KR102721822B1 - Epoxy injection composition with properties of low-viscosity, ultra-fast-curing and moisture-curing for repairing cracks in concrete structures - Google Patents
Epoxy injection composition with properties of low-viscosity, ultra-fast-curing and moisture-curing for repairing cracks in concrete structures Download PDFInfo
- Publication number
- KR102721822B1 KR102721822B1 KR1020230194218A KR20230194218A KR102721822B1 KR 102721822 B1 KR102721822 B1 KR 102721822B1 KR 1020230194218 A KR1020230194218 A KR 1020230194218A KR 20230194218 A KR20230194218 A KR 20230194218A KR 102721822 B1 KR102721822 B1 KR 102721822B1
- Authority
- KR
- South Korea
- Prior art keywords
- curing
- urethane
- moisture
- catalyst
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002347 injection Methods 0.000 title claims abstract description 69
- 239000007924 injection Substances 0.000 title claims abstract description 69
- 239000000203 mixture Substances 0.000 title claims abstract description 57
- 239000004567 concrete Substances 0.000 title claims abstract description 38
- 238000013008 moisture curing Methods 0.000 title description 40
- 238000001723 curing Methods 0.000 title description 9
- 239000004593 Epoxy Substances 0.000 title 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000003054 catalyst Substances 0.000 claims abstract description 50
- 230000008439 repair process Effects 0.000 claims abstract description 39
- 229920005862 polyol Polymers 0.000 claims abstract description 34
- 150000003077 polyols Chemical class 0.000 claims abstract description 30
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims abstract description 29
- 150000003673 urethanes Chemical class 0.000 claims abstract description 27
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229920005989 resin Polymers 0.000 claims abstract description 23
- 239000011347 resin Substances 0.000 claims abstract description 23
- 239000002904 solvent Substances 0.000 claims abstract description 15
- 239000004970 Chain extender Substances 0.000 claims abstract description 13
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims abstract description 9
- 239000004814 polyurethane Substances 0.000 claims description 55
- 229920002635 polyurethane Polymers 0.000 claims description 54
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 claims description 30
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 28
- -1 polypropylene Polymers 0.000 claims description 21
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 claims description 20
- 239000012975 dibutyltin dilaurate Substances 0.000 claims description 20
- 238000005187 foaming Methods 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 13
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 claims description 11
- 239000004743 Polypropylene Substances 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 229920001451 polypropylene glycol Polymers 0.000 claims description 7
- 239000012046 mixed solvent Substances 0.000 claims description 5
- 239000003381 stabilizer Substances 0.000 claims description 5
- 150000003573 thiols Chemical class 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 description 37
- 238000006243 chemical reaction Methods 0.000 description 32
- 239000005058 Isophorone diisocyanate Substances 0.000 description 22
- 238000001746 injection moulding Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 230000002209 hydrophobic effect Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000006260 foam Substances 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000012948 isocyanate Substances 0.000 description 9
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 8
- 150000002513 isocyanates Chemical class 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 7
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 7
- 239000004202 carbamide Substances 0.000 description 7
- 150000002009 diols Chemical class 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 230000009257 reactivity Effects 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000001879 gelation Methods 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 5
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000012973 diazabicyclooctane Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000005056 polyisocyanate Substances 0.000 description 4
- 229920001228 polyisocyanate Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 229920005749 polyurethane resin Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- CMTOAZYCDKAFHL-UHFFFAOYSA-N CC1=CC=CC=C1.CC1=CC=CC=C1.CC1=CC=CC=C1 Chemical compound CC1=CC=CC=C1.CC1=CC=CC=C1.CC1=CC=CC=C1 CMTOAZYCDKAFHL-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- 229920005601 base polymer Polymers 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000011496 polyurethane foam Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- AHYFYQKMYMKPKD-UHFFFAOYSA-N 3-ethoxysilylpropan-1-amine Chemical compound CCO[SiH2]CCCN AHYFYQKMYMKPKD-UHFFFAOYSA-N 0.000 description 1
- BYIMSFXYUSZVLI-UHFFFAOYSA-N 3-methoxysilylpropan-1-amine Chemical compound CO[SiH2]CCCN BYIMSFXYUSZVLI-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000013466 adhesive and sealant Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004413 injection moulding compound Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/46—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
- C04B41/48—Macromolecular compounds
- C04B41/488—Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
- C04B41/4884—Polyurethanes; Polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/4572—Partial coating or impregnation of the surface of the substrate
- C04B41/4576—Inlaid coatings, i.e. resulting in a plane surface
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/60—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
- C04B41/61—Coating or impregnation
- C04B41/62—Coating or impregnation with organic materials
- C04B41/63—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3203—Polyhydroxy compounds
- C08G18/3206—Polyhydroxy compounds aliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3271—Hydroxyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/38—Low-molecular-weight compounds having heteroatoms other than oxygen
- C08G18/3893—Low-molecular-weight compounds having heteroatoms other than oxygen containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
본 발명은 ⅰ) 메틸렌디페닐디이소시아네이트(MDI) 다핵체 혼합물(Polymeric MDI) 기반 제1 실란변성 우레탄 프리폴리머; 또는 ⅱ) 상기 제1 실란변성 우레탄 프리폴리머 50 내지 70 중량% 및 이소포론디이소시아네이트(IPDI) 기반 실란 변성 우레탄 폴리머 30 내지 50 중량%를 포함하는 제2 우레탄 프리폴리머 중 어느 하나의 우레탄 프리폴리머 100 중량부; 및 폴리올, 사슬연장제, 가교제, 촉매 및 용매를 포함하는 레진 프리믹스 80 내지 120 중량부를 포함하는, 콘크리트 보수용 우레탄 주입제 조성물을 제공한다. The present invention provides a urethane injection composition for concrete repair, comprising: 100 parts by weight of a urethane prepolymer of any one of: i) a first silane-modified urethane prepolymer based on a methylenediphenyl diisocyanate (MDI) polynuclear mixture (Polymeric MDI); or ii) a second urethane prepolymer comprising 50 to 70 wt% of the first silane-modified urethane prepolymer and 30 to 50 wt% of an isophorone diisocyanate (IPDI)-based silane-modified urethane polymer; and 80 to 120 parts by weight of a resin premix comprising a polyol, a chain extender, a crosslinking agent, a catalyst, and a solvent.
Description
본 발명은 콘크리트 구조물의 보수를 위한 수지 조성물 제조기술에 관한 것으로서 구체적으로는 콘크리트 구조물 균열의 효율적인 유지 및 보수를 위한 수지 조성물로서, 내구성이 높고 내열성, 내후성, 내화학성이 우수한 콘크리트 보수용 우레탄 주입제 조성물에 관한 기술이다. The present invention relates to a technology for manufacturing a resin composition for repairing concrete structures, and more specifically, to a technology for a urethane injection composition for repairing concrete, which is a resin composition for efficient maintenance and repair of cracks in concrete structures and has high durability and excellent heat resistance, weather resistance, and chemical resistance.
상업용 슬래브 건물부터 콘크리트 교량 등 콘크리트 구조물 균열 보수의 필요성이 크게 증가하고 있다. 균열이 구조물의 강도, 강성 또는 내구성을 감소시키거나 구조물의 기능이 심각하게 손상된 경우 유지 보수가 필요하며, 균열의 원인과 평가, 균열 상태를 고려하여 적절한 보수방법을 결정하는 데에는 사용되는 보수제 및 보수방법이 큰 영향을 미친다.The need for crack repair in concrete structures, from commercial slab buildings to concrete bridges, is increasing significantly. Maintenance is required when cracks reduce the strength, rigidity, or durability of a structure, or when the function of the structure is seriously impaired. The cause and evaluation of cracks, and the condition of cracks are considered to determine the appropriate repair method, and the repair agent and repair method used have a significant impact.
폴리우레탄은 기계적 특성이 뛰어나 신율, 내후성, 열안정성, 내화학성이 우수하며, 용도의 다양성, 작업성, 비용 효율성이 뛰어나, 발포체, 코팅제, 탄성체, 섬유 및 직물, 접착제, 밀봉제, 복합소재 등 다양한 용도의 제품들로 개발되어 왔다.Polyurethane has excellent mechanical properties, such as elongation, weather resistance, heat stability, and chemical resistance, and has excellent versatility, workability, and cost efficiency, and has been developed into products for various uses, such as foams, coatings, elastomers, fibers and fabrics, adhesives, sealants, and composite materials.
특히 습기 경화형 폴리우레탄 주입제는 지난 수십 년 동안 토목 인프라의 누수 보수, 재활 및 보호를 위한 일반적이고 효과적인 방법으로 사용되어 왔다. 습기 경화형 폴리우레탄 주입제는 광범위한 소재에 적용될 수 있다. 빠른 경화 특성, 낮은 겔 시간, 내구성, 내충격성, 내화학성, 환경 조건에 대한 높은 내후성, 우수한 접착 강도, 밀도가 낮으며 중량 대비 강도가 우수한 접착 특성뿐만 아니라, 추가적인 접착제가 필요 없는 자체 접착 특성 때문에 습기 경화형 폴리우레탄 주입제는 콘크리트 구조물의 누수 보수에 광범위하게 적용되고 있다.In particular, moisture-curing polyurethane injections have been used as a common and effective method for leak repair, rehabilitation and protection of civil infrastructure for decades. Moisture-curing polyurethane injections can be applied to a wide range of materials. Due to their fast curing properties, low gel time, durability, impact resistance, chemical resistance, high weathering resistance to environmental conditions, excellent bond strength, low density and high strength-to-weight ratio, as well as their self-adhesive properties that do not require additional adhesives, moisture-curing polyurethane injections are widely applied for leak repair of concrete structures.
습기 경화형 폴리우레탄 주입제는 60년대 후반에 주입제 산업에 도입되었으나, 환경 문제로 무용제 타입의 소수성 MDI 기반 폴리우레탄 프리폴리머로 대체되었다가, 현장 작업성이 우수한 TDI 기반의 용제형 친수성 폴리우레탄 주입제로 대체된 후, 환경문제 등 새로운 추세로 인하여 개선된 환경 문제를 극복한 습기 경화형 소수성 반응성 폴리우레탄 수지가 개발되었다.Moisture-curable polyurethane injection molding agents were introduced to the injection molding industry in the late 1960s, but were replaced by solvent-free, hydrophobic MDI-based polyurethane prepolymers due to environmental issues. These were then replaced by solvent-based, hydrophilic polyurethane injection molding agents based on TDI with excellent field workability. Then, due to new trends such as environmental issues, moisture-curable, hydrophobic reactive polyurethane resins that overcome improved environmental issues were developed.
습기 경화형 폴리우레탄 주입제는 액상 주입제로 시멘트 기반의 현탁 주입제와 달리 미세균열에 주입이 가능하며, 겔화 또는 경화 직전에 평평한 점도 곡선이 특징이다. 폴리우레탄 주입제는 일반적으로 습기 경화형 폴리우레탄 주입제, 2액형 발포 주입제(폴리올-이소시아네이트 조합), 2액형 폴리우레탄 엘라스토머 주입제 등으로 구분된다. Moisture-curing polyurethane injections are liquid injections that, unlike cement-based suspension injections, can be injected into microcracks and are characterized by a flat viscosity curve just before gelation or hardening. Polyurethane injections are generally classified into moisture-curing polyurethane injections, two-component foam injections (polyol-isocyanate combinations), and two-component polyurethane elastomer injections.
습기 경화형 폴리우레탄 주입제에는 다시 습기 경화형 소수성 폴리우레탄 프리폴리머 주입제 및 습기 경화형 친수성 폴리우레탄 프리폴리머 주입제로 구분된다. 대부분의 폴리우레탄 주입제의 독성은 일반적으로 문제가 되지 않으며, 습기 경화형 소수성 폴리우레탄 주입제가 현재 콘크리트 구조물의 누수방지 제어에 일반적으로 사용되고 있다. Moisture-curing polyurethane injection molding agents are further divided into moisture-curing hydrophobic polyurethane prepolymer injection molding agents and moisture-curing hydrophilic polyurethane prepolymer injection molding agents. The toxicity of most polyurethane injection molding agents is generally not a problem, and moisture-curing hydrophobic polyurethane injection molding agents are currently commonly used for water-proofing control of concrete structures.
습기 경화형 폴리우레탄 주입제용 우레탄 프리폴리머는 폴리올과 과량의 폴리이소시아네이트를 혼합하여 유리 NCO기를 포함하는 낮은 프리폴리머 화합물을 형성함으로써 만들어 진다. 여기에 아민 촉매, 유기금속 촉매, 계면활성제(정포제) 및 기타 첨가제를 첨가하여 주입용 수지를 만든다. 이소시아네이트, 폴리올 및 기타 성분 간의 반응 메커니즘은 다음과 같다.The urethane prepolymer for moisture-curing polyurethane injection is prepared by mixing a polyol and an excess of polyisocyanate to form a low prepolymer compound containing free NCO groups. An amine catalyst, an organometallic catalyst, a surfactant (a foaming agent) and other additives are added to prepare an injection resin. The reaction mechanism between the isocyanate, polyol and other components is as follows.
1) 이소시아네이트와 폴리올 사이의 반응은 우레탄 프리폴리머를 생성한다.1) The reaction between isocyanate and polyol produces urethane prepolymer.
2) 폴리이소시아네이트와 습기의 반응은 이산화탄소와 우레아를 생성한다.2) The reaction of polyisocyanate and moisture produces carbon dioxide and urea.
3) 폴리이소시아네이트와 우레와의 반응은 고분자 가교 네트워크를 형성한다.3) The reaction between polyisocyanate and urea forms a polymer crosslinked network.
4) 이런 반응은 주입제에 자유 NCO기가 존재하기 때문에 발생하며, 이는 하이드록시, 습기, 아미노 및 우레아와 같은 활성 수소 원자를 포함하는 화합물과 반응할 수 있다. 수소 원자는 protonation(양성자 부가)되어 폴리이소시아네이트의 질소 원자와 연결되고 고분자 중합체를 형성한다.4) This reaction occurs because there is a free NCO group in the injection agent, which can react with compounds containing active hydrogen atoms such as hydroxy, moisture, amino, and urea. The hydrogen atom is protonated and connects with the nitrogen atom of the polyisocyanate to form a high molecular weight polymer.
습기 경화형 폴리우레탄 주입제는 경화 반응물로 "물"을 사용하는 제품으로 현장의 습기와 반응하여 소수성 또는 친수성인 폼 또는 겔을 생성한다. 촉매(3차 아민)는 폴리머 생성 반응 속도에 관여하며, 촉매를 더 추가하여 겔화 과정을 빠르게 할 수 있다. 그리고 계면활성제(정포제)를 첨가하여 발포 과정 중 폼이 미세하고 균일한 셀이 생성되도록 한다.Moisture-curing polyurethane injection agents are products that use "water" as a curing agent, and react with moisture on site to produce hydrophobic or hydrophilic foams or gels. The catalyst (tertiary amine) is involved in the polymer production reaction speed, and adding more catalysts can speed up the gelation process. In addition, a surfactant (foam stabilizer) is added to ensure that the foam has fine and uniform cells during the foaming process.
습기 경화형 폴리우레탄 수지는 두 가지 범주로 분류된다.Moisture-curing polyurethane resins fall into two categories:
친수성 폴리 우레탄 수지는 습기와 반응하지만 화학반응 완료 후에도 물리적으로 물을 계속 흡수한다. 소수성 폴리우레탄 수지는 습기와 반응하지만 최종 (경화된) 생성물이 형성된 후에는 물을 밀어낸다.Hydrophilic polyurethane resins react with moisture, but continue to physically absorb water even after the chemical reaction is complete. Hydrophobic polyurethane resins react with moisture, but repel water after the final (cured) product is formed.
친수성 습기 경화형 폴리우레탄 주입제는 혼합되는 물의 양에 따라 반응 중에 겔 또는 폼을 형성한다. 그러나 반응 후 친수성 폴리우레탄에 의한 급격한 열화 및 습기 흡수에 대한 심각한 문제로 현재 거의 사용되지 않고 있다.Hydrophilic moisture-curing polyurethane injection agents form gels or foams during the reaction depending on the amount of water mixed. However, they are rarely used at present due to serious problems with rapid deterioration and moisture absorption by hydrophilic polyurethane after the reaction.
소수성 습기 경화형 폴리우레탄 주입제는 미세균열을 통하여 침투하면서 발열 반응으로 생성된 CO₂가 발생하여 침투율이 크게 향상되는 "active" 주입제이다. 소수성 습기 경화형 폴리우레탄 주입제의 미세균열에 대한 침투 속도는 매우 느린 과정으로 침투성은 점도와 반응 시간에 따라 결정되고, 주입구가 많을수록 유리하다. 겔화 시간은 점도의 급격한 증가와 관련이 있으며, 겔화되기 전에 CO₂가 발생하므로 주입제의 점도는 감소하나, 침투 후 겔화 과정에서 점도는 다시 크게 증가한다.Hydrophobic moisture-curing polyurethane injections are "active" injections that greatly enhance their penetration rate by generating CO₂ as an exothermic reaction as they penetrate through microcracks. The penetration rate of hydrophobic moisture-curing polyurethane injections into microcracks is a very slow process, and the penetration rate is determined by viscosity and reaction time, with more injection holes being more advantageous. The gelation time is related to the rapid increase in viscosity, and the viscosity of the injection decreases before gelation because CO₂ is generated, but the viscosity increases significantly again during the gelation process after penetration.
주입제의 화학반응 중에 발생하는 이산화탄소가 주입제를 미세균열 사이로 밀어 넣어 추가 압력으로 인하여 침투력이 향상되며, 알칼리성 환경(콘크리트)에서 경화된 폴리우레탄의 내구성 또한 우수하다는 장점들이 있지만, 한편으로 반응을 시작하려면 최소 온도가 필요한데, 주어진 압력에서 온도가 너무 낮으면 물과 완전히 혼합되지 않아 반응이 시작되지 않는 단점이 있으므로 상기의 압력/온도 변수와 무관하게 반응을 할 수 있도록 습기 반응성을 개선할 필요가 있다.There are advantages such as improved penetration ability due to additional pressure when the carbon dioxide generated during the chemical reaction of the injection agent pushes the injection agent between the microcracks, and excellent durability of the cured polyurethane in an alkaline environment (concrete). However, on the other hand, a minimum temperature is required to initiate the reaction, and if the temperature is too low at a given pressure, there is a disadvantage that the reaction does not initiate because it is not completely mixed with water. Therefore, it is necessary to improve moisture reactivity so that the reaction can occur regardless of the above pressure/temperature variables.
본 발명은 전술한 종래기술의 문제점을 고려하여 모색된 발명으로서 주변의 압력 및 온도 조건과 무관하게 반응할 수 있도록 습기 반응성이 현저히 개선된 콘크리트 구조물 균열 보수를 위한 우레탄 주입제 조성물을 제공하는 것을 목적으로 한다. The present invention has been made in consideration of the problems of the prior art as described above, and aims to provide a urethane injection composition for repairing cracks in concrete structures with significantly improved moisture reactivity so that it can react regardless of surrounding pressure and temperature conditions.
본 발명의 일 실시예에 따른 콘크리트 보수용 우레탄 주입제 조성물은, ⅰ) 메틸렌디페닐디이소시아네이트(MDI) 다핵체 혼합물(Polymeric MDI) 기반 제1 실란변성 우레탄 프리폴리머; 또는 ⅱ) 상기 제1 실란변성 우레탄 프리폴리머 50 내지 70 중량% 및 이소포론디이소시아네이트(IPDI) 기반 실란 변성 우레탄 폴리머 30 내지 50 중량%를 포함하는 제2 우레탄 프리폴리머 중 어느 하나의 우레탄 프리폴리머 100 중량부; 및 폴리올, 사슬연장제, 가교제, 촉매 및 용매를 포함하는 레진 프리믹스 80 내지 120 중량부를 포함한다. According to one embodiment of the present invention, a concrete repair urethane injection composition comprises: 100 parts by weight of a urethane prepolymer of either i) a first silane-modified urethane prepolymer based on a methylenediphenyl diisocyanate (MDI) polynuclear mixture (Polymeric MDI); or ii) a second urethane prepolymer comprising 50 to 70 wt% of the first silane-modified urethane prepolymer and 30 to 50 wt% of an isophorone diisocyanate (IPDI)-based silane-modified urethane polymer; and 80 to 120 parts by weight of a resin premix comprising a polyol, a chain extender, a crosslinking agent, a catalyst, and a solvent.
상기 MDI 다핵체 혼합물 기반 실란 변성 우레탄 프리폴리머 또는 IPDI 기반 실란 변성 우레탄 프리폴리머는 각각 3-아미노프로필메톡시실란 또는 3-아미노프로필에톡시실란에 의하여 개질된 것임을 특징으로 하는 콘크리트 보수용 우레탄 주입제 조성물. A urethane injection composition for concrete repair, characterized in that the silane-modified urethane prepolymer based on the above MDI multinuclear body mixture or the silane-modified urethane prepolymer based on IPDI is modified by 3-aminopropylmethoxysilane or 3-aminopropylethoxysilane, respectively.
상기 폴리올은 폴리프로필렌 티올 또는 폴리프로필렌 글리콜 중 적어도 하나의 화합물을 포함할 수 있다. The above polyol may comprise at least one compound of polypropylene thiol or polypropylene glycol.
상기 사슬연장제는 2 관능 다이올 화합물 및 2 관능 다이올 화합물을 동시에 포함할 수 있다. The above chain extender may simultaneously include a two-functional diol compound and a two-functional diol compound.
상기 가교제는 다관능 다이올 화합물을 포함할 수 있다. The above crosslinking agent may include a multifunctional diol compound.
상기 촉매는 수지화 촉매 및 발포 촉매를 포함하고, 상기 수지화 촉매는 디메틸사이클로헥실아민 또는 디부틸틴디라우레이트 중 적어도 하나의 화합물을 포함하며, 상기 발포 촉매는 1,4-디아자비사이클로(2,2,2)옥테인 또는 트리에틸렌디아민 중 적어도 하나의 화합물을 포함할 수 있다. The catalyst may include a resinification catalyst and a foaming catalyst, wherein the resinification catalyst may include at least one compound selected from dimethylcyclohexylamine and dibutyltin dilaurate, and the foaming catalyst may include at least one compound selected from 1,4-diazabicyclo(2,2,2)octane and triethylenediamine.
상기 용매는 톨루엔 및 에탄올을 포함하는 혼합용매일 수 있다. The above solvent may be a mixed solvent containing toluene and ethanol.
상기 레진 프리믹스는, 폴리올 100 중량부; 사슬연장제 20 내지 30 중량부; 가교제 5 내지 15 중량부; 촉매 5 내지 15 중량부; 및 정포제 1 내지 5 중량부를 포함할 수 있다. The above resin premix may include 100 parts by weight of polyol; 20 to 30 parts by weight of chain extender; 5 to 15 parts by weight of crosslinking agent; 5 to 15 parts by weight of catalyst; and 1 to 5 parts by weight of stabilizer.
본 발명에 따른 콘크리트 보수용 우레탄 주입제 조성물은 주어진 압력에서 온도가 너무 낮으면 물과 완전히 혼합되지 않아 반응이 시작되지 않는 종래의 습기 경화형 폴리우레탄 주입제의 단점을 해소함으로써, 주변의 압력 및 온도 조건과 무관하게 반응할 수 있는 개선된 습기 반응성을 나타낸다. The urethane injection composition for concrete repair according to the present invention overcomes the disadvantage of conventional moisture-curing polyurethane injection agents that do not completely mix with water and thus do not initiate a reaction when the temperature is too low at a given pressure, thereby exhibiting improved moisture reactivity that can react regardless of surrounding pressure and temperature conditions.
아울러, 상기 콘크리트 보수용 우레탄 주입제 조성물은 저점도 특성을 가짐에도 우수한 내구성 및 빠른 경화 속도를 나타내며, 손상된 콘크리트 구조물의 누수 요소를 효과적으로 보강할 수 있다. In addition, the urethane injection composition for concrete repair exhibits excellent durability and a fast curing speed despite its low viscosity characteristics, and can effectively reinforce the leakage elements of damaged concrete structures.
이하에서는 각종 설명 및 실험 결과 등을 토대로 본 발명의 일 실시예에 따른 콘크리트 보수용 우레탄 주입제 조성물에 대하여 자세하게 설명하도록 한다. 하기 설명들은 본 발명의 기술사상의 구체화된 모습을 설명하기 위한 예시적인 기재들이며, 하기 설명들에 의하여 본 발명의 기술사상이 한정되지 않는다. 본 발명의 기술사상은 오직 후술하는 청구범위에 의하여 해석되고 제한될 수 있을 뿐이다.Hereinafter, a concrete repair urethane injection composition according to one embodiment of the present invention will be described in detail based on various descriptions and experimental results. The following descriptions are exemplary descriptions for explaining the specific aspects of the technical idea of the present invention, and the technical idea of the present invention is not limited by the following descriptions. The technical idea of the present invention can only be interpreted and limited by the claims described below.
본 발명의 일 실시예에 따른 콘크리트 보수용 우레탄 주입제 조성물은 우레탄 프리폴리머 및 폴리올을 포함하는 레진 프리믹스를 포함한다. A urethane injection composition for concrete repair according to one embodiment of the present invention comprises a resin premix comprising a urethane prepolymer and a polyol.
조성 성분을 설명하기 이전에, 사전에 파악한 각종 성분들과 물성과의 상관관계 및 발명의 개요를 우선 설명하도록 한다. Before explaining the composition, let us first explain the relationship between the various components and physical properties identified in advance and an outline of the invention.
본 발명의 우레탄 주입제 조성물은 소수성 경질 습기 경화형 프리폴리머를 적용하여 경질용 경도를 구현하였다. 이를 실현하기 위하여 고려된 기술 특징은 아래와 같다.The urethane injection composition of the present invention implements hardness for hardness by applying a hydrophobic hard moisture-curable prepolymer. The technical features considered to realize this are as follows.
1) Aminoalkoxysilane 변성 디이소시아네이트의 도입1) Introduction of aminoalkoxysilane modified diisocyanate
본 발명의 콘크리트 구조물 누수보수 시스템에 적용 가능한 습기 경화형 저점도 초속경 폴리우레탄 보수제 조성물 개발에 적합한 경질 발포 폴리우레탄으로는 Polymeric MDI(4,4-diphenylmethane diisocyanate가 적합하며, Polymeric MDI는 상온에서 액체이며, 제품의 평균관능기수는 2.5~2.9 수준이고 반응성이 높고, 높은 강도와 경도 그리고 우수한 열안정성을 제공한다. 제품의 점도는 제품의 평균분자량 및 NCO 함량에 의해 좌우된다. Polymeric MDI (4,4-diphenylmethane diisocyanate) is suitable as a rigid foamed polyurethane for the development of a moisture-curing, low-viscosity, ultra-fast hardening polyurethane repair agent composition applicable to the concrete structure water leak repair system of the present invention. Polymeric MDI is liquid at room temperature, and the average functional group number of the product is about 2.5 to 2.9, has high reactivity, and provides high strength and hardness and excellent thermal stability. The viscosity of the product is determined by the average molecular weight and NCO content of the product.
한편 본 발명의 콘크리트 구조물 누수보수 시스템에 적용 가능한 습기 경화형 저점도 초속경 폴리우레탄 보수제에 적용하는 Polymeric MDI(MDI 다핵체 혼합물)의 단점을 보완하기 위하여 IPDI를 적절한 비율로 혼합하여 사용하는 것이 필요하다. IPDI (isophorone diisocyanate)는 Polymeric MDI에 비하여 반응성이 상대적으로 낮으나, 점도가 낮고 우수한 내후성과 탄성을 제공하여 주로 폴리우레탄 접착제와 실란트에 적용된다. Meanwhile, in order to complement the shortcomings of Polymeric MDI (MDI multinuclear mixture) applied to the moisture-curing low viscosity ultra-fast hardening polyurethane repair agent applicable to the concrete structure water leak repair system of the present invention, it is necessary to mix IPDI at an appropriate ratio and use it. IPDI (isophorone diisocyanate) has relatively low reactivity compared to Polymeric MDI, but has low viscosity and provides excellent weather resistance and elasticity, so it is mainly applied to polyurethane adhesives and sealants.
상기의 Polymeric MDI와 IPDI를 Aminoalkoxysilane과 반응시켜 Aminoalkoxysilane 변성우레탄 프리폴리머를 합성한다.The above polymeric MDI and IPDI are reacted with aminoalkoxysilane to synthesize an aminoalkoxysilane-modified urethane prepolymer.
2) 폴리올의 종류2) Type of polyol
분자 중에 수산기(-OH) 혹은 아민기(-NH2)를 2개 이상 갖는 다관능 알콜 또는 방향족 아민 등의 개시제와 산화프로필렌 또는 산화에틸렌을 적정 조건하에서 반응시켜 얻어지는 물질로써, 폴리우레탄 제조에 필수적인 원료이다. 폴리올은 크게 폴리에테르 폴리올과 폴리에스테르 폴리올로 분류하여 본 발명의 콘크리트 구조물 누수보수 시스템에 적용 가능한 습기 경화형 저점도 초속경 폴리우레탄 보수제 조성물 개발에 적합하도록 개시제 및 분자량을 변화시켜 사용하여야 한다.This is a substance obtained by reacting an initiator such as a polyfunctional alcohol or aromatic amine having two or more hydroxyl groups (-OH) or amine groups (-NH2) in the molecule with propylene oxide or ethylene oxide under appropriate conditions, and is an essential raw material for manufacturing polyurethane. Polyols are largely classified into polyether polyols and polyester polyols, and the initiator and molecular weight should be changed to suitably develop a moisture-curing, low-viscosity, ultra-fast hardening polyurethane repair agent composition applicable to the concrete structure leak repair system of the present invention.
단열재로써 뿐만 아니라 구조재의 역할을 하고 있는 경질폴리우레탄은 사용되는 개시제의 종류, 분자 량, 관능기수 및 제품의 점도에 따라 사용분야를 달리한다. 경질폴리우레탄용 폴리올은 지방족 폴리올과 방향족 폴리올로 구별되는데, 기계적 강도 개선 및 치수안정성 개선 등이 요구되는 본 발명의 콘크리트 구조물 누수보수 시스템에 적용 가능한 습기 경화형 저점도 초속경 폴리우레탄 보수제 조성물 개발에는 지방족 폴리올을 기반으로 방향족 폴리올을 혼합사용 하여 최적의 폴리올 배합을 찾아야 하며, 상기의 최적을 폴리올 배합을 위하여 Polypropylene Triol, Polypropylene Glycol, 2관능 Diol, 2관능 Diamine, 및 다관능 Diol인 Glycerine, Pentaerythritol 등을 혼합하여 사용한다. Rigid polyurethane, which functions as a structural material as well as an insulator, has different fields of use depending on the type of initiator used, molecular weight, number of functional groups, and viscosity of the product. Polyols for rigid polyurethane are classified into aliphatic polyols and aromatic polyols. In order to develop a moisture-curing, low-viscosity, ultra-fast hardening polyurethane repair agent composition applicable to the concrete structure water leak repair system of the present invention, which requires improved mechanical strength and dimensional stability, it is necessary to find the optimal polyol blend by mixing and using aromatic polyols based on aliphatic polyols. In order to find the optimal polyol blend, polypropylene triol, polypropylene glycol, difunctional diol, difunctional diamine, and polyfunctional diols such as glycerine and pentaerythritol are mixed and used.
3) 촉매의 종류3) Type of catalyst
화학반응 속도는 원재료의 화학구조와 반응 혼합물의 온도와 함께 사용하는 촉매에 의해 영향을 받는다. 이소시아네이트와 활성수소 함유 화합물(폴리올)의 반응에 사용되는 촉매는 사용량에 따라 반응성 외에 반응 혼합물의 유동성과 폼 등 생성물의 표면/Core층 형성에 관여하며 최종제품의 물성에도 영향을 미친다. 폴리우레탄 폼 제조에 널리 쓰이는 촉매로는 3급아민(Tertiary Amine) 화합물이며 그 외 유기금속 촉매가 있다.The rate of chemical reaction is affected by the chemical structure of the raw materials, the temperature of the reaction mixture, and the catalyst used. The catalyst used in the reaction of isocyanate and active hydrogen-containing compound (polyol) affects the fluidity of the reaction mixture and the formation of the surface/core layer of the product such as foam in addition to the reactivity depending on the amount used, and also affects the physical properties of the final product. The catalysts widely used in the production of polyurethane foam are tertiary amine compounds and other organometallic catalysts.
주로 사용되는 3급 아민촉매 중 본 발명인 콘크리트 구조물 누수보수 시스템에 적용 가능한 습기 경화형 저점도 초속경 폴리우레탄 주입제 조성물에 적합한 아민계 촉매 중 폴리올과 이소시아네이트의 반응으로 우레탄반응을 촉진시키는 수지화 촉매(Gelling Catalyst)로는, Dimethylcyclohexylamine(DMCHA)를, 이소시아네이트와 물과 반응으로 우레아반응을 촉진시키는 발포 촉매(Blowing Catalyst)로는 1,4-diazabicyvlo(2,2,2)octane (DABCO)와 Triethylenediamine (TEDA)를 적용하였다.Among the tertiary amine catalysts mainly used, dimethylcyclohexylamine (DMCHA) was applied as a gelling catalyst that promotes the urethane reaction through the reaction of polyol and isocyanate among the amine catalysts suitable for the moisture-curing, low-viscosity, ultra-fast hardening polyurethane injection composition applicable to the concrete structure leak repair system of the present invention, and 1,4-diazabicyvlo(2,2,2)octane (DABCO) and triethylenediamine (TEDA) were applied as blowing catalysts that promote the urea reaction through the reaction of isocyanate and water.
이외에도, 주로 폴리올과 이소시아네이트의 반응에 의한 우레탄 생성을 활성화시키는 촉매로 3급 아민 촉매에 비해 활성이 매우 강한 유기금속 촉매인 Dibutyltin Dilaurate(DBTDL)를 적용하였다.In addition, Dibutyltin Dilaurate (DBTDL), an organometallic catalyst with much higher activity than tertiary amine catalysts, was applied as a catalyst that mainly activates the production of urethane through the reaction of polyol and isocyanate.
이들 각각의 촉매들은 제품의 특성에 따라 우레탄폼 제조 시 특정반응만을 촉진하는 역할을 하기 때문에 본 발명의 콘크리트 구조물 누수보수 시스템에 적용 가능한 습기 경화형 저점도 초속경 폴리우레탄 보수제 조성물에도 상기의 촉매들을 사용하여 최적의 조합을 찾을 수 있었다.Since each of these catalysts promotes only a specific reaction during the manufacture of urethane foam depending on the characteristics of the product, the optimal combination could be found by using the above catalysts in the moisture-curing, low-viscosity, ultra-fast-setting polyurethane repair agent composition applicable to the concrete structure leak repair system of the present invention.
4) 정포제의 도입4) Introduction of a fixed-term system
폴리우레탄 폼 생성에 관여하는 실리콘 정포제는 원료의 혼합을 용이하게 하고(유화 작용), 우레탄 System의 표면장력을 낮춰 기포성장을 도우며, 기포를 성장시키고, 기포 간 압력차를 낮춰 가스의 확산을 막고 우레탄 셀이 커지고 불균일화 되는 것을 예방한다(셀 성장). 또한 점도 상승 시 기포 불안정화로 인한 셀의 파괴, 합일 및 셀막이 얇아지는 등의 문제를 예방하여 폼의 꺼짐 현상을 없도록 하며(우레탄 셀막의 안정화), 폼의 유동성과 몰드 발포 시 충전성을 좋게 하여 제품밀도를 균일하게 하며, 본 발명의 콘크리트 구조물 누수보수 시스템에 적용 가능한 습기 경화형 저점도 초속경 폴리우레탄 보수제 조성물에는 Evonik사의 Silicone Surfactant인 TEGOSTAB B-8404를 적용하였다.The silicone surfactant involved in the production of polyurethane foam facilitates the mixing of raw materials (emulsifying action), lowers the surface tension of the urethane system to help bubble growth, promotes bubble growth, lowers the pressure difference between bubbles to block gas diffusion, and prevents urethane cells from becoming enlarged and uneven (cell growth). In addition, it prevents problems such as cell destruction, coalescence, and thinning of the cell film due to bubble instability when viscosity increases, thereby preventing the foam from collapsing (stabilization of the urethane cell film), and improves the fluidity of the foam and the filling property during mold foaming to make the product density uniform. In the moisture-curing, low-viscosity, ultra-fast hardening polyurethane repair agent composition applicable to the concrete structure leak repair system of the present invention, TEGOSTAB B-8404, a silicone surfactant from Evonik, was applied.
또한, 본 발명의 콘크리트 보수용 우레탄 주입제 조성물은 미세균열에 대한 침투속도 개선을 위한 저점도(100 )를 구현하기 위하여 아래와 같은 기술특징들을 고려하였다. In addition, the urethane injection composition for concrete repair of the present invention has a low viscosity (100) for improving the penetration speed into microcracks. ) were considered to implement the following technical features.
습기 경화형 소수성 폴리우레탄 주입제는 점도, 압력상승에 의한 반응성, 용제 함량, 이소시아네이트의 종류, 발포 PU의 셀 구조로 인해 특성이 다르므로, 기타 물성과의 관계를 고려하여 본 발명의 콘크리트 구조물 누수보수 시스템에 적용 가능한 습기 경화형 저점도 초속경 우레탄 보수제 조성물에 적합한 용제 및 Aminoalkoxysilane 변성 디이소시아네이트 기를 갖는 우레탄 프리폴리머와 폴리올을 선택하였다.Since moisture-curing hydrophobic polyurethane injection agents have different characteristics due to viscosity, reactivity due to pressure increase, solvent content, type of isocyanate, and cell structure of foamed PU, a solvent suitable for a moisture-curing low-viscosity ultra-fast curing urethane repair agent composition applicable to the concrete structure leak repair system of the present invention and a urethane prepolymer and polyol having an aminoalkoxysilane-modified diisocyanate group were selected in consideration of the relationship with other properties.
나아가 압력 및 온도 변수에 무관한 습기 경화형 프리폴리머의 생성반응을 구현하기 위하여 아래와 같은 기술특징들을 고려하였다. Furthermore, in order to implement the production reaction of moisture-curable prepolymer independent of pressure and temperature variables, the following technical features were considered.
습기 경화형 소수성 폴리우레탄 프리폴리머의 반응 시, 폴리올과 이소시아네이트 기를 가진 우레탄 프리폴리머와 혼합 후 점도가 발생하는 유도 시간이 있고, 이후 반응 시간이 지나면 발포가 시작되는데, 반응을 시작하려면 최소 온도가 필요하며, 이는 압력이 높을수록 높은 온도가 필요한데, 주어진 압력에서 온도가 너무 낮으면 반응이 시작되지 않는다. 따라서 압력과 온도에 상관없이 반응하도록 프리폴리머를 개질하였다.When a moisture-curable hydrophobic polyurethane prepolymer is reacted, there is an induction time for viscosity to develop after mixing the polyol and the urethane prepolymer having an isocyanate group, and after the reaction time has elapsed, foaming begins. A minimum temperature is required to initiate the reaction, and a higher temperature is required as the pressure increases. However, if the temperature is too low at a given pressure, the reaction does not begin. Therefore, the prepolymer was modified to react regardless of pressure and temperature.
상기 우레탄 주입제 조성물은 ⅰ) 메틸렌디페닐디이소시아네이트(MDI) 다핵체 혼합물(Polymeric MDI) 기반 제1 실란변성 우레탄 프리폴리머; 또는 ⅱ) 상기 제1 실란변성 우레탄 프리폴리머 50 내지 70 중량% 및 이소포론디이소시아네이트(IPDI) 기반 실란 변성 우레탄 폴리머 30 내지 50 중량%를 포함하는 제2 우레탄 프리폴리머 중 어느 하나의 우레탄 프리폴리머 100 중량부; 및 폴리올, 사슬연장제, 가교제, 촉매 및 용매를 포함하는 레진 프리믹스 80 내지 120 중량부를 포함한다.The above urethane injection composition comprises 100 parts by weight of a urethane prepolymer of either i) a first silane-modified urethane prepolymer based on a methylenediphenyl diisocyanate (MDI) polynuclear polymer mixture (Polymeric MDI); or ii) a second urethane prepolymer comprising 50 to 70 wt% of the first silane-modified urethane prepolymer and 30 to 50 wt% of an isophorone diisocyanate (IPDI)-based silane-modified urethane polymer; and 80 to 120 parts by weight of a resin premix comprising a polyol, a chain extender, a crosslinking agent, a catalyst, and a solvent.
1. 실란변성 우레탄 프리폴리머1. Silane-modified urethane prepolymer
우레탄 프리폴리머로서는, 전술한 바와 같이, MDI 다핵체 혼합물 기반 실란 변성 우레탄 프리폴리머를 사용하거나, MDI 다핵체 혼합물(이하, '폴리머릭 MDI'라 한다) 기반 실란 변성 우레탄 프리폴리머와 IPDI 기반 실란 변성 우레탄 프리폴리머가 혼합된 우레탄 프리폴리머를 사용할 수 있다.As the urethane prepolymer, as described above, a silane-modified urethane prepolymer based on an MDI polynuclear mixture may be used, or a urethane prepolymer in which a silane-modified urethane prepolymer based on an MDI polynuclear mixture (hereinafter referred to as “polymeric MDI”) and a silane-modified urethane prepolymer based on IPDI are mixed may be used.
상기 폴리머릭 MDI로서는 이소시아니에트기(NCO) 함량이 30 내지 32 중량%이고 점도가 100~180 cps인 것을 사용할 수 있고, 상기 IPDI로서는 이소시아니에트 As the above polymeric MDI, one having an isocyanate group (NCO) content of 30 to 32 wt% and a viscosity of 100 to 180 cps can be used, and as the above IPDI, one having an isocyanate group (NCO) content of 30 to 32 wt% and a viscosity of 100 to 180 cps can be used.
기(NCO) 함량이 12.1 내지 12.5중량%이고 점도가 550~650 cps인 것을 사용할 수 있다. It can be used having an NCO content of 12.1 to 12.5 wt% and a viscosity of 550 to 650 cps.
상기 개질을 위한 실란 화합물로서는 3-아미노프로필메톡시실란(3-aminopropyltrimethoxysilane) 또는 3-아미노프로필에톡시실란(3-aminopropyltriethoxysilane)이 사용될 수 있다.As the silane compound for the above modification, 3-aminopropyltrimethoxysilane or 3-aminopropyltriethoxysilane can be used.
상기 실란 변성 우레탄 프리폴리머들은 톨루엔 용매 내에서 촉매의 존재 하에 반응하여 수득될 수 있는데, 상기 반응 촉매로는 디부틸틴 디라우레이트(Dibutyltin dilaurate; DBTDL)를 사용할 수 있다.The above silane-modified urethane prepolymers can be obtained by reaction in the presence of a catalyst in a toluene solvent, and dibutyltin dilaurate (DBTDL) can be used as the reaction catalyst.
2. 레진 프리믹스2. Resin premix
상기 레진 프리믹스는 폴리올 100 중량부; 사슬연장제 20 내지 30 중량부; 가교제 5 내지 15 중량부; 촉매 5 내지 15 중량부; 및 정포제 1 내지 5 중량부를 포함한다.The above resin premix comprises 100 parts by weight of polyol; 20 to 30 parts by weight of chain extender; 5 to 15 parts by weight of crosslinking agent; 5 to 15 parts by weight of catalyst; and 1 to 5 parts by weight of stabilizer.
상기 폴리올로서는 폴리프로필렌 티올(Polypropylene triol) 또는 폴리프로필렌 글리콜(Polypropylene glycol)을 포함할 수 있고, 상기 폴리올들은 단독으로 또는 둘 이상의 조합으로 사용될 수 있다.The above polyol may include polypropylene triol or polypropylene glycol, and the above polyols may be used alone or in a combination of two or more.
상기 사슬연장제로서는 1,4-부탄디올(1,4-Butane diol), 헥사메틸렌디아민(Hexamethylenediamine) 등의 2관능 다이올(디올)이 사용될 수 있으며, 사슬연장제로서 1 종 또는 2 종 이상의 혼합물을 사용할 수 있다.As the chain extender, a bifunctional diol such as 1,4-butanediol or hexamethylenediamine can be used, and one type or a mixture of two or more types can be used as the chain extender.
상기 가교제로서는, 글리세린(Glycerine), 펜타에리트리톨(Pentaerythritol) 등의 다관능 디올을 사용할 수 있으며 상기 화합물들은 단독으로 또는 둘 이상의 조합으로 사용될 수 있다. As the crosslinking agent, a multifunctional diol such as glycerine or pentaerythritol can be used, and the compounds can be used alone or in a combination of two or more.
상기 레진 프리믹스에 포함되는 촉매로서는 수지와 촉매 및 발포촉매를 포함할 수 있다. 수지화 촉매는 디메틸사이클로헥실아민((Dimethylcyclohexylamine; DMCHA) 또는 디부틸틴디라우레이트(dibutyltin dilaurate; DBTL) 중 적어도 하나의 화합물을 포함하며, 상기 발포 촉매는 1,4-디아자비사이클로(2,2,2)옥테인(1,4-diazabicyclo(2,2,2) octane; DABCO) 또는 트리에틸렌디아민(Triethylene diamine; TEDA) 중 적어도 하나의 화합물을 포함할 수 있다. The catalyst included in the above resin premix may include a resin, a catalyst, and a foaming catalyst. The resin catalyst may include at least one compound selected from dimethylcyclohexylamine (DMCHA) and dibutyltin dilaurate (DBTL), and the foaming catalyst may include at least one compound selected from 1,4-diazabicyclo(2,2,2) octane (DABCO) and triethylene diamine (TEDA).
상기 정포제로서는 실리콘계 계면활성제인 TEGOSTAB B-8404를 사용할 수 있다. As the above-mentioned surfactant, TEGOSTAB B-8404, a silicone-based surfactant, can be used.
레진 프리믹스의 용매로서는 톨루엔 및 에탄올을 포함하는 혼합용매를 사용할 수 있으며, 상기 톨루엔과 에탄올은 대략 3 : 1 (±10%)의 비율로 혼합되어 사용되는 것이 바람직하다. A mixed solvent containing toluene and ethanol can be used as a solvent for the resin premix, and it is preferable that the toluene and ethanol are mixed and used in a ratio of approximately 3:1 (±10%).
최종 우레탄 주입제 조성물의 제조를 위하여 상기 실란 변성 우레탄 프리폴리머 및 레진 프리믹스는 대략 비슷한 양으로 혼합되는 것이 바람직하며, 상기 우레탄 주입제 조성물은 실란 변성 우레탄 프리폴리머 100 중량부 및 상기 레진 프리믹스 80 내지 120 중량부를 포함한다. For the production of the final urethane injection composition, it is preferable that the silane-modified urethane prepolymer and the resin premix are mixed in approximately similar amounts, and the urethane injection composition contains 100 parts by weight of the silane-modified urethane prepolymer and 80 to 120 parts by weight of the resin premix.
이하에서는 구체적인 실시예 및 실험 내용을 기초로 본 발명의 일 실시예에 따른 우레탄 주입제 조성물에 대하여 더욱 자세하게 설명하도록 한다. Hereinafter, a urethane injection composition according to one embodiment of the present invention will be described in more detail based on specific examples and experimental results.
<실시예><Example>
우선 구체적인 조성을 통한 실시예의 설명에 앞서, 일반적인 방법론을 설명하도록 한다.Before explaining the specific composition through examples, let us first explain the general methodology.
1. Aminoalkoxysilane 변성 습기경화형 초속경 폴리우레탄 주입제용 프리폴리머의 제조1. Preparation of prepolymer for aminoalkoxysilane-modified moisture-curing ultra-fast polyurethane injection molding agent
Aminoalkoxysilane 변성 4,4-diphenylmethane diisocyanate 프리폴리머의 제조를 위하여, 톨루엔이 들어있는 플라스크에 일정량의 3-aminopropyltrimethoxysilane 또는 3-aminopropyltriethoxysilane을 넣고 상온(25℃, 30℃를 넘지 않도록 한다)에서 60분 동안 교반(500 rpm)하여 용해시킨 후, 상기와 동일한 양의 Polymeric MDI(4,4-diphenylmethane diisocyanate)를 서서히 투입하여, 3-aminopropyltrimethoxysilane 또는 3-aminopropyltriethoxysilane의 아민 그룹과 Polymeric MDI(4,4-diphenylmethane diisocyanate)의 이소시아네이트 그룹과 반응시켜 우레아 결합을 형성하였다. 반응 진행 상태를 모니터링하고, 우레아 결합 형성이 완료되었는지를 IR 또는 NMR을 통하여 확인 후 반응이 완료되면, 제품을 용매에서 분리하고 정제한다.For the production of aminoalkoxysilane-modified 4,4-diphenylmethane diisocyanate prepolymer, a certain amount of 3-aminopropyltrimethoxysilane or 3-aminopropyltriethoxysilane is added to a flask containing toluene and stirred (500 rpm) for 60 minutes at room temperature (25°C, not exceeding 30°C) to dissolve, then the same amount of Polymeric MDI (4,4-diphenylmethane diisocyanate) as above is slowly added, and the amine group of 3-aminopropyltrimethoxysilane or 3-aminopropyltriethoxysilane and the isocyanate group of Polymeric MDI (4,4-diphenylmethane diisocyanate) are reacted to form a urea bond. The progress of the reaction is monitored, and the completion of the urea bond formation is confirmed via IR or NMR. Once the reaction is complete, the product is separated from the solvent and purified.
Aminoalkoxysilane 변성 isophorone diisocyanate 프리폴리머의 제조를 위하여, 톨루엔이 들어있는 플라스크에 일정량의 3-aminopropyltrimethoxysilane 또는 3-aminopropyltriethoxysilane을 넣고 상온(25℃, 30℃를 넘지 않도록 한다)에서 60분 동안 교반(500 rpm)하여 용해시킨 후, 상기와 동일한 양의 IPDI(isophorone diisocyanate)를 서서히 투입하여, 3-aminopropyl trimethoxysilane 또는 3-aminopropyltriethoxysilane의 아민 그룹과 IPDI(isophorone diisocyanate)의 이소시아네이트 그룹과 반응시켜 우레아 결합을 형성하였다. 반응 진행 상태를 모니터링하고, 우레아 결합 형성이 완료되었는지를 IR 또는 NMR을 통하여 확인 후 반응이 완료되면, 제품을 용매에서 분리하고 정제한다.For the production of aminoalkoxysilane-modified isophorone diisocyanate prepolymer, a certain amount of 3-aminopropyltrimethoxysilane or 3-aminopropyltriethoxysilane is added to a flask containing toluene and stirred (500 rpm) for 60 minutes at room temperature (25°C, not exceeding 30°C) to dissolve, then the same amount of IPDI (isophorone diisocyanate) as above is slowly added, and the amine group of 3-aminopropyl trimethoxysilane or 3-aminopropyltriethoxysilane and the isocyanate group of IPDI (isophorone diisocyanate) are reacted to form a urea bond. The progress of the reaction is monitored, and the completion of the urea bond formation is confirmed via IR or NMR. Once the reaction is complete, the product is separated from the solvent and purified.
2. Aminoalkoxysilane 변성 습기경화형 초속경 폴리우레탄 주입제의 제조2. Preparation of Aminoalkoxysilane Modified Moisture Curing Ultra-fast Polyurethane Injection Agent
Aminoalkoxysilane 변성 디이소시아네이트 프리폴리머를 하나 또는 둘 이상을 일정비율로 혼합한 혼합 경화제에, 다관능 폴리올인 Polypropylene triol과 Polypropylene Glycol을 일정비율로 혼합하여 사용하였다. 사슬연장제로는 2관능 Diol인 1,4-Butandiol과 2관능 Diamine인 Hexamethylenediamine을 일정비율로 혼합하여 사용하였다. 가교제로는 다관능 Diol인 Glycerine과 Pentaerythritol을 일정비율로 혼합하여 사용하였다. 촉매 중 수지화 촉매(Gelling Catalyst)는 Dimethylcyclohexylamine과 Dibutyltin dilaurate를 일정비율로 혼합하여 사용하였고, 발포촉매(Blowing Catalyst)는 1,4-diazabicyclo(2,2,2)octane과 Trimethylene diamine를 일정비율로 혼합하여 사용하였다. 정포제로는 Evonik사의 TEGOSTAB B-8404를 사용하였다. 반응 진행 상태를 모니터링하고 반응이 완료되면 제품을 용매에서 분리하고 정제한다. 제조된 Aminoalkoxysilane 변성 습기경화형 초속경 폴리우레탄 주입제의 유동성 확보를 위해 용매로 일정비율로 혼합된 톨루엔과 에탄올 혼합 용매를 15~20%를 첨가하여 Aminoalkoxysilane 변성 습기경화형 폴리우레탄 수지의 점도를 낮추었다. One or more aminoalkoxysilane modified diisocyanate prepolymers were mixed at a certain ratio to form a mixed curing agent, and polypropylene triol and polypropylene glycol, which are multifunctional polyols, were mixed at a certain ratio. As a chain extender, 1,4-butandiol, a difunctional diol, and hexamethylenediamine, a difunctional diamine, were mixed at a certain ratio and used. As a crosslinking agent, glycerine and pentaerythritol, which are multifunctional diols, were mixed at a certain ratio and used. Among the catalysts, the gelling catalyst was used by mixing dimethylcyclohexylamine and dibutyltin dilaurate at a certain ratio, and the blowing catalyst was used by mixing 1,4-diazabicyclo(2,2,2)octane and trimethylene diamine at a certain ratio. As a stabilizer, TEGOSTAB B-8404 from Evonik was used. The reaction progress was monitored, and when the reaction was completed, the product was separated from the solvent and purified. The manufactured Aminoalkoxysilane modified moisture-curing ultra-fast curing Aminoalkoxysilane modified moisture-curing polyurethane is prepared by adding 15 to 20% of a mixed solvent of toluene and ethanol mixed at a certain ratio as a solvent to secure the fluidity of the polyurethane injection agent. Reduced the viscosity of the resin.
하기 표 1에 기재된 바와 같은 조성(실시예1 내지 6)으로, 우레탄 프리폴리머를 제조하였다. Urethane prepolymers were prepared with the compositions (Examples 1 to 6) as described in Table 1 below.
- P-MDI : Polymeric MDI(4,4-diphenylmethane diisocyanate) - P-MDI: Polymeric MDI (4,4-diphenylmethane diisocyanate)
- IPDI : Isophorone diisocyanate-IPDI: Isophorone diisocyanate
- MS : 3-aminopropyltrimethoxysilane-MS: 3-aminopropyltrimethoxysilane
- ES : 3-aminopropyltriethoxysilane- ES: 3-aminopropyltriethoxysilane
- DBTDL : Dibutyltin dilaurate-DBTDL: Dibutyltin dilaurate
- P-MDI & IPDI : (P-MDI : IPDI = 6 : 4)- P-MDI & IPDI: (P-MDI: IPDI = 6:4)
하기 표 2에 기재된 바와 같은 조성(실시예 7)으로, 레진 프리믹스를 제조하였다. A resin premix was prepared with the composition (Example 7) as described in Table 2 below.
실시예 1 내지 7에서 준비된 우레탄 프리폴리머와 레진 프리믹스를 1 : 1의 중량비로 아래 표 3과 같은 조합으로 혼합하여 콘크리트 보수용 우레탄 주입제 조성물을 제조하였다(실시예 8 내지 13). The urethane prepolymer and resin premix prepared in Examples 1 to 7 were mixed at a weight ratio of 1:1 in a combination as shown in Table 3 below to prepare a urethane injection composition for concrete repair (Examples 8 to 13).
[물성평가][Physical property evaluation]
제조된 실시예 8 내지 13의 우레탄 주입제 조성물에 대하여, 각각 물성평가를 수행하고 아래와 같이 그 결과를 표 4 내지 표 9에 기재하였다. For the urethane injection compositions of Examples 8 to 13, physical property evaluations were performed, and the results are shown in Tables 4 to 9 below.
실시예 8의 우레탄 주입제 조성물의 물성 결과Physical properties of the urethane injection composition of Example 8
실시예 9의 우레탄 주입제 조성물의 물성 결과Physical properties of the urethane injection composition of Example 9
실시예 10의 우레탄 주입제 조성물의 물성 결과Physical properties of the urethane injection composition of Example 10
실시예 11의 우레탄 주입제 조성물의 물성 결과Physical properties of the urethane injection composition of Example 11
실시예 12의 우레탄 주입제 조성물의 물성 결과Physical properties of the urethane injection composition of Example 12
실시예 13의 우레탄 주입제 조성물의 물성 결과Physical properties of the urethane injection composition of Example 13
[평가 결과 분석][Analysis of evaluation results]
1) Aminoalkoxysilane 변성 습기 경화형 초속경 폴리우레탄 주입제의 주입성능1) Injection performance of aminoalkoxysilane modified moisture-curing ultra-fast polyurethane injection agent
콘크리트 미세균열에 대하여 Aminoalkoxysilane 변성 습기경화형 저점도 폴리우레탄 주입제의 유동성을 조사하기 위해 다른 분위기 온도에서 0.5mm 폭의 균열에 주입제의 침투효과를 5분간 시험한 결과, 주입 깊이는 분위기 온도의 증가에 따라 변화가 없었다.In order to investigate the fluidity of an aminoalkoxysilane-modified moisture-curing low-viscosity polyurethane injection agent for concrete microcracks, the penetration effect of the injection agent was tested for 5 minutes in a 0.5 mm wide crack at different ambient temperatures. The injection depth did not change with increasing ambient temperature.
겔타임은 분위기 온도의 증가와는 무관하였으며, IPDI 기반 Aminoalkoxysilane 변성 우레탄 프리폴리머의 함량이 증가할수록 폴리우레탄 주입제의 겔타임이 빨라졌고, 점도도 증가하였다.The gel time was independent of the increase in ambient temperature, and as the content of IPDI-based aminoalkoxysilane-modified urethane prepolymer increased, the gel time of the polyurethane injection agent became faster and the viscosity also increased.
2) Aminoalkoxysilane 변성 습기 경화형 초속경 폴리우레탄 주입제의 기계적 물성 특성(접착강도, 인장강도, 신장율)2) Mechanical properties (adhesive strength, tensile strength, elongation) of aminoalkoxysilane-modified moisture-curing ultra-fast polyurethane injection molding agent
Aminoalkoxysilane 변성 우레탄 프리폴리머에 따른 습기경화형 저점도 폴리우레탄 주입제의 인장특성에 미치는 영향은, IPDI 기반 Aminoalkoxysilane 변성 우레탄 프리폴리머의 함량이 증가할수록 그리고 Aminoalkoxysilane 중에서 3-aminopropyltriethoxysilane으로 변성하였을 때 인장강도 및 신장율이 모두 증가하였다.The effect of aminoalkoxysilane-modified urethane prepolymer on the tensile properties of moisture-curing low-viscosity polyurethane injection molding was that as the content of IPDI-based aminoalkoxysilane-modified urethane prepolymer increased, and when aminoalkoxysilane was modified with 3-aminopropyltriethoxysilane, both the tensile strength and elongation increased.
Aminoalkoxysilane 변성 습기경화형 초속경 폴리우레탄 주입제의 접착강도는 Polymeric MDI 기반 3-aminopropyltriethoxysilane 변성 우레탄 프리폴리머의 함량이 높을수록 증가하였다.The adhesive strength of aminoalkoxysilane-modified moisture-curing ultra-fast polyurethane injection molding compounds increased as the content of 3-aminopropyltriethoxysilane-modified urethane prepolymer based on polymeric MDI increased.
3) Aminoalkoxysilane 변성 습기 경화형 초속경 폴리우레탄 주입제 조성물의 선택3) Selection of Aminoalkoxysilane Modified Moisture Curing Ultra-Rapid Polyurethane Injection Composition
화합물을 관능기로 변성하였을 때, 최종적인 특성의 대부분은 기본 폴리머 자체에서 비롯된다. 아민, 이소시아네이트, 하이드록실, 카르복실레이트 등과 같은 다른 많은 관능기로 인하여 일부 특성이 결정되지만, 다른 특성은 기본 폴리머 또는 골격에서 비롯된다. 관능기는 폴리머의 말단에 부가되어 연장제를 제공하거나, 폴리머의 중간 세그먼트에 가교를 하거나, 또는 둘 모두가 가능하다.When a compound is modified with a functional group, most of the final properties are derived from the base polymer itself. Some properties are determined by other functional groups such as amines, isocyanates, hydroxyls, carboxylates, etc., while other properties are derived from the base polymer or backbone. The functional groups can be added to the ends of the polymer to provide an extender, or to crosslink the middle segments of the polymer, or both.
본 발명에서는 일반적으로 사용되는 Aminoalkoxysilane 관능기를 폴리우레탄에 붙이고 폴리우레탄 골격이 경화된 시스템의 최종 특성에 어떻게 영향을 미치는지를 연구하였다. Aminoalkoxysilane 중 3-aminopropyltrimethoxysilane과 3-aminopropyltriethoxysilane을 폴리우레탄 시스템에 적용하였을 때 콘크리트 구조물의 미세균열(0.5mm) 보수를 위한 습기 경화형 저점도 초속경 주입시스템용 폴리우레탄계 반응성 주입제에 적합한 특성들을 구현할 수 있었다.In the present invention, the commonly used aminoalkoxysilane functional group was attached to polyurethane and how the polyurethane skeleton affected the final properties of the cured system was studied. When 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane among aminoalkoxysilanes were applied to the polyurethane system, it was found that the polyurethane reactive injection agent for a moisture-curing, low-viscosity, ultra-fast hardening injection system for repairing microcracks (0.5 mm) in concrete structures was suitable. We were able to implement the features.
폴리우레탄 주입제는 유연하고, 강하고, 내수성이 있으며, 신장율이 우수하다. 그러나 상호 보완적인 반응기를 갖는 폴리우레탄과 Aminoalkoxysilane의 하이브리드 시스템은 상기 두 가지 폴리머에 의해 주어진 각각의 특성을 상호 보완해 줌으로써 유연하면서도 접착력이 우수하고 상온에서 초기 경화가 빠르면서, 이후에도 대기 중의 습기에 의하여 계속 가교가 일어나는 경화시스템을 통하여 본 발명의 콘크리트 균열보수를 위한 습기경화형 초속경 폴리우레탄 주입제를 구현하였다.Polyurethane injection molding agents are flexible, strong, waterproof, and have excellent elongation. However, a hybrid system of polyurethane and aminoalkoxysilane having complementary reactive groups complements the individual properties provided by the two polymers, thereby realizing a moisture-curing, ultra-fast polyurethane injection molding agent for concrete crack repair of the present invention through a curing system that is flexible, has excellent adhesiveness, has a fast initial curing at room temperature, and continues to crosslink thereafter due to moisture in the air.
따라서 본 발명의 Aminoalkoxysilane 변성 습기 경화형 초속경 폴리우레탄 주입제의 조성물은 상기 실시예들을 통하여 Aminoalkoxysilane 변성 습기 경화형 초속경 폴리우레탄 주입제의 점도, 겔타임, 접착강도, 인장강도, 신장율 등을 종합적으로 고려한 결과, Polymeric MDI 기반 3-aminopropyltriethoxysilane 변성우레탄 프리폴리머 조성물 70%와 IPDI기반 3-aminopropyltriethoxysilane 변성우레탄 프리폴리머 조성물 30%를 혼합한 Aminoalkoxysilane 변성 우레탄 프리폴리머와, Polyether Polyol로서 Polypropylene triol과 Polypropylene glycol을, 사슬연장제로서 2관능 다이올 1,4-Butane diol과 2관능 다이아민 Hexamethylenediamine을, 가교제로서 다관능 다이올 Glycerine와 Pentaerythritol을, 수지화 촉매(Gelling Catalyst)로서 DMCHA (Dimethylcyclohexylamine)과 DBTDL(dibutyltin dilaurate)을, 발포촉매(Blowing catalyst)로서 DABCO(1,4-diazabicyclo(2,2,2) octane)과 TEDA(Triethylene diamine)을, 정포제로서Silicone surfactant인 Evonik사의 TEGOSTAB B-8404를, 용매로서 톨루엔과 에탄올 혼합 용매를 혼합한 레진 프리믹서를 선택하였다.Therefore, the present invention The composition of the aminoalkoxysilane-modified moisture-curing ultra-fast polyurethane injection agent was comprehensively considered in the above examples in terms of viscosity, gel time, adhesive strength, tensile strength, elongation, etc. of the aminoalkoxysilane-modified moisture-curing ultra-fast polyurethane injection agent, and was obtained by mixing 70% of a polymeric MDI-based 3-aminopropyltriethoxysilane-modified urethane prepolymer composition and 30% of an IPDI-based 3-aminopropyltriethoxysilane-modified urethane prepolymer composition, and polypropylene triol and polypropylene glycol as polyether polyols, 1,4-Butane diol as a bifunctional diol and Hexamethylenediamine as a bifunctional diamine, Glycerine and Pentaerythritol as a crosslinking agent, and DMCHA as a gelling catalyst. (Dimethylcyclohexylamine) and DBTDL (dibutyltin dilaurate) were selected as a resin premixer, DABCO (1,4-diazabicyclo(2,2,2) octane) and TEDA (Triethylene diamine) were selected as a blowing catalyst, Evonik's TEGOSTAB B-8404, a silicone surfactant, was selected as a foaming agent, and a mixed solvent of toluene and ethanol was selected as a solvent.
Claims (8)
폴리올, 사슬연장제, 가교제, 촉매 및 용매를 포함하는 레진 프리믹스 80 내지 120 중량부를 포함하는,
콘크리트 보수용 우레탄 주입제 조성물.
100 parts by weight of a urethane prepolymer comprising 50 to 70 wt% of a 3-aminopropyltriethoxysilane-modified urethane prepolymer based on a methylenediphenyl diisocyanate (MDI) polynuclear mixture (Polymeric MDI) and 30 to 50 wt% of a 3-aminopropyltriethoxysilane-modified urethane polymer based on isophorone diisocyanate (IPDI); and
Comprising 80 to 120 parts by weight of a resin premix comprising a polyol, a chain extender, a crosslinking agent, a catalyst and a solvent.
A polyurethane injection composition for concrete repair.
상기 폴리올은 폴리프로필렌 티올 또는 폴리프로필렌 글리콜 중 적어도 하나의 화합물을 포함하는 것을 특징으로 하는 콘크리트 보수용 우레탄 주입제 조성물.
In the first paragraph,
A urethane injection composition for concrete repair, characterized in that the polyol comprises at least one compound selected from the group consisting of polypropylene thiol and polypropylene glycol.
상기 사슬연장제는 2 관능 다이올 화합물 및 2 관능 다이올 화합물을 동시에 포함하는 것을 특징으로 하는 콘크리트 보수용 우레탄 주입제 조성물.
In the first paragraph,
A urethane injection composition for concrete repair, characterized in that the chain extender simultaneously contains a two-functional diol compound and a two-functional diol compound.
상기 가교제는 다관능 다이올 화합물을 포함하는 것을 특징으로 하는 콘크리트 보수용 우레탄 주입제 조성물.
In the first paragraph,
A urethane injection composition for concrete repair, characterized in that the crosslinking agent comprises a multifunctional diol compound.
상기 촉매는 수지화 촉매 및 발포 촉매를 포함하고,
상기 수지화 촉매는 디메틸사이클로헥실아민 또는 디부틸틴디라우레이트 중 적어도 하나의 화합물을 포함하며,
상기 발포 촉매는 1,4-디아자비사이클로(2,2,2)옥테인 또는 트리에틸렌디아민 중 적어도 하나의 화합물을 포함하는 것을 특징으로 하는 콘크리트 보수용 우레탄 주입제 조성물.
In the first paragraph,
The above catalyst comprises a resinification catalyst and a foaming catalyst,
The above resin catalyst comprises at least one compound of dimethylcyclohexylamine or dibutyltin dilaurate,
A urethane injection composition for concrete repair, characterized in that the foaming catalyst comprises at least one compound selected from the group consisting of 1,4-diazabicyclo(2,2,2)octane and triethylenediamine.
상기 용매는 톨루엔 및 에탄올을 포함하는 혼합용매인 것을 특징으로 하는 콘크리트 보수용 우레탄 주입제 조성물.
In the first paragraph,
A urethane injection composition for concrete repair, characterized in that the solvent is a mixed solvent containing toluene and ethanol.
상기 레진 프리믹스는,
폴리올 100 중량부;
사슬연장제 20 내지 30 중량부;
가교제 5 내지 15 중량부;
촉매 5 내지 15 중량부; 및
정포제 1 내지 5 중량부를 포함하는 것을 특징으로 하는 콘크리트 보수용 우레탄 주입제 조성물.
In the first paragraph,
The above resin premix is,
100 parts by weight of polyol;
20 to 30 parts by weight of chain extender;
5 to 15 parts by weight of crosslinking agent;
5 to 15 parts by weight of catalyst; and
A urethane injection composition for concrete repair, characterized in that it contains 1 to 5 parts by weight of a stabilizer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230194218A KR102721822B1 (en) | 2023-12-28 | 2023-12-28 | Epoxy injection composition with properties of low-viscosity, ultra-fast-curing and moisture-curing for repairing cracks in concrete structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230194218A KR102721822B1 (en) | 2023-12-28 | 2023-12-28 | Epoxy injection composition with properties of low-viscosity, ultra-fast-curing and moisture-curing for repairing cracks in concrete structures |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102721822B1 true KR102721822B1 (en) | 2024-10-25 |
Family
ID=93288508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230194218A Active KR102721822B1 (en) | 2023-12-28 | 2023-12-28 | Epoxy injection composition with properties of low-viscosity, ultra-fast-curing and moisture-curing for repairing cracks in concrete structures |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102721822B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070115509A (en) * | 2006-06-02 | 2007-12-06 | 에스케이씨 주식회사 | Manufacturing method of yellowing soft polyurethane foam with excellent elasticity and durability |
KR100959691B1 (en) * | 2009-09-24 | 2010-05-26 | (주)호성엔지니어링 | Urethane blowing composition, and a method for reinforcing structure restoration using thereof |
KR101671467B1 (en) * | 2015-09-09 | 2016-11-02 | 주식회사 제이에스기술 | Polyuretan Expandable Water Proof Composition, Method for Manufacturing Thereof and Method for Water Proofing with The Composition |
KR20200094327A (en) * | 2019-01-30 | 2020-08-07 | 주식회사 자이온화학 | an adhesive composite and an urethane adhesive with flame resistance and the method of the urethane adhesive |
KR102590879B1 (en) * | 2023-05-23 | 2023-10-20 | 주식회사폴리체인 | Eco friendly waterproofing urethane urea hybrid composition with handwork possibility and waterproofing method using the same |
-
2023
- 2023-12-28 KR KR1020230194218A patent/KR102721822B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070115509A (en) * | 2006-06-02 | 2007-12-06 | 에스케이씨 주식회사 | Manufacturing method of yellowing soft polyurethane foam with excellent elasticity and durability |
KR100959691B1 (en) * | 2009-09-24 | 2010-05-26 | (주)호성엔지니어링 | Urethane blowing composition, and a method for reinforcing structure restoration using thereof |
KR101671467B1 (en) * | 2015-09-09 | 2016-11-02 | 주식회사 제이에스기술 | Polyuretan Expandable Water Proof Composition, Method for Manufacturing Thereof and Method for Water Proofing with The Composition |
KR20200094327A (en) * | 2019-01-30 | 2020-08-07 | 주식회사 자이온화학 | an adhesive composite and an urethane adhesive with flame resistance and the method of the urethane adhesive |
KR102590879B1 (en) * | 2023-05-23 | 2023-10-20 | 주식회사폴리체인 | Eco friendly waterproofing urethane urea hybrid composition with handwork possibility and waterproofing method using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2843022B1 (en) | Adhesive epoxy composition and process for applying it | |
US6706776B2 (en) | Syntactic foams with improved water resistance, long pot life and short demolding times | |
CN107602817A (en) | A kind of high cold-resistant polyurethane shock pad and preparation method thereof | |
KR100300507B1 (en) | Polyurea polymer with improved high temperature stability and its manufacturing method | |
WO2018025702A1 (en) | Two-pack type curable urethane adhesive composition | |
CN101245182B (en) | Fire resistant water resistant polyurethane composition for fluid sealant and manufacture method thereof | |
KR20160118976A (en) | Polyurethane with high strength prepared by using anhydrosugar alcohol and method for preparing the same | |
TWI816882B (en) | Composition for polyurethane integral surface layer foaming, polyurethane integral surface layer foaming and manufacturing method thereof | |
US20030176617A1 (en) | High performance sealant formulations based on MDI prepolymers | |
KR20150024464A (en) | Functional polyurethane foam | |
KR102721822B1 (en) | Epoxy injection composition with properties of low-viscosity, ultra-fast-curing and moisture-curing for repairing cracks in concrete structures | |
JP2002020698A (en) | Adhesive composition for concrete and filler composition | |
JPS6121563B2 (en) | ||
JPH0216330B2 (en) | ||
JPH0216331B2 (en) | ||
JPH0480224A (en) | Water-curable polyurethane prepolymer composition | |
JPH0414693B2 (en) | ||
KR102638252B1 (en) | Composition for water solubilizing polyol resin | |
JP4301432B2 (en) | Method for producing polyurethane foam molded article | |
JP3780691B2 (en) | Two-component curable urethane composition and sealing material | |
JPH1087778A (en) | Two-part curable composition | |
JPH0370732B2 (en) | ||
JPH09278859A (en) | Two-component waterproof material composition | |
KR102485825B1 (en) | Intermediate coating agent for parking lot floor and its manufacturing method | |
JPH06234963A (en) | Polyurethane adhesive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20231228 |
|
PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20231228 Comment text: Patent Application |
|
PA0302 | Request for accelerated examination |
Patent event date: 20231228 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20231228 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240325 Patent event code: PE09021S01D |
|
PN2301 | Change of applicant |
Patent event date: 20240730 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20241016 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20241021 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20241021 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |