delivery regulations can be maintained at a standard value (3.4 MPa) or higher.
2. 방사성폐기물 고화체 제조2. Production of radioactive waste solidification material
상술한 지오폴리머를 제조하는 방법에 따라 방사성폐기물을 고화체로 고화하는 방법에 대해서 설명한다.A method for solidifying radioactive waste into a solidified body according to the method for manufacturing the above-described geopolymer is described.
고화대상으로서의 방사성폐기물은 폐수지, 농축폐액, 부식성슬러지, 토양슬러지, 콘크리트폐기물, 금속, 토양 등 방사성 핵종이 포함되어 있는 폐기물일 수 있음은 물론이다.Radioactive waste as a target of solidification can of course be waste containing radioactive nuclides, such as waste resin, concentrated waste liquid, corrosive sludge, soil sludge, concrete waste, metal, and soil.
상술한 지오폴리머 제조방식에 따라 방사성폐기물 고화체를 제조하는데 사용되는 알칼리 활성화제에 대한 설명은 상술한 본 발명에 따른 지오폴리머 제조에 사용되는 알칼리 활성화제의 설명에 따른다.The description of the alkaline activator used in manufacturing the radioactive waste solidification body according to the above-described geopolymer manufacturing method follows the description of the alkaline activator used in manufacturing the geopolymer according to the present invention described above.
본 발명에 따라 방사성폐기물 고화체를 제조하기 위해 방사성폐기물, 상술한 알칼리 활성화제 및 메타카올리나이트가 혼합될 수 있다.To manufacture a radioactive waste solidification body according to the present invention, radioactive waste, the above-described alkaline activator, and metakaolinite can be mixed.
방사성폐기물, 알칼리 활성화제 및 메타카올리나이트가 혼합된 상태의 혼합물 100 중량%에 대해서, 방사성폐기물의 중량%는 5 내지 25일 수 있고, 메타카올리나이트의 중량%는 20 내지 30일 수 있고, 제1고형분의 중량%는 17 내지 27일 수 있고, 제3여액의 중량%는 20 내지 30일 수 있고, 제3고형분의 중량%는 0.1 내지 2일 수 있고, 수산화나트륨(NaOH)의 중량%는 5 내지 15일 수 있다.For 100 wt% of a mixture of radioactive waste, an alkaline activator, and metakaolinite, the wt% of the radioactive waste may be 5 to 25, the wt% of the metakaolinite may be 20 to 30, the wt% of the first solid may be 17 to 27, the wt% of the third filtrate may be 20 to 30, the wt% of the third solid may be 0.1 to 2, and the wt% of sodium hydroxide (NaOH) may be 5 to 15.
방사성폐기물, 알칼리 활성화제와 메타카올리나이트가 혼합된 상태의 혼합물의 구성성분별 몰비율은 다음과 같은 수 있다.The molar ratios of the components of a mixture of radioactive waste, alkaline activator, and metakaolinite are as follows.
Na2O: Al2O3: SiO2: H2O = 0.5 내지 1.5: 0.5 내지 1.5: 2.5 내지 4: 11Na 2 O: Al 2 O 3 : SiO 2 : H 2 O = 0.5 to 1.5: 0.5 to 1.5: 2.5 to 4: 11
제조과정으로, 우선적으로 제3여액, 수산화나트륨(NaOH), 제1고형분 및 제3고형분을 칭량하여 혼합한 후 교반기에서 하루 동안 교반시켜 알칼리 활성화제를 제조할 수 있다.In the manufacturing process, the third liquid, sodium hydroxide (NaOH), the first solid, and the third solid are first weighed and mixed, and then stirred in a stirrer for one day to manufacture an alkaline activator.
이후, 제조된 알칼리 활성화제, 방사성폐기물과 메타카올리나이트를 혼합한 후 교반시킨 후, 압축강도를 향상시키기 위해 지오폴리머 슬러리를 몰드에 투입하여 50내지 90℃ 항온항습기게 하루동안 경화시킬 수 있다. Afterwards, the manufactured alkaline activator, radioactive waste, and metakaolinite are mixed and stirred, and then the geopolymer slurry is poured into a mold to improve the compressive strength and cured in a constant temperature and humidity chamber at 50 to 90°C for one day.
본 발명에 따른 방사성폐기물 고화체 제조 실험예를 설명한다.An experimental example of manufacturing a radioactive waste solidification body according to the present invention is described.
본 발명에 따라 모의 부식성슬러지, 메타카올리나이트를 알칼리 활성화제에 혼합하여 방사성폐기물 고화체를 제조하였고, 이에 따라 제조된 고화체의 압축강도에 대한 테스트가 이루어졌다.According to the present invention, a radioactive waste solidification body was manufactured by mixing simulated corrosive sludge and metakaolinite with an alkaline activator, and a test was conducted on the compressive strength of the solidification body manufactured in this manner.
사용된 방사성폐기물로는 한국수력원자력에서 제공된 예상 원전 해체시 예상 폐기물 특성자료를 기반으로 제조된 모의 부식성슬러지가 사용되었다. 모의 부식성슬러지 구성성분비율은 표 6와 같다.The radioactive waste used was a simulated corrosive sludge manufactured based on the expected waste characteristics data provided by Korea Hydro & Nuclear Power during the expected decommissioning of a nuclear power plant. The composition ratio of the simulated corrosive sludge is as shown in Table 6.
[표 6][Table 6]
제조된 모의 부식성슬러지의 XRF 특성분석은 표 7과 같다.XRF characteristic analysis of the manufactured simulated corrosive sludge is shown in Table 7.
[표 7][Table 7]
본 발명에 따라 방사성폐기물 고화체를 제조하기 위한 원료의 혼합비율(중량%)은 다음의 표 7와 같다.The mixing ratio (weight %) of raw materials for manufacturing a radioactive waste solidification body according to the present invention is as shown in Table 7 below.
[표 8][Table 8]
본 발명에 따라 방사성폐기물 고화체를 제조하기 위해 원료가 혼합된 상태의 혼합물의 구성성분별 몰비율은 다음과 같다.The molar ratio of each component of the mixture in which the raw materials are mixed to manufacture a radioactive waste solidification body according to the present invention is as follows.
Na2O: Al2O3: SiO2: H2O = 1: 1: 3.2: 11Na 2 O: Al 2 O 3 : SiO 2 : H 2 O = 1: 1: 3.2: 11
상술한 중량%로 제3여액, 수산화나트륨(NaOH), 제1고형분 및 제3고형분을 칭량하여 혼합한 후 교반기에서 하루동안 교반시켜 알칼리 활성화제를 제조하였다.The third filtrate, sodium hydroxide (NaOH), the first solid, and the third solid were weighed and mixed in the weight % described above, and stirred in a stirrer for one day to prepare an alkaline activator.
이후, 제조된 알칼리 활성화제, 부식성슬러지와 메타카올리나이트를 혼합하여 교반시킨 후, 압축강도를 향상시키기 위해 슬러리를 몰드에 투입하여 70℃ 항온항습기게 하루 동안 경화시켰다. 이후, 상온에서 6일 동안 경과 후 압축강도를 측정하였다.Afterwards, the manufactured alkaline activator, corrosive sludge and metakaolinite were mixed and stirred, and the slurry was poured into a mold to improve the compressive strength and hardened in a constant temperature and humidity chamber at 70℃ for one day. Afterwards, the compressive strength was measured after 6 days at room temperature.
본 발명에 따른 방사성폐기물 고화체 제조 실험예에 따라 제조된 방사성폐기물 고화체의 압축강도는 다음 표 9와 같다.The compressive strength of the radioactive waste solidification body manufactured according to the experimental example of manufacturing the radioactive waste solidification body according to the present invention is as shown in Table 9 below.
[표 9][Table 9]
본 발명에 따라 제조된 방사성폐기물 고화체에 대하여 고화체 인수기준에 대한 평가시험(유리수 생성 시험, 열순환 시험, 침출 시험)이 이루어졌다.An evaluation test (free water generation test, thermal cycle test, leaching test) was conducted on the solidified radioactive waste body manufactured according to the present invention for the solidified body acceptance criteria.
유리수 시험의 경우, 준비한 100mesh 필터지를 사용하여 방사성폐기물 고화체를 위에 두고 5분 동안 유리수 생성 여부를 확인하였다. 도 4에 도시된 바와 같이, 5분이 지나도 여전히 직경, 높이 및 무게에 변화가 없어 유리수가 생성되지 않음이 확인되었다.In the case of the free water test, the prepared 100-mesh filter paper was used to place the radioactive waste solidification body on top and check whether free water was generated for 5 minutes. As shown in Fig. 4, even after 5 minutes, there was still no change in the diameter, height, and weight, confirming that free water was not generated.
열순환 시험의 경우, ASTM B553의 시험방법에 따라 22℃-->60℃-->-40℃에서 각 1시간씩 유지하는 것을 1사이클로 보고, 30사이클 반복 후 압축강도를 측정하였고, 압축강도는 다음 표 10과 같다. 도 5는 열순환 전후 무게변화를 나타낸 그래프이다.In the case of the thermal cycling test, one cycle was considered as maintaining 22℃-->60℃-->-40℃ for 1 hour each according to the test method of ASTM B553, and the compressive strength was measured after 30 cycles, and the compressive strength is as shown in Table 10 below. Figure 5 is a graph showing the weight change before and after thermal cycling.
[표 10][Table 10]
침출 시험의 경우, ANSI 16.1 시험방법에 따라, 코발트(Co), 세슘(Cs) 및 스트론튬(Sr) 각각의 농도가 30 mg/g이 되도록 제조된 부식성슬러지를 사용하여 상술한 중량%로 방사성폐기물 고화체를 제조하였고, 이후 90일 동안 증류수에 담지하여 침출지수를 구하였다. 침출지수가 6 이상이면 고화체 인수 기준을 만족하는 바, 고화체 인수 기준을 만족하는 본 발명에 따른 방사성폐기물 고화체의 침출지수는 표 11과 같다.In the case of the leaching test, the radioactive waste solidification body was manufactured at the above-mentioned weight % using corrosive sludge manufactured so that the concentration of each of cobalt (Co), cesium (Cs), and strontium (Sr) was 30 mg/g according to the ANSI 16.1 test method, and the leaching index was obtained by soaking it in distilled water for 90 days. If the leaching index is 6 or higher, the solidification body acceptance standard is satisfied, and the leaching index of the radioactive waste solidification body according to the present invention satisfying the solidification body acceptance standard is as shown in Table 11.
[표 11][Table 11]
이상, 본 명세서에는 본 발명을 당업자가 용이하게 이해하고 재현할 수 있도록 도면에 도시한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당업자라면 본 발명의 실시예로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 보호범위는 특허청구범위에 의해서 정해져야 할 것이다.Above, although this specification has been described with reference to the embodiments illustrated in the drawings so that those skilled in the art can easily understand and reproduce the present invention, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible from the embodiments of the present invention. Therefore, the protection scope of the present invention should be determined by the patent claims.
Claims (5)
콘크리트폐기물에서 추출된 이산화규소(SiO2), 산화알루미늄(Al2O3) 및 수산화칼슘(Ca(OH)2)이 제2반응조에 투입되어 상기 알칼리 활성화제가 생성되는 지오폴리머 제조방법.
(a) a step in which metakaolinite and an alkaline activator are introduced into a first reaction tank to produce a fourth mixture;
A method for producing a geopolymer, wherein silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ) and calcium hydroxide (Ca(OH) 2 ) extracted from concrete waste are introduced into a second reactor to produce the alkaline activator.
(a-1) 상기 콘크리트폐기물과 염산(HCl)이 혼합되어 제1혼합물이 생성되는 단계; 및
(a-2) 상기 제1혼합물이 고액분리되어 제1여액과 제1고형분이 생성되는 단계를 더 포함하며,
상기 (a-2) 단계 이후 상기 (a) 단계가 진행되며,
상기 제1고형분에 상기 이산화규소(SiO2) 및 산화알루미늄(Al2O3)이 포함되어 있으며,
상기 제1고형분이 상기 제2반응조에 투입되어 상기 알칼리 활성화제가 생성되는 지오폴리머 제조방법.
In paragraph 1,
(a-1) a step in which the concrete waste and hydrochloric acid (HCl) are mixed to produce a first mixture; and
(a-2) further comprising a step in which the first mixture is subjected to solid-liquid separation to produce a first filtrate and a first solid,
After the above step (a-2), the above step (a) is performed.
The first solid component contains silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ).
A method for producing a geopolymer, wherein the first solid component is injected into the second reaction tank to produce the alkaline activator.
(a-3) 상기 (a-2) 단계 이후, 상기 제1여액과 수산화나트륨(NaOH)이 혼합되어 제2혼합물이 생성되는 단계;
(a-4) 상기 제2혼합물이 고액분리되어 제2여액과 제2고형분이 생성되는 단계;
(a-5) 상기 제2여액과 수산화나트륨(NaOH)이 혼합되어 제3혼합물이 생성되는 단계; 및
(a-6) 상기 제3혼합물이 고액분리되어 제3여액과 제3고형분이 생성되는 단계를 더 포함하며,
상기 (a-6) 단계 이후 상기 (a) 단계가 진행되며,
상기 제3고형분에 상기 수산화칼슘(Ca(OH)2)이 포함되어 있으며,
상기 제3고형분이 상기 제2반응조에 투입되어 상기 알칼리 활성화제가 생성되는 지오폴리머 제조방법.
In the second paragraph,
(a-3) After the step (a-2), a step in which the first filtrate and sodium hydroxide (NaOH) are mixed to generate a second mixture;
(a-4) A step in which the second mixture is separated into solid and liquid to generate a second filtrate and a second solid;
(a-5) a step in which the second filtrate and sodium hydroxide (NaOH) are mixed to produce a third mixture; and
(a-6) further comprising a step in which the third mixture is separated into solid and liquid to produce a third filtrate and a third solid.
After the above step (a-6), the above step (a) is performed.
The third solid component contains calcium hydroxide (Ca(OH) 2 ),
A method for producing a geopolymer, wherein the third solid component is injected into the second reaction tank to produce the alkaline activator.
상기 제3여액이 상기 제2반응조에 투입되어 상기 알칼리 활성화제가 생성되는 지오폴리머 제조방법.
In the third paragraph,
A method for producing a geopolymer, wherein the third residue is injected into the second reaction tank to produce the alkaline activator.
상기 제4혼합물 100 중량%에 대해서, 상기 제1반응조에 투입되는 메타카올리나이트의 중량%는 25 내지 35이고, 상기 제2반응조에 투입되는 제1고형분의 중량%는 20 내지 30이고, 상기 제2반응조에 투입되는 제3여액의 중량%는 25 내지 35이고, 상기 제2반응조에 투입되는 제3고형분의 중량%는 0.1 내지 2이며,
상기 콘크리트폐기물은 방사성콘크리트폐기물이며,
(b) 상기 제4혼합물이 경화되어 지오폴리머가 제조되는 단계를 더 포함하는 지오폴리머 제조방법.
In paragraph 4,
For 100 wt% of the fourth mixture, the wt% of metakaolinite introduced into the first reaction tank is 25 to 35, the wt% of the first solid introduced into the second reaction tank is 20 to 30, the wt% of the third filtrate introduced into the second reaction tank is 25 to 35, and the wt% of the third solid introduced into the second reaction tank is 0.1 to 2.
The above concrete waste is radioactive concrete waste.
(b) A method for producing a geopolymer, further comprising a step of hardening the fourth mixture to produce a geopolymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230094994A KR102746499B1 (en) | 2023-07-21 | 2023-07-21 | A manufacturing method of geopolymer using radioactive concrete waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230094994A KR102746499B1 (en) | 2023-07-21 | 2023-07-21 | A manufacturing method of geopolymer using radioactive concrete waste |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102746499B1 true KR102746499B1 (en) | 2024-12-24 |
Family
ID=94083028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230094994A Active KR102746499B1 (en) | 2023-07-21 | 2023-07-21 | A manufacturing method of geopolymer using radioactive concrete waste |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102746499B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170097841A (en) * | 2016-02-19 | 2017-08-29 | 한국과학기술연구원 | Preparation method of calcium carbonate with high purity from inorganic materials containing alkali metals or alkali earth metals |
KR101940033B1 (en) * | 2017-08-31 | 2019-01-18 | 한국건설기술연구원 | Disposal method for Radioactive waste |
KR20210086248A (en) * | 2019-12-31 | 2021-07-08 | 한국세라믹기술원 | Fast-curing Geopolymer reinforced by silica, and Preparation method thereof |
-
2023
- 2023-07-21 KR KR1020230094994A patent/KR102746499B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170097841A (en) * | 2016-02-19 | 2017-08-29 | 한국과학기술연구원 | Preparation method of calcium carbonate with high purity from inorganic materials containing alkali metals or alkali earth metals |
KR101940033B1 (en) * | 2017-08-31 | 2019-01-18 | 한국건설기술연구원 | Disposal method for Radioactive waste |
KR20210086248A (en) * | 2019-12-31 | 2021-07-08 | 한국세라믹기술원 | Fast-curing Geopolymer reinforced by silica, and Preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4530723A (en) | Encapsulation of ion exchange resins | |
Lin et al. | Performance study of ion exchange resins solidification using metakaolin-based geopolymer binder | |
KR20110067339A (en) | Non-plastic binder for room temperature strength expression containing stone powder and method for producing concrete composition for room temperature strength and its concrete composition | |
CN108298881A (en) | A kind of geological cement and its application for curing Radioactive chemical sludge | |
KR102746499B1 (en) | A manufacturing method of geopolymer using radioactive concrete waste | |
US4839102A (en) | Block for containing and storing radioactive waste and process for producing such a block | |
Tang | Study of the possibilities of using Red Mud as an additive in concrete and grout mortar | |
Faiz et al. | Improvement of conditions for the radioactive ion exchange resin immobilization in the cement Portland | |
KR20250014641A (en) | A solidifying method of radioactive waste using radioactive concrete waste | |
RU2737954C1 (en) | Method of processing liquid radioactive wastes containing, among other things, tritium isotopes | |
Ghattas et al. | Cement-polymer composite containers for radioactive wastes disposal | |
Rakhimova et al. | Solidification of borate ion-exchange resins by alkali-activated slag cements | |
Jain | Fly ash-based geopolymers for immobilization of nuclear waste containing cesium | |
CN116375398A (en) | Method for multi-curing of nuclear waste by geopolymer | |
KR102349609B1 (en) | Admixture Composition for Self-Healing Concrete, Manufacturing Method thereof, and Self-Healing Concrete Composition having such Admixture Composition | |
JP2001208896A (en) | Co-solidification method of low-level radioactive wet waste generated from boiling water nuclear power plant | |
Falayi | Desilication of fly ash and geotechnical applications of the desilicated fly ash | |
Sadiq et al. | Contribution of Metakaolin to the Confinement of Spent Resins by Cementation | |
KR100392499B1 (en) | Improvement method adding low density polyethylene on leaching resistance of radioactive waste-form solidified by paraffin | |
Langton et al. | Cement-based waste forms for disposal of Savannah River Plant low-level radioactive salt waste | |
Sadiq et al. | The Callovo-Oxfordian as sand substitution in concrete: Effect on the confinement of the ion exchange resin | |
KR20200125129A (en) | A method of solidifying radioactive waste and the solidified waste form thereof | |
JPH0232600B2 (en) | IONKOKANJUSHISUISEIEKIKONGOBUTSUOSEMENTOCHUNIFUNYUSURUHOHO | |
Khairuddin et al. | OPTIMIZATION OF FLY ASH-BASED GEOPOLYMER FOR IMMOBILIZATION OF SPENT RESIN FROM LOW LEVEL EFFLUENT TREATMENT PLANT (LLETP), MALAYSIAN NUCLEAR AGENCY | |
KR20240074794A (en) | METHOD OF TREATING LIQUID BORATE WASTES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20230721 |
|
PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20230721 Comment text: Patent Application |
|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241219 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20241219 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20241219 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |