[go: up one dir, main page]

KR102703816B1 - Cement admixture, and cement composition containing the same - Google Patents

Cement admixture, and cement composition containing the same Download PDF

Info

Publication number
KR102703816B1
KR102703816B1 KR1020220072249A KR20220072249A KR102703816B1 KR 102703816 B1 KR102703816 B1 KR 102703816B1 KR 1020220072249 A KR1020220072249 A KR 1020220072249A KR 20220072249 A KR20220072249 A KR 20220072249A KR 102703816 B1 KR102703816 B1 KR 102703816B1
Authority
KR
South Korea
Prior art keywords
cement
chemical formula
polycarboxylic acid
acid copolymer
cement admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020220072249A
Other languages
Korean (ko)
Other versions
KR20230172070A (en
Inventor
유룡
강현
허정무
안교덕
Original Assignee
주식회사 티에스씨
안교덕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티에스씨, 안교덕 filed Critical 주식회사 티에스씨
Priority to KR1020220072249A priority Critical patent/KR102703816B1/en
Publication of KR20230172070A publication Critical patent/KR20230172070A/en
Application granted granted Critical
Publication of KR102703816B1 publication Critical patent/KR102703816B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/243Phosphorus-containing polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1416Monomers containing oxygen in addition to the ether oxygen, e.g. allyl glycidyl ether
    • C08F216/1425Monomers containing side chains of polyether groups
    • C08F216/1433Monomers containing side chains of polyethylene oxide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0082Segregation-preventing agents; Sedimentation-preventing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/34Flow improvers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 우수한 점성 특성과 재료분리 저항성을 가지는 시멘트 혼화제, 및 이를 포함하는 시멘트 조성물에 관한 것이다.
본 발명에 따르면 콘크리트 제조시 발생하는 블리딩 방지와 저탄소 콘크리트(시멘트 대체)를 제조할 때 빈번히 발생하는 작업성 및 유동성 문제를 해결할 수 있다.
The present invention relates to a cement admixture having excellent viscosity properties and material separation resistance, and a cement composition comprising the same.
According to the present invention, it is possible to prevent bleeding that occurs during concrete production and to solve workability and fluidity problems that frequently occur when producing low-carbon concrete (a substitute for cement).

Description

시멘트 혼화제, 및 이를 포함하는 시멘트 조성물{CEMENT ADMIXTURE, AND CEMENT COMPOSITION CONTAINING THE SAME}CEMENT ADMIXTURE, AND CEMENT COMPOSITION CONTAINING THE SAME

본 발명은 우수한 점성 특성과 재료분리 저항성을 가지는 시멘트 혼화제, 및 이를 포함하는 시멘트 조성물에 관한 것이다. The present invention relates to a cement admixture having excellent viscosity properties and material separation resistance, and a cement composition comprising the same.

국내 건설산업은 생산성 한계를 극복하고 지속적인 미래 성장을 위해 스마트 건설기술로의 전환을 진행 중으로 이에 따른 우수한 건축 소재에 대한 기반기술 개발 필요성이 증대하고 있다. 특히 스마트 건설기술의 하나인 3D 프린팅 기술의 적용은 우선 타설과정 중 다짐 공정이 없는 저점성, 고강도 콘크리트 재료 개발이 선행되어야 한다. The domestic construction industry is transitioning to smart construction technology to overcome productivity limitations and achieve sustainable future growth, and the need for basic technology development for excellent building materials is increasing accordingly. In particular, the application of 3D printing technology, one of the smart construction technologies, must first be preceded by the development of low-viscosity, high-strength concrete materials that do not require a compaction process during the pouring process.

시멘트 산업은 생산과정에서 탄산칼슘을 가열하는 과정을 거치며, 대표적인 온실가스인 이산화탄소(CO2)를 다량 배출한다. 이산화탄소의 배출량은 전 세계 CO2 발생량의 7~8%를 차지하며 환경오염 및 기후변화 초래한다. 시멘트 생샨량의 1%만 감소하여도 연간 60만 톤 이상의 이산화탄소 저감효과를 기대할 수 있어 슬래그, 플라이애쉬 등 산업부산물 및 폐기 콘크리트 파쇄에서 나오는 순환골재 등의 사용이 적극 권장되고 있으며, 향후 탄소배출권과 연계되어 탄소절감 능력이 해당기업의 시멘트 생산량을 결정하는 척도가 될 수 있다. 국제시멘트콘크리트협회(GCCA)는 2030년까지 온실가스 배출을 1/4로 줄이고 2050년까지 탄소중립 달성 목표를 발표하였고, 이산화탄소 저감 및 순환자원의 활용 등 세계적인 녹색기술 패러다임에 의해 그린 콘크리트 시장 영역이 점차 확대되고 있다. The cement industry heats calcium carbonate during the production process, emitting a large amount of carbon dioxide ( CO2 ), a representative greenhouse gas. Carbon dioxide emissions account for 7-8% of global CO2 emissions and cause environmental pollution and climate change. Even if cement production is reduced by just 1%, it is expected to reduce carbon dioxide emissions by more than 600,000 tons per year, so the use of industrial byproducts such as slag and fly ash and recycled aggregates from crushed waste concrete is actively encouraged, and in the future, carbon reduction capabilities linked to carbon emissions can become a measure of determining a company's cement production volume. The Global Cement and Concrete Association (GCCA) announced its goal of reducing greenhouse gas emissions by 1/4 by 2030 and achieving carbon neutrality by 2050, and the green concrete market area is gradually expanding due to the global green technology paradigm such as carbon dioxide reduction and utilization of recycled resources.

최근 저탄소 성장 정책으로 인해 콘크리트 조성물의 재활용(슬래그, 플라이애쉬, 순환골재 등)이 증가되면서 콘크리트 물성 저하와 함께 재료분리, 점성증가로 인한 타설과정 중 대규모 붕괴 사고와 같은 문제가 빈번히 발생함으로써, 우수한 점성특성과 동시에 재료분리 저항성이 뛰어난 혼화제 기술 개발이 매우 시급하다.Recently, due to the low-carbon growth policy, the recycling of concrete compositions (slag, fly ash, recycled aggregates, etc.) has increased, and problems such as deterioration of concrete properties, material separation, and large-scale collapse accidents during the pouring process due to increased viscosity have occurred frequently. Therefore, the development of admixture technology with excellent viscosity properties and high resistance to material separation is very urgent.

본 발명의 과제는 콘크리트 제조시 발생하는 블리딩 방지와 저탄소 콘크리트(시멘트 대체)를 제조할 때 빈번히 발생하는 작업성 및 유동성 문제를 해결할 수 있는 시멘트 혼화제, 및 이를 포함하는 시멘트 조성물을 제공하는 것이다. The object of the present invention is to provide a cement admixture capable of preventing bleeding that occurs during the production of concrete and solving workability and fluidity problems that frequently occur when producing low-carbon concrete (a substitute for cement), and a cement composition containing the same.

또한, 본 발명의 과제는 인산기(Phosphate)를 함유한 아크릴레이트를 사용하여 고분자 사슬에 인산기(Phosphate) 그룹과 에스테르(Ester) 그룹을 효과적으로 배열함으로써 시멘트 입자 간 분산 안정성을 크게 개선하여 작업성과 유동성 유지에 우수한 효과를 발현하는 시멘트 혼화제 및 이를 포함하는 시멘트 조성물을 제공하는 것이다.In addition, the task of the present invention is to provide a cement admixture and a cement composition including the same, which exhibit excellent effects in maintaining workability and fluidity by significantly improving dispersion stability between cement particles by effectively arranging phosphate groups and ester groups in a polymer chain using acrylate containing phosphate groups.

상기한 과제를 달성하기 위해 본 발명은,In order to achieve the above-mentioned task, the present invention,

하기 화학식 1의 에틸렌글리콜기 함유 반복단위;A repeating unit containing an ethylene glycol group of the following chemical formula 1;

하기 화학식 2의 카르복시산기 함유 반복단위; 및 A repeating unit containing a carboxylic acid group of the following chemical formula 2; and

하기 화학식 3 내지 화학식 5 중 적어도 하나의 인산기 함유 반복단위를 포함하는 폴리카르복시산계 공중합체를 함유하는 시멘트 혼화제를 제공한다: A cement admixture containing a polycarboxylic acid copolymer including at least one phosphate group-containing repeating unit among the following chemical formulas 3 to 5 is provided:

[화학식 1][Chemical Formula 1]

[화학식 2][Chemical formula 2]

[화학식 3][Chemical Formula 3]

[화학식 4][Chemical Formula 4]

[화학식 5][Chemical Formula 5]

(상기 화학식 1 내지 화학식 5에서, (In the chemical formulas 1 to 5 above,

R1 내지 R5는 서로 동일하거나 상이하고, 각각 독립적으로 H 또는 CH3이고, R 1 to R 5 are the same or different and are each independently H or CH 3 ,

Rc는 -CH2-CH2- 또는 -CH2-CH(CH3)-, 또는 -CH(CH3)-CH2-의 기이고,R c is a group of -CH 2 -CH 2 - or -CH 2 -CH(CH 3 )-, or -CH(CH 3 )-CH 2 -,

n은 1 내지 10의 정수이며,n is an integer from 1 to 10,

x는 1 내지 10의 정수이다.)x is an integer from 1 to 10.)

또한 본 발명은 시멘트 100 중량부에 대하여 상기한 시멘트 혼화제 0.01 내지 10 중량부를 포함하여 이루어지는 것을 특징으로 하는 시멘트 조성물을 제공한다.In addition, the present invention provides a cement composition characterized in that it comprises 0.01 to 10 parts by weight of the cement admixture per 100 parts by weight of cement.

본 발명에 따르면, 주쇄에 인산이 포함된 알릴성 단량체를 사용하여 공중합된 폴리카르복시산계 공중합체의 경우 인산 이온이 시멘트의 칼슘 이온과의 킬레이트를 형성하며 강하게 결합하여 시멘트 입자의 분산력이 개선되어 콘크리트의 블리딩을 저감시키고, 점성을 감소시키며, 유동성 저하 없이 강도를 향상시킬 수 있어 작업성과 생산성을 향상시켜 주는 효과를 발휘한다. 이에 따라 순환자원의 사용에도 콘크리트의 물성을 안정적으로 유지할 수 있어 시멘트의 사용량을 줄일 수 있으며, 초고성능 콘크리트(UHPC)에 적용될 수 있어, 일반 콘크리트 대비 탄소배출량을 30%가량 줄일 수 있는 친환경 소재로 사용될 수 있다. According to the present invention, in the case of a polycarboxylic acid copolymer copolymerized using an allylic monomer containing phosphoric acid in the main chain, the phosphate ion forms a chelate with the calcium ion of the cement and strongly binds to improve the dispersing power of the cement particles, thereby reducing the bleeding of the concrete, decreasing the viscosity, and improving the strength without reducing the fluidity, thereby exhibiting the effect of improving workability and productivity. Accordingly, the properties of the concrete can be stably maintained even when recycled resources are used, so that the amount of cement used can be reduced, and it can be applied to ultra-high-performance concrete (UHPC), so that it can be used as an eco-friendly material that can reduce carbon emissions by about 30% compared to general concrete.

도 1은 본 발명의 일 실시예에 따른 시멘트 혼화제의 작용 기전을 나타낸 모식도이다. Figure 1 is a schematic diagram showing the mechanism of action of a cement admixture according to one embodiment of the present invention.

이하 본 발명을 상세히 설명한다. The present invention is described in detail below.

본 발명의 시멘트용 혼화제는 폴리카르복시산계 공중합체를 함유하며, 상기 폴리카르복시산계 공중합체는 하기 화학식 1의 에틸렌글리콜기 함유 반복단위; 하기 화학식 2의 카르복시산기 함유 반복단위; 및 하기 화학식 3 내지 화학식 5 중 적어도 하나의 인산기 함유 반복단위를 포함한다: The cement admixture of the present invention contains a polycarboxylic acid copolymer, wherein the polycarboxylic acid copolymer includes an ethylene glycol group-containing repeating unit of the following chemical formula 1; a carboxylic acid group-containing repeating unit of the following chemical formula 2; and at least one phosphate group-containing repeating unit of the following chemical formulas 3 to 5:

[화학식 1][Chemical Formula 1]

[화학식 2][Chemical formula 2]

[화학식 3][Chemical Formula 3]

[화학식 4][Chemical Formula 4]

[화학식 5][Chemical Formula 5]

(상기 화학식 1 내지 화학식 5에서, (In the chemical formulas 1 to 5 above,

R1 내지 R5는 서로 동일하거나 상이하고, 각각 독립적으로 H 또는 CH3이고, R 1 to R 5 are the same or different and are each independently H or CH 3 ,

Rc는 -CH2-CH2- 또는 -CH2-CH(CH3)-, 또는 -CH(CH3)-CH2-의 기이고,R c is a group of -CH 2 -CH 2 - or -CH 2 -CH(CH 3 )-, or -CH(CH 3 )-CH 2 -,

n은 1 내지 10의 정수이며,n is an integer from 1 to 10,

x는 1 내지 10의 정수이다.)x is an integer from 1 to 10.)

도 1은 본 발명의 일 실시예에 따른 시멘트 혼화제의 작용 기전을 나타낸 모식도이다. Figure 1 is a schematic diagram showing the mechanism of action of a cement admixture according to one embodiment of the present invention.

본 발명에 따른 폴리카르복시산계 공중합체 시멘트 혼화제는 인산기와 에스테르기를 포함하며, 음전하를 띠는 인산기와 에스테르기가 더욱 강력한 시멘트 입자와의 흡착능력을 제공하며, 꼬리 부분의 입체장애에 의하여 시멘트 입자 간의 분산성 및 물과 시멘트가 분리되는 재료분리 저항성 개선할 수 있다. 즉, 중합체 주쇄에 인산기와 에스테르기를 도입하여 시멘트에서 주성분인 칼슘 이온과 킬레이트를 형성하여 일정시간 수화 반응을 지연시키고, 칼슘이온과의 바인딩으로 인해 입자 간의 분산력을 높여 시멘트 점성을 저하시키게 되며 카르복실기의 정전기적 반발력 및 장쇄폴리에테르의 입체 장애 효과에 의한 높은 분산성으로 감수 성능이 우수하여 낮은 단위수량에 사용이 가능하며, 최근 친환경 콘크리트 배합에 적용되는 슬래그 파우더 배합에서 우수한 작업 효과를 발현할 수 있다.The polycarboxylic acid copolymer cement admixture according to the present invention contains a phosphate group and an ester group, and the negatively charged phosphate group and ester group provide stronger adsorption ability with cement particles, and the steric hindrance of the tail portion can improve the dispersibility between cement particles and the resistance to material separation in which water and cement are separated. That is, by introducing a phosphate group and an ester group to the polymer main chain, a chelate is formed with calcium ion, which is a main component in cement, to delay the hydration reaction for a certain period of time, and the dispersing force between particles is increased due to binding with calcium ion, thereby reducing the viscosity of the cement. In addition, the high dispersibility due to the electrostatic repulsion of the carboxyl group and the steric hindrance effect of the long-chain polyether provides excellent water-reducing performance, so that it can be used in a low unit quantity, and can exhibit excellent workability in the mixing of slag powder, which has recently been applied to mixing eco-friendly concrete.

본 발명의 일 실시예에 있어서, 상기 폴리카르복시산계 공중합체는 불포화 폴리에틸렌글리콜계 단량체, 하나 이상의 불포화 카르복시산계 단량체 및 하기 화학식 6 내지 8의 인산기 함유 알릴성 단량체를 공중합시켜 얻을 수 있다: In one embodiment of the present invention, the polycarboxylic acid copolymer can be obtained by copolymerizing an unsaturated polyethylene glycol monomer, one or more unsaturated carboxylic acid monomers, and an allylic monomer containing a phosphoric acid group of the following chemical formulas 6 to 8:

[화학식 6][Chemical formula 6]

[화학식 7][Chemical formula 7]

[화학식 8][Chemical formula 8]

(상기 화학식 6 내지 화학식 8에서, (In the chemical formulas 6 to 8 above,

Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로, H 또는 CH3이고, R a and R b are the same or different and are each independently H or CH 3 ,

Rc는 -CH2-CH2- 또는 -CH2-CH(CH3)-, 또는 -CH(CH3)-CH2-의 기이며,R c is a group of -CH 2 -CH 2 - or -CH 2 -CH(CH 3 )-, or -CH(CH 3 )-CH 2 -,

x는 1 내지 10의 정수이다.)x is an integer from 1 to 10.)

본 발명의 일 실시예에 있어서, 상기 불포화 카르복시산계 단량체는 아크릴산, 메타아크릴산, 말레인산, 무수말레인산, 푸마르산, 이타콘산, 메틸아크릴레이트, 에틸아크릴레이트, 2-하이드록시에틸아크릴레이트, 하이드록시에틸(메타)아크릴레이트, 프로필아크릴레이트, 부틸아크릴레이트 및 아크릴아마이드로 이루어진 군에서 선택된 1종 이상일 수 있다. In one embodiment of the present invention, the unsaturated carboxylic acid monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, methyl acrylate, ethyl acrylate, 2-hydroxyethyl acrylate, hydroxyethyl (meth)acrylate, propyl acrylate, butylacrylate, and acrylamide.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명의 일 실시예에 있어서, 상기 인산기 함유 알릴성 단량체는 하기 반응식 1 및 반응식 2와 같은 과정을 거쳐 얻을 수 있다.In one embodiment of the present invention, the phosphoric acid group-containing allylic monomer can be obtained through a process as shown in the following reaction schemes 1 and 2.

[반응식 1][Reaction Formula 1]

[반응식 2][Reaction Formula 2]

본 발명의 일 실시예에 있어서, 상기 폴리카르복시산계 공중합체는 하기 화학식 10으로 표시될 수 있다: In one embodiment of the present invention, the polycarboxylic acid copolymer can be represented by the following chemical formula 10:

[화학식 10][Chemical Formula 10]

(상기 화학식 10에서, (In the above chemical formula 10,

R1 내지 R3는 서로 동일하거나 상이하고, 각각 독립적으로, H 또는 CH3이고, R 1 to R 3 are the same or different from each other, and are each independently H or CH 3 ,

x, y, z는 각 반복단위의 중합 몰비로서 10~30: 10~30: 100~300이고, y>x>z이며,x, y, and z are the polymerization molar ratios of each repeating unit, 10~30: 10~30: 100~300, and y>x>z.

n은 1 내지 10의 정수이다.)n is an integer from 1 to 10.)

본 발명의 일 실시예에 있어서, 상기 폴리카르복시산계 공중합체의 중량평균분자량은 15,000 내지 70,000일 수 있다. 이때 폴리카르복시산계 공중합체의 중량평균분자량이 상기 범위 미만이면 시멘트 콘크리트의 초기 분산성이 현저히 떨어져 작업성이 개선되지 않으며, 이와 반대로 상기 범위를 초과할 경우 시멘트 콘크리트의 경시적인 분산 보유성이 충분히 개선되지 않을 수 있으며 충분한 작업성을 제공하지 않을 수 있다.In one embodiment of the present invention, the weight average molecular weight of the polycarboxylic acid copolymer may be 15,000 to 70,000. At this time, if the weight average molecular weight of the polycarboxylic acid copolymer is less than the above range, the initial dispersibility of the cement concrete is significantly reduced and the workability is not improved. On the other hand, if it exceeds the above range, the time-dependent dispersion retention of the cement concrete may not be sufficiently improved and sufficient workability may not be provided.

본 발명의 일 실시예에 있어서, 상기 폴리카르복시산계 공중합체의 pH는 2 내지 6일 수 있다. In one embodiment of the present invention, the pH of the polycarboxylic acid copolymer may be 2 to 6.

본 발명에서 상기 폴리카르복시산계 공중합체의 중합 방법은 용액 중합, 에멀젼 중합, 벌크 중합이 가능하지만, 바람직하게는 수용액 중합이 유용하며, 중합 반응은 회분식 반응기나 연속식 반응기로 수행할 수 있다.In the present invention, the polymerization method of the polycarboxylic acid copolymer can be solution polymerization, emulsion polymerization, or bulk polymerization, but aqueous solution polymerization is preferably useful, and the polymerization reaction can be performed in a batch reactor or a continuous reactor.

이때, 중합 반응에 사용되는 개시제는 종래의 라디컬 중합 개시제를 사용할 수 있다. 수용성 중합에 사용되는 라디컬 개시제는 과황산염 염류로 과황산암모늄, 과황산나트륨, 과황산칼륨 및 과산화수소와 같은 과산화물을 사용하고 아조계 화합물로는 2,2-아조 비스- 2-(2-이미다졸린-2일)프로판 염화수소 및 2-카바모일 아조이소부티로니트릴이 사용된다.At this time, the initiator used in the polymerization reaction can be a conventional radical polymerization initiator. The radical initiator used in the water-soluble polymerization is a persulfate salt, and a peroxide such as ammonium persulfate, sodium persulfate, potassium persulfate, and hydrogen peroxide is used, and as an azo compound, 2,2-azobis-2-(2-imidazoline-2yl)propane hydrogen chloride and 2-carbamoyl azoisobutyronitrile are used.

또한, 과산화물과 환원제로 이루어진 산화·환원 중합 개시제로 중합반응이 진행된다. 이러한 종류로는 과산화수소와 L-아스코르빈산의 조합물, 과산화수소와 이소아스코빈산 조합물, 과황산나트륨과 아황산수소나트륨의 조합물, 과산화수소와 모어염의 조합물이 유용하다. 상기 중합 개시제는 전체 단량체 량의 0.1~10 몰%가 적당하며, 바람직하게는 0.5~5 몰%이다. 여기서, 중합 개시제의 량이 전체 단량체 량의 0.1 몰%보다 작을 경우 미반응 단량체 량이 증가하고 분자량이 커져 중합체의 점성이 증가하며, 반대로 10 몰% 이상이면 중합체의 분자량이 너무 작아 원하는 특성이 발휘되지 않아 바람직하지 못하다.In addition, the polymerization reaction is carried out with a redox polymerization initiator composed of a peroxide and a reducing agent. Useful types of these include a combination of hydrogen peroxide and L-ascorbic acid, a combination of hydrogen peroxide and isoascorbic acid, a combination of sodium persulfate and sodium bisulfite, and a combination of hydrogen peroxide and Mohr's salt. The amount of the polymerization initiator is suitably 0.1 to 10 mol% of the total monomer amount, and preferably 0.5 to 5 mol%. Here, when the amount of the polymerization initiator is less than 0.1 mol% of the total monomer amount, the amount of unreacted monomer increases and the molecular weight increases, thereby increasing the viscosity of the polymer. On the other hand, when it is 10 mol% or more, the molecular weight of the polymer is too small to exhibit the desired characteristics, which is not preferable.

본 발명에서 유용한 범위의 분자량을 얻기 위해서는 반응 단량체 혼합물의 pH는 가성소다를 사용하여 pH 2~5 사이로 조정하고, 분자량 조절제인 사슬 연쇄 이동제(chain transfer agent)를 사용한다. pH가 2 이하 5 이상의 경우는 중합체의 반응성이 저하되어 원하는 분자량의 중합체를 얻을 수가 없다. pH 2~5 사이에서 공중합을 진행하고 중합완료 후 원하는 pH로 조정한다.In order to obtain a useful range of molecular weights in the present invention, the pH of the reaction monomer mixture is adjusted to between pH 2 and 5 using caustic soda, and a chain transfer agent, which is a molecular weight regulator, is used. When the pH is between 2 and 5, the reactivity of the polymer is reduced, making it impossible to obtain a polymer of the desired molecular weight. Copolymerization is performed between pH 2 and 5, and the pH is adjusted to the desired level after polymerization is completed.

상기 사슬 연쇄 이동제로는 머캅토에탄올, 티오글리세롤, 티오글리콜산, 2-머캅토프로피온산, 3-머캅토프로피온산, 2-머캅토에탄술폰산, 이소프로판올, 인산, 차아인산과 그것의 염(차아인산나트륨, 차아인산염)이 있다. 이러한 사슬 연쇄 이동제는 하나 이상을 조합하여 사용하여도 무방하며 사용량은 단량체의 0.1~5 몰%가 적당하다. 이때, 0.1 몰% 이하를 사용하면 분자량 조절제로의 효과가 나타나지 않아 분자량 조절이 용이하지 않아 거대한 분자량의 불용성 중합체가 제조되며 5 몰% 이상 사용하면 분자량이 너무 작은 올리고머 수준의 중합체가 제조되어 원하는 특성 발휘가 불가능하다.The above chain transfer agents include mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, 2-mercaptoethanesulfonic acid, isopropanol, phosphoric acid, hypophosphorous acid and its salts (sodium hypophosphite, hypophosphite). These chain transfer agents may be used in combination of one or more, and the appropriate amount to be used is 0.1 to 5 mol% of the monomer. At this time, if 0.1 mol% or less is used, the effect as a molecular weight regulator does not appear, making it difficult to control the molecular weight, so an insoluble polymer with a large molecular weight is produced, and if 5 mol% or more is used, a polymer at the oligomer level with too small a molecular weight is produced, making it impossible to exhibit the desired properties.

본 발명에서 중합반응의 온도는 중합반응에 사용되는 개시제의 반감기에 따라 결정 가능하며 개시제로 과황산염을 사용하였을 경우 중합반응 온도는 40~90℃ 범위가 적당하며, 개시제로 산화·환원계를 사용하였을 경우는 반응온도는 30~80℃범위가 적당하며, 중합반응 시간은 2~6시간 범위가 적당하다. 중합반응 시간이 2 시간 미만이거나 6시간이 초과 되면 반응 수율과 생산성이 저하되기 때문에 바람직하지 않다.In the present invention, the temperature of the polymerization reaction can be determined according to the half-life of the initiator used in the polymerization reaction. When a persulfate is used as the initiator, the polymerization reaction temperature is suitably in the range of 40 to 90°C. When an oxidation-reduction system is used as the initiator, the reaction temperature is suitably in the range of 30 to 80°C, and the polymerization reaction time is suitably in the range of 2 to 6 hours. If the polymerization reaction time is less than 2 hours or more than 6 hours, the reaction yield and productivity are lowered, which is not desirable.

본 발명의 시멘트 혼화제(콘크리트용 혼화제)는 상기 제시한 방법에 의해 합성된 공중합체로 이루어지며, 작업성을 고려하여 바람직하게는 수용액 상태이다. The cement admixture (concrete admixture) of the present invention is composed of a copolymer synthesized by the method presented above, and is preferably in an aqueous solution state considering workability.

본 발명의 시멘트 혼화제(콘크리트용 혼화제)는 또한 다른 첨가제를 함유할 수 있다. 이러한 시멘트 첨가제로는 공기연행제, 소포제, 조강제 및 조강촉진제, 지연제, 방수제, 부식방지제, 균열저감제가 있다.The cement admixture (concrete admixture) of the present invention may also contain other additives. Such cement additives include air-entraining agents, anti-foaming agents, early strength agents and early strength accelerators, retarders, waterproofing agents, corrosion inhibitors, and crack-reducing agents.

이때, 공기연행제로는 지방산 비누, 불포화지방산염, 선형 알킬벤젠술폰산, 폴리옥시알킬황산나트륨, 알킬황산나트륨염, 알파올레핀술폰산나트륨, 알칸술포네이트, 폴리옥시에틸렌알킬(페닐)에테르, 베타인, 지방산알카놀아마이드, 아민옥사이드, 알케닐술포숙신산나트륨 등이 사용될 수 있다.At this time, fatty acid soap, unsaturated fatty acid salt, linear alkylbenzene sulfonic acid, sodium polyoxyalkyl sulfate, sodium alkyl sulfate salt, sodium alpha-olefin sulfonate, alkane sulfonate, polyoxyethylene alkyl (phenyl) ether, betaine, fatty acid alkanolamide, amine oxide, sodium alkenyl sulfosuccinate, etc. can be used as air-entraining agents.

이때, 소포제로는 폴리옥시알킬렌 소포제, 알코올 소포제, 아미드 소포제, 포스페이트 소포제, 금속비누 소포제, 지방산에스테르 소포제, 미네랄오일 소포제, 지방 또는 오일 소포제 등이 사용될 수 있다.At this time, polyoxyalkylene defoaming agents, alcohol defoaming agents, amide defoaming agents, phosphate defoaming agents, metal soap defoaming agents, fatty acid ester defoaming agents, mineral oil defoaming agents, fat or oil defoaming agents, etc. can be used as defoaming agents.

이때, 조강제 및 조강촉진제로는 염화칼슘, 아질산화칼슘, 질산화갈슘, 염화마그네슘, 염화철, 알카놀아민, 알루미늄황산염, 티오황산염 등을 사용할 수 있다.At this time, calcium chloride, calcium nitrite, calcium nitrate, magnesium chloride, iron chloride, alkanolamine, aluminum sulfate, thiosulfate, etc. can be used as pre-strengthening agents and pre-strengthening accelerators.

이때, 지연제로는 개미산과 그것의 염, 글루콘산과 그것의 금속염, 시트르산과 그것의 금속염, 글루코스, 사카로스, 올리고당, 덱스트린, 솔비톨, 자이리톨, 글리세린 등이 사용될 수 있다.At this time, formic acid and its salts, gluconic acid and its metal salts, citric acid and its metal salts, glucose, saccharose, oligosaccharides, dextrin, sorbitol, xylitol, glycerin, etc. can be used as delaying agents.

이때, 방수제로는 지방산과 그 염, 지방산에스테르, 지방과 오일, 실리콘, 파라핀, 아스팔트, 왁스 등이 사용될 수 있다.At this time, fatty acids and their salts, fatty acid esters, fats and oils, silicone, paraffin, asphalt, wax, etc. can be used as waterproofing agents.

이때, 부식방지제로는 질산염, 인산염, 산화아연 등이 사용될 수 있다.At this time, nitrates, phosphates, zinc oxide, etc. can be used as corrosion inhibitors.

이때, 균열 저감제로는 폴리옥시알킬에테르, 2-메틸-2,4-펜탄디올과 같은 알칸디올이 사용될 수 있다.At this time, alkanediols such as polyoxyalkyl ether and 2-methyl-2,4-pentanediol can be used as crack reducing agents.

본 발명의 시멘트 조성물은 시멘트 100 중량부에 대하여 상기한 폴리카르본산계 공중합체를 함유하는 시멘트 혼화제 0.5 내지 3 중량부를 포함한다. The cement composition of the present invention comprises 0.5 to 3 parts by weight of a cement admixture containing the above-mentioned polycarboxylic acid copolymer per 100 parts by weight of cement.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 실험예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다. 특별한 표시가 없는 한 %는 중량%를 의미한다.Hereinafter, preferred examples and experimental examples are presented to help understand the present invention. However, the following examples are provided only to help understand the present invention more easily, and the content of the present invention is not limited by the examples. Unless otherwise specified, % means weight %.

실시예 1: 인산계를 포함한 폴리카르복시산계 공중합체의 합성Example 1: Synthesis of polycarboxylic acid copolymer containing phosphoric acid

2L 중합 반응기에 온도계, 콘덴서, 교반기, Dropping funnel 및 온도조절기를 구비하고, 중합반응기에 VPEG(분자량 2400, Polyethylene glycol mono alkyl allyl ether, CAS-No.31497-33-3) 440g을 넣고 증류수 160g을 넣고 70℃ 승온하였다. Dropping funnel 1에 2-(비스(2-하이드록시에틸 포스포네이트)아미노)에틸 아크릴레이트 48g, 2-하이드록시에틸아크릴레이트 4g, 아크릴산 50g, 2-머캅토에탄올 1.5g을 혼합한 단량체 용액에 증류수 200g를 넣고 혼합하였다. Dropping funnel 2에 증류수 100g에 암모늄 과황산염 4.0g을 첨가하여 완전히 용해시켰다. 중합반응기의 온도를 60℃로 승온하고 dropping funnel 1과 2를 동시에 적하하며 3시간 동안 중합 반응을 진행하였다. 투입 완료 후 70℃에서 2시간 동안 숙성 반응을 진행한 후 상온으로 냉각하여 고형분 51.2%, pH 2.2인 투명한 공중합체를 합성하였다.A 2L polymerization reactor equipped with a thermometer, a condenser, a stirrer, a dropping funnel, and a temperature controller was placed, and 440 g of VPEG (molecular weight 2400, Polyethylene glycol mono alkyl allyl ether, CAS-No. 31497-33-3) was placed in the polymerization reactor, 160 g of distilled water was added, and the temperature was raised to 70℃. In dropping funnel 1, 48 g of 2-(bis(2-hydroxyethyl phosphonate)amino)ethyl acrylate, 4 g of 2-hydroxyethyl acrylate, 50 g of acrylic acid, and 1.5 g of 2-mercaptoethanol were mixed with 200 g of distilled water and mixed. In dropping funnel 2, 4.0 g of ammonium persulfate was added to 100 g of distilled water and completely dissolved. The temperature of the polymerization reactor was raised to 60°C, and the dropping funnels 1 and 2 were simultaneously added to conduct a polymerization reaction for 3 hours. After completion of the addition, a maturation reaction was conducted at 70°C for 2 hours, and then cooled to room temperature to synthesize a transparent copolymer with a solid content of 51.2% and a pH of 2.2.

실시예 2Example 2

2L 중합 반응기에 온도계, 콘덴서, 교반기, Dropping funnel 및 온도조절기를 구비하고, 중합반응기에 VPEG(분자량 2400, Polyethylene glycol mono alkyl allyl ether, CAS-No.31497-33-3) 440g을 넣고 증류수 160g을 넣고 70℃ 승온하였다. Dropping funnel 1에 2-하이드록시에틸 메타아크릴레이트 포스페이트 48g, 2-하이드록시에틸아크릴레이트 4g, 아크릴산 50g, 2-머캅토에탄올 1.5g을 혼합한 단량체 용액에 증류수 200g를 넣고 혼합하였다. Dropping funnel 2에 증류수 100g에 암모늄 과황산염 4.0g을 첨가하여 완전히 용해시켰다. 중합반응기의 온도를 60℃로 승온하고 dropping funnel 1과 2를 동시에 적하하며 3시간 동안 중합 반응을 진행하였다. 투입 완료 후 70℃에서 2시간 동안 숙성 반응을 진행한 후 상온으로 냉각하여 고형분 51.2%, pH 2.3인 투명한 공중합체를 합성하였다.A 2L polymerization reactor equipped with a thermometer, a condenser, a stirrer, a dropping funnel, and a temperature controller was placed, and 440 g of VPEG (molecular weight 2400, Polyethylene glycol mono alkyl allyl ether, CAS-No. 31497-33-3) was placed in the polymerization reactor, 160 g of distilled water was added, and the temperature was raised to 70℃. In dropping funnel 1, 200 g of distilled water was added to a monomer solution mixed with 48 g of 2-hydroxyethyl methacrylate phosphate, 4 g of 2-hydroxyethyl acrylate, 50 g of acrylic acid, and 1.5 g of 2-mercaptoethanol, and mixed. In dropping funnel 2, 4.0 g of ammonium persulfate was added to 100 g of distilled water and completely dissolved. The temperature of the polymerization reactor was raised to 60°C, and dropping funnels 1 and 2 were simultaneously added to conduct a polymerization reaction for 3 hours. After completion of addition, a maturation reaction was conducted at 70°C for 2 hours, and then cooled to room temperature to synthesize a transparent copolymer with a solid content of 51.2% and a pH of 2.3.

실시예 3Example 3

2L 중합 반응기에 온도계, 콘덴서, 교반기, Dropping funnel 및 온도조절기를 구비하고, 중합반응기에 VPEG(분자량 2400, Polyethylene glycol mono alkyl allyl ether, CAS-No.31497-33-3) 440g을 넣고 증류수 160g을 넣고 70℃ 승온하였다. Dropping funnel 1에 폴리(옥시-1,2-에탄디일)-알파-2-프로펜-1-일-오메가-하이드록시 포스페이트 48g, 2-하이드록시에틸아크릴레이트 4g, 아크릴산 50g, 2-머캅토에탄올 1.5g을 혼합한 단량체 용액에 증류수 200g를 넣고 혼합하였다. Dropping funnel 2에 증류수 100g에 암모늄 과황산염 4.0g을 첨가하여 완전히 용해시켰다. 중합반응기의 온도를 60℃로 승온하고 dropping funnel 1과 2를 동시에 적하하며 3시간 동안 중합 반응을 진행하였다. 투입 완료 후 70℃에서 2시간 동안 숙성 반응을 진행한 후 상온으로 냉각하여 고형분 51.2%, pH 2.3인 투명한 공중합체를 합성하였다.A 2L polymerization reactor equipped with a thermometer, a condenser, a stirrer, a dropping funnel, and a temperature controller was placed, and 440 g of VPEG (molecular weight 2400, Polyethylene glycol mono alkyl allyl ether, CAS-No. 31497-33-3) was placed in the polymerization reactor, 160 g of distilled water was added, and the temperature was raised to 70℃. In dropping funnel 1, 48 g of poly(oxy-1,2-ethanediyl)-alpha-2-propen-1-yl-omega-hydroxy phosphate, 4 g of 2-hydroxyethyl acrylate, 50 g of acrylic acid, and 1.5 g of 2-mercaptoethanol were mixed with 200 g of distilled water to a monomer solution and mixed. In dropping funnel 2, 4.0 g of ammonium persulfate was added to 100 g of distilled water and completely dissolved. The temperature of the polymerization reactor was raised to 60°C, and dropping funnels 1 and 2 were simultaneously added to conduct a polymerization reaction for 3 hours. After completion of addition, a maturation reaction was conducted at 70°C for 2 hours, and then cooled to room temperature to synthesize a transparent copolymer with a solid content of 51.2% and a pH of 2.3.

비교예 1Comparative Example 1

2L 중합 반응기에 온도계, 콘덴서, 교반기, Dropping funnel 및 온도조절기를 구비하고, 중합반응기에 VPEG(분자량 2400) 440g을 넣고 증류수 160g을 넣고 70℃ 승온하였다. Dropping funnel 1에 2-하이드록시에틸아크릴레이트 4g, 아크릴산 50g, 2-머캅토에탄올 1.5g을 혼합한 단량체 용액에 증류수 200g를 넣고 혼합하였다. Dropping funnel 2에 증류수 100g에 암모늄 과황산염 4.0g을 첨가하여 완전히 용해시켰다. 중합반응기의 온도를 60℃로 승온하고 dropping funnel 1과 2를 동시에 적하하며 3시간 동안 중합 반응을 진행하였다. 투입 완료 후 70℃에서 2시간 동안 숙성 반응을 진행한 후 상온으로 냉각하여 고형분 49.5%, pH 2.5인 투명한 공중합체를 합성하였다.A 2L polymerization reactor equipped with a thermometer, a condenser, a stirrer, a dropping funnel, and a temperature controller was placed, and 440 g of VPEG (molecular weight 2400) was placed in the polymerization reactor, 160 g of distilled water was added, and the temperature was raised to 70℃. In dropping funnel 1, 200 g of distilled water was added to a monomer solution mixed with 4 g of 2-hydroxyethyl acrylate, 50 g of acrylic acid, and 1.5 g of 2-mercaptoethanol and mixed. In dropping funnel 2, 4.0 g of ammonium persulfate was added to 100 g of distilled water and completely dissolved. The temperature of the polymerization reactor was raised to 60℃, and dropping funnels 1 and 2 were simultaneously dropped to conduct a polymerization reaction for 3 hours. After completion of the injection, a maturation reaction was performed at 70°C for 2 hours and then cooled to room temperature to synthesize a transparent copolymer with a solid content of 49.5% and a pH of 2.5.

실험예 1: 몰탈(모르타르) 플로우 실험Experimental Example 1: Mortar Flow Experiment

상기 실시예 1 내지 3 및 비교예 1에서 제조한 콘크리트 화학 첨가제 시료들을 증류수를 사용하여 농도를 20%로 맞추어 준비하였다. 몰탈 강제 믹서 그릇에 ISO 표준사 1350 g과 시멘트 900g 을 담았고, 비이커에 물 315 g에 첨가제(20%) 시료를 넣은 후 잘 혼합하였다. 비이커의 내용물을 ISO 표준사와 시멘트가 첨가된 몰탈 강제 믹서 그릇에 넣고 120 rpm으로 1분간 혼합했다. 그 다음 벽면에 시멘트 분체를 잘 긁어낸 후 몰탈 믹서 150 rpm으로 2분간 교반하고 flow 콘에 3회에 나눠서 담고 다짐하여 들어올렸다. 흐름이 끝났을 때 길이와 시간을 측정했다.The concrete chemical additive samples manufactured in the above Examples 1 to 3 and Comparative Example 1 were prepared using distilled water to adjust the concentration to 20%. 1,350 g of ISO standard sand and 900 g of cement were placed in a mortar mixer bowl, and the additive (20%) sample was added to 315 g of water in a beaker and mixed well. The contents of the beaker were placed in the mortar mixer bowl containing the ISO standard sand and cement and mixed at 120 rpm for 1 minute. Then, the cement powder was thoroughly scraped off the wall surface, stirred at 150 rpm for 2 minutes with the mortar mixer, and then placed in a flow cone in three portions and compacted to lift it up. The length and time were measured when the flow was finished.

상기 실시예 1 내지 3 및 비교예 1 중합체의 모르타르 플로우 실험결과를 측정하여 하기 표 1에 나타내었다.The results of mortar flow experiments of the polymers of Examples 1 to 3 and Comparative Example 1 were measured and are shown in Table 1 below.

상기 실시예 1의 인산계 단량체 중 2-(비스(2-하이드록시에틸 포스포네이트)아미노)에틸 아크릴레이트를 사용한 고분자가 플로우 도달시간이 가장 우수하였으며, 인산계 단량체가 없는 비교예 1은 플로우 도달시간이 많이 증가하였다.Among the phosphoric acid monomers of Example 1, the polymer using 2-(bis(2-hydroxyethyl phosphonate)amino)ethyl acrylate had the best flow reaching time, and Comparative Example 1 without the phosphoric acid monomer showed a significantly increased flow reaching time.

실험예 2: 콘크리트 배합 적용 실험Experimental Example 2: Concrete Mix Application Experiment

하기 표 2의 콘크리트 배합 비율에 기재한 배합 조건에 따라, 각 콘크리트 배합 실험을 조제하였다. 50L의 콘크리트 강제 혼련 믹서를 사용하여, 포틀랜트 시멘트(비중=3.16), 모래(비중=2.65) 및 자갈(비중=2.66)을 순차적으로 투입하고, 30초 동안 혼련하였다. 이어, 각 실시예, 비교예를 0.7%, 0.9%, 1.2%를 혼합한 후 혼련수와 함께 첨가하여, 3분 동안 혼련하여 실험하였다. 상기 조제한 각 실험예의 콘크리트에 대하여 L-플로우 테스트 및 압축강도를 다음과 같이 구하고, 결과를 하기 표 3에 정리하여 나타내었다.According to the mixing conditions described in the concrete mixing ratio of Table 2 below, each concrete mixing experiment was prepared. Using a 50 L concrete forced mixing mixer, portland cement (specific gravity = 3.16), sand (specific gravity = 2.65), and gravel (specific gravity = 2.66) were sequentially added and mixed for 30 seconds. Then, 0.7%, 0.9%, and 1.2% of each example and comparative example were mixed, added together with mixing water, and mixed for 3 minutes to conduct an experiment. The L-flow test and compressive strength of the concrete of each experimental example prepared above were obtained as follows, and the results are summarized and presented in Table 3 below.

1. W/C : 물/콘크리트 비율1. W/C: Water/concrete ratio

2. S/A : 세골재 비율(모래/모래+자갈)2. S/A: Aggregate ratio (sand/sand+gravel)

L-플로우는 콘크리트 배합물을 L-플로우 측정장치에 일정량 투입하고 한쪽면의 뚜껑을 열어서 흘러가는 거리를 측정하고 최종 거리까지 흘러간 시간을 측정하였다.L-Flow was measured by pouring a certain amount of concrete mix into an L-Flow measuring device, opening the lid on one side, measuring the distance it flows, and then measuring the time it takes to flow to the final distance.

압축강도의 경우 JIS-A1108에 의거하여, 재령 1일, 7일 및 28일의 강도를 측정하였다. For compressive strength, the strength was measured at 1, 7, and 28 days according to JIS-A1108.

상기 실시예 1 내지 3 및 비교예 1에서 제조한 중합체의 콘크리트 배합물의 유동성을 보기 위해 L-플로우 실험 결과 및 압축강도 측정 실험 결과를 하기 표 3에 나타내었다.To examine the fluidity of the concrete mixtures of the polymers manufactured in Examples 1 to 3 and Comparative Example 1, the results of the L-flow experiment and the compressive strength measurement experiment are shown in Table 3 below.

Claims (8)

하기 화학식 10으로 표시되는 것을 특징으로 하는 폴리카르복시산계 공중합체를 함유하는 시멘트 혼화제:
[화학식 10]

(상기 화학식 10에서,
R1 내지 R3는 서로 동일하거나 상이하고, 각각 독립적으로, H 또는 CH3이고,
x, y, z는 각 반복단위의 중합 몰비로서 10~30: 10~30: 100~300이고, y>x>z이며,
n은 1 내지 10의 정수이다.)
Cement admixture containing a polycarboxylic acid copolymer characterized by the following chemical formula 10:
[Chemical Formula 10]

(In the above chemical formula 10,
R 1 to R 3 are the same or different from each other, and are each independently H or CH 3 ,
x, y, and z are the polymerization molar ratios of each repeating unit, 10~30: 10~30: 100~300, and y>x>z.
n is an integer from 1 to 10.)
제1항에 있어서, 상기 폴리카르복시산계 공중합체는
불포화 폴리에틸렌글리콜계 단량체;
하나 이상의 불포화 카르복시산계 단량체; 및
하기 화학식 6 내지 8의 인산기 함유 알릴성 단량체를 공중합시킨 것을 특징으로 하는 폴리카르복시산계 공중합체를 함유하는 시멘트 혼화제:
[화학식 6]

[화학식 7]

[화학식 8]

(상기 화학식 6 내지 화학식 8에서,
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로, H 또는 CH3이고,
Rc는 -CH2-CH2- 또는 -CH2-CH(CH3)-, 또는 -CH(CH3)-CH2-의 기이며,
x는 1 내지 10의 정수이다.)
In the first paragraph, the polycarboxylic acid copolymer
Unsaturated polyethylene glycol monomer;
One or more unsaturated carboxylic acid monomers; and
Cement admixture containing a polycarboxylic acid copolymer characterized by copolymerizing an allylic monomer containing a phosphoric acid group of the following chemical formulas 6 to 8:
[Chemical formula 6]

[Chemical formula 7]

[Chemical formula 8]

(In the chemical formulas 6 to 8 above,
R a and R b are the same or different and are each independently H or CH 3 ,
R c is a group of -CH 2 -CH 2 - or -CH 2 -CH(CH 3 )-, or -CH(CH 3 )-CH 2 -,
x is an integer from 1 to 10.)
삭제delete 제2항에 있어서, 상기 불포화 카르복시산계 단량체는
아크릴산, 메타아크릴산, 말레인산, 무수말레인산, 푸마르산, 이타콘산, 메틸아크릴레이트, 에틸아크릴레이트, 2-하이드록시에틸아크릴레이트, 하이드록시에틸(메타)아크릴레이트, 프로필아크릴레이트, 부틸아크릴레이트 및 아크릴아마이드로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 폴리카르복시산계 공중합체를 함유하는 시멘트 혼화제.
In the second paragraph, the unsaturated carboxylic acid monomer
A cement admixture containing a polycarboxylic acid copolymer, characterized in that at least one selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, methyl acrylate, ethyl acrylate, 2-hydroxyethyl acrylate, hydroxyethyl (meth) acrylate, propyl acrylate, butylacrylate, and acrylamide.
삭제delete 제1항에 있어서, 상기 폴리카르복시산계 공중합체의 중량평균분자량은 15,000 내지 70,000인 것을 특징으로 하는 폴리카르복시산계 공중합체를 함유하는 시멘트 혼화제. A cement admixture containing a polycarboxylic acid copolymer, characterized in that in claim 1, the weight average molecular weight of the polycarboxylic acid copolymer is 15,000 to 70,000. 제1항에 있어서, 상기 폴리카르복시산계 공중합체의 pH는 2 내지 6인 것을 특징으로 하는 폴리카르복시산계 공중합체를 함유하는 시멘트 혼화제. A cement admixture containing a polycarboxylic acid copolymer, characterized in that in claim 1, the pH of the polycarboxylic acid copolymer is 2 to 6. 시멘트 100 중량부에 대하여 제1항, 제2항, 제4항, 제6항 및 제7항 중 어느 한 항에 따른 시멘트 혼화제 0.5 내지 3 중량부를 포함하여 이루어지는 것을 특징으로 하는 시멘트 조성물.A cement composition characterized by comprising 0.5 to 3 parts by weight of a cement admixture according to any one of claims 1, 2, 4, 6 and 7 per 100 parts by weight of cement.
KR1020220072249A 2022-06-14 2022-06-14 Cement admixture, and cement composition containing the same Active KR102703816B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220072249A KR102703816B1 (en) 2022-06-14 2022-06-14 Cement admixture, and cement composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220072249A KR102703816B1 (en) 2022-06-14 2022-06-14 Cement admixture, and cement composition containing the same

Publications (2)

Publication Number Publication Date
KR20230172070A KR20230172070A (en) 2023-12-22
KR102703816B1 true KR102703816B1 (en) 2024-09-09

Family

ID=89309570

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220072249A Active KR102703816B1 (en) 2022-06-14 2022-06-14 Cement admixture, and cement composition containing the same

Country Status (1)

Country Link
KR (1) KR102703816B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106046269A (en) 2016-06-22 2016-10-26 科之杰新材料集团有限公司 Crosslinking-type low-sensitivity ester-ether copolymerized polycarboxylate superplasticizer and preparation method thereof
CN107698716A (en) 2017-07-06 2018-02-16 徐州巨龙新材料科技有限公司 A kind of polycarboxylate water-reducer and preparation method thereof
CN111378078A (en) 2018-12-31 2020-07-07 江苏苏博特新材料股份有限公司 Star-shaped polycarboxylate superplasticizer with viscosity reducing effect and preparation method and application thereof
CN114044859A (en) * 2021-12-10 2022-02-15 安徽海螺新材料科技有限公司 Mud-resistant slump-retaining polycarboxylate superplasticizer mother solution and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106046269A (en) 2016-06-22 2016-10-26 科之杰新材料集团有限公司 Crosslinking-type low-sensitivity ester-ether copolymerized polycarboxylate superplasticizer and preparation method thereof
CN107698716A (en) 2017-07-06 2018-02-16 徐州巨龙新材料科技有限公司 A kind of polycarboxylate water-reducer and preparation method thereof
CN111378078A (en) 2018-12-31 2020-07-07 江苏苏博特新材料股份有限公司 Star-shaped polycarboxylate superplasticizer with viscosity reducing effect and preparation method and application thereof
CN114044859A (en) * 2021-12-10 2022-02-15 安徽海螺新材料科技有限公司 Mud-resistant slump-retaining polycarboxylate superplasticizer mother solution and preparation method thereof

Also Published As

Publication number Publication date
KR20230172070A (en) 2023-12-22

Similar Documents

Publication Publication Date Title
AU2008290631B2 (en) A liquid admixture composition
JP6514806B2 (en) Cement composition
CN100381388C (en) Additive for hydraulic material and concrete composition
WO2006011182A1 (en) Cement dispersant and concrete composition containing the dispersant
JP2018145094A (en) Cement additive, cement composition, and raw material for cement additive
JP4993149B2 (en) Copolymer and cement dispersant comprising the copolymer
SA109300729B1 (en) Copolymer Containing Acid Building Blocks and Various Types of Polyether Building Blocks
JP3740641B2 (en) Cement dispersant and concrete composition containing the dispersant
JP5887094B2 (en) Admixture for hydraulic composition
JP3780456B2 (en) Cement dispersant and concrete composition containing the dispersant
JP6145381B2 (en) (Poly) alkylene glycol block copolymer and use thereof
CN101407386A (en) High dispersing plasticizing adulterating agent for cement concrete
JP2015187054A (en) Cement dispersing agent composition and cement composition
KR102703816B1 (en) Cement admixture, and cement composition containing the same
CN101370747B (en) Dispersant for hydraulic composition
JP6263404B2 (en) Preparation method of concrete containing blast furnace slag
JPH0952749A (en) Admixture for high flowability concrete and concrete material containing the same
JP7103691B2 (en) Additives for hydraulic compositions and hydraulic compositions
JP2011116587A (en) Early strengthening agent for hydraulic composition
KR101648255B1 (en) Copolymer for cement admixture, method for preparing the same, and cement composition containing the same
JP5311891B2 (en) Additive composition for hydraulic composition
KR20220164229A (en) Polymer additives containing polyfunctional phosphoric acid groups and method thereof
JP7021004B2 (en) A polycarboxylic acid-based copolymer and a method for producing the same, and an additive and cement composition for inorganic particles using the same.
EP4082981A1 (en) Powder dispersant for hydraulic composition and method for producing same
JP2024073733A (en) Dispersant composition for hydraulic composition and hydraulic composition

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20220614

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240121

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20240430

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240717

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20240902

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20240902

End annual number: 3

Start annual number: 1

PG1601 Publication of registration