KR102703669B1 - Method for decarbonation of waste refractory materials containing carbon - Google Patents
Method for decarbonation of waste refractory materials containing carbon Download PDFInfo
- Publication number
- KR102703669B1 KR102703669B1 KR1020210075992A KR20210075992A KR102703669B1 KR 102703669 B1 KR102703669 B1 KR 102703669B1 KR 1020210075992 A KR1020210075992 A KR 1020210075992A KR 20210075992 A KR20210075992 A KR 20210075992A KR 102703669 B1 KR102703669 B1 KR 102703669B1
- Authority
- KR
- South Korea
- Prior art keywords
- raw materials
- carbon
- fine powder
- fine
- powder composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 101
- 239000011819 refractory material Substances 0.000 title claims abstract description 63
- 239000002699 waste material Substances 0.000 title claims abstract description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 48
- 230000008569 process Effects 0.000 claims abstract description 69
- 239000002994 raw material Substances 0.000 claims abstract description 58
- 239000000203 mixture Substances 0.000 claims abstract description 55
- 238000005262 decarbonization Methods 0.000 claims abstract description 23
- 238000003763 carbonization Methods 0.000 claims abstract description 20
- 230000008929 regeneration Effects 0.000 claims abstract description 20
- 238000011069 regeneration method Methods 0.000 claims abstract description 20
- 238000005261 decarburization Methods 0.000 claims abstract description 15
- 239000010419 fine particle Substances 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000011148 porous material Substances 0.000 claims abstract description 10
- 238000000926 separation method Methods 0.000 claims abstract description 9
- 239000002893 slag Substances 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 238000007599 discharging Methods 0.000 claims abstract description 4
- 238000001704 evaporation Methods 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 239000002023 wood Substances 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 3
- 239000010903 husk Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011820 acidic refractory Substances 0.000 description 2
- 239000011822 basic refractory Substances 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 150000002681 magnesium compounds Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011821 neutral refractory Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6267—Pyrolysis, carbonisation or auto-combustion reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/40—Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2/00—Lime, magnesia or dolomite
- C04B2/10—Preheating, burning calcining or cooling
- C04B2/102—Preheating, burning calcining or cooling of magnesia, e.g. dead burning
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/03—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
- C04B35/04—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62204—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
카본함유 내화물 또는 폐 내화재 원료 중에서 통상의 탈탄방법을 적용할 수 없어 폐기되는 미분 상태의 원료를 재생 내화재로 제조하기 위한 카본함유 폐 내화재 탈탄방법에 있어서, 카본함유 내화물 또는 폐 내화재 원료를 선별하여 슬래그 및 불순물과 가스를 제거한 후 건조하는 전처리공정(S10)과, 전처리 된 원료를 파쇄하여 15mm 이상의 원료는 통상의 탈탄방법에 의해 재생하도록 분리하고, 15mm 이하 입도의 원료를 별도 수거하는 미분분리공정(S20)과, 별도 수거한 원료와, 원료의 10 ~ 50중량%의 물을 혼합 교반하여 반죽 상태로 형성하는 미분조성물형성공정(S30)과, 반죽 상태의 미분조성물을 탄화조에 투입하고 1300 내지 1600℃ 온도에서 수시간 동안 가열하여 미분조성물 내의 수분을 증발하면서 공극을 형성하고 산소 및 화력을 전달하여 카본을 탄화하는 탈탄공정(S40)과, 탈탄된 미분조성물을 냉각하여 탄화조에서 배출하고 재생 내화재를 수득하는 재생공정(S50)을 포함하여 이루어짐에 따라 원료의 재생률 및 생산성을 현저히 향상하는 것이 특징이다.In a method for decarburizing carbon-containing waste refractories for manufacturing recycled refractories from finely divided raw materials that cannot be decarburized by conventional decarburization methods among carbon-containing refractories or waste refractories, the method comprises: a pretreatment process (S10) in which carbon-containing refractories or waste refractories are selected, slag and impurities and gases are removed, and then dried; a fine separation process (S20) in which the pretreated raw materials are crushed to separate raw materials of 15 mm or larger to be regenerated by conventional decarburization methods and raw materials of 15 mm or smaller are separately collected; a fine composition formation process (S30) in which the separately collected raw materials and 10 to 50 wt% of the raw materials are mixed and stirred to form a dough; and the fine composition in the dough state is put into a carbonization tank and heated at a temperature of 1300 to 1600°C for several hours to form pores while evaporating moisture in the fine composition and transmitting oxygen and fire power to carbonize the carbon. It is characterized by significantly improving the regeneration rate and productivity of raw materials by including a decarbonization process (S40) and a regeneration process (S50) of cooling the decarbonized fine particle composition and discharging it from the carbonization tank to obtain regenerated refractory material.
Description
본 발명은 카본함유 폐 내화재 탈탄방법에 관한 발명으로, 더욱 상세하게는 제강 및 제철 산업 분야에서 로의 주재료로 사용되는 카본함유 내화물 또는 폐 내화재 원료 중에서도 재생이 불가능한 미분 상태의 원료를 재생 가능하도록 구성하여 재생률을 증진하고 생산성을 향상하는 것을 특징으로 한다.The present invention relates to a method for decarburizing carbon-containing waste refractory materials, and more specifically, to a method for decarburizing carbon-containing refractory materials or waste refractory materials used as main materials for furnaces in the steel and iron manufacturing industries, by configuring non-recyclable finely divided raw materials to be recyclable, thereby increasing the regeneration rate and improving productivity.
일반적으로, 제강 및 제철과 같은 초고온 작업공정에 사용되는 용광로나 제련로 등의 용융로에는 고내화성을 지닌 내화벽돌과 같은 내화재가 노재로 사용된다.In general, refractory materials such as refractory bricks with high refractory properties are used as furnace materials in melting furnaces such as blast furnaces and smelting furnaces used in ultra-high temperature work processes such as steelmaking and ironmaking.
내화재는 1000℃ 이상의 고온에서도 충분한 기계적 강도 및 열적 저항 특성을 가지는 재료로써 용해금속이나 슬래그 및 고온의 가스 등에 대한 침식 및 마모저항성을 가진다.Refractory materials are materials that have sufficient mechanical strength and thermal resistance properties even at high temperatures of 1000℃ or higher, and are resistant to erosion and wear from molten metal, slag, and high-temperature gases.
내화재의 주원료는 마그네사이트, 실리카, 흑연 등의 천연원료나 알루미나와 스피넬을 이용한 마그네시아, 탄화규소와 같은 합성원료가 사용되는데, 그 화학적 성질에 따라서 산성, 중성, 및 염기성 내화재로 분류할 수 있다. 산성 내화재에는 규석질, 점토질, 탄화규소질 내화재 등이 있고, 중성 내화재에는 산화알루미늄질, 크롬질, 스피넬질, 탄소질 내화재 등이 있으며, 염기성 내화재에는 마그네시아질 내화재 등이 포함된다. 특히, 마그네시아-카본질 내화재는 마그네시아 클링커를 골재로 하고 카본 등을 첨가하여 제조하는 탄소 함유 내화재로서 고내열성은 물론 염기성 슬래그에 대한 내식성이 탁월하여 철강로용 내화재로 널리 사용되고 있다.The main raw materials of refractories are natural raw materials such as magnesite, silica, and graphite, or synthetic raw materials such as magnesia and silicon carbide using alumina and spinel. They can be classified into acidic, neutral, and basic refractories depending on their chemical properties. Acidic refractories include quartzite, clay, and silicon carbide refractories, neutral refractories include aluminum oxide, chromium, spinel, and carbon refractories, and basic refractories include magnesia refractories. In particular, magnesia-carbon refractories are carbon-containing refractories manufactured by adding carbon, etc. to magnesia clinker as aggregate. They have excellent heat resistance as well as corrosion resistance against basic slag, and are widely used as refractories for steel furnaces.
한편, 상기와 같은 내화재는 일정 기간을 사용하면 용융물이 접하는 면에 각종 슬래그 및 이물질이 융착되어 본연의 고내화 특성에 변질이 일어난다. 따라서, 사용수명을 만료한 내화재는 폐기하고 신규 내화재로 주기적으로 교체해야 하며, 이 과정에서 한 해 수천 톤 이상의 폐 내화재가 발생하여 경제적 손실이 막대한 실정이다.Meanwhile, when the above refractory material is used for a certain period of time, various slags and foreign substances are fused on the surface that comes into contact with the molten material, which causes the original high-refractory characteristics to change. Therefore, refractory material that has reached the end of its service life must be discarded and periodically replaced with new refractory material. In this process, more than several thousand tons of waste refractory material is generated each year, resulting in enormous economic losses.
이와 같은 문제점을 극복하기 위하여 폐 내화재를 재생하기 위한 기술들이 공지된 바, 예컨대 한국등록특허 제 10 - 0908852 호에는 폐 마그카본 내화재를 분쇄하는 단계와, 분쇄된 상기 폐 마그카본 내화재를 강산과 반응시킨 후 여과 처리하여 여과액을 분리해내는 단계와, 여과액을 교반하면서 염기와 반응시켜 마그네슘 화합물을 생성하는 단계를 포함하는 폐 마그카본 내화재로부터 고순도의 마그네슘 화합물을 제조하는 방법을 구성한다.In order to overcome such problems, techniques for regenerating waste refractories are known, for example, Korean Patent No. 10-0908852 discloses a method for producing a high-purity magnesium compound from waste magcarbon refractory, including the steps of crushing waste magcarbon refractory, reacting the crushed waste magcarbon refractory with a strong acid and then filtering it to separate the filtrate, and stirring the filtrate while reacting it with a base to produce a magnesium compound.
다른 예로서, 한국등록특허 제 10 - 1105437 호에는 내화벽돌로 사용이 끝난 폐 마그카본 내화물의 가동면의 변질층을 제거하는 단계와, 변질층이 제거된 폐 마그카본 내화물을 분쇄하는 단계와, 분쇄된 폐 마그카본 내화물 중 1~25mm의 입도를 갖는 폐 마그카본 내화물을 선별하는 단계와, 폐 마그카본 내화물을 산화분위기에서 1100℃ 이상의 온도로 승온시키고 1시간 이상 유지하여 탈탄처리하는 단계를 포함하는 폐 마그카본 내화물의 재생방법을 구성한다.As another example, Korean Patent No. 10-1105437 discloses a method for regenerating waste magcarbon refractories, including the steps of removing a deteriorated layer on a working surface of waste magcarbon refractories that have been used as refractory bricks, the step of crushing the waste magcarbon refractories from which the deteriorated layer has been removed, the step of selecting waste magcarbon refractories having a particle size of 1 to 25 mm from the crushed waste magcarbon refractories, and the step of heating the waste magcarbon refractories to a temperature of 1100°C or higher in an oxidizing atmosphere and maintaining the temperature for 1 hour or longer to perform decarburization.
종래 기술에서는 카본함유 폐 내화재를 재생하기 위해 불순물의 처리 및 숙성, 강산 처리 및 염기 반응과 같은 화학적 처리에 의한 방법, 또는 카본을 탈탄 처리하는 방법이 적용된다.In conventional technology, methods such as treatment and aging of impurities, chemical treatment such as strong acid treatment and base reaction, or a method of decarbonizing carbon are applied to regenerate carbon-containing waste refractory materials.
그러나, 종래와 같이 불순물의 단순 처리 및 숙성만으로는 신규 내화재와 동등한 수준의 기계적, 화학적 특성을 도출하기 어려우며, 화학적 처리 역시 폐 내화재에 생성된 스케일 등에 의해 과량 생성되는 카본 및 불순물을 효과적으로 제거하기 어려운 문제점이 있다.However, it is difficult to derive mechanical and chemical properties equivalent to those of new refractory materials through simple treatment and maturation of impurities as in the past, and chemical treatment also has the problem of making it difficult to effectively remove carbon and impurities that are excessively generated due to scale, etc., generated in waste refractory materials.
따라서, 또 다른 종래 기술에서는 폐 내화재의 변질층을 제거 및 파쇄한 후 탈탄 방식으로 고순도 재생 내화재를 제조하기 위한 방법을 구성한다. Therefore, another conventional technology comprises a method for manufacturing high-purity regenerated refractory by removing and crushing the deteriorated layer of waste refractory and then decarburizing it.
그러나, 폐 내화재를 파쇄하는 과정에서 대량 생성되는 입도 15mm 이하의 미분이 탈탄공정에 투입될 경우 탄화조의 점화구 및 점화재 사이의 틈새를 폐색하는 원인이 되어 탄화 효율을 현저히 저하하고 장치 손상을 유발하는 등의 문제를 초래한다.However, if fine particles with a particle size of 15 mm or less, which are generated in large quantities during the process of crushing waste refractory, are input into the decarbonization process, they can cause problems such as blocking the gap between the ignition port and the ignition material in the carbonization tank, significantly reducing the carbonization efficiency and causing damage to the device.
따라서, 종래 기술에서는 파쇄된 폐 내화재를 입도분리하여 일정 크기로 선별된 폐 내화재만 탈탄공정에 사용하고 미분들은 사실상 처리가 불가능하여 폐기물로 방치하고 있는 실정이다.Therefore, in the conventional technology, only the waste refractories that have been separated into particle sizes and selected to a certain size are used in the decarbonization process, and the fine particles are virtually impossible to process and are thus left as waste.
이에 본 발명에서는 상술한 바와 같은 종래 기술의 문제점을 해결하기 위하여 발명한 것으로서,Accordingly, the present invention was invented to solve the problems of the prior art as described above.
카본함유 내화물 또는 폐 내화재 원료 중에서 통상의 탈탄방법을 적용할 수 없어 폐기되는 미분 상태의 원료를 재생 내화재로 제조하기 위한 카본함유 폐 내화재 탈탄방법에 있어서,In a method for decarburizing carbon-containing waste refractory materials for manufacturing recycled refractory materials from finely divided raw materials that cannot be decarburized by conventional decarburization methods among carbon-containing refractory materials or waste refractory materials,
카본함유 내화물 또는 폐 내화재 원료를 선별하여 슬래그 및 불순물과 가스를 제거한 후 건조하는 전처리공정(S10)과,A pretreatment process (S10) for selecting carbon-containing refractory or waste refractory raw materials, removing slag, impurities, and gas, and then drying them;
상기 전처리 된 원료를 파쇄하여 15mm 이상의 원료는 통상의 탈탄방법에 의해 재생하도록 분리하고, 15mm 이하 입도의 원료를 별도 수거하는 미분분리공정(S20)과,The above preprocessed raw material is crushed and separated into raw materials of 15 mm or larger for regeneration by a conventional decarbonization method, and a fine separation process (S20) is performed to separately collect raw materials of 15 mm or smaller in particle size.
상기 별도 수거한 원료와, 원료의 10 ~ 50중량%의 물을 혼합 교반하여 반죽 상태로 형성하는 미분조성물형성공정(S30)과,A process (S30) for forming a fine powder composition by mixing and stirring the separately collected raw materials and 10 to 50% by weight of water of the raw materials into a dough state,
상기 반죽 상태의 미분조성물을 탄화조에 투입하고 1300 내지 1600℃ 온도에서 수시간 동안 가열하여 미분조성물 내의 수분을 증발하면서 공극을 형성하고 산소 및 화력을 전달하여 카본을 탄화하는 탈탄공정(S40)과,A decarbonization process (S40) in which the above-mentioned fine powder composition in a dough state is put into a carbonization tank and heated at a temperature of 1300 to 1600°C for several hours to evaporate moisture in the fine powder composition, form pores, and carbonize carbon by transmitting oxygen and heat;
상기 탈탄된 미분조성물을 냉각하여 탄화조에서 배출하고 재생 내화재를 수득하는 재생공정(S50)을 포함하고,It includes a regeneration process (S50) for cooling the above-mentioned decarbonized fine composition, discharging it from the carbonization tank, and obtaining a regenerated refractory material.
상기 미분분리공정(S20)에서는,In the above-mentioned differentiation process (S20),
별도 수거한 15mm 이하 입도의 원료를 분쇄하여 균등한 입도로 미분화하도록 이루어지고,Separately collected raw materials with particle sizes of 15 mm or less are crushed and pulverized into uniform particle sizes.
상기 탈탄공정(S40)에서는,In the above decarbonization process (S40),
미분조성물 내부에 가연성 소재로 이루어지는 착화재를 투입하여 수분 함유 상태에서도 화력을 지속시키도록 이루어지고,By injecting an ignition agent made of a combustible material into the powder composition, it is possible to maintain fire power even in a state containing moisture.
상기 착화재는 미분조성물에 혼합하거나, 또는 착화재와 미분조성물을 수평 방향으로 교번하여 적층하거나, 또는 착화재를 미분조성물에 수직 방향으로 일정 간격 삽입하여 미분조성물 내에 균등 분포하도록 투입하고,The above igniter is mixed into the fine powder composition, or the igniter and the fine powder composition are alternately laminated in the horizontal direction, or the igniter is inserted into the fine powder composition at a certain interval in the vertical direction so as to be evenly distributed within the fine powder composition.
상기 착화재는 목재칩, 톱밥, 등겨, 폐 플라스틱을 포함하는 군으로부터 선택된 하나 또는 하나 이상으로 이루어짐으로써 재생률 및 생산성을 현저히 향상할 수 있는 목적 달성이 가능하다.The above-mentioned ignition material is composed of one or more materials selected from the group including wood chips, sawdust, husks, and waste plastics, thereby achieving the purpose of significantly improving the regeneration rate and productivity.
본 발명은 카본함유 내화물 또는 폐 내화재 원료로부터 카본을 제거하는 일련의 공정을 효율화하여 재생률을 증진하고 공정 효율을 향상하는 카본함유 폐 내화재 탈탄방법을 제공한다.The present invention provides a method for decarbonizing carbon-containing waste refractory material, which increases the regeneration rate and improves process efficiency by streamlining a series of processes for removing carbon from carbon-containing refractory material or waste refractory material raw materials.
특히, 본 발명은 종래 기술에서 재생 과정에 사용할 수 없어 대량 폐기되는 15mm 이하 입도의 미분 상태의 원료를 탈탄공정에 효과적으로 적용 가능하도록 구성함으로써 원료 폐기량을 최소화하고 생산성을 향상하면서 고순도, 고품질의 재생 내화재를 제조하도록 하는 효과가 있다.In particular, the present invention has the effect of manufacturing a high-purity, high-quality regenerated refractory material by configuring it so that raw materials in a fine powder state with a particle size of 15 mm or less, which cannot be used in the regeneration process in the prior art and are discarded in large quantities, can be effectively applied to the decarbonization process, thereby minimizing the amount of raw material waste and improving productivity.
도 1은 본 발명에 따른 카본함유 폐 내화재 탈탄방법의 개략적인 공정 흐름도.Figure 1 is a schematic process flow diagram of a method for decarbonizing carbon-containing waste refractory material according to the present invention.
이하, 본 발명의 카본함유 폐 내화재 탈탄방법의 바람직한 실시 예에 따른 구성과 작용을 첨부 도면을 참조하여 상세히 설명하면 다음과 같다. 하기의 설명에서 당해 기술분야의 통상의 기술자가 용이하게 구현할 수 있는 부분에 대한 구체적인 설명은 생략될 수 있다. 아울러, 하기의 설명은 본 발명에 대하여 바람직한 실시 예를 들어 설명하는 것이므로 본 발명은 하기 실시 예에 의해 한정되는 것이 아니며 본 발명의 범주를 벗어나지 않는 범위 내에서 다양한 변형이 제공될 수 있음은 당연하다 할 것이다.Hereinafter, the configuration and operation of a preferred embodiment of a method for decarbonizing carbon-containing waste refractory material of the present invention will be described in detail with reference to the attached drawings. In the following description, specific descriptions of parts that can be easily implemented by those skilled in the art may be omitted. In addition, since the following description describes preferred embodiments of the present invention, the present invention is not limited to the following embodiments, and it will be understood that various modifications may be provided within a scope that does not depart from the scope of the present invention.
도 1은 본 발명에 따른 카본함유 폐 내화재 탈탄방법의 개략적인 공정 흐름도를 도시한 것이다.Figure 1 illustrates a schematic process flow diagram of a method for decarbonizing carbon-containing waste refractory material according to the present invention.
본 발명의 기술이 적용되는 카본함유 폐 내화재 탈탄방법은 로의 주재료로 사용되는 카본함유 내화물 또는 폐 내화재 원료 중에서도 재생이 불가능한 미분 상태의 원료로부터 카본을 제거하는 일련의 공정을 효율화하여 재생률을 증진하고 생산성을 향상하는 기술에 관한 것임을 주지한다. It is noted that the method for decarburizing carbon-containing waste refractory to which the technology of the present invention is applied relates to a technology for increasing the regeneration rate and improving productivity by streamlining a series of processes for removing carbon from raw materials in a finely divided state that cannot be regenerated, among carbon-containing refractory or waste refractory raw materials used as main materials of a furnace.
이를 위한 본 발명의 카본함유 폐 내화재 탈탄방법은 카본함유 내화물 또는 폐 내화재 원료 중에서 통상의 탈탄방법을 적용할 수 없어 폐기되는 미분 상태의 원료를 재생 내화재로 제조하기 위한 일련의 공정을 구성하며, 폐 내화재 재생장치에 의해 구현한다.For this purpose, the carbon-containing waste refractory decarburization method of the present invention comprises a series of processes for manufacturing a finely divided raw material, which is discarded because a conventional decarburization method cannot be applied among carbon-containing refractory or waste refractory raw materials, into a regenerated refractory, and is implemented by a waste refractory regeneration device.
본 발명이 적용되는 재생장치는 탄화조 및 점화조로 이루어지는 재생챔버를 다수 배치하고, 산소, 공기 등 착화 및 화력 유지를 위한 공급부를 포함하여 구성되는 장치로서, 본 발명에 의해 폐 내화재 원료 미분을 재생하여 카본이 제거된 고순도의 재생 내화재를 제조하도록 구비한다.The regeneration device to which the present invention is applied is a device configured to have a plurality of regeneration chambers formed of carbonization tanks and ignition tanks, and to include a supply unit for ignition and maintaining firepower, such as oxygen and air, and is provided to manufacture high-purity regenerated refractory material from which carbon has been removed by regenerating waste refractory raw material powder according to the present invention.
본 발명에 따른 카본함유 폐 내화재 탈탄방법은 전처리공정(S10)과, 미분분리공정(S20)과, 미분조성물형성공정(S30)과, 탈탄공정(S40)과, 재생공정(S50)을 포함하여 이루어지며, 구체적으로는 하기와 같다.The method for decarbonizing carbon-containing waste refractory material according to the present invention comprises a pretreatment process (S10), a fine separation process (S20), a fine composition formation process (S30), a decarbonization process (S40), and a regeneration process (S50), and is specifically as follows.
상기 전처리공정(S10)은 카본함유 폐 내화재 원료를 선별하여 슬래그 및 불순물과 가스를 제거한 후 건조하는 공정이다.The above pretreatment process (S10) is a process of selecting carbon-containing waste refractory raw materials, removing slag, impurities, and gas, and then drying them.
상기 전처리공정(S10)은 세부적으로 선별단계와, 수처리 및 건조단계로 이루어진다.The above pretreatment process (S10) is composed of a selection step, a water treatment step, and a drying step.
선별단계에서는 카본함유 내화물 또는 폐 내화재 원료를 수거하고 각종 슬래그나 화학적 침식이 발생한 부위를 물리적으로 제거하여 재생 가능한 부분만을 선별한다.In the sorting stage, carbon-containing refractory materials or waste refractory materials are collected, and any slag or chemically eroded areas are physically removed to select only the recyclable portion.
선별된 카본함유 원료에는 금속 알루미나, 각종 페놀계 수지, 바인더 등의 성분을 함유하는바, 금속 알루미나가 재생 내화원료에 혼입될 경우 균열이나 팽창을 발생시키는 원인이 되며, 페놀계 수지가 재생 내화원료에 혼입될 경우 로의 성형 과정에 첨가되는 결합제와의 부착력을 현저히 저하시켜 균열을 발생시키는 원인이 된다.The selected carbon-containing raw materials contain components such as metallic alumina, various phenolic resins, and binders. If metallic alumina is mixed into the regenerated refractory raw materials, it can cause cracks or expansion. If phenolic resin is mixed into the regenerated refractory raw materials, it can significantly reduce the adhesive strength with the binder added during the molding process, causing cracks.
따라서, 수처리단계를 통해 선별된 원료에 함유된 금속 알루미나 및 페놀계 수지, 바인더와 같은 물질을 수화반응에 의해 용해하여 제거하면서 이산화탄소를 배출하여 원료의 순도를 확보한다. 수처리된 원료는 건조하여 수분 및 잔여 가스를 제거한다.Therefore, through the water treatment step, the materials such as metal alumina, phenol resin, and binder contained in the selected raw material are dissolved and removed through a hydration reaction, thereby emitting carbon dioxide to secure the purity of the raw material. The water-treated raw material is dried to remove moisture and residual gas.
상기 미분분리공정(S20)은 전처리 된 원료를 파쇄하여 15mm 이상의 원료는 통상의 탈탄방법에 의해 재생하도록 분리하고, 15mm 이하 입도의 원료를 별도 수거하는 공정이다.The above-mentioned fine separation process (S20) is a process in which the preprocessed raw material is crushed, raw material of 15 mm or larger is separated for regeneration through a conventional decarbonization method, and raw material of 15 mm or smaller particle size is separately collected.
상기 미분분리공정(S20)은 카본함유 내화물 또는 폐 내화재 원료 재생을 위해 파쇄하는 과정에서 발생하는 15mm 이하 입도의 원료를 종래 폐기 처리하는 대신 별도로 수거한다. 15mm 이하 입도의 원료를 종래 기술에서와 같이 탄화조에 그대로 투입할 경우 점화구 및 점화재 사이의 틈새를 폐색하는 원인이 되어 탄화 효율을 현저히 저하하는 것은 물론, 장치 손상을 유발하는 등의 문제를 초래한다. The above-mentioned fine separation process (S20) separately collects raw materials with particle sizes of 15 mm or less generated in the process of crushing carbon-containing refractory materials or waste refractory materials for regeneration, instead of disposing of them as is. If raw materials with particle sizes of 15 mm or less are directly fed into a carbonization tank as in the prior art, this causes the gap between the ignition port and the ignition material to be blocked, which significantly reduces the carbonization efficiency and causes problems such as damage to the device.
상기 미분분리공정(S20)에서는 별도 수거한 15mm 이하 입도의 원료를 분쇄하여 균등한 입도로 미분화하도록 구성함으로써, 후속되는 미분조성물형성공정(S30)에서 미분조성물을 효과적으로 형성하여 탈탄공정(S40)이 이루어지도록 구성한다.In the above-mentioned fine separation process (S20), separately collected raw materials with a particle size of 15 mm or less are crushed and finely divided into uniform particle sizes, thereby effectively forming a fine composition in the subsequent fine composition formation process (S30) and thereby enabling the decarbonization process (S40) to be performed.
상기 미분조성물형성공정(S30)은 상기 별도 수거한 원료와, 원료의 10 ~ 50중량%의 물을 혼합 교반하여 반죽 상태로 형성하는 공정이다.The above-mentioned differential composition formation process (S30) is a process of mixing and stirring the separately collected raw material and 10 to 50 wt% of water of the raw material to form a dough.
상기 미분조성물형성공정(S30)에서는, 원료와 물을 혼합 교반하여 미분조성물을 형성하도록 구성한다. 상기 미분조성물은 후술하게 될 탈탄공정(S40)의 진행 상태에 따라서 물의 함량을 상기 범위 내에서 차등하여 조성할 수 있다. 예컨대, 탈탄공정(S40)의 초기 착화시에는 원료의 10중량%로 적은량의 물이 혼합된 미분조성물을 투입하여 착화가 원활하게 이루어지도록 하고, 착화가 이루어진 후에는 원료의 50중량%로 물이 혼합된 미분조성물을 투입하여 수분 증발에 따른 공극 형성이 원활하게 이루어지도록 구성한다.In the above-described fine composition forming process (S30), the fine composition is formed by mixing and stirring the raw material and water. The fine composition can be formed by differentiating the water content within the above range depending on the progress of the decarburization process (S40) to be described later. For example, at the initial ignition of the decarburization process (S40), a fine composition mixed with a small amount of water, such as 10 wt% of the raw material, is injected so that the ignition can be smoothly performed, and after the ignition is performed, a fine composition mixed with water, such as 50 wt% of the raw material, is injected so that the pore formation due to the evaporation of moisture can be smoothly performed.
상기 미분조성물에서 물의 함량이 상기 범위를 벗어날 경우 후속되는 탈탄공정(S40)의 초고온 환경에서 수분이 급속 증발하여 공극 형성을 저해하거나, 공극이 균등하게 분포되지 않는 문제를 야기할 수 있다.If the water content in the above-mentioned fine particle composition is outside the above range, the moisture may rapidly evaporate in the ultra-high temperature environment of the subsequent decarbonization process (S40), which may hinder the formation of pores or cause problems in which the pores are not evenly distributed.
상기 탈탄공정(S40)은 미분조성물을 탄화조에 투입하고 1300 내지 1600℃ 온도에서 수시간 동안 가열하여 미분조성물 내의 수분을 증발하면서 공극을 형성하고, 공극을 통해 산소 및 화력을 전달하여 카본을 탄화하는 공정이다.The above decarbonization process (S40) is a process in which a fine powder composition is introduced into a carbonization tank and heated at a temperature of 1300 to 1600°C for several hours to evaporate moisture in the fine powder composition, form pores, and carbonize carbon by transmitting oxygen and heat through the pores.
상기 탈탄공정(S40)에서는 카본이 함유된 내화물 또는 폐 내화재 원료 미분이 혼합된 상기 미분조성물을 탈탄장치의 탄화조에 투입하고 초고온 상태에서 카본과 산소가 반응하도록 유도함으로써 카본을 탄화하여 원료로부터 탈리하도록 이루어진다.In the above decarbonization process (S40), the above fine powder composition containing carbon-containing refractory material or waste refractory material raw material fine powder is introduced into the carbonization tank of the decarbonization device, and the carbon is carbonized and removed from the raw material by inducing a reaction between carbon and oxygen at an ultra-high temperature.
상기 탈탄공정(S40)은 초기에 상기 미분조성물이 투입된 탄화조를 점화하고 산소를 공급하여 착화하며, 미분조성물에 착화가 이루어지면 공기를 공급하면서 수시간동안 카본의 탄화를 진행한다. The above decarbonization process (S40) initially ignites the carbonization tank in which the above fine particle composition is introduced and supplies oxygen to ignite it. Once the fine particle composition is ignited, carbonization of the carbon proceeds for several hours while supplying air.
상기 미분조성물은 함유된 수분으로 인해 착화가 쉽게 이루어지지 않는 상태이므로 상기 탈탄공정(S40)에서는 미분조성물 내부에 가연성 소재로 이루어지는 착화재를 투입하여 수분 함유 상태에서도 착화를 촉발하고 화력을 지속시키도록 이루어진다.Since the above-mentioned fine powder composition is in a state where ignition does not occur easily due to the moisture contained therein, in the decarburization process (S40), an ignition agent made of a combustible material is injected into the fine powder composition to trigger ignition and maintain the firepower even in a state where moisture is contained.
상기 착화재는 목재칩, 톱밥, 등겨, 폐 플라스틱을 포함하는 군으로부터 선택된 하나 또는 하나 이상으로 구성한다.The above ignition material is composed of one or more selected from the group consisting of wood chips, sawdust, husks, and waste plastic.
상기 탈탄공정(S40)이 이루어지는 탄화조는 점화조가 있는 하부에서 부터 상부로 열이 작용하므로 미분조성물 전반에 열기가 고르게 전달되기 어려우며, 특히 상기 미분조성물에 함유된 수분으로 인해 착화를 촉발하기 쉽지 않다. 따라서, 상기 탈탄공정(S40)에서는 가연성을 가지는 재료로 이루어지는 착화재를 탄화조에 투입하여 미분조성물 전반에 걸쳐 열을 균등하게 작용하고 수분 증발을 통해 공극 형성을 유도하도록 구성한다.In the carbonization tank where the above decarburization process (S40) is carried out, heat is applied from the bottom where the ignition tank is located to the top, so it is difficult for the heat to be evenly transferred to the entire fine powder composition, and in particular, it is not easy to trigger ignition due to moisture contained in the above fine powder composition. Therefore, in the above decarburization process (S40), an ignition agent made of a combustible material is injected into the carbonization tank so as to evenly apply heat to the entire fine powder composition and induce the formation of pores through moisture evaporation.
상기 탈탄공정(S40)에서는, 착화재를 미분조성물에 혼합하거나, 또는 착화재와 미분조성물을 수평 방향으로 교번하여 적층하거나, 또는 착화재를 미분조성물에 수직 방향으로 일정 간격 삽입하여 미분조성물 내에 균등 분포하도록 투입한다.In the above decarburization process (S40), the ignition agent is mixed into the fine powder composition, or the ignition agent and the fine powder composition are alternately laminated in the horizontal direction, or the ignition agent is inserted into the fine powder composition at a certain interval in the vertical direction so as to be evenly distributed within the fine powder composition.
상기 착화재는 분말 또는 칩 상태로 구비하는바, 착화재의 종류 및 사용 환경에 따라서 혼합 방식을 적용한다. 상기 착화재를 미분조성물에 교반하여 착화조에 투입하면 분산율을 극대화할 수 있으며, 또는 착화조에 미분조성물과 착화재를 단계적으로 교번하여 투입하거나, 또는 미분조성물이 투입된 착화조에 착화재를 수직 방향으로 일정 간격으로 삽입하여 착화 및 화력 지속 효율을 더욱 향상할 수 있다.The above ignition agent is provided in powder or chip form, and the mixing method is applied according to the type of ignition agent and the usage environment. The dispersion rate can be maximized by mixing the ignition agent into the fine powder composition and then adding it to the ignition tank, or the fine powder composition and the ignition agent can be alternately added step by step to the ignition tank, or the ignition agent can be inserted into the ignition tank where the fine powder composition has been added at regular intervals in the vertical direction to further improve the ignition and thermal power sustainment efficiency.
상기 재생공정(S50)은 탈탄된 미분조성물을 냉각하여 탄화조에서 배출하고 재생 내화재를 수득하는 공정이다.The above regeneration process (S50) is a process of cooling the decarbonized fine particle composition, discharging it from the carbonization tank, and obtaining a regenerated refractory material.
상기 재생공정(S50)은, 장시간에 걸친 탈탄공정(S40)에 의해 가열된 내화재를 자연상태로 방치하여 냉각할 경우 냉각속도가 장시간 소요되어 비효율적이므로 상기 탈탄공정(S40)이 완료된 후 탄화조에 공기를 공급하여 원료를 응축하고 탄화조의 바닥 및 벽면으로부터 분리하여 배출한다.The above regeneration process (S50) is inefficient because it takes a long time to cool the refractory material heated by the long-term decarburization process (S40) by leaving it in a natural state. Therefore, after the decarburization process (S40) is completed, air is supplied to the carbonization tank to condense the raw material and discharge it by separating it from the bottom and walls of the carbonization tank.
이상에서와 같은 본 발명에 따른 카본함유 폐 내화재 탈탄방법은 종래 기술의 카본질 폐 내화재를 탈탄하는 방법에서 카본함유 내화물 또는 폐 내화재 원료 중에서 통상의 탈탄방법을 적용할 수 없어 폐기되는 미분 상태의 원료를 탈탄공정에 효과적으로 적용 가능한 폐 내화재 탈탄방법을 제공한다.The method for decarbonizing carbon-containing waste refractory according to the present invention as described above provides a method for decarbonizing carbon-containing waste refractory by effectively applying a finely divided raw material, which is discarded because a conventional decarbonization method cannot be applied among carbon-containing refractory or waste refractory raw materials in a decarbonization process, to the decarbonization process.
따라서, 본 발명은 원료 폐기량을 최소화하고 재생률을 증진하여 폐기물 처리 비용을 절감하고 환경에 이바지하여 생산성을 향상하면서 고순도, 고품질의 재생 내화재를 제조하도록 하는 효과가 있으므로 산업상 이용 가능성이 클 것으로 기대된다.Accordingly, the present invention is expected to have great potential for industrial use because it has the effect of manufacturing high-purity, high-quality recycled refractory materials while minimizing the amount of raw material waste and increasing the regeneration rate, thereby reducing waste disposal costs and contributing to the environment, thereby improving productivity.
S10: 전처리공정
S20: 미분분리공정
S30: 미분조성물형성공정
S40: 탈탄공정
S50: 재생공정S10: Pretreatment process
S20: Differential separation process
S30: Differential Composition Formation Process
S40: Decarbonization process
S50: Regeneration process
Claims (3)
카본함유 내화물 또는 폐 내화재 원료를 선별하여 슬래그 및 불순물과 가스를 제거한 후 건조하는 전처리공정(S10)과,
전처리공정(S10)을 거친 원료를 파쇄하여 15mm 이상의 원료는 통상의 탈탄방법에 의해 재생하도록 분리하고, 15mm 이하 입도의 원료를 별도 수거 후 분쇄하여 균등한 입도로 미분화하는 미분분리공정(S20)과,
미분분리공정(S20)에서 수득한 원료와, 원료의 10 ~ 50중량%의 물을 혼합 교반하여 반죽 상태로 형성하는 미분조성물형성공정(S30)과,
미분조성물형성공정(S30)에서 형성된 반죽 상태의 미분조성물을 탄화조에 투입하고 1300 내지 1600℃ 온도에서 수시간 동안 가열하여 미분조성물 내의 수분을 증발하면서 공극을 형성하고 산소 및 화력을 전달하여 카본을 탄화하는 탈탄공정(S40)과,
탈탄공정(S40)을 거친 미분조성물을 냉각하여 탄화조에서 배출하고 재생 내화재를 수득하는 재생공정(S50)을 포함하고,
상기 미분조성물형성공정(S30)에서는, 탈탄공정(S40)의 진행 상태에 따라서 미분조성물의 수분 함량을 10 ~ 50중량% 범위 내에서 차등 조성하여, 초기 착화시에는 착화가 원활하도록 조성하고, 착화가 이루어진 후에는 수분 증발에 따른 공극 형성이 원활하도록 조성하여 반죽 상태로 투입하고,
상기 탈탄공정(S40)에서는,
미분조성물의 내부에 가연성 소재로 이루어지는 착화재를 투입하여 수분 함유 상태에서도 화력을 지속시키도록 이루어지고,
상기 착화재는 목재칩, 톱밥, 등겨, 폐 플라스틱을 포함하는 군으로부터 선택된 하나 또는 하나 이상으로 구비하되, 미분조성물에 혼합하거나, 또는 착화재와 미분조성물을 수평 방향으로 교번하여 적층하거나, 또는 착화재를 미분조성물에 수직 방향으로 일정 간격 삽입하여, 미분조성물 내에 착화재가 균등 분포하도록 투입하는 것을 특징으로 하는 카본함유 폐 내화재 탈탄방법.In a method for decarburizing carbon-containing waste refractory materials for manufacturing recycled refractory materials from finely divided raw materials that cannot be decarburized by conventional decarburization methods among carbon-containing refractory materials or waste refractory materials,
A pretreatment process (S10) for selecting carbon-containing refractory or waste refractory raw materials, removing slag, impurities, and gas, and then drying them;
The raw materials that have gone through the pretreatment process (S10) are crushed and separated to be regenerated by a conventional decarbonization method for raw materials larger than 15 mm, and the raw materials with a particle size of 15 mm or less are collected separately and crushed to a uniform particle size in the fine separation process (S20).
A process for forming a fine powder composition (S30) by mixing and stirring the raw material obtained in the fine powder separation process (S20) and 10 to 50 wt% of water of the raw material into a dough state,
The fine powder composition formed in the fine powder composition forming process (S30) is put into a carbonization tank and heated at a temperature of 1300 to 1600℃ for several hours to evaporate moisture in the fine powder composition, form pores, and carbonize carbon by transmitting oxygen and heat (S40).
It includes a regeneration process (S50) for cooling the fine powder composition that has undergone the decarbonization process (S40) and discharging it from the carbonization tank to obtain regenerated refractory material.
In the above-mentioned fine particle composition forming process (S30), the moisture content of the fine particle composition is differentially formed within the range of 10 to 50 wt% depending on the progress of the decarbonization process (S40), so that the ignition is smooth during the initial ignition, and after the ignition is completed, the pores are formed smoothly due to moisture evaporation, and then the fine particle composition is introduced in a dough state.
In the above decarbonization process (S40),
By injecting an ignition agent made of a combustible material into the interior of the powder composition, it is possible to maintain fire power even in a state containing moisture.
A method for decarburizing carbon-containing waste refractory, characterized in that the igniter comprises one or more selected from the group consisting of wood chips, sawdust, wood husks, and waste plastics, and is mixed into a fine powder composition, or the igniter and the fine powder composition are alternately laminated in a horizontal direction, or the igniter is inserted into the fine powder composition at a predetermined interval in a vertical direction so that the igniter is evenly distributed within the fine powder composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210075992A KR102703669B1 (en) | 2021-06-11 | 2021-06-11 | Method for decarbonation of waste refractory materials containing carbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210075992A KR102703669B1 (en) | 2021-06-11 | 2021-06-11 | Method for decarbonation of waste refractory materials containing carbon |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220167000A KR20220167000A (en) | 2022-12-20 |
KR102703669B1 true KR102703669B1 (en) | 2024-09-04 |
Family
ID=84539178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210075992A Active KR102703669B1 (en) | 2021-06-11 | 2021-06-11 | Method for decarbonation of waste refractory materials containing carbon |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102703669B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102078467B1 (en) * | 2018-08-21 | 2020-02-17 | 김대철 | Method and system for regenerating of refractory material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100908852B1 (en) | 2007-07-06 | 2009-07-22 | 한국세라믹기술원 | METHOD FOR PRODUCING MAGNESIUM COMPOUND FROM WASTE MAG CARBON REFRACTORY |
KR101105437B1 (en) | 2010-05-11 | 2012-01-17 | (주)포스코켐텍 | Recycling of Waste Mag Carbon Refractories |
-
2021
- 2021-06-11 KR KR1020210075992A patent/KR102703669B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102078467B1 (en) * | 2018-08-21 | 2020-02-17 | 김대철 | Method and system for regenerating of refractory material |
Also Published As
Publication number | Publication date |
---|---|
KR20220167000A (en) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101550016B (en) | Magnesia chrome carbon coating and preparation method thereof | |
CN101613207B (en) | Low-carbon corundum spinelle brick for refined steel ladles and preparation method thereof | |
CN110746180A (en) | Sintered aluminum-chromium-zirconium sliding plate brick for copper smelting anode furnace and preparation method thereof | |
CN103011853A (en) | Manufacturing method of magnesium-calcium regeneration brick | |
CN114180954A (en) | Environment-friendly low-carbon aluminum-magnesium spinel brick and preparation method thereof | |
KR102078467B1 (en) | Method and system for regenerating of refractory material | |
KR102703669B1 (en) | Method for decarbonation of waste refractory materials containing carbon | |
CN114276124A (en) | Preparation method of calcium-containing periclase-magnesia-alumina spinel refractory material for RH refining furnace | |
KR101934756B1 (en) | Method and apparatus for decarbonation of waste refractory materials containing carbon, and refractory materials produced by the method | |
CN108440001A (en) | A kind of the converter body brick and its production method of addition titanium nitride | |
CN1654415A (en) | High-calcium low-iron magnesian dry method ramming mass and its production method | |
CN107963900A (en) | Compound saggar, preparation method and applications | |
CN110256056B (en) | Titanium-containing furnace protection ramming mass for overall restoration of blast furnace hearth and use method | |
CN114180976B (en) | Method for treating waste magnesia-chrome bricks by using iron-making blast furnace | |
JP5663121B2 (en) | Reusing used carbon-containing unfired brick | |
KR101934758B1 (en) | Method for refining of waste refractory materials containing spinel and decarbonation | |
CN101654373A (en) | Method for preparing Fe-Sialon spinel complex phase fire-proof material | |
JP7328566B2 (en) | Manufacturing method of recycled refractory raw material | |
KR102695534B1 (en) | Recycleing apparatus for waste refractory materials containing carbon | |
CN108866634B (en) | A method of magnesia crystal whisker is prepared using waste magnesia carbon brick substrate material as raw material | |
CN107032806A (en) | One kind produces converter body brick and preparation method thereof using black magnesia | |
KR101663204B1 (en) | Method for manufacturing refractory mending materials and itself | |
CN117358726A (en) | Method for recycling waste refractory materials | |
JP7699570B2 (en) | Method for producing refractory raw material and method for producing refractory for molten iron container | |
KR102224473B1 (en) | Bruquette composition for steel process substitute using steel making process by-products (high Fe content by-product, waste refractories) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20210611 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20231103 Patent event code: PE09021S01D |
|
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240902 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20240902 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |