KR102727941B1 - Analysis method for cathode impurities and water-soluble coating substance - Google Patents
Analysis method for cathode impurities and water-soluble coating substance Download PDFInfo
- Publication number
- KR102727941B1 KR102727941B1 KR1020190071215A KR20190071215A KR102727941B1 KR 102727941 B1 KR102727941 B1 KR 102727941B1 KR 1020190071215 A KR1020190071215 A KR 1020190071215A KR 20190071215 A KR20190071215 A KR 20190071215A KR 102727941 B1 KR102727941 B1 KR 102727941B1
- Authority
- KR
- South Korea
- Prior art keywords
- cathode material
- analyzing
- impurities
- water
- impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012535 impurity Substances 0.000 title claims abstract description 71
- 238000000576 coating method Methods 0.000 title claims abstract description 33
- 239000011248 coating agent Substances 0.000 title claims abstract description 31
- 238000004458 analytical method Methods 0.000 title claims abstract description 22
- 239000000126 substance Substances 0.000 title description 4
- 239000010406 cathode material Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 29
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 33
- 229910052744 lithium Inorganic materials 0.000 claims description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 14
- 238000011088 calibration curve Methods 0.000 claims description 14
- 238000005251 capillar electrophoresis Methods 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 238000004255 ion exchange chromatography Methods 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 239000010421 standard material Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 8
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- 229910011281 LiCoPO 4 Inorganic materials 0.000 claims description 4
- 229910010707 LiFePO 4 Inorganic materials 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910010093 LiAlO Inorganic materials 0.000 claims description 3
- 229910010090 LiAlO 4 Inorganic materials 0.000 claims description 3
- 229910013184 LiBO Inorganic materials 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910021450 lithium metal oxide Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 10
- 239000001569 carbon dioxide Substances 0.000 abstract description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 5
- 239000006182 cathode active material Substances 0.000 abstract description 3
- 238000004090 dissolution Methods 0.000 abstract description 3
- 238000004448 titration Methods 0.000 description 14
- 239000007774 positive electrode material Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000954 titration curve Methods 0.000 description 4
- 239000011149 active material Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- -1 LiCoO 2 (LCO) Chemical class 0.000 description 1
- 229910006025 NiCoMn Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/64—Electrical detectors
- G01N2030/645—Electrical detectors electrical conductivity detectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Composite Materials (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 전지의 양극 활물질의 특성을 개선하기 위한 공정 중 발생하는 불순물 및 수용성 코팅 물질들을 분리하여 정량하는 방법에 관한다.
본 발명에 따르면, 이산화탄소(CO2) 용존에 의한 불순물 성분 함량 증가 및 양극재 성분과 유사한 불순물로 인한 분석 오류를 최소화할 수 있다. 또한, 양극재 코팅 후 잔존하는 수용성 불순물에 대한 정량이 가능하다. 또한, 각각의 불순물을 분리하여 정량할 수 있으므로 불순물의 종류에 따른 함량을 분별력 있게 분석할 수 있다.The present invention relates to a method for separating and quantifying impurities and water-soluble coating materials generated during a process for improving the characteristics of a cathode active material of a battery.
According to the present invention, it is possible to minimize the increase in the content of impurities due to the dissolution of carbon dioxide (CO 2 ) and the analysis errors due to impurities similar to the cathode material components. In addition, it is possible to quantify the water-soluble impurities remaining after the cathode material coating. In addition, since each impurity can be separated and quantified, the content according to the type of impurity can be discriminately analyzed.
Description
본 발명은 양극재의 불순물을 분석하는 방법에 관한 것으로, 전지의 양극 활물질의 특성을 개선하기 위한 공정 중 발생하는 불순물 및 수용성 코팅 물질들을 분리하여 정량하는 방법에 관한다.The present invention relates to a method for analyzing impurities in a cathode material, and to a method for separating and quantifying impurities and water-soluble coating materials generated during a process for improving the characteristics of a cathode active material of a battery.
리튬 이차 전지에 사용되는 재료는 양극 활물질(양극재)과 음극 활물질(음극재)로 구분되며, 이들 리튬 이차 전지 재료는 분리막의 양면에 각각 코팅되어, 분리막을 사이에 두고 리튬 이온이 충전과 방전을 거치면서 이동하는 과정이 진행된다.Materials used in lithium secondary batteries are divided into positive electrode active materials (positive electrode material) and negative electrode active materials (negative electrode material). These lithium secondary battery materials are coated on both sides of the separator, and the process of lithium ions moving through the separator during charging and discharging takes place.
리튬-이온 건전지(Li-ion battery)의 성능은 그 구성 성분, 조성, 보관 방법 등 여러 인자들에 의하여 영향을 받는다. 리튬-이온 건전지의 주요 구성 물질로는 활물질, 바인더(binder), 도전재, 기공 등을 포함할 수 있으며, 이들의 조성 및 분산 정도 등은 건전지의 성능에 영향을 미치는 요인 중 하나이다. 특히, 리튬 이차 전지의 양극 활물질 중의 불순물의 혼입량, 활물질 중의 Li와 Ni, Co, Mn 등과 같은 금속의 함량 등은 활물질의 성능에 영향을 미칠 수 있는 주요 인자로, 이에 대한 많은 검토가 이루어지고 있다.The performance of a lithium-ion battery is affected by various factors such as its components, composition, and storage method. The main components of a lithium-ion battery may include active materials, binders, conductive materials, and pores, and the composition and degree of dispersion of these are among the factors affecting the performance of the battery. In particular, the amount of impurities mixed in the cathode active material of a lithium secondary battery, the content of metals such as Li, Ni, Co, and Mn in the active material, etc., are major factors that can affect the performance of the active material, and many studies are being conducted on these.
일반적으로, 전지의 양극 활물질에 사용되는 LiCoO2(LCO), Li[NixCoyMnz]O2(NCM) 등과 같은 금속 산화물은 LiOH 또는 Li2CO3와 같은 리튬 함유 화합물과 C03O4, NiCoMn(OH)2와 같은 전이금속 산화물을 700℃ 이상의 고온에서 열처리하여 합성한다. 이 과정에서 남는 리튬(Li) 또는 리튬 산화물(Li oxide) 부산물들은 대기에 노출되면 LiOH 또는 Li2CO3로 변형되어 양극 활물질의 표면에 존재하게 된다. LiOH이 과량으로 존재하는 경우, 양극 슬러리의 겔화(gelation)를 유발할 수 있고, Li2CO3의 경우, 전지 구동 과정에서 이산화탄소(CO2)를 발생시켜 양극의 용량 저하 및 셀 두께 증가의 원인이 될 수 있다.In general, metal oxides such as LiCoO 2 (LCO), Li[Ni x Co y Mn z ]O 2 (NCM), etc., used as positive electrode active materials of batteries are synthesized by heat-treating lithium-containing compounds such as LiOH or Li 2 CO 3 and transition metal oxides such as C0 3 O 4 and NiCoMn(OH) 2 at high temperatures above 700°C. During this process, the remaining lithium (Li) or lithium oxide byproducts are transformed into LiOH or Li 2 CO 3 when exposed to the air and exist on the surface of the positive electrode active material. If LiOH exists in excess, it can cause gelation of the positive electrode slurry, and in the case of Li 2 CO 3 , carbon dioxide (CO 2 ) can be generated during battery operation, which can cause a decrease in the capacity of the positive electrode and an increase in cell thickness.
종래에는 이러한 불순물 성분에 대한 분석을 적정법으로 진행하고 있으며, 양극 활물질 내 불순물의 적정을 통한 정량 방법은 한국 전지 산업 협회에 의하여 2013년 제정된 '리튬이온 이차전지용 양극활물질-물리적 화학적 특성 시험방법'에 기술된 방법으로 현재까지 널리 사용되고 있다.Previously, analysis of such impurity components was conducted using a titrimetric method, and the quantitative method of impurities in positive electrode active materials through titration is the method described in 'Lithium-ion secondary battery positive electrode active materials - Physical and chemical properties test method' established by the Korea Battery Industry Association in 2013, and is still widely used to this day.
그러나, 양극의 특성을 개선하기 위하여 여러가지 추가의 코팅 물질 또는 공정이 적용되면서 불순물들이 발생하게 되고, 이는 적정 곡선에 영향을 주어 정확한 분석을 방해하는 요소로 작용한다. 구체적인 예로, 적정법에 따른 NCM계 양극재 분석 결과를 나타내는 그래프를 도 1에 나타내었다. 도 1에 나타난 바와 같이 적정 곡선이 이상적인 형태를 형성하지 못하므로 변곡점을 파악하기 어려워 정확도가 저하됨을 알 수 있다.However, when various additional coating materials or processes are applied to improve the characteristics of the anode, impurities are generated, which affect the titration curve and act as factors that hinder accurate analysis. As a specific example, a graph showing the results of analysis of NCM cathode materials according to the titration method is shown in Fig. 1. As shown in Fig. 1, since the titration curve does not form an ideal shape, it is difficult to identify the inflection point, which reduces accuracy.
그러므로, 양극재를 더욱 정확하게 분석하기 위한 방법이 필요하다.Therefore, a method to more accurately analyze bipolar materials is needed.
본 발명의 목적은 유사 성분들 간의 겹침에 의한 분석 오류를 최소화할 수 있는 양극재 분석 방법을 제공하는 것이다.The purpose of the present invention is to provide a method for analyzing a cathode material that can minimize analysis errors caused by overlap between similar components.
상기 과제를 해결하기 위하여 본 발명은,In order to solve the above problem, the present invention,
전지의 양극재를 분석하는 방법으로,A method for analyzing the cathode material of a battery,
1) 양극재의 무게를 정확하게 측정하는 단계;1) Step of accurately measuring the weight of the cathode material;
2) 상기 1)의 양극재에 물을 넣어 양극재 내의 불순물을 용해시키는 단계;2) A step of adding water to the cathode material of 1) above to dissolve impurities in the cathode material;
3) 상기 2)의 용액을 원심분리한 후, 필터하는 단계;3) A step of centrifuging the solution of 2) above and then filtering it;
4) 상기 불순물을 각각 분리하는 단계;4) A step of separating each of the above impurities;
5) 분리된 각각의 불순물에 대하여 표준물질을 이용한 검량선을 작성하는 단계; 및5) A step of creating a calibration curve using standard materials for each separated impurity; and
6) 작성된 검량선으로부터 각각의 불순물을 정량하는 단계를 포함하는 양극재 불순물 분석 방법을 제공한다.6) A method for analyzing cathode material impurities is provided, including a step of quantifying each impurity from a prepared calibration curve.
본 발명의 다른 구현예에 따르면,According to another embodiment of the present invention,
1) 코팅된 양극재의 무게를 정확하게 측정하는 단계;1) A step of accurately measuring the weight of the coated cathode material;
2) 상기 1)의 양극재에 물을 넣어 양극재 내의 불순물 및 수용성 코팅 물질을 용해시키는 단계;2) A step of adding water to the cathode material of the above 1) to dissolve impurities and water-soluble coating material in the cathode material;
3) 상기 2)의 용액을 원심분리한 후, 필터하는 단계;3) A step of centrifuging the solution of 2) above and then filtering it;
4) 상기 불순물 및 수용성 코팅물질을 분리하는 단계;4) A step of separating the above impurities and water-soluble coating material;
5) 분리된 각각의 불순물 및 수용성 코팅물질에 대하여 표준물질을 이용한 검량선을 작성하는 단계; 및5) A step of creating a calibration curve using standard materials for each separated impurity and water-soluble coating material; and
6) 작성된 검량선으로부터 각각의 불순물 및 수용성 코팅물질을 정량하는 단계를 포함하는 양극재 분석 방법을 제공한다.6) A method for analyzing a cathode material is provided, including a step of quantifying each impurity and water-soluble coating material from a prepared calibration curve.
일구현예에 따르면, 상기 전지는 2차 전지일 수 있다.According to one embodiment, the battery may be a secondary battery.
일구현예에 따르면, 상기 불순물은 리튬을 함유할 수 있으며, 구체적으로 예를 들면, Li2CO3, LiOH 및 Li2SO4로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있다.According to one embodiment, the impurity may contain lithium, and specifically may include at least one selected from the group consisting of Li 2 CO 3 , LiOH and Li 2 SO 4 .
일구현예에 따르면, 상기 양극재는 리튬 금속 산화물을 포함할 수 있고, 예를 들면 LTO(Li14Ti15O12), LCO(LiCoO2), NCM(Li[Ni,Co,Mn]O2), NCMA(Li[Ni.Co.Mn.Al]O2), NCA(Li[Ni,Co,Al]O2), LMO(LiMn2O4), LFP(LiFePO4) 및 LCP(LiCoPO4)로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있다.According to one embodiment, the cathode material may include a lithium metal oxide, and may include at least one selected from the group consisting of, for example, LTO (Li 14 Ti 15 O 12 ), LCO (LiCoO 2 ), NCM (Li[Ni,Co,Mn]O 2 ), NCMA (Li[Ni.Co.Mn.Al]O 2 ), NCA (Li[Ni,Co,Al]O 2 ), LMO (LiMn 2 O 4 ), LFP (LiFePO 4 ), and LCP (LiCoPO 4 ).
일구현예에 따르면, 상기 4) 단계가 모세관 전기영동 및 이온 크로마토그래피로 이루어지는 군으로부터 선택되는 하나 이상을 실시하는 단계를 포함할 수 있다.According to an embodiment, the step 4) may include a step of performing at least one selected from the group consisting of capillary electrophoresis and ion chromatography.
일구현예에 따르면, 상기 양극재는 코팅된 것일 수 있고, 예를 들면, 텅스텐(W), 붕소(B), 알루미늄(Al), 마그네슘(Mg), 아연(Zn) 및 인(P)으로 이루어지는 군으로부터 선택되는 하나 이상으로 코팅된 것일 수 있다.According to one embodiment, the cathode material may be coated, for example, coated with one or more selected from the group consisting of tungsten (W), boron (B), aluminum (Al), magnesium (Mg), zinc (Zn), and phosphorus (P).
일구현예에 따르면, 상기 수용성 코팅 물질은 LiWO2, Li2WO4, Li4WO5, Li6WO6, LiBO2, Li2B4O7, LiAlO4 및 LiAlO2로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있다.According to one embodiment, the water-soluble coating material may include at least one selected from the group consisting of LiWO 2 , Li 2 WO 4 , Li 4 WO 5 , Li 6 WO 6 , LiBO 2 , Li 2 B 4 O 7 , LiAlO 4 and LiAlO 2 .
일구현예에 따르면, 상기 표준물질이 카보네이트(CO3 2-), 설페이트(SO4 2-) 및 리튬(Li+)으로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있다.According to one embodiment, the standard material may include at least one selected from the group consisting of carbonate (CO 3 2- ), sulfate (SO 4 2- ), and lithium (Li + ).
본 발명의 또 다른 구현예에 따르면, 상기한 바와 같은 방법에 따른 양극재 불순물 분석 시스템을 제공한다.According to another embodiment of the present invention, a cathode material impurity analysis system according to the method described above is provided.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Specific details of other embodiments of the present invention are included in the detailed description below.
본 발명에 따르면, 이산화탄소(CO2) 용존에 의한 불순물 성분 함량 증가 및 양극재 성분과 유사한 불순물로 인한 분석 오류를 최소화할 수 있다. 또한, 양극재 코팅 후 잔존하는 수용성 불순물 및 코팅 물질에 대한 정량이 가능하다. 또한, 각각의 불순물 또는 코팅물질을 분리하여 정량 할 수 있으므로 분석 대상의 종류에 따른 함량을 분별력 있게 분석할 수 있다.According to the present invention, it is possible to minimize the increase in the content of impurities due to the dissolution of carbon dioxide (CO 2 ) and the analysis error due to impurities similar to the cathode material components. In addition, it is possible to quantify the water-soluble impurities and coating materials remaining after the cathode material coating. In addition, since each impurity or coating material can be separated and quantified, the content according to the type of the analysis target can be discriminately analyzed.
도 1은 종래의 적정법에 의한 양극재 분석 결과를 나타낸 그래프이다.
도 2는 표준물질 및 UV를 이용한 검량선을 나타낸 그래프이다.Figure 1 is a graph showing the results of anode material analysis using a conventional titration method.
Figure 2 is a graph showing a calibration curve using standard materials and UV.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예를 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention can be modified in various ways and has various embodiments, and specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood that all modifications, equivalents, and substitutes included in the spirit and technical scope of the present invention are included. In describing the present invention, if it is determined that a specific description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서에 사용된 용어 "양극재"는 "양극 활물질"과 혼용하여 사용할 수 있고, 양극에서 실제 배터리의 전극 반응에 관여하는 물질을 의미한다.The term "positive electrode material" used in this specification may be used interchangeably with "positive electrode active material" and refers to a material involved in the electrode reaction of an actual battery at the positive electrode.
본 명세서에서 특별한 언급이 없는 한, 어떤 용어의 단수의 표현은 그 용어의 복수의 표현을 포함하는 의미로 이해될 수 있고, 어떤 용어의 복수의 표현은 그 용어의 단수의 표현을 포함하는 의미로 이해될 수 있다.Unless otherwise specified herein, the singular expression of a term may be understood to include the plural expression of that term, and the plural expression of a term may be understood to include the singular expression of that term.
이하, 본 발명의 구현예에 따른 양극재 분석 방법에 대하여 보다 상세하게 설명한다.Hereinafter, a method for analyzing a cathode material according to an embodiment of the present invention will be described in more detail.
양극의 특성을 개선하기 위하여 여러 종류의 코팅(coating)을 적용하면서 코팅 공정 후 남는 추가 불순물들이 종래의 적정법으로 인한 적정 곡선에 영향을 준다. 또한, 일반적인 적정법의 경우에는 적정이 진행되는 동안에 이산화탄소(CO2)의 용존에 의하여 불순물의 함량이 증가할 수 있다. 이러한 불순물 중, 탄산리튬(Li2CO3), 수산화리튬(LiOH)과 유사한 pKa 값을 가지는 성분들의 경우에는 적정 시 겹침으로 인한 분석 오차를 유발할 수 있다는 문제점이 있다. 예를 들면, 탄산리튬의 경우, 텅스텐(W) 또는 알루미늄(Al) 코팅 후 생성되는 불순물과 유사한 pKa 값을 가지므로 분석 오차를 발생시킨다.In order to improve the characteristics of the anode, various types of coatings are applied, and additional impurities remaining after the coating process affect the titration curve resulting from the conventional titration method. In addition, in the case of the general titration method, the content of impurities may increase due to the dissolution of carbon dioxide (CO 2 ) during the titration. Among these impurities, there is a problem in that components having pKa values similar to lithium carbonate (Li 2 CO 3 ) and lithium hydroxide (LiOH) may cause analysis errors due to overlap during titration. For example, in the case of lithium carbonate, it causes analysis errors because it has a pKa value similar to impurities generated after tungsten (W) or aluminum (Al) coating.
본 발명은 전지의 양극재에 존재하는 불순물 및 수용성 코팅 물질의 함량을 분석하는 방법을 제공한다. 상기 전지는 2차전지일 수 있고, 예를 들면, 리튬 2차전지일 수 있다. 본 발명에 따르면, 양극재 내에 존재하는 불순물 또는 수용성 코팅 물질을 종류 별로 분리하여 분석하므로, 각각의 성분에 대한 정량 분석이 가능하다.The present invention provides a method for analyzing the content of impurities and water-soluble coating materials present in a cathode material of a battery. The battery may be a secondary battery, and for example, may be a lithium secondary battery. According to the present invention, impurities or water-soluble coating materials present in the cathode material are separated and analyzed by type, so that quantitative analysis of each component is possible.
구체적으로 본 발명은,Specifically, the present invention,
1) 양극재의 무게를 정확하게 측정하는 단계;1) Step of accurately measuring the weight of the cathode material;
2) 상기 1)의 양극재에 물을 넣어 양극재 내의 불순물을 용해시키는 단계;2) A step of adding water to the cathode material of 1) above to dissolve impurities in the cathode material;
3) 상기 2)의 용액을 원심분리한 후, 필터하는 단계;3) A step of centrifuging the solution of 2) above and then filtering it;
4) 상기 불순물을 각각 분리하는 단계;4) A step of separating each of the above impurities;
5) 분리된 각각의 불순물에 대하여 표준물질을 이용한 검량선을 작성하는 단계; 및5) A step of creating a calibration curve using standard materials for each separated impurity; and
6) 작성된 검량선으로부터 각각의 불순물을 정량하는 단계를 포함하는 양극재 불순물 분석 방법을 제공한다.6) A method for analyzing cathode material impurities is provided, including a step of quantifying each impurity from a prepared calibration curve.
또한, 본 발명은,In addition, the present invention,
1) 코팅된 양극재의 무게를 정확하게 측정하는 단계;1) A step of accurately measuring the weight of the coated cathode material;
2) 상기 1)의 양극재에 물을 넣어 양극재 내의 불순물 및 수용성 코팅물질을 용해시키는 단계;2) A step of adding water to the cathode material of the above 1) to dissolve impurities and water-soluble coating material in the cathode material;
3) 상기 2)의 용액을 원심분리한 후, 필터하는 단계;3) A step of centrifuging the solution of 2) above and then filtering it;
4) 상기 불순물 및 수용성 코팅물질을 분리하는 단계;4) A step of separating the above impurities and water-soluble coating material;
5) 분리된 각각의 불순물 및 수용성 코팅물질에 대하여 표준물질을 이용한 검량선을 작성하는 단계; 및5) A step of creating a calibration curve using standard materials for each separated impurity and water-soluble coating material; and
6) 작성된 검량선으로부터 각각의 불순물 및 수용성 코팅물질을 정량하는 단계를 포함하는 양극재 분석 방법을 제공한다.6) A method for analyzing a cathode material is provided, including a step of quantifying each impurity and water-soluble coating material from a prepared calibration curve.
본 발명에 사용되는 물은 예를 들면, 일반적인 증류수, 초순수, 탈이온수 등을 사용할 수 있고, 예를 들면 3차 증류수를 사용할 수 있다.The water used in the present invention may be, for example, general distilled water, ultrapure water, deionized water, etc., and for example, triple distilled water may be used.
일구현예에 따르면, 상기 불순물은 리튬(Li)을 함유할 수 있고, 구체적으로 예를 들면, Li2CO3, LiOH 및 Li2SO4로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있다. 상기 불순물 중, Li2SO4는 중성으로 적정에 영향을 주지 않기 때문에 적정을 이용한 방법으로는 검출할 수 없다. 본 발명에 따른 방법에 의하면, 예를 들어 LiOH의 함량을 구하기 위하여 총 Li+ 함량을 분석한 후, CO3 2-, SO4 2-의 함량을 구하여 CO3 2-, SO4 2-에서 필요한 Li+ 함량을 제외하여, 나머지가 LiOH의 Li+ 함량을 의미하므로 계산에 따라 LiOH의 함량을 도출할 수 있다. 수용성 코팅 물질의 경우에도 상기한 바와 같은 방법에 따라 그 함량을 계산할 수 있다.According to one embodiment, the impurity may contain lithium (Li), and specifically, may include at least one selected from the group consisting of Li 2 CO 3 , LiOH, and Li 2 SO 4 . Among the impurities, Li 2 SO 4 is neutral and does not affect titration, and therefore cannot be detected by a method using titration. According to the method according to the present invention, for example, to obtain the content of LiOH, after analyzing the total Li + content, the contents of CO 3 2- and SO 4 2- are obtained, and the required Li + content is subtracted from CO 3 2- and SO 4 2- , and the remainder means the Li + content of LiOH, so that the content of LiOH can be derived through calculation. In the case of a water-soluble coating material, its content can also be calculated by the method described above.
일구현예에 따르면, 상기 양극재는 리튬 금속 산화물을 포함할 수 있고, 예를 들면, LTO(Li14Ti15O12), LCO(LiCoO2), NCM(Li[Ni,Co,Mn]O2), NCMA(Li[Ni.Co.Mn.Al]O2), NCA(Li[Ni,Co,Al]O2), LMO(LiMn2O4), LFP(LiFePO4) 및 LCP(LiCoPO4)로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있다.According to one embodiment, the cathode material may include a lithium metal oxide, and may include at least one selected from the group consisting of, for example, LTO (Li 14 Ti 15 O 12 ), LCO (LiCoO 2 ), NCM (Li[Ni,Co,Mn]O 2 ), NCMA (Li[Ni.Co.Mn.Al]O 2 ), NCA (Li[Ni,Co,Al]O 2 ), LMO (LiMn 2 O 4 ), LFP (LiFePO 4 ), and LCP (LiCoPO 4 ).
일구현예에 따르면, 상기 4) 단계가 모세관 전기영동 및 이온 크로마토그래피로 이루어지는 군으로부터 선택되는 하나 이상을 실시하는 단계를 포함할 수 있다.According to an embodiment, the step 4) may include a step of performing at least one selected from the group consisting of capillary electrophoresis and ion chromatography.
구체적으로 예를 들면, 상기 4) 단계에서 모세관 전기영동법(capillary electrophoresis)을 선택하는 경우, 검출하고자 하는 성분에 따라 검출기 및 버퍼(buffer)를 적절하게 선택할 수 있다. 검출기로는 예를 들면, 자외선 분광계(UV spectrophotometer), 전기전도도 검출기(Conductivity Detector) 등을 사용할 수 있고, 예를 들면 자외선 분광계(UV spectrophotometer)를 사용할 수 있다. 버퍼는 일반적으로 사용되는 것이라면 제한되지 않고 사용할 수 있다.Specifically, for example, when capillary electrophoresis is selected in step 4), a detector and buffer can be appropriately selected depending on the component to be detected. As a detector, for example, an ultraviolet spectrophotometer, a conductivity detector, etc. can be used, and for example, an ultraviolet spectrophotometer can be used. As for the buffer, if it is commonly used, it can be used without limitation.
일구현예에 따르면, 상기 양극재는 코팅된 것일 수 있으며, 구체적으로 예를 들면, 상기 양극재는 텅스텐(W), 붕소(B), 알루미늄(Al), 마그네슘(Mg), 아연(Zn) 및 인(P)으로 이루어지는 군으로부터 선택되는 하나 이상으로 코팅된 것일 수 있다.According to one embodiment, the cathode material may be coated, and specifically, for example, the cathode material may be coated with one or more selected from the group consisting of tungsten (W), boron (B), aluminum (Al), magnesium (Mg), zinc (Zn), and phosphorus (P).
일구현예에 따르면, 상기 수용성 코팅 물질은 LiWO2, Li2WO4, Li4WO5, Li6WO6, LiBO2, Li2B4O7, LiAlO4 및 LiAlO2로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있다.According to one embodiment, the water-soluble coating material may include at least one selected from the group consisting of LiWO 2 , Li 2 WO 4 , Li 4 WO 5 , Li 6 WO 6 , LiBO 2 , Li 2 B 4 O 7 , LiAlO 4 and LiAlO 2 .
일구현예에 따르면, 표준물질로서 카보네이트(CO3 2-), 설페이트(SO4 2-) 및 리튬(Li+)으로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있다.According to an embodiment, the standard substance may include at least one selected from the group consisting of carbonate (CO 3 2- ), sulfate (SO 4 2- ), and lithium (Li + ).
본 발명의 다른 구현예에 따르면, 상기한 바와 같은 방법에 따른 양극재 불순물 분석 시스템을 제공한다.According to another embodiment of the present invention, a cathode material impurity analysis system according to the method described above is provided.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.
실시예 1: 코팅되지 않은 양극재의 불순물 분석Example 1: Impurity analysis of uncoated cathode material
양극재로서 NCM(Li[Ni,Co,Mn]O2을 용기에 넣고 2g으로 정확하게 무게를 측정한 후, 3차 증류수를 50g 넣고, 양극재 내의 불순물을 용해시켰다. 불순물이 용해된 용액을 원심분리한 후, 필터(Syringe filter/PVDF, 45 μm)를 사용하여 여과시켰다. 모세관 전기영동(capillary electrophoresis, CE) 장비(MDQ plus/AB SCIEX사)를 사용하여 불순물을 종류에 따라 분리하였다. 모세관 전기영동(CE) 분석 조건은 다음과 같다.As a cathode material, NCM (Li[Ni,Co,Mn]O2 ) was placed in a container, weighed exactly at 2g, 50g of triple-distilled water was added, and the impurities in the cathode material were dissolved. The solution with the impurities dissolved was centrifuged and filtered using a filter (Syringe filter/PVDF, 45 μm). The impurities were separated by type using capillary electrophoresis (CE) equipment (MDQ plus/AB SCIEX). The capillary electrophoresis (CE) analysis conditions are as follows.
모세관 구성 물질: 용융 실리카Capillary Composition Material: Fused Silica
온도: 상온(25±5℃)Temperature: Room temperature (25±5℃)
버퍼: Anion analysis kit, Cation analysis kit (SCIEX사)Buffer: Anion analysis kit, Cation analysis kit (SCIEX)
모세관 크기: 75 μm, 60 cmCapillary size: 75 μm, 60 cm
전압: 25 kVVoltage: 25 kV
분리된 각각의 불순물에 대하여 자외선 분광계(UV spectrophotometer)를 이용하여 표준물질 카보네이트(CO3 2-), 설페이트(SO4 2-) 및 리튬(Li+)으로 검량선을 작성하였으며 도 2에 나타내었다.For each separated impurity, a calibration curve was created using a UV spectrophotometer with standard materials carbonate (CO 3 2- ), sulfate (SO 4 2- ), and lithium (Li + ), and is shown in Figure 2.
비교예 1Comparative Example 1
NCM(Li[Ni,Co,Mn]O2) 2g을 소수점 2번째 자리까지 무게를 측정하고, 비커에 초순수 100mL과 함께 자석 교반기와 자석 막대를 이용하여 용액이 튀지 않는 최고 회전수에서 10분 이상 교반하였다. 이 때, 대기 중 이산화탄소의 영향을 받지 않도록 밀봉하여 교반하였다.Weigh 2 g of NCM (Li [Ni, Co, Mn] O 2 ) to the second decimal place, and mix with 100 mL of ultrapure water in a beaker using a magnetic stirrer and a magnetic bar at the highest rotation speed that does not allow the solution to splash for more than 10 minutes. At this time, the mixture was stirred in a sealed container to prevent it from being affected by carbon dioxide in the atmosphere.
교반된 용액을 거름종이(1um pore size filter paper)를 이용하여 용액과 분말을 분리하였다. 분리된 용액을 0.1N의 염산으로 pH 적정을 실시하였다. 이 때, 두 개의 당량점이 존재하기 때문에 첫 번째 당량점을 페놀프탈레인, 두 번째 당량점은 메틸 오렌지를 사용하여 측정하였으며, 측정 정밀도를 높이기 위하여 자동 전위차 적정기(automatic potentiometric titrator)를 사용하였다.The stirred solution was separated into solution and powder using a filter paper (1 um pore size filter paper). The separated solution was subjected to pH titration with 0.1 N hydrochloric acid. At this time, since there were two equivalence points, the first equivalence point was measured using phenolphthalein, and the second equivalence point was measured using methyl orange. In order to increase the measurement precision, an automatic potentiometric titrator was used.
적정된 값으로부터 각각의 탄산리튬(Li2CO3) 및 수산화리튬(LiOH) 함량을 계산하여 실시예 1(CE/UV)의 결과와 함께 표 1에 나타내었다.The contents of lithium carbonate (Li 2 CO 3 ) and lithium hydroxide (LiOH) were calculated from the appropriate values and are shown in Table 1 together with the results of Example 1 (CE/UV).
(㎍/g)Lithium carbonate (Li 2 CO 3 )
(㎍/g)
(㎍/g)Lithium hydroxide (LiOH)
(㎍/g)
(적정법)Comparative Example 1
(proper law)
(CE/UV)Example 1
(CE/UV)
표 1에 나타난 바와 같이, 코팅되지 않은 일반 양극재의 경우에는 적정과 분리를 이용한 불순물 정량에 차이가 없는 것을 확인할 수 있다. 이를 통해 본 발명의 분리 방법을 이용하여 적정을 통한 불순물 정량을 대체할 수 있음을 확인할 수 있다. 다만, 종래의 적정법에 따른 적정 곡선이 매 실험마다 이상적인 형태가 아님을 기술한 바와 같이, 적정법을 이용한 불순물 정량은 변곡점 파악이 어려워 분리를 이용한 정량 대비 정확도가 떨어질 수 있다는 단점을 가진다.As shown in Table 1, in the case of uncoated general cathode materials, it can be confirmed that there is no difference in the impurity quantification using titration and separation. Through this, it can be confirmed that the separation method of the present invention can be used to replace the impurity quantification using titration. However, as described above that the titration curve according to the conventional titration method is not an ideal shape for each experiment, the impurity quantification using the titration method has a disadvantage in that the accuracy may be lower than that using separation because it is difficult to identify the inflection point.
실시예 2: 코팅된 양극재의 불순물 분석Example 2: Impurity analysis of coated cathode material
실시예 2-1Example 2-1
텅스텐(W)이 코팅된 NCM(Li[Ni,Co,Mn]O2) 양극재 내의 불순물을 확인하기 위하여 실시예 1과 동일한 방법으로 정량 분석하였다.To identify impurities in the tungsten (W)-coated NCM (Li[Ni,Co,Mn]O 2 ) cathode material, quantitative analysis was performed using the same method as in Example 1.
실시예 2-2Example 2-2
실험 정확성의 교차 검증을 위하여 실시예 2-1과 동일한 시료를 실시예 1과 동일한 방법으로 전처리하여 이온크로마토그래피(Ion chromatograpy, IC) 장비를 사용하여 불순물을 종류에 따라 분리하였다. 이온크로마토그래피(Ion chromatograpy, IC) 장비(ICS-3000/Thermo Fisher Scientific사)를 사용하여 불순물을 종류에 따라 분리하였다. 이온크로마토그래피(IC) 분석 조건은 다음과 같다.For cross-validation of experimental accuracy, the same sample as Example 2-1 was pretreated in the same manner as Example 1, and impurities were separated by type using ion chromatography (IC) equipment. Impurities were separated by type using ion chromatography (IC) equipment (ICS-3000/Thermo Fisher Scientific). The ion chromatography (IC) analysis conditions were as follows.
Detector: Suppressed Conductivity DetectorDetector: Suppressed Conductivity Detector
Column: IonPacAS19(4 ⅹ 250 mm), IonPacAG18 (4 ⅹ 50 mm)Column: IonPacAS19 (4 ⅹ 250 mm), IonPacAG18 (4 ⅹ 50 mm)
버퍼: KOH(30.5 mM from 0~10min)Buffer: KOH (30.5 mM from 0~10min)
Flow rate: 1 mL/minFlow rate: 1 mL/min
SRS current 76mASRS current 76mA
비교예 2Comparative Example 2
실시예 2-1과 동일한 양극재를 사용한 것을 제외하고 비교예 1과 동일한 방법으로 분석하였다.Analysis was performed in the same manner as in Comparative Example 1, except that the same cathode material as in Example 2-1 was used.
실시예 2 및 비교예 2에 따른 결과를 표 2에 나타내었다.The results according to Example 2 and Comparative Example 2 are shown in Table 2.
(ug/g)Lithium carbonate (Li 2 CO 3 ) content
(ug/g)
(분석방법)Types of cathode materials
(Analysis method)
(적정법)Comparative Example 2
(proper law)
(CE/UV)Example 2-1
(CE/UV)
(IC)Example 2-2
(IC)
표 2에 나타난 바와 같이, 실시예 2-1 및 2-2의 두 방법에 따른 결과 값은 큰 차이를 보이지 않으므로 코팅된 양극재 내에서 불순물 및 수용성 코팅 물질을 분석하는 데 있어서 우수한 정밀도를 달성할 수 있음을 확인할 수 있다.As shown in Table 2, the result values according to the two methods of Examples 2-1 and 2-2 do not show a large difference, so it can be confirmed that excellent precision can be achieved in analyzing impurities and water-soluble coating materials in the coated cathode material.
반면, 비교예 2에 따른 결과가 실시예 2-1 및 2-2에 따른 결과와 큰 차이가 나는 이유는 수용성 코팅 성분인 텅스텐(W) 성분이 탄산리튬(Li2CO3)과 pKa 값이 유사하므로 두 물질이 동일한 영역에서 적정되기 때문에 정확한 값을 도출하기 어렵기 때문으로 해석할 수 있다.On the other hand, the reason why the results according to Comparative Example 2 differ greatly from the results according to Examples 2-1 and 2-2 can be interpreted as being because the tungsten (W) component, which is a water-soluble coating component, has a pKa value similar to that of lithium carbonate (Li 2 CO 3 ), so it is difficult to derive an accurate value because the two substances are titrated in the same region.
본 발명에 따르면, 탄산리튬(Li2CO3)의 함량뿐만 아니라 리튬을 함유하는 불순물 또는 수용성 코팅 물질에 대하여 총 Li+ 함량으로부터 각각을 계산하여 정확도 및 정밀도 높은 함량 값을 도출할 수 있다.According to the present invention, it is possible to derive a content value with high accuracy and precision by calculating each from the total Li + content for not only the content of lithium carbonate (Li 2 CO 3 ) but also the content of lithium-containing impurities or water-soluble coating materials.
상기한 바와 같이, 본 발명에 따른 방법에 의하면 코팅이 되거나 되지 않은 양극재 내의 불순물을 종류별로 각각의 peak로 분리하여 정량할 수 있다.As described above, according to the method of the present invention, impurities in a coated or uncoated cathode material can be separated into individual peaks and quantified by type.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능하다. 또한, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative description of the technical idea of the present invention, and those skilled in the art will appreciate that various modifications and variations can be made without departing from the essential characteristics of the present invention. In addition, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but rather to explain it, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within a scope equivalent thereto should be interpreted as being included in the scope of the rights of the present invention.
Claims (12)
1) 양극재의 무게를 정확하게 측정하는 단계;
2) 상기 1)의 양극재에 물을 넣어 양극재 내의 불순물을 용해시키는 단계;
3) 상기 2)의 용액을 원심분리한 후, 필터하는 단계;
4) 상기 불순물을 각각 분리하는 단계;
5) 분리된 각각의 불순물에 대하여 표준물질을 이용한 검량선을 작성하는 단계; 및
6) 작성된 검량선으로부터 각각의 불순물을 정량하는 단계를 포함하고,
상기 양극재가 LTO(Li14Ti15O12), LCO(LiCoO2), NCM(Li[Ni,Co,Mn]O2), NCMA(Li[Ni,Co,Mn,Al]O2), NCA(Li[Ni,Co,Al]O2), LMO(LiMn2O4), LFP(LiFePO4) 및 LCP(LiCoPO4)로 이루어지는 군으로부터 선택되는 하나 이상을 포함하는 것인, 양극재 분석 방법.A method for analyzing the cathode material of a battery,
1) Step of accurately measuring the weight of the cathode material;
2) A step of adding water to the cathode material of 1) above to dissolve impurities in the cathode material;
3) A step of centrifuging the solution of 2) above and then filtering it;
4) A step of separating each of the above impurities;
5) A step of creating a calibration curve using standard materials for each separated impurity; and
6) Includes a step of quantifying each impurity from the prepared calibration curve;
A method for analyzing a cathode material, wherein the cathode material comprises at least one selected from the group consisting of LTO (Li 14 Ti 15 O 12 ), LCO (LiCoO 2 ), NCM (Li[Ni,Co,Mn]O 2 ), NCMA (Li[Ni,Co,Mn,Al]O 2 ), NCA (Li[Ni,Co,Al]O 2 ), LMO (LiMn 2 O 4 ), LFP (LiFePO 4 ), and LCP (LiCoPO 4 ).
1) 코팅된 양극재의 무게를 정확하게 측정하는 단계;
2) 상기 1)의 양극재에 물을 넣어 양극재 내의 불순물 및 수용성 코팅물질을 용해시키는 단계;
3) 상기 2)의 용액을 원심분리한 후, 필터하는 단계;
4) 상기 불순물 및 수용성 코팅물질을 분리하는 단계;
5) 분리된 각각의 불순물 및 수용성 코팅물질에 대하여 표준물질을 이용한 검량선을 작성하는 단계; 및
6) 작성된 검량선으로부터 각각의 불순물 및 수용성 코팅물질을 정량하는 단계를 포함하고,
상기 양극재가 LTO(Li14Ti15O12), LCO(LiCoO2), NCM(Li[Ni,Co,Mn]O2), NCMA(Li[Ni,Co,Mn,Al]O2), NCA(Li[Ni,Co,Al]O2), LMO(LiMn2O4), LFP(LiFePO4) 및 LCP(LiCoPO4)로 이루어지는 군으로부터 선택되는 하나 이상을 포함하는 것인, 양극재 분석 방법.A method for analyzing the cathode material of a battery,
1) A step of accurately measuring the weight of the coated cathode material;
2) A step of adding water to the cathode material of the above 1) to dissolve impurities and water-soluble coating material in the cathode material;
3) A step of centrifuging the solution of 2) above and then filtering it;
4) A step of separating the above impurities and water-soluble coating material;
5) A step of creating a calibration curve using standard materials for each separated impurity and water-soluble coating material; and
6) Includes a step of quantifying each impurity and water-soluble coating material from the prepared calibration curve;
A method for analyzing a cathode material, wherein the cathode material comprises at least one selected from the group consisting of LTO (Li 14 Ti 15 O 12 ), LCO (LiCoO 2 ), NCM (Li[Ni,Co,Mn]O 2 ), NCMA (Li[Ni,Co,Mn,Al]O 2 ), NCA (Li[Ni,Co,Al]O 2 ), LMO (LiMn 2 O 4 ), LFP (LiFePO 4 ), and LCP (LiCoPO 4 ).
상기 전지가 2차 전지인 것인, 양극재 분석 방법.In paragraph 1 or 2,
A method for analyzing a cathode material, wherein the above battery is a secondary battery.
상기 불순물이 리튬을 함유하는 것인, 양극재 분석 방법.In paragraph 1 or 2,
A method for analyzing a cathode material, wherein the above impurities contain lithium.
상기 불순물이 Li2CO3, LiOH 및 Li2SO4로 이루어지는 군으로부터 선택되는 하나 이상을 포함하는 것인, 양극재 분석 방법.In paragraph 1 or 2,
A method for analyzing a cathode material, wherein the impurity comprises at least one selected from the group consisting of Li 2 CO 3 , LiOH and Li 2 SO 4 .
상기 양극재가 리튬 금속 산화물을 포함하는 것인, 양극재 분석 방법.In paragraph 1 or 2,
A method for analyzing a cathode material, wherein the cathode material comprises lithium metal oxide.
상기 4) 단계가 모세관 전기영동 및 이온 크로마토그래피로 이루어지는 군으로부터 선택되는 하나 이상을 실시하는 단계를 포함하는 것인, 양극재 분석 방법.In paragraph 1 or 2,
A method for analyzing a cathode material, wherein the step 4) above includes performing at least one step selected from the group consisting of capillary electrophoresis and ion chromatography.
상기 양극재가 텅스텐(W), 붕소(B), 알루미늄(Al), 마그네슘(Mg), 아연(Zn) 및 인(P)으로 이루어지는 군으로부터 선택되는 하나 이상으로 코팅된 것인, 양극재 분석 방법.In paragraph 1 or 2,
A method for analyzing a cathode material, wherein the cathode material is coated with at least one selected from the group consisting of tungsten (W), boron (B), aluminum (Al), magnesium (Mg), zinc (Zn), and phosphorus (P).
상기 수용성 코팅 물질이 LiWO2, Li2WO4, Li4WO5, Li6WO6, LiBO2, Li2B4O7, LiAlO4 및 LiAlO2로 이루어지는 군으로부터 선택되는 하나 이상을 포함하는 것인, 양극재 분석 방법.In the second paragraph,
A method for analyzing a cathode material, wherein the water-soluble coating material comprises at least one selected from the group consisting of LiWO 2 , Li 2 WO 4 , Li 4 WO 5 , Li 6 WO 6 , LiBO 2 , Li 2 B 4 O 7 , LiAlO 4 and LiAlO 2 .
상기 표준물질이 카보네이트(CO3 2-), 설페이트(SO4 2-) 및 리튬(Li+)으로 이루어지는 군으로부터 선택되는 하나 이상을 포함하는 것인, 양극재 분석 방법.In paragraph 1 or 2,
A method for analyzing a cathode material, wherein the standard material comprises at least one selected from the group consisting of carbonate (CO 3 2- ), sulfate (SO 4 2- ), and lithium (Li + ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190071215A KR102727941B1 (en) | 2019-06-17 | 2019-06-17 | Analysis method for cathode impurities and water-soluble coating substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190071215A KR102727941B1 (en) | 2019-06-17 | 2019-06-17 | Analysis method for cathode impurities and water-soluble coating substance |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200143763A KR20200143763A (en) | 2020-12-28 |
KR102727941B1 true KR102727941B1 (en) | 2024-11-08 |
Family
ID=74087124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190071215A Active KR102727941B1 (en) | 2019-06-17 | 2019-06-17 | Analysis method for cathode impurities and water-soluble coating substance |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102727941B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240151697A1 (en) * | 2021-11-16 | 2024-05-09 | Lg Chem, Ltd. | Method for Analysis of Residual Lithium Compounds in Positive Electrode Active Material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011116593A (en) * | 2009-12-03 | 2011-06-16 | Sumitomo Bakelite Co Ltd | Composite particle, resin composition, wavelength converting layer, and photovoltaic device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4656653B2 (en) * | 2003-10-27 | 2011-03-23 | 三井造船株式会社 | Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery |
TW201603367A (en) * | 2014-03-07 | 2016-01-16 | A123系統有限責任公司 | High power electrode materials and method to form the same, and electrochemical cell |
KR101994380B1 (en) * | 2017-12-01 | 2019-06-28 | 주식회사 포스코 | Apparatus and method for heating secondary battery cathode material |
-
2019
- 2019-06-17 KR KR1020190071215A patent/KR102727941B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011116593A (en) * | 2009-12-03 | 2011-06-16 | Sumitomo Bakelite Co Ltd | Composite particle, resin composition, wavelength converting layer, and photovoltaic device |
Also Published As
Publication number | Publication date |
---|---|
KR20200143763A (en) | 2020-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries | |
Kasnatscheew et al. | The truth about the 1st cycle Coulombic efficiency of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) cathodes | |
EP2368851B1 (en) | Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell | |
US10500610B2 (en) | Method for producing active material composite | |
TW201332199A (en) | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery | |
EP3261158A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery | |
JP7089297B6 (en) | Tungsten-doped lithium manganese iron phosphate fine particles, powder material containing the fine particles, and method for producing the powder material | |
Stuckenberg et al. | Influence of LiNO3 on the Lithium Metal Deposition Behavior in Carbonate‐Based Liquid Electrolytes and on the Electrochemical Performance in Zero‐Excess Lithium Metal Batteries | |
KR102727941B1 (en) | Analysis method for cathode impurities and water-soluble coating substance | |
Leslie et al. | Correlating Mn dissolution and capacity fade in LiMn0. 8Fe0. 2PO4/graphite cells during cycling and storage at elevated temperature | |
EP1265300B1 (en) | Cathode material for use in lithium secondary battery and manufacturing method thereof | |
CN105655563B (en) | A kind of composite cathode material for lithium ion cell and preparation method thereof | |
JP6278452B2 (en) | Lithium ion behavior evaluation method in all solid state lithium ion battery and all solid state lithium ion battery capable of evaluating lithium ion behavior | |
Scheer et al. | Anodic dissolution of the aluminum current collector in lithium-ion cells with LiFSI, LiPF6, and LiBF4 | |
Wissel et al. | Direct Recycling of β‐Li3PS4‐Based All‐Solid‐State Li‐Ion Batteries: Interactions of Electrode Materials and Electrolyte in a Dissolution‐Based Separation Process | |
Tesfamhret et al. | The role of ethylene carbonate (EC) and tetramethylene sulfone (SL) in the dissolution of transition metals from lithium-ion cathodes | |
JP2019149302A (en) | Manufacturing method of positive electrode active material | |
CN110350143B (en) | Process for treating surface of metal lithium | |
CN115986073A (en) | Positive active material and preparation method and application thereof | |
KR102686288B1 (en) | Analysis method of cathod | |
EP4298062B1 (en) | Lithium nickel-based composite oxide as a positive electrode active material for rechargeable lithium-ion batteries | |
JP7654927B2 (en) | Analysis method for residual lithium compounds in positive electrode active material | |
US20250174647A1 (en) | Lithium-rich manganese-based oxide as a positive electrode active material for lithium-ion rechargeable batteries | |
Tesfamhret et al. | The Role of EC and Sulfolane on the Dissolution of Transition Metals from Lithium-Ion Cathodes | |
KR20190122119A (en) | Analysis method for percent of active material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20190617 |
|
PG1501 | Laying open of application | ||
PN2301 | Change of applicant |
Patent event date: 20211110 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20220419 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20190617 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240115 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241025 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20241105 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20241106 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |