[go: up one dir, main page]

KR102719055B1 - A Method for Producing a Coating Lens - Google Patents

A Method for Producing a Coating Lens Download PDF

Info

Publication number
KR102719055B1
KR102719055B1 KR1020230159876A KR20230159876A KR102719055B1 KR 102719055 B1 KR102719055 B1 KR 102719055B1 KR 1020230159876 A KR1020230159876 A KR 1020230159876A KR 20230159876 A KR20230159876 A KR 20230159876A KR 102719055 B1 KR102719055 B1 KR 102719055B1
Authority
KR
South Korea
Prior art keywords
lens
coating layer
coating
coated
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020230159876A
Other languages
Korean (ko)
Other versions
KR20230163965A (en
Inventor
정인용
Original Assignee
정인용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정인용 filed Critical 정인용
Priority to KR1020230159876A priority Critical patent/KR102719055B1/en
Publication of KR20230163965A publication Critical patent/KR20230163965A/en
Application granted granted Critical
Publication of KR102719055B1 publication Critical patent/KR102719055B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3452Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/153Deposition methods from the vapour phase by cvd by plasma-enhanced cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

본 발명은 코팅 렌즈의 제조 방법에 관한 것이다. 코팅 렌즈의 제조 방법은 렌즈 기재가 준비되는 단계; 렌즈 기재가 세척이 되는 단계; 세척이 된 렌즈 기재의 표면을 닦는 단계; 진공 증착 방식에 의하여 코팅 층이 형성되는 단계; 및 코팅 층이 경화가 되는 단계를 포함한다.The present invention relates to a method for manufacturing a coated lens. The method for manufacturing a coated lens includes a step of preparing a lens substrate; a step of cleaning the lens substrate; a step of wiping the surface of the cleaned lens substrate; a step of forming a coating layer by a vacuum deposition method; and a step of curing the coating layer.

Description

코팅 렌즈의 제조 방법{A Method for Producing a Coating Lens}{A Method for Producing a Coating Lens}

본 발명은 코팅 렌즈의 제조 방법에 관한 것이고, 구체적으로 다수의 코팅 층이 형성된 코팅 렌즈의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a coated lens, and more particularly, to a method for manufacturing a coated lens having a plurality of coating layers formed thereon.

굴절에 의하여 광을 모으거나 분산시키는 광학 수단에 해당하는 렌즈는 유리와 같은 투명 소재로 만들어지거나, 유리 또는 플라스틱으로 만들어질 수 있다. 이와 같은 소재로 만들어지는 렌즈에 다양한 형태의 코팅 층이 형성되어 렌즈의 사용 목적에 적합하도록 만들어질 수 있다. 예를 들어 안경용 렌즈에 눈부심 방지 및 선명한 시야의 확보를 위하여 반사 방지 코팅(Anti-Reflection Coating) 층이 형성될 수 있다. 또한 카메라 렌즈, 자동차 램프의 렌즈 또는 후사경의 렌즈의 경우 각각의 사용 환경 또는 용도에 따라 적절하게 코팅이 될 필요가 있다. 이와 같은 코팅 렌즈와 관련하여 특허공개번호 10-2019-0010221은 ta_c 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학 렌즈에 대하여 개시한다. 또한 특허공개번호 10-2019-0053865는 광범위한 입사각에 걸쳐 가시광의 반사를 크게 감소시키는 반사 방지 코팅을 주면 중 어느 하나의 상에 포함하는 광학 렌즈에 대하여 개시한다. 또한 특허공개번호 10-2019-0020406은 진공증착에 의한 선글라스 렌즈 코팅 방법에 대하여 개시한다. 렌즈 코팅 층의 렌즈의 용도에 따른 기능을 가지도록 형성되면서 렌즈 자체의 성능을 저하시키지 않도록 형성될 필요가 있다. 예를 들어 렌즈 코팅 층은 렌즈 코팅 층은 기본적으로 높은 투과율을 가지면서 보호 기능을 위하여 충분한 강도를 가질 필요가 있다. 또한 사용 환경에 따라 열-충격에 대한 충분한 저항을 가지면서 내화학성을 가질 필요가 있다. 그러나 선행기술은 이와 같은 특성을 가진 렌즈의 코팅 층을 형성하는 방법에 대하여 개시하지 않는다.A lens, which is an optical means for gathering or dispersing light by refraction, may be made of a transparent material such as glass, or may be made of glass or plastic. Various types of coating layers may be formed on a lens made of such a material to suit the intended use of the lens. For example, an anti-reflection coating layer may be formed on a spectacle lens to prevent glare and ensure a clear field of view. In addition, a camera lens, a lens of an automobile lamp, or a lens of a rearview mirror may need to be appropriately coated depending on the respective usage environment or purpose. Regarding such a coated lens, Patent Publication No. 10-2019-0010221 discloses a hybrid infrared optical lens having ta_c and Y 2 O 3 coating thin film layers. In addition, Patent Publication No. 10-2019-0053865 discloses an optical lens including an anti-reflection coating on one of its major surfaces that significantly reduces the reflection of visible light over a wide range of incident angles. In addition, Patent Publication No. 10-2019-0020406 discloses a method for coating sunglasses lenses by vacuum deposition. It is necessary for the lens coating layer to be formed so as to have a function according to the purpose of the lens while not deteriorating the performance of the lens itself. For example, the lens coating layer basically needs to have high transmittance and sufficient strength for a protective function. In addition, it needs to have sufficient resistance to heat shock and chemical resistance depending on the usage environment. However, the prior art does not disclose a method for forming a coating layer of a lens with such characteristics.

본 발명은 선행기술의 문제점을 해결하기 위한 것으로 아래와 같은 목적을 가진다.The present invention is intended to solve the problems of prior art and has the following objectives.

선행기술 1: 특허공개번호 10-2019-0010221(한국광기술원, 2019.01.30. 공개) ta-C 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학렌즈Prior art 1: Patent publication number 10-2019-0010221 (Korea Institute of Photonics Technology, published on January 30, 2019) Hybrid infrared optical lens with ta-C and Y2O3 coating thin film layer 선행기술 2: 특허공개번호 10-2019-0053865(에씰로 안터나시오날, 2019.05.20. 공개) 다각 효율을 갖는 반사 방지 코팅을 포함하는 광학 렌즈Prior art 2: Patent publication number 10-2019-0053865 (Esilo Anternacional, published on May 20, 2019) Optical lens including anti-reflection coating with multi-angle efficiency 선행기술 3: 특허공개번호 10-2019-0020406(유흥상, 2019.03.04. 공개) 진공증착에 의한 선글라스 렌즈 코팅 방법Prior art 3: Patent publication number 10-2019-0020406 (Yoo Heung-sang, published on 2019.03.04.) Sunglass lens coating method by vacuum deposition

본 발명의 목적은 진공 증착 방식으로 다중 코팅 층을 형성하면서 열 충격성, 내후성 및 내화성을 가진 코팅 렌즈의 제조 방법을 제공하는 것이다.An object of the present invention is to provide a method for manufacturing a coated lens having thermal shock resistance, weather resistance and fire resistance while forming multiple coating layers by a vacuum deposition method.

본 발명의 적절한 실시 형태에 따르면, 코팅 렌즈의 제조 방법은 렌즈 기재가 준비되는 단계; 렌즈 기재가 세척이 되는 단계; 세척이 된 렌즈 기재의 표면을 닦는 단계; 진공 증착 방식에 의하여 코팅 층이 형성되는 단계; 및 코팅 층이 경화가 되는 단계를 포함한다.According to a preferred embodiment of the present invention, a method for manufacturing a coated lens comprises: a step of preparing a lens substrate; a step of washing the lens substrate; a step of wiping the surface of the washed lens substrate; a step of forming a coating layer by a vacuum deposition method; and a step of curing the coating layer.

본 발명의 다른 적절한 실시 형태에 따르면, 표면을 닦든 단계는 융, 면섬유, 부직포, 천연 섬유 또는 인조 섬유에 의하여 진행된다. According to another suitable embodiment of the present invention, the step of wiping the surface is performed using a cotton cloth, cotton fiber, non-woven fabric, natural fiber or artificial fiber.

본 발명의 또 다른 적절한 실시 형태에 따르면, 코팅 층은 9 내지 12개의 동일하거나, 서로 다른 소재 층으로 이루어진다.According to another suitable embodiment of the present invention, the coating layer is composed of 9 to 12 identical or different material layers.

본 발명의 또 다른 적절한 실시 형태에 따르면, 코팅 층은 Ti3O5, SiO2, MgF2, Al2O3 및 SiO2/Al2O3로 구성된 그룹으로부터 선택된 소재로 형성되는 다수 층으로 이루어진다.According to another suitable embodiment of the present invention, the coating layer is composed of multiple layers formed of a material selected from the group consisting of Ti 3 O 5 , SiO 2 , MgF 2 , Al 2 O 3 and SiO 2 /Al 2 O 3 .

본 발명에 따른 코팅 렌즈의 제조 방법은 다중 코팅 층이 가진 투과율의 저하, 다습 환경에서 박리 현상이 방지되도록 한다. 본 발명에 따른 제조 방법은 외부 환경 또는 극한 환경에서 사용될 수 있는 막강도 및 내후성을 가진 코팅 층이 형성되도록 하면서 사용 환경에서 이물질에 의한 충격에 따른 스크래치 또는 흠집의 발생의 방지되도록 한다. 본 발명에 따른 제조 방법은 자동차용 렌즈에 적용될 수 있고, 바람직하게 자율 자동차의 카메라 렌즈의 코팅에 적용될 수 있지만 이에 제한되지 않는다.The method for manufacturing a coated lens according to the present invention prevents a decrease in transmittance of a multi-coating layer and a peeling phenomenon in a humid environment. The method for manufacturing the lens according to the present invention prevents the occurrence of scratches or blemishes due to impact by foreign substances in the usage environment while forming a coating layer having film strength and weather resistance that can be used in an external environment or an extreme environment. The method for manufacturing the lens according to the present invention can be applied to automobile lenses, and preferably, but not limited to, can be applied to coating a camera lens of an autonomous automobile.

도 1은 본 발명에 따른 코팅 렌즈의 제조 방법의 실시 예를 도시한 것이다.
도 2는 본 발명에 따른 코팅 렌즈의 제조 방법의 다른 실시 예를 도시한 것이다.
도 3은 본 발명에 따른 제조 방법에 의하여 형성된 코팅 층의 실시 예를 도시한 것이다.
도 4a 및 도 4e는 본 발명에 따른 제조 방법에 의하여 제조된 코팅 렌즈에 대한 특성 시험의 결과를 도시한 것이다.
Figure 1 illustrates an embodiment of a method for manufacturing a coated lens according to the present invention.
Figure 2 illustrates another embodiment of a method for manufacturing a coated lens according to the present invention.
Figure 3 illustrates an example of a coating layer formed by a manufacturing method according to the present invention.
Figures 4a and 4e illustrate the results of characteristic tests on a coated lens manufactured by a manufacturing method according to the present invention.

아래에서 본 발명은 첨부된 도면에 제시된 실시 예를 참조하여 상세하게 설명이 되지만 실시 예는 본 발명의 명확한 이해를 위한 것으로 본 발명은 이에 제한되지 않는다. 아래의 설명에서 서로 다른 도면에서 동일한 도면 부호를 가지는 구성요소는 유사한 기능을 가지므로 발명의 이해를 위하여 필요하지 않는다면 반복하여 설명이 되지 않으며 공지의 구성요소는 간략하게 설명이 되거나 생략이 되지만 본 발명의 실시 예에서 제외되는 것으로 이해되지 않아야 한다.Below, the present invention is described in detail with reference to embodiments shown in the attached drawings, but the embodiments are for a clear understanding of the present invention and the present invention is not limited thereto. In the description below, components having the same drawing symbols in different drawings have similar functions and therefore will not be described repeatedly unless necessary for the understanding of the invention, and well-known components will be briefly described or omitted, but they should not be understood as being excluded from the embodiments of the present invention.

도 1은 본 발명에 따른 코팅 렌즈의 제조 방법의 실시 예를 도시한 것이다.Figure 1 illustrates an embodiment of a method for manufacturing a coated lens according to the present invention.

도 1을 참조하면, 코팅 렌즈의 제조 방법은 렌즈 기재가 준비되는 단계(P11); 렌즈 기재가 1차 세척이 되고, 센터링이 검사되는 단계(P12); 1차 세척이 된 렌즈 기재의 표면을 닦는 단계(P13); 진공 증착 방식에 의하여 코팅 층이 형성되는 단계(P15); 및 코팅 층이 경화가 되는 단계(16)를 포함한다.Referring to FIG. 1, a method for manufacturing a coated lens includes a step of preparing a lens substrate (P11); a step of first washing the lens substrate and inspecting centering (P12); a step of wiping the surface of the first washed lens substrate (P13); a step of forming a coating layer by a vacuum deposition method (P15); and a step of curing the coating layer (16).

렌즈 기재는 렌즈의 용도에 따라 유리, 합성수지 또는 이와 유사한 소재로 만들어질 수 있고, 다양한 구경 또는 초점을 가질 수 있다. 예를 들어 렌즈 기재는 기재 소재 준비, 양면 황삭, 양면 정삭 및 양면 연마 과정을 통하여 준비될 수 있다(P11). 렌즈 기재에 대한 굴절률, 치수, 초점, 곡률 또는 두께가 검사될 수 있고, 검사가 완료된 렌즈 기재에 대하여 1차 세척이 될 수 있다(P12). 1차 세척은 세척 홀더에 각각의 렌즈를 고정시키고, 예를 들어 이소프로필알코올(IPA)에 의하여 세척이 될 수 있지만 이에 제한되지 않고, 증류수 또는 에틸알코올과 같은 다양한 용액에 의하여 세척될 수 있고, 이에 의하여 본 발명은 제한되지 않는다. 1차 세척이 된 렌즈 기재에 대하여 외관 검사가 될 수 있고, 예를 들어 스크래치. 흠집 검사, 얼룩 검사 또는 이와 유사한 다양한 외관 검사가 될 수 있다. 이와 같은 외관 검사가 완료되면, 심취 검사 또는 센터링 검사가 될 수 있다(P12). 센터링 검사 과정에서 흑칠 전 심취 치수 또는 센터링 위치가 설정될 수 있다. 이후 센터링 설정이 된 렌즈 기재에 대하여 외경, 편심, 단차 또는 Sag(Sagittal Height) 검사가 될 수 있다. 이와 같은 검사와 완료되면 렌즈 기재의 표면을 닦는 공정이 진행될 수 있다(P13). 렌즈 기재에 형성된 코팅 층은 외부 환경에서 박리가 될 수 있고, 특히 자동차의 카메라용 렌즈의 경우 다양한 외부 환경에 코팅 층이 노출되어 시간의 경과에 따라 박리 형상의 발생될 수 있다. 표면을 닦는 공정은 렌즈 기재에 대한 코팅 층의 부착 특성 또는 코팅 층의 강도를 증가시키는 기능을 가질 수 있다. 이와 같이 렌즈 기재의 코팅 층을 닦는 공정은 코팅 층의 강도 특성, 박리 방지 특성 또는 부착 특성을 향상시키는 기능을 할 수 있다. 닦는 공정은 예를 들어 융, 면섬유, 부직포, 천연 섬유 또는 인조 섬유에 의하여 진행될 수 있고, 아세탈 지그에서 진행될 수 있다. 구체적으로 아세탈 지그에 렌즈 기재의 표면 형상에 대응되는 적어도 하나의 문지름(scrubbing) 홈이 형성될 수 있고, 각각의 문지름 홈에 패드 형상 또는 판 형상의 융, 면섬유, 부직포, 천연 섬유 또는 인조 섬유로 만들어진 문지름 소재가 준비될 수 있다. 그리고 코팅이 되어야 하는 렌즈 표면이 문지름 소재에 접촉되어 닦기 공정이 진행될 수 있다. 닦기 공정 과정에서 렌즈 표면에 렌즈 소재에 의한 흠집 또는 스크래치가 발생되지 않아야 한다. 이를 위하여 문지름 소재는 마찰력은 작은 부드러운 소재로 만들어질 수 있고, 마찰 계수를 감소시킬 수 있는 이소프로필알코올, 증류수 또는 이와 유사한 다양한 액체가 문지름 소재에 흡수된 상태로 사용될 수 있다. 렌즈 기재의 접촉 압력이 예를 들어 1 내지 500,000 pa이 될 수 있고, 문지름 소재의 마찰 계수는 0.2 이하가 되도록 조절될 수 있다. 렌즈 기재는 예를 들어 0.01 내지 10(회/초)의 속도로 회전 되거나, 0.01 내지 10 m/sec의 속도로 왕복 운동이 되면서 문지름 공정이 진행될 수 있다. 문지름 공정 또는 닦기 공정은 다양한 방법으로 진행될 수 있고 제시된 실시 예에 제한되지 않는다. 이와 같은 닦기 공정이 완료되면(P13), 선택적으로 검사 공정 및 2차 세척 공정이 진행될 수 있다(P14). 검사 공정은 예를 들어 외관 검사 공정이 될 수 있고, 세척은 이소프로필알코올과 같은 세척 용액에 의하여 진행될 수 있다. 이와 같은 세척 공정이 완료되면 코팅 공정이 진행될 수 있다(P15). 코팅 공정은 진공 증착 방식으로 이루어질 수 있고, 예를 들어 진공 증착 장치 또는 마그네트론 스퍼터링 장치에서 진행될 수 있다. 본 발명의 하나의 실시 예에 따르면, 코팅 층은 9 내지 12개의 동일하거나, 서로 다른 소재 층으로 이루어질 수 있다. 또한 코팅 층은 Ti3O5, SiO2, MgF2, Al2O3 및 SiO2/Al2O3로 구성된 그룹으로부터 선택된 소재로 형성될 수 있다. 렌즈 구조에 따라 오목 면이 코팅이 된 후 블록 면이 코팅이 될 수 있다. 이와 같이 양쪽 면이 코팅이 되는 경우 한쪽 면이 코팅이 된 후 분광 측정이 될 수 있다. 그리고 이소프로필알코올과 같은 세척 용액에 의하여 세척이 되고 건조가 된 후 다른 면이 코팅이 될 수 있다. 예를 들어 오목 면이 코팅이 된 후 분광 측정, 세척 및 건조가 된 후 볼록 면이 코팅이 될 수 있다. 코팅 층은 다수 개의 서브 코팅 층으로 이루어질 수 있고, 서로 다른 서브 코팅 층은 동일하거나, 서로 다른 두께를 가질 수 있다. 또는 서로 다른 서브 코팅 층은 동일하거나, 서로 다른 소재로 형성될 수 있다. 서브 코팅 층을 형성하는 Ti3O5는 굴절률이 우수하다는 장점을 가지고, SiO2는 투과율이 양호하면서 막 강도가 우수하면서 투과율이 양호하다는 이점을 가진다. 이에 비하여 MgF2는 투과율이 우수하지만 높은 습도에서 박리가 된다는 단점을 가진다. 또한 SiO2/Al2O3는 투과율이 우수하지만 코팅 면에 얼룩 또는 흡집이 발생된다는 단점을 가진다. 그러므로 이와 같은 각각의 소재의 장점 및 단점에 기초하여 서브 코팅 층의 형성 순서 및 두께가 조절될 수 있다. 예를 들어 서브 코팅 층은 STSTSTSTATS와 같은 순서로 형성될 수 있고, T, S 및 A는 각각 Ti3O5, SiO2 및 Al2O3를 나타낸다. 각각의 서브 층의 두께는 20 내지 2,000 ㎚가 될 수 있다. 다수 개의 서브 코팅 층은 다양한 순서 또는 다양한 두께로 형성될 수 있고, 제시된 실시 예에 제한되지 않는다. 이와 같은 같은 방법으로 9 내지 12개의 서브 층으로 이루어진 코팅 층이 형성되면(P15), 코팅 렌즈는 경화가 될 수 있다(P16). 경화는 예를 들어 120 내지 200 ℃의 온도에서 1 내지 5 시간 진행될 수 있다. 이와 같은 경화 공정이 완료되면(P16), 코팅 렌즈는 후처리가 될 수 있다(P17). 후처리 공정은 예를 들어 코팅 렌즈의 표면 처리 또는 건조와 같은 공정을 포함할 수 있다. 또한 렌즈의 종류에 따라 코팅 렌즈에 대하여 흑칠 공정이 될 수 있다.The lens substrate may be made of glass, synthetic resin, or similar materials depending on the purpose of the lens, and may have various apertures or foci. For example, the lens substrate may be prepared through the processes of substrate material preparation, double-side rough grinding, double-side finishing, and double-side polishing (P11). The refractive index, dimension, focus, curvature, or thickness of the lens substrate may be inspected, and the lens substrate for which the inspection is completed may be subjected to a primary cleaning (P12). The primary cleaning may be performed by fixing each lens to a cleaning holder, and cleaning may be performed using, for example, isopropyl alcohol (IPA), but is not limited thereto, and may be performed using various solutions such as distilled water or ethyl alcohol, and the present invention is not limited thereby. The lens substrate for which the primary cleaning has been performed may be subjected to an appearance inspection, and may be subjected to, for example, a scratch, a blemish inspection, a stain inspection, or various similar appearance inspections. Once the appearance inspection is completed, a centering inspection or a centering inspection may be performed (P12). In the centering inspection process, the pre-blackening immersion dimension or centering position can be set. After that, the outer diameter, eccentricity, step or Sag (Sagittal Height) inspection can be performed on the lens substrate with the centering set. After such inspection is completed, a process of wiping the surface of the lens substrate can be performed (P13). The coating layer formed on the lens substrate can be peeled off in the external environment, and especially in the case of a lens for an automobile camera, the coating layer can be exposed to various external environments and a peeling shape can occur over time. The surface wiping process can have a function of increasing the adhesion characteristics of the coating layer to the lens substrate or the strength of the coating layer. In this way, the process of wiping the coating layer of the lens substrate can have a function of improving the strength characteristics, anti-peeling characteristics or adhesion characteristics of the coating layer. The wiping process can be performed by, for example, a filament, cotton fiber, non-woven fabric, natural fiber or artificial fiber, and can be performed on an acetal jig. Specifically, at least one scrubbing groove corresponding to the surface shape of the lens substrate may be formed on the acetal jig, and a scrubbing material made of a pad-shaped or plate-shaped filament, cotton fiber, non-woven fabric, natural fiber or artificial fiber may be prepared for each scrubbing groove. Then, the lens surface to be coated may come into contact with the scrubbing material to perform a scrubbing process. During the scrubbing process, the lens surface should not be scratched or nicked by the lens material. To this end, the scrubbing material may be made of a soft material having low friction, and isopropyl alcohol, distilled water or various similar liquids capable of reducing the friction coefficient may be used in a state in which the scrubbing material is absorbed. The contact pressure of the lens substrate may be, for example, 1 to 500,000 pa, and the friction coefficient of the scrubbing material may be adjusted to be 0.2 or less. The lens substrate may be rubbed while being rotated, for example, at a speed of 0.01 to 10 (times/sec) or reciprocated at a speed of 0.01 to 10 m/sec. The rubbing process or the wiping process may be performed in various ways and is not limited to the presented embodiments. When the wiping process is completed (P13), an inspection process and a secondary washing process may optionally be performed (P14). The inspection process may be, for example, an appearance inspection process, and the washing may be performed using a washing solution such as isopropyl alcohol. When the washing process is completed, a coating process may be performed (P15). The coating process may be performed by a vacuum deposition method and may be performed in, for example, a vacuum deposition apparatus or a magnetron sputtering apparatus. According to one embodiment of the present invention, the coating layer may be formed of 9 to 12 identical or different material layers. In addition, the coating layer can be formed of a material selected from the group consisting of Ti 3 O 5 , SiO 2 , MgF 2 , Al 2 O 3 and SiO 2 /Al 2 O 3 . Depending on the lens structure, the concave surface can be coated and then the block surface can be coated. In this case where both surfaces are coated, one surface can be coated and then spectroscopically measured. Then, the other surface can be coated after being washed with a washing solution such as isopropyl alcohol and dried. For example, the concave surface can be coated, then spectroscopically measured, washed and dried, and then the convex surface can be coated. The coating layer can be composed of a plurality of sub-coating layers, and different sub-coating layers can have the same or different thicknesses. Or, different sub-coating layers can be formed of the same or different materials. Ti 3 O 5 , which forms the sub-coating layer, has the advantage of excellent refractive index, and SiO 2 has the advantage of good transmittance, excellent film strength, and good transmittance. In comparison, MgF 2 has excellent transmittance but has a disadvantage of peeling at high humidity. In addition, SiO 2 /Al 2 O 3 has excellent transmittance but has a disadvantage of causing stains or absorbance on the coating surface. Therefore, the formation order and thickness of the sub-coating layer can be controlled based on the advantages and disadvantages of each material. For example, the sub-coating layers can be formed in an order such as STSTSTSTATS, where T, S, and A represent Ti 3 O 5 , SiO 2 , and Al 2 O 3 , respectively. The thickness of each sub-layer can be 20 to 2,000 nm. A plurality of sub-coating layers can be formed in various orders or various thicknesses, and are not limited to the presented embodiments. When a coating layer consisting of 9 to 12 sub-layers is formed in the same manner (P15), the coating lens can be hardened (P16). Curing can be carried out, for example, at a temperature of 120 to 200° C. for 1 to 5 hours. Once this curing process is completed (P16), the coated lens can be post-processed (P17). The post-processing process can include, for example, a process such as surface treatment or drying of the coated lens. Additionally, depending on the type of lens, the coated lens can be subjected to a blackening process.

아래에서 이와 같은 공정에 대하여 설명된다.This process is described below.

도 2는 본 발명에 따른 코팅 렌즈의 제조 방법의 다른 실시 예를 도시한 것이다.FIG. 2 illustrates another embodiment of a method for manufacturing a coated lens according to the present invention.

도 2를 참조하면, 코팅 층이 형성된 이후 렌즈 용도에 따라 추가 공정이 진행될 수 있다. 코팅 층이 형성되면(P15), 예를 들어 이소프로필알코올과 같은 세척 용액으로 세척되어(P21) 건조가 될 수 있다. 그리고 분광 검사 및 초기 접촉각 검사가 될 수 있고, 접촉각 검사에 의하여 발수 특성이 확인될 수 있다. 이후 50 내지 100 시간 동안 방치하여 코팅 렌즈의 안정화 공정이 진행될 수 있다. 그리고 복합 렌즈의 경우 접합 공정이 진행될 수 있다(P22). 그리고 단일 코팅 렌즈 또는 접합 코팅 렌즈에 대한 흑칠 공정이 진행될 수 있다(P23). 흑칠 공정은 색수차, 구면 수차 또는 비점 수차로 인한 렌즈의 난반사를 방지할 수 있는 다양한 막을 형성하기 위하여 에포라 페인트 또는 GT7과 같은 소재로 진행될 수 있다. 흑칠 소재는 화학성 내구성을 가지면서 전 파장 영역에 투과율이 0이 되는 다양한 소재로 진행될 수 있고 제시된 실시 예에 제한되지 않는다. 흑칠 공정이 완료되면(P23), 치수 검사, 이중 띠 검사, 백점 검사 또는 스크래치 검사가 될 수 있고, 이후 위에서 설명된 것처럼 코팅 렌즈가 경화될 수 있다(P16). 그리고 경화된 코팅 렌즈에 대하여 외경, 편심, 코팅 면 반사 검사와 같은 다양한 검사가 진행된 이후 코팅 공정이 완료될 수 있다. 다양한 후처리 공정을 통하여 코팅 렌즈의 제조 공정이 완료될 수 있고, 제시된 실시 예에 제한되지 않는다. Referring to FIG. 2, after the coating layer is formed, additional processes may be performed depending on the intended use of the lens. After the coating layer is formed (P15), it may be washed with a cleaning solution such as isopropyl alcohol (P21) and dried. Then, a spectroscopic examination and an initial contact angle examination may be performed, and the water-repellent property may be confirmed by the contact angle examination. After that, the stabilization process of the coated lens may be performed by leaving it for 50 to 100 hours. Then, a bonding process may be performed in the case of a composite lens (P22). Then, a blackening process may be performed for a single-coated lens or a bonded-coated lens (P23). The blackening process may be performed with a material such as Ephora paint or GT7 to form various films capable of preventing diffuse reflection of the lens due to chromatic aberration, spherical aberration, or astigmatism. The blackening material may be performed with various materials having chemical durability and having a transmittance of 0 in the entire wavelength range, and is not limited to the presented embodiments. After the blackening process is completed (P23), a dimensional inspection, a double band inspection, a white spot inspection, or a scratch inspection can be performed, and then the coated lens can be cured as described above (P16). Then, after various inspections such as an outer diameter, an eccentricity, and a coating surface reflection inspection are performed on the cured coated lens, the coating process can be completed. The manufacturing process of the coated lens can be completed through various post-processing processes, and is not limited to the presented embodiments.

도 3은 본 발명에 따른 제조 방법에 의하여 형성된 코팅 층의 실시 예를 도시한 것이다.Figure 3 illustrates an example of a coating layer formed by a manufacturing method according to the present invention.

도 3을 참조하면, 본 발명에 따른 코팅 렌즈의 제조 방법에 의하여 렌즈 기재(LB)에 다수 개의 서브 코팅 층(CL_1 내지 CL_N)이 형성될 수 있다. 예를 들어 서브 코팅 층(CL_1 내지 CL_N)은 STSTSTSTATS와 같은 순서로 형성될 수 있고, T, S 및 A는 각각 Ti3O5, SiO2 및 Al2O3를 나타낸다. 각각의 서브 코팅 층(CL_1 내지 CL_N)은 예를 들어 200 내지 300(S), 70 내지 120(T), 500 내지 700(S), 15 내지 50(T), 1,200 내지 1,500(S), 120 내9지 180(T), 270 내지 320(S), 620 내지 700(T), 70 내지 100(A), 250 내지 350(T), 900 내지 980(S)의 코팅 두께를 가질 수 있고, 단위는 ㎚가 된다. 전체 코팅 두께(L)는 2 내지 10㎛, 바람직하게 3 내지 6 ㎛, 가장 바람직하게 4 내지 5 ㎛가 될 수 있지만 이에 제한되지 않는다. 코팅 렌즈는 다양한 방법으로 만들어질 수 있고 아래에서 이와 같이 본 발명에 따른 제조 방법에 의하여 제조된 코팅 렌즈에 대한 시험 결과에 대하여 설명된다. Referring to FIG. 3, a plurality of sub-coating layers (CL_1 to CL_N) can be formed on a lens substrate (LB) by a method for manufacturing a coated lens according to the present invention. For example, the sub-coating layers (CL_1 to CL_N) can be formed in an order such as STSTSTSTATS, where T, S, and A represent Ti 3 O 5 , SiO 2 , and Al 2 O 3 , respectively. Each of the sub-coating layers (CL_1 to CL_N) can have a coating thickness of, for example, 200 to 300 (S), 70 to 120 (T), 500 to 700 (S), 15 to 50 (T), 1,200 to 1,500 (S), 120 to 180 (T), 270 to 320 (S), 620 to 700 (T), 70 to 100 (A), 250 to 350 (T), 900 to 980 (S), and the unit is nm. The total coating thickness (L) can be, but is not limited to, 2 to 10 ㎛, preferably 3 to 6 ㎛, and most preferably 4 to 5 ㎛. The coated lens can be manufactured by various methods, and test results for a coated lens manufactured by a manufacturing method according to the present invention are described below.

도 4a 및 도 4e는 본 발명에 따른 제조 방법에 의하여 제조된 코팅 렌즈에 대한 특성 시험의 결과를 도시한 것이다. Figures 4a and 4e illustrate the results of characteristic tests on a coated lens manufactured by a manufacturing method according to the present invention.

도 4a의 특성 시험에서 코팅 층의 구조는 아래와 같고, 두께 단위는 ㎚가 되고, S, T 및 A는 각각 SiO2, Ti3O5 및 Al2O3를 나타내고, 3b 내지 3e의 실시 예에서 동일하다.In the characteristic test of Fig. 4a, the structure of the coating layer is as follows, the thickness unit is nm, S, T and A represent SiO 2 , Ti 3 O 5 and Al 2 O 3 , respectively, and are the same in examples 3b to 3e.

(i) 렌즈 기재: LaF3 유리 소재(i) Lens material: LaF 3 glass material

(ii) 서브 코팅 층: STSTSTSTATS(11층)(ii) Sub-coating layer: STSTSTSTATS (11 layers)

(iii) 두께(㎚): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 내지 1,400(iii) Thickness (nm): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 to 1,400

(iv) 열 충격 시험: 110 ℃/2시간 방치 (iv) Thermal shock test: 110℃/2 hours

(v) 내산성 시험: 황산원액/2시간 방치(v) Acid resistance test: Sulfuric acid solution/left for 2 hours

(vi) 투과력이 ㈜카바스 측정 장비에 의하여 시험되었고, 코팅 면을 커터로 긁어 흠집 시험이 되었고, 코팅 면에 흑칠을 한 얼룩 시험이 됨. (vi) Penetration was tested using a Kabas measuring device, and a scratch test was performed by scratching the coating surface with a cutter, and a spot test was performed by applying black paint to the coating surface.

도 4a의 (가)를 참조하면, 좌측의 열 충격 및 내산성 시험 결과에서 나타난 것과 같이 본 발명에 따른 코팅 렌즈는 열 충격에 강하면서 높은 내산성을 가진다는 것을 알 수 있다. 또한 커터로 긁는 경우 흠집이 발생되지 않았고, 얼룩이 남지 않는 것으로 확인되었다. 또한 도 4a의 (나)를 참조하면, X축은 파장(wavelength:㎚), Y축은 반사율(Reflectance:%)를 각각 나타낸 것으로, AOI(Automatic Optical Inspection) = 0도(400 내지 700 ㎚: blue) 및 45도(400 내지 700 ㎚)에서 Ravg ≤ 0.8 %, Rabs ≤1.0 %; 및 Ravg ≤ 1.5 %, Rabs ≤2.5%가 된다는 것을 알 수 있다. Referring to (a) of Fig. 4a, it can be seen that the coated lens according to the present invention is resistant to thermal shock and has high acid resistance, as shown in the results of the thermal shock and acid resistance tests on the left. In addition, it was confirmed that no scratches occurred and no stains remained when scratched with a cutter. In addition, referring to (b) of Fig. 4a, the X-axis represents wavelength (nm) and the Y-axis represents reflectance (%), respectively, and it can be seen that AOI (Automatic Optical Inspection) = Ravg ≤ 0.8 %, Rabs ≤ 1.0 % at 0 degrees (400 to 700 nm: blue) and 45 degrees (400 to 700 nm); and Ravg ≤ 1.5 %, Rabs ≤ 2.5%.

도 4b 내지 도 4e의 특성 시험 조건은 각각 아래와 같고, 시험은 도 4a와 동일한 방법으로 이루어졌다. The characteristic test conditions of Figs. 4b to 4e are as follows, and the test was conducted in the same manner as Fig. 4a.

도 4b: Figure 4b:

(i) 렌즈 기재: Hoya 사의 FC5 렌즈(i) Lens material: FC5 lens from Hoya

(ii) 서브 코팅 층: SA1TA2TA3TS(8층)(ii) Sub-coating layer: SA1TA2TA3TS (8 layers)

(iii) 두께(㎚): A3:90~120; A2: 250 내지 280; A1 450 내지 500; TS: 850 내지 1,200; T: 80 내지 100; S: 1,500 내지 2,000(iii) Thickness (nm): A3: 90 to 120; A2: 250 to 280; A1 450 to 500; TS: 850 to 1,200; T: 80 to 100; S: 1,500 to 2,000

도 4c: Fig. 4c:

(i) 렌즈 기재: Hoya 사의 TAFD25 렌즈(i) Lens material: TAFD25 lens from Hoya

(ii) 서브 코팅 층: STSTSTSTATS(11층)(ii) Sub-coating layer: STSTSTSTATS (11 layers)

(iii) 두께(㎚): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 내지 1,400(iii) Thickness (nm): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 to 1,400

도 4d: Fig. 4d:

(i) 렌즈 기재: Hoya 사의 TAC8 렌즈 (i) Lens material: TAC8 lens from Hoya

(ii) 서브 코팅 층: STSTSTSTATS(11층)(ii) Sub-coating layer: STSTSTSTATS (11 layers)

(iii) 두께(㎚): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 내지 1,400(iii) Thickness (nm): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 to 1,400

도 4e: Figure 4e:

(i) 렌즈 기재: Hoya 사의 FDS18W 렌즈 (i) Lens material: FDS18W lens from Hoya

(ii) 서브 코팅 층: STSTSTSTATS(11층)(ii) Sub-coating layer: STSTSTSTATS (11 layers)

(iii) 두께(㎚): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 내지 1,400(iii) Thickness (nm): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 to 1,400

도 4b 내지 도 4e를 참조하면, 좌측의 열 충격 및 내산성 시험 결과에서 나타난 것과 같이 본 발명에 따른 코팅 렌즈는 열 충격에 강하면서 높은 내산성을 가진다는 것을 알 수 있다. 또한 커터로 긁는 경우 흠집이 발생되지 않았고, 얼룩이 남지 않는 것으로 확인되었다. 우측의 그래프에서 X축은 파장(wavelength:㎚), Y축은 반사율(Reflectance:%)를 각각 나타낸 것으로, AOI(Automatic Optical Inspection) = 0도(400 내지 700 ㎚: blue) 및 45도(400 내지 700 ㎚)에서 Ravg ≤ 0.8 %, Rabs ≤1.0 %; 및 Ravg ≤ 1.5 %, Rabs ≤2.5%가 된다는 것을 알 수 있다.Referring to FIGS. 4b to 4e, as shown in the results of the thermal shock and acid resistance tests on the left, it can be seen that the coated lens according to the present invention is resistant to thermal shock and has high acid resistance. In addition, it was confirmed that no scratches occurred and no stains remained when scratched with a cutter. In the graph on the right, the X-axis represents wavelength (nm), and the Y-axis represents reflectance (%), respectively. It can be seen that AOI (Automatic Optical Inspection) = 0 degree (400 to 700 nm: blue) and 45 degrees (400 to 700 nm) Ravg ≤ 0.8 %, Rabs ≤ 1.0 %; and Ravg ≤ 1.5 %, Rabs ≤ 2.5%.

각각의 시험에서 서브 코팅 층을 형성하는 SiO2와 Ti3O5의 두께가 조절되었고, SiO2와 서브 코팅 층이 Ti3O5 서브 코팅 층의 두께는 사용 환경에 따라 적절하게 조절될 수 있다. 두께 비율로 SiO2: Ti3O5 =1,000: 50 내지 1,200이 되도록 각각의 서브 코팅 층의 두께가 조절되었다. 시험 결과로부터 알 수 있는 것처럼, 본 발명에 따른 방법에 의하여 제조된 코팅 렌즈는 열 충격, 내산성, 긁힘 또는 얼룩에 대한 저항성이 크고 이로 인하여 가혹한 실외 환경 조건에서 사용될 수 있다는 것을 알 수 있다. 예를 들어 본 발명에 따른 방법에 의하여 제조된 코팅 렌즈는 자동차용 렌즈로 사용될 수 있고, 자율 자동차에 적용되는 감시 카메라용 렌즈로 사용될 수 있지만 이에 제한되지 않는다.In each test, the thickness of SiO 2 and Ti 3 O 5 forming the sub-coating layer was controlled, and the thickness of the SiO 2 and the sub-coating layer, the Ti 3 O 5 sub-coating layer, can be appropriately controlled depending on the usage environment. The thickness of each sub-coating layer was controlled so that the thickness ratio was SiO 2 : Ti 3 O 5 = 1,000: 50 to 1,200. As can be seen from the test results, the coated lens manufactured by the method according to the present invention has high resistance to thermal shock, acid resistance, scratches or stains, and thus can be used under harsh outdoor environmental conditions. For example, the coated lens manufactured by the method according to the present invention can be used as an automotive lens, and can be used as a lens for a surveillance camera applied to an autonomous vehicle, but is not limited thereto.

위에서 본 발명은 제시된 실시 예를 참조하여 상세하게 설명이 되었지만 이 분야에서 통상의 지식을 가진 자는 제시된 실시 예를 참조하여 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 본 발명은 이와 같은 변형 및 수정 발명에 의하여 제한되지 않으며 다만 아래에 첨부된 청구범위에 의하여 제한된다.Although the present invention has been described in detail above with reference to the presented embodiments, those skilled in the art will be able to make various modifications and variations without departing from the technical spirit of the present invention by referring to the presented embodiments. The present invention is not limited by such modifications and variations, but is only limited by the claims attached below.

P11: 렌즈 기재 준비 P12: 세척 및 센터링 검사
P13: 표면 닦기 P14: 세척
P15: 코팅 층 형성 P16: 경화
P17: 후처리
P11: Preparing the Lens Base P12: Cleaning and Centering Inspection
P13: Surface cleaning P14: Washing
P15: Formation of coating layer P16: Curing
P17: Post-processing

Claims (1)

렌즈 기재가 준비되는 단계;
렌즈 기재가 세척이 되는 단계;
세척이 된 렌즈 기재의 표면을 닦는 단계;
진공 증착 장치 또는 마그네트론 스퍼터링 장치에서 진행되는 진공 증착 방식에 의하여 코팅 층이 형성되는 단계;
코팅 렌즈가 세척 용액으로 세척되어 건조되는 단계;
코팅 렌즈에 대하여 에포라 페인트에 의해 흑칠 공정이 진행되는 단계; 및
코팅 층이 경화가 되는 단계를 포함하고,
표면을 닦는 단계는 아세탈 지그에 형성된 렌즈 기재의 표면 형상에 대응되는 적어도 하나의 문지름(scrubbing) 홈에 준비된 패드 형상 또는 판 형상의 융, 면섬유, 부직포, 천연 섬유 또는 인조 섬유로 만들어진 문지름 소재에 렌즈 표면이 접촉되어 진행되고,
진공 증착 방식에 의하여 형성되는 코팅 층은 STSTSTSTATS의 순서로 형성되는 서브 코팅층을 포함하고, 여기서 T, S 및 A는 각각 Ti3O5, SiO2 및 Al2O3를 나타내고, 코팅 층의 두께는 STSTSTST층이 3,300 내지 3,500nm, A층이 70 내지 90nm 그리고 TS층이 1,100 내지 1,400nm인 것을 특징으로 하는 코팅 렌즈의 제조 방법.
The stage where the lens substrate is prepared;
The stage where the lens material is cleaned;
Step of wiping the surface of the cleaned lens substrate;
A step of forming a coating layer by a vacuum deposition method performed in a vacuum deposition device or a magnetron sputtering device;
A step in which a coated lens is washed with a washing solution and dried;
A step of blackening the coated lens with Ephora paint; and
Including a step of hardening the coating layer,
The surface cleaning step is performed by contacting the lens surface with a scrubbing material made of a pad-shaped or plate-shaped filament, cotton fiber, non-woven fabric, natural fiber or artificial fiber prepared in at least one scrubbing groove corresponding to the surface shape of the lens substrate formed on the acetal jig.
A method for manufacturing a coating lens, characterized in that the coating layer formed by a vacuum deposition method includes a sub-coating layer formed in the order of STSTSTSTATS, where T, S and A represent Ti 3 O 5 , SiO 2 and Al 2 O 3 , respectively, and the thickness of the coating layer is 3,300 to 3,500 nm for the STSTSTST layer, 70 to 90 nm for the A layer and 1,100 to 1,400 nm for the TS layer.
KR1020230159876A 2020-12-10 2023-11-17 A Method for Producing a Coating Lens Active KR102719055B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230159876A KR102719055B1 (en) 2020-12-10 2023-11-17 A Method for Producing a Coating Lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020200172186A KR20220082976A (en) 2020-12-10 2020-12-10 A Method for Producing a Coating Lens
KR1020230012683A KR20230023682A (en) 2020-12-10 2023-01-31 A Method for Producing a Coating Lens
KR1020230159876A KR102719055B1 (en) 2020-12-10 2023-11-17 A Method for Producing a Coating Lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020230012683A Division KR20230023682A (en) 2020-12-10 2023-01-31 A Method for Producing a Coating Lens

Publications (2)

Publication Number Publication Date
KR20230163965A KR20230163965A (en) 2023-12-01
KR102719055B1 true KR102719055B1 (en) 2024-10-17

Family

ID=82257892

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020200172186A Ceased KR20220082976A (en) 2020-12-10 2020-12-10 A Method for Producing a Coating Lens
KR1020230012683A Ceased KR20230023682A (en) 2020-12-10 2023-01-31 A Method for Producing a Coating Lens
KR1020230159876A Active KR102719055B1 (en) 2020-12-10 2023-11-17 A Method for Producing a Coating Lens

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020200172186A Ceased KR20220082976A (en) 2020-12-10 2020-12-10 A Method for Producing a Coating Lens
KR1020230012683A Ceased KR20230023682A (en) 2020-12-10 2023-01-31 A Method for Producing a Coating Lens

Country Status (1)

Country Link
KR (3) KR20220082976A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190408A1 (en) * 2017-04-14 2018-10-18 Hoya株式会社 Optical element and optical thin film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504246B1 (en) * 2002-12-13 2005-07-28 정연철 Coating method of crystal lens
KR100564290B1 (en) * 2003-09-24 2006-03-27 엠아이엠 세라믹스(주) Container for portable lens coating composition
KR101104831B1 (en) * 2010-02-04 2012-01-16 에코페라 주식회사 Optical coating method
KR20130063746A (en) * 2011-12-07 2013-06-17 에코페라 주식회사 Anti-reflection optical coating method
EP3301488A1 (en) 2016-09-29 2018-04-04 Essilor International Optical lens comprising an antireflective coating with multiangular efficiency
KR102342322B1 (en) 2017-07-21 2021-12-23 한국광기술원 Infrared optical lens equipped with ta-C and yttrium oxide thin film
KR102068875B1 (en) 2017-08-21 2020-01-21 유흥상 Sunglasses lens coating Method by vacuum deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190408A1 (en) * 2017-04-14 2018-10-18 Hoya株式会社 Optical element and optical thin film

Also Published As

Publication number Publication date
KR20220082976A (en) 2022-06-20
KR20230163965A (en) 2023-12-01
KR20230023682A (en) 2023-02-17

Similar Documents

Publication Publication Date Title
Samson Ophthalmic lens coatings
CN107777894B (en) Optical coating method, apparatus and product
US20180299587A1 (en) Anti-reflection coatings for infrared optics
US6759090B2 (en) Method for improved adhesion of an optical coating to a polarizing film
KR101446407B1 (en) Light polarizing products and method of making same
US20080217797A1 (en) Simple micro concave mirror
KR102104089B1 (en) Process for manufacturing a polarized optical article and polarized optical article
US20110091692A1 (en) Polarizing coating having improved quality
JPWO2010113996A1 (en) Polarizing lens manufacturing method, polarizing lens, and lens manufacturing method
CN107229086A (en) Optical component and its manufacture method
KR102719055B1 (en) A Method for Producing a Coating Lens
US6645608B2 (en) Reflection reducing coating
CA1320656C (en) Tintable coatings for glass ophthalmic lenses
EP3025184B1 (en) Process for the manufacturing of an optical article and optical article
US20190377104A1 (en) Lens and lens manufacturing method
KR102444567B1 (en) A Coating Lens Having an Enhancing Coating Lens and a Depositing Method for the Same
KR102584462B1 (en) A Method for Producing a Anti Fingerprinting Coating Lens
CN111562631B (en) Low-stress high-temperature-resistant resin lens and preparation method thereof
CN114249546A (en) Infrared chalcogenide glass lens coated with carbon-like film and preparation method and application thereof
US20220011480A1 (en) Energetically bonded aluminum and oleophobic/hydrophobic coatings for substrate
US20080095933A1 (en) Process for preparing coated optical elements
US20100035069A1 (en) Hydrophobic lens coating
US20100304019A1 (en) Polarizing coatings having improved quality
CN219758534U (en) Anti-reflection anti-fog lens for vehicle lens
Guenther Thin film coating technology for ophthalmic lenses

Legal Events

Date Code Title Description
A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20231117

Patent event code: PA01071R01D

Filing date: 20230131

Application number text: 1020230012683

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20231201

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240826

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20241014

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20241014

End annual number: 3

Start annual number: 1

PG1601 Publication of registration