KR102742636B1 - SCR catalyst using single-step hexagonal boron nitride with improved thermal stability and method for synthesizing the same - Google Patents
SCR catalyst using single-step hexagonal boron nitride with improved thermal stability and method for synthesizing the same Download PDFInfo
- Publication number
- KR102742636B1 KR102742636B1 KR1020220030707A KR20220030707A KR102742636B1 KR 102742636 B1 KR102742636 B1 KR 102742636B1 KR 1020220030707 A KR1020220030707 A KR 1020220030707A KR 20220030707 A KR20220030707 A KR 20220030707A KR 102742636 B1 KR102742636 B1 KR 102742636B1
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- solution
- boron nitride
- hexagonal boron
- scr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 97
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 18
- 230000002194 synthesizing effect Effects 0.000 title claims description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 239000000243 solution Substances 0.000 claims description 59
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 34
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 30
- 230000003197 catalytic effect Effects 0.000 claims description 23
- 229910052721 tungsten Inorganic materials 0.000 claims description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052720 vanadium Inorganic materials 0.000 claims description 13
- 239000002243 precursor Substances 0.000 claims description 12
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 8
- 239000010937 tungsten Substances 0.000 claims description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 239000004408 titanium dioxide Substances 0.000 claims description 5
- 238000010189 synthetic method Methods 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 239000011149 active material Substances 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 18
- 230000004048 modification Effects 0.000 abstract description 15
- 238000012986 modification Methods 0.000 abstract description 15
- 230000015572 biosynthetic process Effects 0.000 abstract description 13
- 238000003786 synthesis reaction Methods 0.000 abstract description 13
- 229910052723 transition metal Inorganic materials 0.000 abstract description 11
- 150000003624 transition metals Chemical class 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 230000001965 increasing effect Effects 0.000 abstract description 7
- 239000003348 petrochemical agent Substances 0.000 abstract description 2
- 238000011020 pilot scale process Methods 0.000 abstract description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 25
- 239000002904 solvent Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 8
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 229910002451 CoOx Inorganic materials 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910003320 CeOx Inorganic materials 0.000 description 4
- 229910016978 MnOx Inorganic materials 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 235000002673 Dioscorea communis Nutrition 0.000 description 1
- 241000544230 Dioscorea communis Species 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 208000035753 Periorbital contusion Diseases 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910021550 Vanadium Chloride Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- AERUOEZHIAYQQL-UHFFFAOYSA-K cerium(3+);triacetate;hydrate Chemical compound O.[Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O AERUOEZHIAYQQL-UHFFFAOYSA-K 0.000 description 1
- KQJQGYQIHVYKTF-UHFFFAOYSA-N cerium(3+);trinitrate;hydrate Chemical compound O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O KQJQGYQIHVYKTF-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- XZXAIFLKPKVPLO-UHFFFAOYSA-N cobalt(2+);dinitrate;hydrate Chemical compound O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XZXAIFLKPKVPLO-UHFFFAOYSA-N 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- FJDJVBXSSLDNJB-LNTINUHCSA-N cobalt;(z)-4-hydroxypent-3-en-2-one Chemical compound [Co].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O FJDJVBXSSLDNJB-LNTINUHCSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- KTOXGWMDJYFBKK-UHFFFAOYSA-L manganese(2+);diacetate;dihydrate Chemical compound O.O.[Mn+2].CC([O-])=O.CC([O-])=O KTOXGWMDJYFBKK-UHFFFAOYSA-L 0.000 description 1
- HBTFASPVVFSRRI-UHFFFAOYSA-N manganese(2+);dinitrate;hydrate Chemical compound O.[Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O HBTFASPVVFSRRI-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Catalysts (AREA)
Abstract
본 발명은 열적안정성이 개선된 육방정 질화붕소를 활용한 SCR촉매 및 이의 제조방법에 관한 것으로서, 상세하게는 두 단계의 열처리 온도를 활용하여 다공성 표면개질 및 촉매소재 합성의 동시제조에 관한 것이다.
본 발명의 전이금속을 활용하는 촉매 및 다른 분야에서도 h-BN과 같이 활용하게 된다면 촉매의 표면 특성 증진 및 촉매 활성 물질의 분산화를 통해 활성점을 증가시킴으로써 기존 촉매 대비 우수한 성능 및 상의 안정성을 유지하여 높은 활성의 촉매를 제조가능하다. 또한, 본 발명은 SCR 촉매에 관한 기술로, 각종 오염원인 고정원(발전소, 소각로) 및 이동원(자동차, 선박) 등 다양한 산업분야의 배기가스 처리 시설에 적용되는 기술이다. 차후 Pilot scale을 위한 제조 공정 및 성능 및 물성 증진 등에 대한 상세 변수가 개선되는 경우, 대기환경 외에도 석유화학 등 다양한 산업으로의 적용이 가능하다.The present invention relates to an SCR catalyst utilizing hexagonal boron nitride with improved thermal stability and a method for producing the same, and more particularly, to the simultaneous production of porous surface modification and catalyst material synthesis by utilizing two-step heat treatment temperatures.
If the catalyst utilizing the transition metal of the present invention is utilized in other fields together with h-BN, it is possible to manufacture a highly active catalyst by maintaining excellent performance and phase stability compared to existing catalysts by increasing the active site through improving the surface properties of the catalyst and dispersing the catalytically active material. In addition, the present invention is a technology related to an SCR catalyst, and is a technology applicable to exhaust gas treatment facilities in various industrial fields such as fixed sources (power plants, incinerators) and mobile sources (automobiles, ships) of various pollution sources. In the future, if the detailed variables for the manufacturing process for pilot scale and the enhancement of performance and properties are improved, it can be applied to various industries such as petrochemicals in addition to the atmospheric environment.
Description
본 발명은 열적안정성이 개선된 육방정 질화붕소를 활용한 SCR촉매 및 이의 제조방법에 관한 것으로서, 상세하게는 두 단계의 열처리 온도를 활용하여 다공성 표면개질 및 촉매소재 합성의 동시제조에 관한 것이다.The present invention relates to an SCR catalyst utilizing hexagonal boron nitride with improved thermal stability and a method for producing the same, and more particularly, to the simultaneous production of porous surface modification and catalyst material synthesis by utilizing two-step heat treatment temperatures.
최근 대기환경에 대한 이목이 집중됨에 따라 고정원 및 이동원에서 배출되는 가스상 오염물질에 대한 각종 규제(EURO6, TierⅢ, 미세먼지 특별대책 등)가 강화되고 있다. 이에 따라, 규제의 만족을 위한 다양한 기술이 연구되고 있는 추세이다. 일반적으로 잘 알려진 대기오염 물질 중 하나인 질소산화물(NOx)은 그 자체로도 인체에 매우 유해하지만, 미세먼지, 스모그, 산성비의 생성을 유발하는 주 원인 물질이다. 질소산화물을 제거하는 방법은 여러 기술이 존재하지만 효율적인 방면에서 가장 우수한 SCR(Selective Catalytic Reduction), 선택적 촉매 환원법이 대표적으로 사용되고 있다. SCR기술은 질소산화물(NOx)을 환원제인 NH3, Urea를 사용하여 인체에 무해한 물질인 질소와 수증기로 바꾸는 기술이다. 현재 각종 오염원에서 적용되는 SCR촉매는 TiO2 지지체를 기반으로 V2O5-WO3를 촉매 활성물질로 사용하고 있으나, 300~380℃의 고온영역에서 활용되므로 열역학적, 경제적인 측면에서 효율성이 저하되는 문제점이 있다.As attention has recently been focused on the atmospheric environment, various regulations (such as EURO6, Tier III, and special measures for fine dust) on gaseous pollutants emitted from fixed and mobile sources are being strengthened. Accordingly, various technologies are being studied to satisfy regulations. Nitrogen oxides (NO x ), one of the well-known air pollutants, are very harmful to the human body in themselves, but are also the main cause of fine dust, smog, and acid rain. There are various technologies to remove nitrogen oxides, but SCR (Selective Catalytic Reduction) is the most efficient and representative one. SCR technology is a technology that uses reducing agents, NH 3 and urea, to change nitrogen oxides (NO x ) into nitrogen and water vapor, which are harmless to the human body. Currently, SCR catalysts applied to various pollutants use V2O5 - WO3 as a catalytic active material based on a TiO2 support, but there is a problem of reduced efficiency in thermodynamic and economic aspects because they are used in a high temperature range of 300~380℃.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 온도 범위가 넓고, 열적안정성이 개선된 SCR촉매를 single step으로 합성하는 것을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention aims to provide a single step synthesis of an SCR catalyst having a wide temperature range and improved thermal stability.
또한 상기 single step으로 합성된 육방정 질화붕소를 포함하는 SCR촉매를 제공하는 것을 목적으로 한다.In addition, the present invention aims to provide an SCR catalyst including hexagonal boron nitride synthesized in the single step.
상기 목적을 달성하기 위하여 본 발명은, 촉매활성물질 1을 포함하는 전구체 1을 용매에 용해시켜 용액 1을 제조하고, 촉매활성물질 2를 포함하는 전구체 2를 용매에 용해시켜 용액 2를 제조하는 제 1 단계;In order to achieve the above purpose, the present invention comprises a first step of preparing solution 1 by dissolving precursor 1 including catalytically active material 1 in a solvent, and preparing solution 2 by dissolving precursor 2 including catalytically active material 2 in a solvent;
지지체인 육방정 질화붕소를 용매에 분산시켜 용액 3을 제조하는 제 2단계; A second step of preparing solution 3 by dispersing hexagonal boron nitride as a support in a solvent;
상용 담체인 이산화티타늄을 용매에 용매에 분산시켜 용액 4를 제조하는 제 3 단계;Step 3: preparing solution 4 by dispersing titanium dioxide, a commercial carrier, in a solvent;
상기 용액 1, 용액 2를 용액 3에 혼합하여 혼합된 용액을 만들고, 혼합된 용액을 용액 4와 혼합하는 제 4 단계;A fourth step of mixing the above solutions 1 and 2 into solution 3 to create a mixed solution, and mixing the mixed solution with solution 4;
250 내지 400℃에서 열처리하여 육방정 질화붕소의 표면에 촉매에칭을 하는 제 5 단계; 및A fifth step of catalytic etching the surface of hexagonal boron nitride by heat treatment at 250 to 400°C; and
330 내지 470℃에서 열처리하여 촉매활성물질 1 및 2를 포함하는 산화물을 생성하는 제 6단계;를 포함하는 single step 육방정 질화붕소를 활용한 선택적 촉매 환원법(Selective Catalytic Reduction, SCR) 촉매의 합성방법을 제공한다.A method for synthesizing a selective catalytic reduction (SCR) catalyst utilizing single step hexagonal boron nitride is provided, including a sixth step of generating an oxide including catalytically active materials 1 and 2 by heat treatment at 330 to 470°C.
상기 다른 목적을 달성하기 위하여 본 발명은, 상기 촉매 합성방법으로 제조된 넓은 온도범위를 가지는 SCR 촉매를 제공한다.In order to achieve the other objects described above, the present invention provides an SCR catalyst having a wide temperature range manufactured by the catalyst synthesis method described above.
본 발명의 전이금속을 활용하는 촉매 및 다른 분야에서도 h-BN과 같이 활용하게 된다면 촉매의 표면 특성 증진 및 촉매 활성 물질의 분산화를 통해 활성점을 증가시킴으로써 기존 촉매 대비 우수한 성능 및 상의 안정성을 유지하여 높은 활성의 촉매를 제조 가능하다. 또한, 전이금속을 활용한 산화물(VOx, WOx, MnOx, CeOx, CoOx 등)의 경우 h-BN의 다공성 표면개질은 모두 가능하며, 바로 촉매로 활용이 가능하였음을 통하여, 전이금속을 사용한다는 재료의 조건만 부합한다면 분야 상관없이 활용할 수 있다.If the catalyst utilizing the transition metal of the present invention is utilized in other fields as well as h-BN, it is possible to manufacture a highly active catalyst by maintaining excellent performance and phase stability compared to existing catalysts by increasing the active site through improvement of the surface properties of the catalyst and dispersion of the catalytically active material. In addition, oxides utilizing the transition metal (VOx, WOx, MnOx, CeOx, CoOx) In the case of h-BN, surface modification of the porous surface is possible and it can be used as a catalyst. Therefore, it can be used regardless of the field as long as the material condition of using a transition metal is met.
또한, 본 발명은 SCR 촉매에 관한 기술로, 각종 오염원인 고정원(발전소, 소각로) 및 이동원(자동차, 선박) 등 다양한 산업분야의 배기가스 처리 시설에 적용되는 기술이다. 차후 Pilot scale을 위한 제조 공정 및 성능 및 물성 증진 등에 대한 상세 변수가 개선되는 경우, 대기환경 외에도 석유화학 등 다양한 산업으로의 적용이 가능하다.In addition, the present invention is a technology related to SCR catalysts, and is a technology applicable to exhaust gas treatment facilities in various industrial fields such as fixed sources (power plants, incinerators) and mobile sources (automobiles, ships) of various pollution sources. In the future, if detailed variables for manufacturing processes for pilot scale and performance and property enhancement are improved, it can be applied to various industries such as petrochemicals in addition to the atmospheric environment.
도 1은 본 발명의 일 실시예에 따른 1wt% V + 5wt% W을 다양한 형태의 h-BN과 TiO2에 담지시켜 열처리 후 얻어진 샘플로 탈질효율을 측정한 그래프이다.
도 2는 본 발명의 일 실시예에 따른 single step V1W5/BN-TiO2의 TEM, STEM, 및 EDS 분석 결과 이미지이다.
도 3은 본 발명의 일 실시예에 따른 single step V1W5/BN-TiO2 (실시예 1) 및 2step VW/BN-TiO2 (비교예 2)의 열적안정성을 나타낸 그래프이다.
도 4는 본 발명의 일 실시예에 따른 2step 합성을 single step으로 개선한 모식도이다.
도 5는 본 발명의 일 실시예에 따른 single step 육방정 질화붕소를 활용한 탈질촉매의 합성방법 및 열처리 조건의 모식도이다.FIG. 1 is a graph showing the measurement of denitrification efficiency using samples obtained after heat treatment by supporting 1 wt% V + 5 wt% W on various forms of h-BN and TiO2 according to one embodiment of the present invention.
FIG. 2 is an image showing the results of TEM, STEM, and EDS analysis of a single step V1W5/BN-TiO 2 according to one embodiment of the present invention.
FIG. 3 is a graph showing the thermal stability of single step V1W5/BN-TiO 2 (Example 1) and 2step VW/BN-TiO 2 (Comparative Example 2) according to one embodiment of the present invention.
Figure 4 is a schematic diagram showing an improvement of a two-step synthesis into a single step according to one embodiment of the present invention.
FIG. 5 is a schematic diagram of a method for synthesizing a denitrification catalyst using single-step hexagonal boron nitride and heat treatment conditions according to one embodiment of the present invention.
이하 본 발명을 더욱 상세하게 설명한다.The present invention is described in more detail below.
새로운 조성의 촉매 개발은 실제 현장에 적용하기에는 생산 라인 및 적용 시스템 라인의 수정이 반드시 동반되어 시간적으로나 경제적으로 어려움이 동반되어 즉각적인 상용화의 어려움이 존재한다. SCR 촉매는 반응성 증진을 목적으로, 지속적으로 배기가스의 가열을 진행하므로, 열에 노출되기 쉬운 환경이다. 이에, 촉매 활성물질이 다량으로 사용된 경우, 열적 안정성 저하로 인한 상변화 및 응집현상이 비교적 쉽게 발생하게 된다. 즉, 주 촉매 물질의 상변화 및 입자 응집으로 인한 비표면적, 촉매 산점 감소 등 표면 특성에 부정적인 영향을 미쳐 촉매 효율을 저하시킨다. 이러한 문제의 해결을 위해 제3의 물질인 h-BN (hexagoanl boron nitride)을 활용하여 활성물질의 열적 안정성을 도모하여 상변화를 막고 동시에, 촉매물질에 의한 h-BN의 표면개질도 동시에 진행하여 표면을 다공성 구조체로 유도하고 이렇게 생성된 기공에 촉매물질이 잔류하게 되며 바로 산화물로 안정화 시켜서 촉매로 활용하게 되면은 응집 억제와 동시에 분산성을 증대시켜주며, 이를 통해 촉매물질을 통한 h-BN의 표면개질 및 이렇게 표면개질된 h-BN에 의해 촉매물질은 분산성 및 안정성을 가지게 되는 시너지효과를 얻게 된다. 더불어, 일반적으로 h-BN의 다공성구조 표면개질과 다공성 h-BN (porous h-BN, pBN)을 적용한 촉매 합성은 별개의 공정으로 총 2단계에 걸쳐 (2step) 이루어지지만, 본 발명기술은 열처리 단계에서 조절을 통해 다공성구조 표면개질과 이를 적용한 촉매합성을 한 단계(single step)로 합쳐 공정시간을 단축하며, 합성 촉매의 성능이 2step공정을 통해 합성된 촉매와 유사하다.The development of a new catalyst composition is difficult to commercialize immediately because it is accompanied by modifications to the production line and application system line for actual field application, which is difficult in terms of time and economy. Since the SCR catalyst continuously heats the exhaust gas in order to enhance the reactivity, it is an environment easily exposed to heat. Accordingly, when a large amount of catalytic active material is used, phase change and agglomeration phenomenon due to decreased thermal stability occur relatively easily. In other words, the phase change of the main catalyst material and particle agglomeration have a negative effect on the surface properties such as the specific surface area and the decrease in the catalytic acid site, which reduces the catalytic efficiency. To solve these problems, a third material, h-BN (hexagonal boron nitride), is utilized to ensure the thermal stability of the active material, thereby preventing phase change, and at the same time, surface modification of h-BN by a catalytic material is also performed simultaneously to induce the surface into a porous structure, and the catalytic material remains in the pores thus created and is immediately stabilized as an oxide and utilized as a catalyst, which suppresses aggregation and increases dispersibility, and through this, a synergistic effect is obtained in which the catalytic material has dispersibility and stability due to surface modification of h-BN by the catalytic material and the surface-modified h-BN in this way. In addition, although the surface modification of the porous structure of h-BN and the synthesis of a catalyst using porous h-BN (porous h-BN, pBN) are generally separate processes and are performed in two steps (2 steps), the technology of the present invention combines the surface modification of the porous structure and the synthesis of a catalyst using it into a single step through control in the heat treatment step, thereby shortening the process time, and the performance of the synthesized catalyst is similar to that of a catalyst synthesized through the 2-step process.
Boron nitride는 다양한 구조(hexagonal, cubic, and wurtzite)를 가지는 재료로, 높은 열적 안정성 등의 여러 특성을 가지고 있다. 그 중 hexagonal 구조는 2D material로 판상형태 이다. h-BN은 2970℃의 높은 녹는점을 가지며, 공기 중에서도 1000℃까지 자체 특성을 유지하는 안정한 물질로 최근 각종 분야에서 연구가 진행되고 있다. 이러한 특성을 이용하여 h-BN을 촉매 활성물질의 지지체로 활용하여 상변화 및 응집 억제와 동시에 분산성 증진을 통한 표면개질로 SCR 촉매 효율 및 물성을 증진시키고자 한다. Boron nitride is a material with various structures (hexagonal, cubic, and wurtzite) and has various properties such as high thermal stability. Among them, the hexagonal structure is a 2D material in a plate shape. h-BN has a high melting point of 2970℃ and is a stable material that maintains its properties up to 1000℃ in air, and research is being conducted in various fields recently. Using these properties, h-BN is utilized as a support for catalytically active materials to improve the efficiency and properties of SCR catalysts through surface modification by suppressing phase change and aggregation and enhancing dispersibility.
또한, 이러한 h-BN은 전이금속에 의해 catalytic etching이 발생하게 되는데 이를 통해 h-BN은 표면에 다공성 구조를 가지게 되고, 이러한 기공들에 전이금속이 위치하게 되면 높은 분산성을 지니게 된다. 전이금속을 활용하는 촉매의 경우 2D재료인 h-BN의 적용을 통해서 촉매물질을 통해 다공성 구조로 표면개질된 h-BN에 의해 분산성이 개선되고 열적으로 상이 안정화 되어 응집 현상이 억제된다. 그 결과, 동일한 h-BN을 사용했음에도 불구하고, catalytic etching이 발생하게 되는 300 내지 400℃를 포함하여 열처리한 촉매와, 이 열처리 단계가 포함되지 않은 촉매의 비교를 통해서 그 효과 및 성능을 확인할 수 있고, 종래에 제조되어 있던 porous h-BN을 적용한 촉매와 비슷하거나 우수한 성능을 나타내는 것을 확인할 수 있다. 본 발명을 통해 촉매물질을 통한 h-BN의 표면개질과, 이의 촉매 활용을 한 번의 공정에서 이루어 질수 있어 single step으로 표면개질 및 촉매 합성이 가능하다.In addition, the h-BN undergoes catalytic etching by the transition metal, which causes the h-BN to have a porous structure on the surface, and when the transition metal is positioned in these pores, it has high dispersibility. In the case of a catalyst utilizing a transition metal, the dispersibility is improved and the thermal phase is stabilized to suppress the agglomeration phenomenon by the h-BN surface-modified into a porous structure through the application of the 2D material, h-BN. As a result, even though the same h-BN was used, the effect and performance can be confirmed by comparing the catalyst heat-treated including 300 to 400℃ where catalytic etching occurs with the catalyst that does not include this heat treatment step, and it can be confirmed that it exhibits performance similar to or superior to that of the catalyst using the porous h-BN that was previously manufactured. Through the present invention, surface modification of h-BN using a catalytic material and utilization of the catalyst can be performed in a single process, so that surface modification and catalyst synthesis are possible in a single step.
본 발명으로 전이금속을 활용하는 촉매 및 다른 분야에서도 h-BN과 같이 활용하게 된다면 촉매의 표면 특성 증진 및 촉매 활성 물질의 분산화를 통해 활성점을 증가시킴으로써 기존 촉매 대비 우수한 성능 및 상의 안정성을 유지하여 높은 활성의 촉매를 제조가능하다. 또한, 전이금속을 활용한 산화물(VOx, WOx, MnOx, CeOx, CoOx 등)의 경우 h-BN의 다공성 표면개질은 모두 가능하며, 바로 촉매로 활용이 가능하였음을 통하여, 전이금속을 사용한다는 재료의 조건만 부합한다면 분야 상관없이 활용될 가능성이 높은 기술이다.If the catalyst utilizing the transition metal of the present invention is utilized in other fields as well as h-BN, it is possible to manufacture a highly active catalyst by maintaining excellent performance and phase stability compared to existing catalysts by increasing the active site through improvement of the surface properties of the catalyst and dispersion of the catalytically active material. In addition, oxides utilizing the transition metal (VOx, WOx, MnOx, CeOx, CoOx) In the case of h-BN, surface modification of the porous surface is possible and it can be used as a catalyst. Therefore, it is a technology with a high possibility of being used regardless of the field as long as the material condition of using a transition metal is met.
촉매활성물질 1을 포함하는 전구체 1을 용매에 용해시켜 용액 1을 제조하고, 촉매활성물질 2를 포함하는 전구체 2를 용매에 용해시켜 용액 2를 제조하는 제 1 단계;A first step of preparing solution 1 by dissolving precursor 1 containing catalytically active substance 1 in a solvent, and preparing solution 2 by dissolving precursor 2 containing catalytically active substance 2 in a solvent;
본 발명의 일측면에 따르면, 촉매활성물질 1을 포함하는 전구체 1을 용매에 용해시켜 용액 1을 제조하고, 촉매활성물질 2를 포함하는 전구체 2를 용매에 용해시켜 용액 2를 제조하는 제 1 단계; 지지체인 육방정 질화붕소를 용매에 분산시켜 용액 3을 제조하는 제 2단계; 상용 담체인 이산화티타늄을 용매에 용매에 분산시켜 용액 4를 제조하는 제 3 단계; 용액 1, 용액 2를 용액 3에 혼합하여 혼합된 용액을 만들고, 혼합된 용액을 용액 4와 혼합하는 제 4 단계; 250 내지 400℃에서 열처리하여 육방정 질화붕소의 표면에 촉매에칭을 하는 제 5 단계; 및 330 내지 470℃에서 열처리하여 촉매활성물질 1 및 2를 포함하는 산화물을 생성하는 제 6단계;를 포함하는 single step 육방정 질화붕소를 활용한 선택적 촉매 환원법(Selective Catalytic Reduction, SCR) 촉매의 합성방법을 제공한다.According to one aspect of the present invention, there is provided a method of producing a catalyst, comprising: a first step of dissolving precursor 1 including catalytically active material 1 in a solvent to prepare solution 1, and dissolving precursor 2 including catalytically active material 2 in a solvent to prepare solution 2; a second step of dispersing hexagonal boron nitride as a support in a solvent to prepare solution 3; a third step of dispersing titanium dioxide as a commercial carrier in a solvent to prepare solution 4; a fourth step of mixing solution 1 and solution 2 in solution 3 to prepare a mixed solution, and mixing the mixed solution with solution 4; a fifth step of performing a heat treatment at 250 to 400°C to perform catalytic etching on the surface of hexagonal boron nitride; The present invention provides a method for synthesizing a selective catalytic reduction (SCR) catalyst using single step hexagonal boron nitride, including a sixth step of generating an oxide including catalytically active materials 1 and 2 by heat treatment at 330 to 470°C.
이 때, 용매는 에탄올인 것이 바람직하다.At this time, it is preferable that the solvent is ethanol.
상기 single step은 one step, 1step SCR 촉매 합성방법으로도 표현할 수 있다.The above single step can also be expressed as a one step, 1step SCR catalyst synthesis method.
제 5 단계에서 촉매 에칭을 통해 육방정 질화붕소의 표면은 다공성구조를 띄는 것을 더 포함할 수 있다. 제 5 단계 및 제 6 단계의 온도는 30 내지 100℃ 차이가 나는 것이 바람직하고, 30 내지 70℃ 차이가 나는 것이 더욱 바람직하고, 40 내지 60℃ 차이가 가장바람직하다. 바람직하게는 5 단계 온도 310 내지 410℃, 6단계 온도 340 내지 460℃인 것이 바람직하고, 더욱 바람직하게는 5 단계 온도 330 내지 380℃, 6단계 온도 370 내지 440℃일 수 있다. 5, 6 단계의 각 온도는 40 내지 60℃가 차이난다면 크게 문제가 되지않는다. 5단계의 온도에서는 촉매적 식각(catalytically etching)을 통해 다공성 물질로 표면개질이 도모되며, 6단계에서 5단계보다 높은 온도로 열처리를 진행하여 촉매물질로 합성을 완료한다. one-step 공정으로 종래의 2step 공정보다 공정의 시간, 과정이 단축되었으며, 다공성 표면 개질 및 촉매소재의 합성이 하나의 합성방법으로 가능하므로, 경제적인 측면에서도 개선이된다. 이렇게 합성된 SCR 촉매는 저온 및 고온에서 높은 탈질 효율을 보여 사용온도 범위가 200 내지 450℃로 매우 넓다. 또한, 이 온도 범위 중 220내지 400℃ 에서 탈질효율은 94.1 내지 99.9%의 효율을 보여준다.In the fifth step, the surface of the hexagonal boron nitride may further include a porous structure through catalytic etching. The temperatures of the fifth and sixth steps are preferably different by 30 to 100°C, more preferably different by 30 to 70°C, and most preferably different by 40 to 60°C. Preferably, the temperature of the fifth step is 310 to 410°C, and the temperature of the sixth step is 340 to 460°C, and more preferably, the temperature of the fifth step is 330 to 380°C, and the temperature of the sixth step is 370 to 440°C. If the temperatures of the fifth and sixth steps are different by 40 to 60°C, there is no significant problem. At the temperature of the fifth step, surface modification into a porous material is promoted through catalytic etching, and in the sixth step, heat treatment is performed at a higher temperature than that of the fifth step to complete the synthesis of the catalytic material. The one-step process shortens the process time and process compared to the conventional two-step process, and since porous surface modification and synthesis of catalyst material are possible with a single synthesis method, it also improves the economic aspect. The SCR catalyst synthesized in this way shows high denitrification efficiency at low and high temperatures, and has a very wide usable temperature range of 200 to 450°C. In addition, the denitrification efficiency shows an efficiency of 94.1 to 99.9% at 220 to 400°C among this temperature range.
촉매는 크게 촉매활성을 나타내는 촉매활성물질과 촉매활성을 향상시키거나 촉매의 수명을 연장시키는 조촉매 그리고, 이러한 촉매활성물질과 조촉매를 지지해주고 높은 표면적을 제공하여 반응면적을 높이는 역할을 하는 담체 즉, 지지체로 구성되어 있다. 촉매의 이용에 있어 매우 중요한 역할을 하는 담체가 갖추어야 할 조건은 그 적용 특성상 표면적과 접촉 면적이 넓어야 하며, 재료의 열용량과 열팽창계수가 낮아야 한다. 또한, 사용온도, 강도, 산화 저항성이 높아야 하며, 담체와 촉매의 코팅성 및 호환성이 좋아야 한다.A catalyst is largely composed of a catalytically active substance that exhibits catalytic activity, a cocatalyst that improves catalytic activity or extends the life of the catalyst, and a carrier that supports the catalytically active substance and cocatalyst and provides a high surface area to increase the reaction area, i.e., a support. The conditions that the support, which plays a very important role in the use of the catalyst, must have are that it must have a large surface area and contact area due to its application characteristics, and the heat capacity and thermal expansion coefficient of the material must be low. In addition, the operating temperature, strength, and oxidation resistance must be high, and the coating properties and compatibility of the support and the catalyst must be good.
촉매활성물질은 전이금속 산화물인 것이 바람직하고, Mn, Ce, Co, Zr, V, 및 W 산화물 중 어느 하나 이상을 포함할 수 있다. VOx, WOx, MnOx, CeOx, CoOx 등이 될 수 있고, MnO, MnO2, Mn2O3, Mn3O4, CeO2, Co3O4, ZrO2, V2O5, 및 WO3 중 어느하나 이상을 포함할 수 있다. 본 발명에서 촉매활성물질 1 및 촉매활성물질 2는 1 : 1 ~ 10의 질량비로 합성되는 것이 바람직하다. 더욱 바람직하게는 1 : 1 ~ 7의 질량비로 합성되는 것이다.The catalytically active material is preferably a transition metal oxide and may include at least one of oxides of Mn, Ce, Co, Zr, V, and W. VOx, WOx, MnOx, CeOx, CoOx It can be, and can include one or more of MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CeO 2 , Co 3 O 4 , ZrO 2 , V 2 O 5 , and WO 3 . In the present invention, it is preferable that the catalytically active material 1 and the catalytically active material 2 are synthesized at a mass ratio of 1:1 to 10. More preferably, they are synthesized at a mass ratio of 1:1 to 7.
전구체는 육방정 질화붕소를 포함하는 SCR촉매에 사용되는 VOx를 위한 Ammonium metavanadata (AMV) 또는 Vanadium chloride, WOx를 위한 Ammonium metatungstate (AMT) 또는 Tungsten sulfide, MnOx를 위한 Manganese nitrate hydrate, Manganese acetate dihydrate 또는 Manganese chloride, CeOx를 위한 Cerium nitrate hydrate, Cerium acetate hydrate 또는 Cerium chloride, CoOx를 위한 Cobalt nitrate hydrate, Cobalt acetylacetonate 또는 Cobalt chloride hexahydrate 등을 사용할 수 있다.The precursor may be Ammonium metavanadata (AMV) or Vanadium chloride for VOx, Ammonium metatungstate (AMT) or Tungsten sulfide for WOx, Manganese nitrate hydrate, Manganese acetate dihydrate or Manganese chloride for MnOx, Cerium nitrate hydrate, Cerium acetate hydrate or Cerium chloride for CeOx, Cobalt nitrate hydrate, Cobalt acetylacetonate or Cobalt chloride hexahydrate for CoOx, etc. used in the SCR catalyst containing hexagonal boron nitride.
담체는 상용 담체라면 모두 사용 가능하며, 티타늄 산화물인 TiO2가 바람직하며, 알루미늄 산화물인 Al2O3 또는 규소 산화물인 SiO2도 사용할 수 있다. TiO2는 고체의 가루 형태로 사용할 수 있으며, 육방정 질화붕소 파우더를 각각 다른 에탄올 용매로 한 용액으로 준비하여 4가지 용액을 제조한뒤 용액을 합쳐 합성한다. 먼저 용액 1, 2, 3을 혼합하고 그 혼합용액에 용액 4를 혼합하는데 이때 용액 1, 2를 모두 완전히 용해될 때까지 교반하고, 용액 3, 4를 모두 분산시키기 위해 이들 용액을 1시간 내지 2시간 동안 초음파 분산을 실시할 수 있다.Any commercial carrier can be used, titanium oxide TiO 2 is preferred, aluminum oxide Al 2 O 3 or silicon oxide SiO 2 can also be used. TiO 2 can be used in solid powder form, and hexagonal boron nitride powder is prepared as solutions in different ethanol solvents to prepare four solutions, and then the solutions are combined to synthesize. First, solutions 1, 2, and 3 are mixed, and solution 4 is mixed with the mixed solution. At this time, solutions 1 and 2 are stirred until completely dissolved, and in order to disperse solutions 3 and 4, these solutions can be ultrasonically dispersed for 1 to 2 hours.
본 발명의 다른 일측면에 따르면, 본 발명의 합성방법으로 제조된 선택적 촉매 환원법(SCR) 촉매를 제공한다.According to another aspect of the present invention, a selective catalytic reduction (SCR) catalyst manufactured by the synthetic method of the present invention is provided.
선택적 촉매 환원법(Selective Catalytic Reduction, SCR)은 배기가스를 SCR 촉매에 접촉시켜 정화하는 것으로서, SCR 촉매의 도움을 받아 배기가스 내의 질소산화물(NOx)를 인체에 무해한 질소와 물로 전환한 후 배출시킨다. 이때, 암모니아(NH3)나 요소수(Urea)가 환원제로 사용되며 환원제가 고온으로 가열된 촉매에 분사되어 배기가스 중의 질소산화물만을 선택적으로 환원시킨다.Selective Catalytic Reduction (SCR) is a method of purifying exhaust gas by contacting it with an SCR catalyst. With the help of the SCR catalyst, nitrogen oxides (NOx) in the exhaust gas are converted into nitrogen and water, which are harmless to the human body, and then discharged. At this time, ammonia (NH3) or urea is used as a reducing agent, and the reducing agent is sprayed onto the catalyst heated to a high temperature to selectively reduce only nitrogen oxides in the exhaust gas.
SCR 촉매의 종류는 금속 산화물계, Zeolite계, 알칼리토 금속계, 희토류계 촉매 등이 있지만, sulfate 화 된 TiO2를 담체로 한 WO3, V2O5, MoO3 등의 촉매 활성 물질이 조합된 벌집 모양의 모노리스(Monolithic honeycomb) 압출 촉매가 상용화되어 있다. 그러나 이러한 벌집 모양의 모노리스 촉매는 담체로 사용되는 TiO2와 촉매 활성 물질인 WO3와 V2O5 등의 활용으로 가격이 비싸고, 타 담체 재료에 비해 성형성이 불량하여 촉매의 생산 비용이 높다는 문제점이 있다.There are various types of SCR catalysts, such as metal oxide, zeolite, alkaline earth metal, and rare earth catalysts, but a monolithic honeycomb extruded catalyst in which sulfated TiO 2 is used as a carrier and catalytically active materials such as WO 3 , V 2 O 5 , and MoO 3 are combined has been commercialized. However, these honeycomb monolithic catalysts are expensive due to the utilization of TiO 2 used as a carrier and catalytically active materials such as WO 3 and V 2 O 5 , and compared to other carrier materials, there is a problem in that the cost of producing the catalyst is high due to the poor formability.
본 발명의 SCR 촉매는 200 내지 450℃의 온도에서 NOx 제거 활성을 나타내는 것이 바람직하다. 더욱 바람직하게 온도범위는 220 내지 420℃일 수 있다. 또한, 상기 범위 내에서 NOx 전환율은 90.0 내지 99.9%일 수 있고, 더욱 바람직하게 NOx 전환율은 94.0 내지 99.8%일 수 있다.It is preferable that the SCR catalyst of the present invention exhibits NOx removal activity at a temperature of 200 to 450° C. More preferably, the temperature range may be 220 to 420° C. In addition, within the above range, the NOx conversion rate may be 90.0 to 99.9%, and more preferably, the NOx conversion rate may be 94.0 to 99.8%.
본 발명의 SCR촉매는 촉매활성물질 1 0.1 내지 5 중량%, 촉매활성물질 2 1 내지 10중량%, 육방정 질화붕소 5 내지 15중량% 및 TiO2 80 내지 90중량%인 것이 바람직하다. 본 발명의 SCR 촉매의 직경은 10nm 내지 10μm인 것이 바람직하고, 더욱 바람직하게 직경은 10nm 내지 1μm일 수 있다. 이 때, SCR 촉매의 두께는 1 내지 200nm인 것이 바람직하고, 30 내지 100nm인 것이 더욱 바람직하다.The SCR catalyst of the present invention preferably contains 0.1 to 5 wt% of a catalytically active material 1, 1 to 10 wt% of a catalytically active material 2, 5 to 15 wt% of hexagonal boron nitride, and 80 to 90 wt% of TiO 2. The diameter of the SCR catalyst of the present invention is preferably 10 nm to 10 μm, and more preferably, the diameter may be 10 nm to 1 μm. At this time, the thickness of the SCR catalyst is preferably 1 to 200 nm, and more preferably 30 to 100 nm.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른구성 요소를 더 포함할 수 있는 것을 의미한다. 그리고 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며, 본 발명을 제한하고자 하는 것이 아니다. 본 명세서에서 단수형은 문구에서 특별히 언급하지 않는한 복수형도 포함한다.In this specification, when a part is said to "include" a certain component, this does not mean that other components are excluded, unless otherwise specifically stated, but that other components may be included. In addition, the terminology used in this specification is for the purpose of describing embodiments, and is not intended to limit the present invention. In this specification, the singular also includes the plural unless specifically stated in the phrase.
본 문서에서, "A 또는 B," "A 또는/및 B 중 적어도 하나," 또는 "A 또는/및 B 중 하나 또는 그 이상"등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. 예를 들면, "A 또는 B," "A 및 B 중 적어도 하나," 또는 "A 또는 B 중 적어도 하나"는, (1) 적어도 하나의 A를 포함, (2) 적어도 하나의 B를 포함, 또는 (3) 적어도 하나의 A 및 적어도 하나의 B 모두를 포함하는 경우를 모두 지칭할 수 있다.In this document, the expressions "A or B," "at least one of A and/or B," or "one or more of A or/and B" can include all possible combinations of the listed items. For example, "A or B," "at least one of A and B," or "at least one of A or B" can all refer to (1) including at least one A, (2) including at least one B, or (3) including both at least one A and at least one B.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail by way of preferred embodiments. However, it will be apparent to those skilled in the art that these embodiments are intended to explain the present invention more specifically and that the scope of the present invention is not limited thereby.
<실시예><Example>
실시예 1 - single step V1W5/BN-TiO2 (350-400℃)합성Example 1 - Synthesis of single step V1W5/BN-TiO 2 (350-400℃)
촉매 활성물질 (Vandaium, Tungsten), TiO2 powder, 및 h-BN powder를 각기 다른 ethanol을 용매로 한 solution 준비하였다. 전구체인 Ammonium metavanadata (AMV), NH4VO3를 ethanol에 용해시켜 solution 1을 제조하였다. 전구체인 Ammonium metatungstate (AMT), (NH4)6H2W12O40를 ethanol에 용해시켜 solution 2를 제조하였다. Catalytically active materials (Vandaium, Tungsten), TiO 2 powder, and h-BN powder were prepared as solutions using different ethanol solvents. Solution 1 was prepared by dissolving the precursors, Ammonium metavanadata (AMV), NH 4 VO 3 , in ethanol. Solution 2 was prepared by dissolving the precursors, Ammonium metatungstate (AMT), (NH 4 ) 6 H 2 W 12 O 40 , in ethanol.
추가 지지체인 h-BN powder를 ethanol에 분산시켜 solution 3을 제조하였다. 상용 지지체인 TiO2 powder를 ethanol에 분산시켜 solution 4를 제조하였다. solution 1 및 2를 모두 완전히 용해될 때까지 string 실시하였다. solution 3 및 4를 모두 분산시키기 위해 1h Ultrasonic 실시하였다. 각 용해 및 분산된 solution 1-4를 반응 및 담지 시키기 위해 70℃에서 2시간 진행 후, 상온 (R.T.)에서 2시간 실시하였다. solution은 1과 2를 3에 부어 합친 후, 70℃에서 2시간 유지하였다. solution 1, 2 및 3을 합친 solution을 solution 4에 합친 후, 상온에서 2시간 유지하였다. 1,2,3 및 4를 모두 합친 solution의 ethanol을 증발시키기 위해서 oil bath에서 78℃ 중탕으로 건조하면서 stirring하였다.Additional support, h-BN powder, was dispersed in ethanol to prepare solution 3. Commercial support, TiO 2 powder, was dispersed in ethanol to prepare solution 4. Both solutions 1 and 2 were string-treated until completely dissolved. Ultrasonication was performed for 1 h to disperse both solutions 3 and 4. Each dissolved and dispersed solution 1-4 was reacted and supported at 70°C for 2 h, and then at room temperature (RT) for 2 h. Solutions 1 and 2 were poured into 3, combined, and maintained at 70°C for 2 h. The combined solution of solutions 1, 2, and 3 was combined into solution 4, and maintained at room temperature for 2 h. The combined solution of solutions 1, 2, 3, and 4 was stirred while drying in an oil bath at 78°C to evaporate the ethanol.
Air atmosphere의 350℃에서 열처리하여 h-BN표면에 catalytic etching을 통한 porous structure를 유도하였다. Air atmosphere의 400℃에서 열처리하여 Vanadium(V) 및 Tungsten(W)의 열적 안정화를 통해 산화물 형성하여 VW/BN-TiO2 (350-400℃) 촉매를 합성하였다.The porous structure was induced through catalytic etching on the h-BN surface by heat treatment at 350°C in air atmosphere. The VW/BN-TiO 2 (350-400°C) catalyst was synthesized by thermal stabilization of vanadium (V) and tungsten (W) through heat treatment at 400°C in air atmosphere to form oxides.
실시예2Example 2
(1) 탈질효율 평가실험(1) Denitrification efficiency evaluation experiment
탈질효율을 평가하기 위하여 Fixed bed를 활용하였다. 합성된 촉매 0.5ml를 1/2인치의 반응기에 장착한다. 그 후, gas가 샘플을 지나지 않도록 bypass 상태에서 MFC를 이용하여 300ppm NO, NH3, SO2와 5% O2로 gas농도를 조절하고, 총 유량을 500sccm으로 유지하기 위해서 N2를 balanced gas로 사용하였다. gas 농도가 안정화되면 샘플이 장착된 반응기로 gas가 지나가도록 하여 200 내지 400℃까지 온도를 상승시키면서 합성된 촉매의 탈질효율을 평가하였다.Fixed bed was utilized to evaluate the denitrification efficiency. 0.5 ml of the synthesized catalyst was installed in a 1/2 inch reactor. After that, the gas concentration was adjusted to 300 ppm NO, NH3, SO2 and 5% O2 using MFC in the bypass state so that the gas did not pass through the sample, and N2 was used as the balanced gas to maintain the total flow rate at 500 sccm. When the gas concentration was stabilized, the gas was passed through the reactor equipped with the sample, and the denitrification efficiency of the synthesized catalyst was evaluated while increasing the temperature from 200 to 400℃.
(2)대기속도 산출방법(2) Method for calculating airspeed
상기 표 1을 바탕으로 대기속도(공간속도, GHSV: Gas Hourly Space Velocity)는 아래와 같이 산출하였다.Based on Table 1 above, the airspeed (space velocity, GHSV: Gas Hourly Space Velocity) was calculated as follows.
대기속도와 촉매의 탈질효율은 반비례하게 되는데, 촉매 탈질평가 방법은 통상적으로, 촉매에 반응가스를 흘려주어 촉매와 접촉 전/후의 반응가스의 비율을 계산한다. 반응가스의 속도가 느릴경우(대기속도가 낮을 경우) 촉매와의 접촉시간이 증가하고, 이에 따라 촉매와의 반응시간이 증가하게되므로 보다 많은 가스가 반응을 일어나는 환경이 제공된다. 따라서, 대기속도와 탈질 효율은 반비례한다.The air speed and the denitrification efficiency of the catalyst are inversely proportional. The catalytic denitrification evaluation method usually calculates the ratio of the reaction gas before and after contact with the catalyst by flowing the reaction gas to the catalyst. When the speed of the reaction gas is slow (when the air speed is low), the contact time with the catalyst increases, and accordingly, the reaction time with the catalyst increases, providing an environment in which more gas reacts. Therefore, the air speed and the denitrification efficiency are inversely proportional.
비교예 1 - V1W5/TiO2 (400℃) 합성 - h-BN사용하지 않은 촉매Comparative Example 1 - Synthesis of V1W5/TiO 2 (400°C) - Catalyst without h-BN
1wt% V + 5wt% W 함량이 되도록 AMV, AMT 및 TiO2를 에탄올 용매와 함께 섞고 70℃에서 2시간 교반시켰다. 오일베드(Oil bath)에서 78℃로 건조시킨 후 승온 속도는 5℃/min로 하여 400℃에서 5시간동안 소성하여 V1W5/TiO2 (400)를 합성하였다.AMV, AMT, and TiO 2 were mixed with ethanol solvent to have a content of 1 wt% V + 5 wt% W and stirred at 70°C for 2 hours. After drying in an oil bath at 78°C, the mixture was calcined at 400°C for 5 hours at a heating rate of 5°C/min to synthesize V1W5/TiO 2 (400).
비교예 2 - V1W5/BN-TiO2 (400℃) 합성 - h-BN을 사용하되 촉매적 식각이 없는 촉매Comparative Example 2 - Synthesis of V1W5/BN-TiO 2 (400°C) - Catalyst using h-BN but without catalytic etching
1wt% V + 5wt% W 함량이 되도록 하며 pristine h-BN과 TiO2는 1:9 함량비가 되도록 pristine h-BN, AMV, AMT 및 TiO2를 에탄올 용매와 함께 섞고 70℃에서 2시간 교반시켰다. 오일베드(Oil bath)에서 78℃로 건조시킨 후 승온 속도는 5℃/min로 400℃에서 5시간동안 소성하여 V1W5/BN-TiO2 (400)를 합성하였다.Pristine h-BN, AMV, AMT, and TiO 2 were mixed with ethanol solvent so that the content was 1 wt% V + 5 wt% W and the content ratio of pristine h-BN and TiO 2 was 1:9, and stirred at 70°C for 2 hours. After drying in an oil bath at 78°C, V1W5/BN-TiO 2 (400) was synthesized by calcining at 400°C for 5 hours at a heating rate of 5°C/min.
비교예 3 - V1W5/p-BN-TiO2 (400℃) 합성 - porous h-BN을 사용하여 다공성 효과를 도모한 촉매Comparative Example 3 - Synthesis of V1W5/p-BN-TiO 2 (400°C) - Catalyst with porous effect achieved using porous h-BN
pristine h-BN을 코발트 전구체와 함께 에탄올 용매와 함께 섞고 70℃에서 30분간 교반시킨 후 증발법을 통해 용매를 모두 증발시켰다. 승온 속도는 5℃/min로 350℃에서 3시간동안 소성하였다. 촉매 애칭을 한 후 HCl 수용액에서 코발트 산화물인 CoOx를 용해시켜 이온화 시켰다. 세정 및 여과를 통해 불순물을 모두 제거한 후 80℃오븐에서 건조하여 porous h-BN(p-BN)을 제조하였다.Pristine h-BN was mixed with cobalt precursor and ethanol solvent, stirred at 70°C for 30 minutes, and then the solvent was completely evaporated by evaporation. The heating rate was 5°C/min, and the mixture was calcined at 350°C for 3 hours. After catalyst etching, cobalt oxide, CoOx, was dissolved in an HCl aqueous solution and ionized. After removing all impurities through washing and filtration, the mixture was dried in an oven at 80°C to produce porous h-BN (p-BN).
1wt% V + 5wt% W 함량이 되도록 제조된 p-BN, AMV, AMT 및 TiO2를 에탄올 용매와 함께 섞고 70℃에서 2시간 교반시켰다. 오일베드(Oil bath)에서 78℃로 건조 시킨 후 400℃에서 5시간 동안 소성하여 V1W5/p-BN-TiO2 (400℃)를 합성하였다.p-BN, AMV, AMT, and TiO 2 , which were manufactured to have a content of 1 wt% V + 5 wt% W, were mixed with ethanol solvent and stirred at 70°C for 2 hours. After drying at 78°C in an oil bath, they were calcined at 400°C for 5 hours to synthesize V1W5/p-BN-TiO 2 (400°C).
pBN은 porous h-BN의 약자로, pristine h-BN과 single step BN과의 비교용으로 사용하였다.pBN is an abbreviation for porous h-BN and was used for comparison with pristine h-BN and single step BN.
<결과 및 평가><Results and Evaluation>
탈질 효율 결과Denitrification efficiency results
도 1은 본 발명의 일 실시예에 따른 1wt% V + 5wt% W을 다양한 형태의 h-BN과 TiO2에 담지시켜 열처리 후 얻어진 샘플로 탈질 효율을 측정한 그래프이다.FIG. 1 is a graph showing the measurement of denitrification efficiency using samples obtained after heat treatment by supporting 1 wt% V + 5 wt% W on various forms of h-BN and TiO 2 according to one embodiment of the present invention.
도 1의 수치를 하기 표 2에 나타내었다.The numerical values of Fig. 1 are shown in Table 2 below.
각 촉매의 열처리는 하기 표 3에 나타내었다.The heat treatment of each catalyst is shown in Table 3 below.
도 1, 표 2 및 표 3을 참고하여 설명하면, 비교예 1과 2를 비교하였을 때, h-BN의 적용을 통해 SCR 촉매 특성이 증진됨을 확인할 수 있었다. 240℃ 기준 45.0%에 80.7%로 35.7% 정도 효율이 증가함을 확인할 수 있었다. 비교예 2와 비교예 3을 비교하면, pristine h-BN과 porous h-BN (2step)이 촉매에 미치는 영향을 확인할 수 있으며, porous 구조가 적용될 경우 SCR 촉매 특성이 더욱 증진됨을 확인할 수 있었다. 240℃ 기준 80.7%에서 88.4%로 7.7% 정도 효율이 증가함을 확인하였다. 비교예 3과 실시예 1을 비교하면, single step의 효과를 확인할 수 있으며, pristine h-BN을 single step으로 합성한 촉매가 porous h-BN을 적용한 2step 촉매보다 350를 기준으로 저온에서는 효율이 더 높고 고온에서는 유사한 수치를 나타내는 것으로 보아 single step의 효과를 확인할 수 있었다.Referring to FIG. 1, Table 2, and Table 3, it was confirmed that the SCR catalyst characteristics were improved by applying h-BN when comparing Comparative Examples 1 and 2. It was confirmed that the efficiency increased by approximately 35.7%, from 45.0% to 80.7% at 240℃. When Comparative Examples 2 and 3 are compared, the effects of pristine h-BN and porous h-BN (2step) on the catalyst can be confirmed, and it was confirmed that the SCR catalyst characteristics were further improved when the porous structure was applied. It was confirmed that the efficiency increased by approximately 7.7%, from 80.7% to 88.4% at 240℃. Comparing Comparative Example 3 and Example 1, the effect of a single step can be confirmed, and the catalyst synthesized using pristine h-BN in a single step shows higher efficiency at low temperatures (based on 350) and similar values at high temperatures than the two-step catalyst using porous h-BN, confirming the effect of a single step.
분산성 증진 결과Results of increased dispersion
도 2는 본 발명의 일 실시예에 따른 single step V1W5/BN-TiO2의 TEM, STEM, 및 EDS 분석 결과 이미지이다. 도 2를 참고하여 설명하면, 전이 금속인 바나듐(V) 및 텅스텐(W)이 h-BN 위에 고르게 분산되어있음을 알 수 있었다.FIG. 2 is an image showing the results of TEM, STEM, and EDS analysis of a single step V1W5/BN-TiO 2 according to one embodiment of the present invention. Referring to FIG. 2, it can be seen that transition metals, vanadium (V) and tungsten (W), are evenly dispersed on h-BN.
열적 안정성 결과Thermal stability results
도 3은 본 발명의 일 실시예에 따른 single step V1W5/BN-TiO2(실시예 1) 및 2step VW/BN-TiO2(비교예 2)의 열적 안정성을 나타낸 그래프이다.FIG. 3 is a graph showing the thermal stability of single step V1W5/BN-TiO2 (Example 1) and 2step VW/BN-TiO 2 (Comparative Example 2) according to one embodiment of the present invention.
도 3을 참고하여 설명하면, 합성된 촉매를 600분(10시간) 연속 측정을 통해 열에 지속적으로 노출함으로써 열적 안정성 평가를 진행하였다. 240℃에서 single step으로 합성된 촉매의 경우 열화에 의한 촉매 효율이 2%만 감소하였으며, 기존 pristine h-BN만을 적용한 촉매가 7%인 점을 고려한다면 열적 안정성이 증진되었음을 확인할 수 있었다.Referring to Fig. 3, the thermal stability was evaluated by continuously exposing the synthesized catalyst to heat for 600 minutes (10 hours) through continuous measurement. In the case of the catalyst synthesized in a single step at 240°C, the catalytic efficiency due to deterioration decreased by only 2%, and considering that the catalyst using only the existing pristine h-BN had a 7% decrease, it was confirmed that the thermal stability was improved.
전술한 내용은 후술할 발명의 청구범위를 더욱 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 상술하였다. 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The foregoing has broadly described the features and technical advantages of the present invention so that the scope of the claims to be described later may be better understood. Those skilled in the art will appreciate that the present invention may be implemented in other specific forms without changing the technical idea or essential features thereof. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modifications derived from the claims and their equivalents should be interpreted as being included in the scope of the present invention.
Claims (8)
지지체인 육방정 질화붕소를 에탄올에 분산시켜 육방정 질화붕소 용액(용액 3)을 제조하는 제 2단계;
상용 담체인 이산화티타늄을 에탄올에 분산시켜 이산화티타늄 용액(용액 4)을 제조하는 제 3 단계;
상기 바나듐 용액(용액 1) 및 텅스텐 용액(용액 2)를 육방정 질화붕소 용액(용액 3)에 혼합한 혼합용액을 상기 이산화티티늄 용액(용액 4)과 혼합하고, 에탄올을 증발시키기 위하여 건조하는 제 4 단계;
330 내지 380℃에서 열처리하여 육방정 질화붕소(BN)-이산화티타늄(TiO2) 표면에 촉매에칭을 통하여 다공성 구조물을 얻는 제 5 단계; 및
370 내지 440℃에서 열처리하여 상기 육방정 질화붕소(BN)-이산화티타늄(TiO2) 담지체에 바나듐(V) 및 텅스텐(W)을 담지한 촉매(VW/BN-TiO2)를 합성하는 제 6 단계;를 포함하는 single step 육방정 질화붕소를 활용한 선택적 촉매 환원법(Selective Catalytic Reduction, SCR) 촉매의 합성방법.
A first step of preparing a vanadium solution (solution 1) by dissolving a vanadium (V) precursor in ethanol and a tungsten solution (solution 2) by dissolving a tungsten (W) precursor in ethanol;
A second step of preparing a hexagonal boron nitride solution (solution 3) by dispersing hexagonal boron nitride as a support in ethanol;
A third step of preparing a titanium dioxide solution (solution 4) by dispersing titanium dioxide, a commercial carrier, in ethanol;
A fourth step of mixing a mixed solution of the vanadium solution (solution 1) and the tungsten solution (solution 2) into a hexagonal boron nitride solution (solution 3) with the titanium dioxide solution (solution 4) and drying to evaporate ethanol;
A fifth step of obtaining a porous structure through catalytic etching on the surface of hexagonal boron nitride (BN)-titanium dioxide (TiO 2 ) by heat treatment at 330 to 380° C; and
A method for synthesizing a catalyst for selective catalytic reduction (SCR) using a single step hexagonal boron nitride, comprising: a sixth step of synthesizing a catalyst (VW/BN-TiO 2 ) supporting vanadium (V) and tungsten (W) on a hexagonal boron nitride (BN)-titanium dioxide (TiO 2 ) support by heat treatment at 370 to 440°C;
상기 제 5 단계 및 제 6 단계의 온도는 40 내지 60℃ 차이가 나는 것을 특징으로 하는 single step 육방정 질화붕소를 활용한 선택적 촉매 환원법(Selective Catalytic Reduction, SCR) 촉매의 합성방법.
In paragraph 1,
A method for synthesizing a selective catalytic reduction (SCR) catalyst using single step hexagonal boron nitride, characterized in that the temperatures of the fifth and sixth steps have a difference of 40 to 60°C.
상기 바나듐 용액(용액 1) 및 텅스텐 용액(용액 2)는 1 : 5의 질량비로 합성되는 것을 특징으로 하는 single step 육방정 질화붕소를 활용한 선택적 촉매 환원법(Selective Catalytic Reduction, SCR) 촉매의 합성방법.
In paragraph 1,
A method for synthesizing a selective catalytic reduction (SCR) catalyst using a single step hexagonal boron nitride, characterized in that the vanadium solution (solution 1) and the tungsten solution (solution 2) are synthesized in a mass ratio of 1:5.
A selective catalytic reduction (SCR) catalyst manufactured by a synthetic method according to any one of claims 1 to 3.
상기 촉매는 240 내지 400℃의 온도에서 NOx 제거 활성을 나타내는 것을 특징으로 하는 선택적 촉매 환원법(Selective Catalytic Reduction, SCR) 촉매.
In paragraph 4,
The above catalyst is a selective catalytic reduction (SCR) catalyst characterized by exhibiting NOx removal activity at a temperature of 240 to 400°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220030707A KR102742636B1 (en) | 2022-03-11 | 2022-03-11 | SCR catalyst using single-step hexagonal boron nitride with improved thermal stability and method for synthesizing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220030707A KR102742636B1 (en) | 2022-03-11 | 2022-03-11 | SCR catalyst using single-step hexagonal boron nitride with improved thermal stability and method for synthesizing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230133559A KR20230133559A (en) | 2023-09-19 |
KR102742636B1 true KR102742636B1 (en) | 2024-12-16 |
Family
ID=88196926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220030707A Active KR102742636B1 (en) | 2022-03-11 | 2022-03-11 | SCR catalyst using single-step hexagonal boron nitride with improved thermal stability and method for synthesizing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102742636B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113877617A (en) * | 2021-09-16 | 2022-01-04 | 安徽元琛环保科技股份有限公司 | Ultra-high temperature catalyst based on modification of hexagonal boron nitride and preparation method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102216948B1 (en) * | 2018-10-30 | 2021-02-18 | 한국생산기술연구원 | Catalyst for low temperature using hexagonal boron nitride and its preparation method |
-
2022
- 2022-03-11 KR KR1020220030707A patent/KR102742636B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113877617A (en) * | 2021-09-16 | 2022-01-04 | 安徽元琛环保科技股份有限公司 | Ultra-high temperature catalyst based on modification of hexagonal boron nitride and preparation method |
Also Published As
Publication number | Publication date |
---|---|
KR20230133559A (en) | 2023-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102421505B (en) | Catalyst composition for selective catalytic reduction of exhaust gases | |
CN102821845B (en) | For the carbon monoxide-olefin polymeric of the SCR of waste gas | |
KR101798713B1 (en) | SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof | |
KR102033967B1 (en) | Low Temperature SCR Catalyst Added Carbon Supported Active Catalystic Materials and Preparation Method Thereof | |
JP2018528847A (en) | Nitrous oxide removal catalyst for exhaust system | |
JP2023543697A (en) | SCR catalyst composition and SCR catalyst article comprising the catalyst composition | |
EP1484109B1 (en) | Catalyst for removing nitrogen oxides, method for production thereof and method for removing nitrogen oxides | |
CN108295865B (en) | Integral honeycomb low-temperature SCR denitration catalyst and preparation method thereof | |
CN106040287A (en) | Exhaust gas purification catalyst | |
CN110215923B (en) | Catalyst for reducing nitrogen oxide and nitrogen oxide reduction system using same | |
JP5164821B2 (en) | Nitrogen oxide selective catalytic reduction catalyst | |
JP2009247984A (en) | Catalyst for deoxidizing nitrogen oxide catalytically | |
KR102742636B1 (en) | SCR catalyst using single-step hexagonal boron nitride with improved thermal stability and method for synthesizing the same | |
EP1360006B1 (en) | Method for preparing a catalyst for selective catalytic reduction of nitrogen oxides | |
EP2193843B1 (en) | Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and method of removing nitrogen oxides using the same | |
KR102558168B1 (en) | Catalyst for ammonia oxidation, and method for producing the same | |
CN115707513B (en) | Metal oxide catalyst for selective catalytic reduction | |
KR102634719B1 (en) | Selective catalytic reduction comprising surface treatment layer and method of preparing the same | |
WO2023020579A1 (en) | Metal oxide catalyst for selective catalytic reduction | |
JPH08150336A (en) | Waste gas purification material and method for purifying waste gas | |
KR102068063B1 (en) | Catalyst for selectively reducing nitric oxide and nitric oxide reduction system using the same | |
JP2006007023A (en) | Exhaust gas purification catalyst manufacturing method and exhaust gas purification catalyst | |
KR20240085601A (en) | Vanadium catalyst comprising yittrium sulfur oxides, and method of fabricating the same | |
KR20230059196A (en) | Oxidation catalyst including oxygen storage composition and manufacturing method thereof | |
KR20220125364A (en) | Nanoplatelet vanadium oxide-supported denitration catalyst and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20220311 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240118 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241128 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20241210 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20241210 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |