KR102696301B1 - Method for operating nuclear power plant comprising multiple SMR - Google Patents
Method for operating nuclear power plant comprising multiple SMR Download PDFInfo
- Publication number
- KR102696301B1 KR102696301B1 KR1020220014836A KR20220014836A KR102696301B1 KR 102696301 B1 KR102696301 B1 KR 102696301B1 KR 1020220014836 A KR1020220014836 A KR 1020220014836A KR 20220014836 A KR20220014836 A KR 20220014836A KR 102696301 B1 KR102696301 B1 KR 102696301B1
- Authority
- KR
- South Korea
- Prior art keywords
- reactors
- production
- nuclear power
- power plant
- multipurpose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims abstract description 61
- 230000005611 electricity Effects 0.000 claims abstract description 30
- 238000011156 evaluation Methods 0.000 claims description 14
- 230000032683 aging Effects 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 230000035882 stress Effects 0.000 claims description 8
- 230000001186 cumulative effect Effects 0.000 claims description 7
- 239000013505 freshwater Substances 0.000 claims description 5
- 230000004044 response Effects 0.000 description 7
- 230000006399 behavior Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013486 operation strategy Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Public Health (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Water Supply & Treatment (AREA)
- Tourism & Hospitality (AREA)
- General Health & Medical Sciences (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
본 발명은 복수의 소형모듈형 원자로를 포함하는 원자력발전소의 운전방법에 관한 것으로, 전기 판매단가에 따라 전기생산량과 다목적 생산량을 결정하는 단계; 결정된 상기 다목적 생산량이 상기 원자력발전소의 다목적 생산능력을 초과한 경우 상기 각 소형모듈형 원자로를 1차 평가하여 정지대상 원자로와 운전대상 원자로를 결정하는 단계; 및 상기 운전대상 원자로를 2차 평가하여 부하추종운전을 수행할 추종운전 원자로와 부하추종운전을 수행하지 않을 비추종운전 원자로를 결정하는 단계를 포함한다.The present invention relates to a method for operating a nuclear power plant including a plurality of small modular reactors, comprising: a step of determining an electricity production amount and a multipurpose production amount according to an electricity sales price; a step of evaluating each of the small modular reactors for the first time to determine a reactor to be shut down and a reactor to be operated if the determined multipurpose production amount exceeds the multipurpose production capacity of the nuclear power plant; and a step of evaluating the operating reactors for the second time to determine a reactor to be subjected to load following operation and a reactor to be subjected to non-load following operation.
Description
본 발명은 복수의 소형모듈형 원자로를 포함하는 원자력발전소의 운전방법에 관한 것이다.The present invention relates to a method for operating a nuclear power plant comprising a plurality of small modular reactors.
안정적인 전력생산을 위해서 신재생만으로는 대응이 불가능하고, 생산이 없는 시간대에도 연속적으로 생산해야 하는 원자력발전소가 필요하다.In order to ensure stable power production, it is impossible to rely solely on renewable energy sources, and nuclear power plants that can continuously produce even during non-production times are needed.
또한 안정적인 전력망 운용을 위해서는 전력생산의 양을 조절할 수 있어야 한다. 따라서 원자력 발전소에서는 부하를 추종할 수 있는 능력이 요구된다. 부하추종 운전시에는 원자력 발전소의 효율과 안정성을 고려해야 한다. In addition, in order to operate a stable power grid, the amount of power generation must be regulated. Therefore, nuclear power plants require the ability to follow the load. When operating under load following, the efficiency and stability of the nuclear power plant must be considered.
이런 사회적 변화와 더불어 소형모듈형 원자력발전소의 도입이 요구되고 있다. 현재 신재생의 보급 확대에 발 맞추어 상생하여 운영할 수 있는 원자력발전소 운전전략 수립이 필요하다.Along with these social changes, the introduction of small modular nuclear power plants is required. It is necessary to establish an operation strategy for nuclear power plants that can operate in harmony with the current expansion of renewable energy.
특히 소형모듈형 원자력발전소에는 복수의 원자로가 포함되는데, 전력수요 및 부하추종운전 등에 따른 원자로 별 운전전략 수립이 필요하다.In particular, small modular nuclear power plants contain multiple reactors, and it is necessary to establish an operation strategy for each reactor based on power demand and load-following operation.
따라서 본 발명의 목적은 복수의 소형모듈형 원자로를 포함하는 원자력발전소의 운전방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for operating a nuclear power plant including a plurality of small modular reactors.
상기 본 발명의 목적은 복수의 소형모듈형 원자로를 포함하는 원자력발전소의 운전방법에 있어서, 전기 판매단가에 따라 전기생산량과 다목적 생산량을 결정하는 단계; 결정된 상기 다목적 생산량이 상기 원자력발전소의 다목적 생산능력을 초과한 경우 상기 각 소형모듈형 원자로를 1차 평가하여 정지대상 원자로와 운전대상 원자로를 결정하는 단계; 및 상기 운전대상 원자로를 2차 평가하여 부하추종운전을 수행할 추종운전 원자로와 부하추종운전을 수행하지 않을 비추종운전 원자로를 결정하는 단계를 포함하는 것에 의해 달성된다.The above object of the present invention is achieved by a method for operating a nuclear power plant including a plurality of small modular reactors, comprising: a step of determining an electricity production amount and a multipurpose production amount according to an electricity sales price; a step of evaluating each of the small modular reactors for the first time to determine a reactor to be shut down and a reactor to be operated if the determined multipurpose production amount exceeds the multipurpose production capacity of the nuclear power plant; and a step of evaluating the operating reactors for the second time to determine a reactor to be subjected to load following operation and a reactor to be subjected to non-load following operation.
상기 다목적 생산량은 수소 생산량 및 담수 생산량 중 적어도 어느 하나를 포함할 수 있다.The above multipurpose production may include at least one of hydrogen production and fresh water production.
상기 1차 평가에서는 상기 각 소형모듈형 원자로의 기기건전성과 노후화도를 평가할 수 있다.The above first evaluation can evaluate the equipment health and aging of each small modular reactor.
상기 기기건전성과 노후화도는, 해당 기기에 가해지는 응력의 크기 및 응력이 가해지는 시간에 기초하여 판단할 수 있다.The above device health and aging can be judged based on the size of stress applied to the device and the time over which the stress is applied.
상기 2차 평가에서는 상기 운전대상 원자로의 부하추종시 계통안정성 및 기기건전성을 평가할 수 있다.In the above second evaluation, the system stability and equipment health can be evaluated when the load of the target nuclear reactor is followed.
상기 2차 평가에서의 기기건전성은 해당 기기의 누적피로계수를 기초하여 판단할 수 있다.The device health in the above second evaluation can be judged based on the cumulative fatigue coefficient of the device.
상기 2차 평가에서의 계통안정성은 부하추종 운전 시의 목표도달 시간 및 노심축방향 출력편차에 기초하여 판단할 수 있다.The system stability in the above second evaluation can be judged based on the target arrival time and the core axial output deviation during load following operation.
본 발명에 따르면 복수의 소형모듈형 원자로를 포함하는 원자력발전소의 운전방법이 제공된다.According to the present invention, a method for operating a nuclear power plant including a plurality of small modular reactors is provided.
도 1은 본 발명의 일실시예에 따른 원자력발전소의 운전방법을 나타낸 순서도이다.Figure 1 is a flow chart showing a method for operating a nuclear power plant according to one embodiment of the present invention.
이하 도면을 참조하여 본 발명을 상세히 설명한다.The present invention will be described in detail with reference to the drawings below.
도 1은 본 발명의 일실시예에 따른 원자력발전소의 운전방법을 나타낸 순서도이다.Figure 1 is a flow chart showing a method for operating a nuclear power plant according to one embodiment of the present invention.
원자력 발전소는 복수의 소형모듈형 원자로(SMR)을 포함한다. SMR의 개수는 2개 내지 20개 또는 4개 내지 10개일 수 있으나 이에 한정되지 않는다.The nuclear power plant contains multiple small modular reactors (SMRs). The number of SMRs may be, but is not limited to, 2 to 20 or 4 to 10.
원자력 발전소는 SMR을 이용해 전기를 생산하거나, 생산된 전기를 이용한 다목적 생산을 수행할 수 있다. 다목적 생산은 수소 생산 또는 담수 생산일 수 있으나 이에 한정되지 않는다. 다목적 생산은 SMR을 이용한 직접적인 수소 생산도 포함한다.Nuclear power plants can use SMRs to produce electricity or perform multipurpose production using the electricity produced. Multipurpose production can be, but is not limited to, hydrogen production or freshwater production. Multipurpose production also includes direct hydrogen production using SMRs.
본 발명에서 원자력 발전소는 태양광 발전 및 풍력 발전과 같은 신재생에너지 생산과 함께 스마트 그리드 내에 속해 있을 수 있다.In the present invention, a nuclear power plant may be included in a smart grid together with renewable energy production such as solar power generation and wind power generation.
먼저, 전기 판매단가에 따라 전기생산량과 다목적 생산량을 결정(S100)한다.First, the electricity production volume and multipurpose production volume are determined based on the electricity sales price (S100).
신재생에너지원의 증가로 특정시간대에 전기 생산이 집중됨에 따라 판매단가가 하루를 기준으로 유동적이다. 판매단가가 높은 시간에 집중적 전기생산을 담당하고 그 외의 시간에는 전기생산을 하지 않는 모듈을 구분하거나, 수소생산 등의 다목적에 이용이 필요하다. As renewable energy sources increase, electricity production is concentrated in certain time periods, so the sales price is fluid on a daily basis. It is necessary to distinguish modules that handle concentrated electricity production during times when the sales price is high and do not produce electricity at other times, or to use them for multiple purposes such as hydrogen production.
전기 판매단가보다 다목적으로 생산한 것이 단가가 높은 경우, 굳이 전기 생산을 하지 않는 경우가 유리할 수 있다.If the unit price of electricity produced for multiple purposes is higher than the unit price of electricity sales, it may be advantageous not to produce electricity.
위와 같이 전기 판매단가 등을 감안하여 전기생산량과 다목적 생산량을 결정한다. 본 발명에서 '다목적 생산량'은 생산된 전기를 이용해 다목적 생산을 수행하는 경우, 다목적 생산에 사용된 전기생산량일 수 있다.As described above, the electricity production amount and multipurpose production amount are determined by taking into account the electricity sales price, etc. In the present invention, the 'multipurpose production amount' may be the electricity production amount used for multipurpose production when performing multipurpose production using the produced electricity.
이후 결정된 다목적 생산량이 원자력발전소의 다목적 생산능력을 초과하는지 판단(S200)한다.Afterwards, it is determined whether the determined multipurpose production volume exceeds the multipurpose production capacity of the nuclear power plant (S200).
원자력 발전소는 수소 또는 담수를 생산할 수 있는데, 수소 또는 담수의 생산능력에는 한계가 있다. 따라서 다목적 생산량이 다목적 생산능력을 초과하는 경우가 발생할 수 있다.Nuclear power plants can produce hydrogen or fresh water, but there is a limit to the production capacity of hydrogen or fresh water. Therefore, there may be cases where the multipurpose production capacity exceeds the multipurpose production capacity.
판단결과 결정된 다목적 생산량이 원자력발전소의 다목적 생산능력을 초과하지 않은 경우 전기생산 및 다목적 생산(S300)을 수행한다.If the multipurpose production amount determined as a result of the judgment does not exceed the multipurpose production capacity of the nuclear power plant, electricity production and multipurpose production (S300) are performed.
판단결과 결정된 다목적 생산량이 원자력발전소의 다목적 생산능력을 초과한 경우 각 소형모듈형 원자로를 1차 평가하여 정지대상 원자로와 운전대상 원자로를 결정(S400)한다.If the multipurpose production volume determined as a result of the judgment exceeds the multipurpose production capacity of the nuclear power plant, each small modular reactor is evaluated for the first time to determine which reactors are to be shut down and which reactors are to be operated (S400).
다목적 생산량이 원자력발전소의 다목적 생산능력을 초과한 경우에는 일부 소형모듈형 원자로의 운전을 정지하는 것이 효과적이다.If the multipurpose production exceeds the multipurpose production capacity of the nuclear power plant, it is effective to stop the operation of some small modular reactors.
1차 평가는 소형모듈형 원자로 별 모듈단위 기기건전성과 노후화 정도가 기준이 된다. The first evaluation will be based on the module-by-module equipment integrity and aging of each small modular reactor.
기기건전성 및 노후화는 다양한 방식으로 평가할 수 있다.Device health and aging can be assessed in a variety of ways.
예를 들어 각 기기의 건전성에 대한 표를 만들거나, 인공지능기법을 이용하여 기기 환경 및 기기의상태를 지속적으로 감시하여 기기건전성과 노후화를 평가할 수 있다.For example, you can create a table of the health of each device, or use artificial intelligence techniques to continuously monitor the device environment and condition to evaluate device health and aging.
특히 기기의 건전성은 기기의 응력을 도출하여 평가할 수 있다.In particular, the health of a device can be evaluated by deriving the stress of the device.
이를 위해 기기의 온도, 압력, 변위 등을 감시하여 기기의 응력을 도출하며, 도출된 응력은 동일 면적에 대해서 피로 수명 사이클로써 평가될 수 있다. To this end, the temperature, pressure, displacement, etc. of the device are monitored to derive the stress of the device, and the derived stress can be evaluated as a fatigue life cycle for the same area.
기기마다 설계 피로수명사이클을 갖고 있다. 운전 초반에는 이에 대해서 거의 영향이 없지만, 시간이 지날수록 또한 과도상태가 많을수록 설계피로수명사이클에 근접하는 기기가 존재하게 된다.Each device has a design fatigue life cycle. At the beginning of operation, this has little effect, but as time passes and there are many transient conditions, there are devices that approach the design fatigue life cycle.
더 구체적으로는 사용시간, 과도상태의 강도 및 과도상태에서의 시간 등을 감안하여 평가할 수 있다.More specifically, it can be evaluated by considering the usage time, the intensity of the transient state, and the time in the transient state.
원자력 발전소는 고정출력(100%)으로 운전하는 소형모듈형 원자로, 매일 부하추종 및 수소생산 등 2차측 변화가 많이 일어나는 소형모듈형 원자로, 신규로 추가된 소형모듈형 원자로 등 다양한 소형모듈형 원자로로 구성되어있기 때문에 소형모듈형 원자로 별로 기기 건전성 및 노후화의 평가가 가능하다. Nuclear power plants are composed of a variety of small modular reactors, including small modular reactors that operate at a fixed output (100%), small modular reactors that experience many secondary changes such as daily load following and hydrogen production, and newly added small modular reactors. Therefore, it is possible to evaluate the equipment health and aging of each small modular reactor.
다른 방법으로 기기 건전성 및 노후화 판단은 일정한 출력에서 얼마의 빈도를 가지고 얼마의 크기의 변화가 이루어지는지(즉, 피로감시)로 판단할 수 있으며, 누적피로계수를 통해 판단할 수 있다.Alternatively, device health and aging can be assessed by the frequency and magnitude of changes at a constant output (i.e., fatigue monitoring), and can be assessed through the cumulative fatigue coefficient.
1차 평가 결과 정지대상 원자로로 평가된 정지대상 원자로는 운전을 정지(S500)한다.The reactors that are evaluated as subject to shutdown based on the results of the first evaluation are shut down (S500).
1차 평가 결과 운전대상 원자로로 판단된 원자로는 2차 평가하여 운전대상 원자로를 2차 평가하여 부하추종운전을 수행할 추종운전 원자로와 부하추종운전을 수행하지 않을 비추종운전 원자로를 결정(S600)한다.The reactors judged as operational reactors based on the results of the first evaluation are subject to a second evaluation to determine which reactors will perform load-following operation and which reactors will not perform load-following operation (S600).
2차 평가의 기준은 부하추종운전을 수행할 경우의 계통안정성과 기기건전성이다.The criteria for the secondary evaluation are system stability and equipment health when performing load following operation.
본 단계에서의 기기건전성은 각 소형모듈형 원자로의 누적피로계수를 기준으로 판단할 수 있으며, 구체적으로 아래와 같이 판단할 수 있다.The equipment health at this stage can be judged based on the cumulative fatigue coefficient of each small modular reactor, and can be judged specifically as follows.
가. 누적피로계수 > 0.9 : 부하추종 운전이 불가하며 일정한 출력을 유지할 수 있는 운전 A. Cumulative fatigue coefficient > 0.9: Load-following operation is not possible and operation that can maintain a constant output is possible.
나. 0.7 < 누적피로계수 < 0.9 : 1차측 및 2차측 부하추종이 가능하지만, 최소화하는 운전 선호하는 방향B. 0.7 < Cumulative fatigue coefficient < 0.9: Primary and secondary loads can be followed, but the driving direction that minimizes them is preferred.
다. 누적피로계수 < 0.7 : 1차측 및 2차측 부하추종이 가능한 운전 D. Cumulative fatigue coefficient < 0.7: Operation that allows primary and secondary load following
원자력 발전소는 일정한 출력을 유지할 때 계통 안정성 및 기기건전성을 유지하기 유리하다.Nuclear power plants are advantageous in maintaining system stability and equipment health when maintaining a constant output.
예를 들어 부하추종을 통해서 1,2차측 출력변동이 일어난다면, 발전소는 해당 출력 변화를 추종하기 위해서 제어봉이동 및 붕산주입 등을 통해 출력을 변화시킨다.For example, if the primary and secondary outputs change through load following, the power plant changes the output through control rod movement and boric acid injection to follow the change in output.
또한, 이에 수반하여 온도, 압력 등에 (빠른 응답) 변화가 이뤄지며, 그중에서는 노심축방향출력분포 변화도 있다.In addition, there are (rapid response) changes in temperature, pressure, etc., and among them, there is also a change in the core axial power distribution.
대부분의 제어(특히 빠른 응답을 하거나 예측가능한 대상)는 자동제어를 통해 이뤄지지지만, 일부 제어에 대해서는 느리게 반응하여, 예측이 어렵고 양상이 다양하여 제어가 용이하지 않은 경우가 있다.Most controls (especially those that respond quickly or are predictable) are accomplished through automatic control, but some controls are slow to respond, difficult to predict, or have diverse behaviors, making them difficult to control.
이는 계통안정성을 위배하게 만들고 해당사항이 운영기술지침서의 운전제한치를 초과하여 안전기능 관련한 기기 작동을 수반할 수도 있다. This may compromise system stability and may involve operation of safety-related equipment beyond the operating limits of the operating technical manual.
계통안정성의 판단에서는 빠른 응답을 갖는 변화에 대응하여 자동(PID제어 등) 제어를 통해서 수행 가능한 사항에 대해서는 목표변화에 도달하는 시간을 고려할 수 있다.In judging system stability, the time required to reach the target change can be considered for items that can be performed through automatic control (such as PID control) in response to changes with a quick response.
하지만 부하추종의 크기(출력 증가 감소 폭) 및 빈도수가 클 수록 느린 응답을 갖는 노심축방향출력분포에 대해서는 영향이 더 크게 작동한다.However, the larger the size (power increase/decrease) and frequency of load following, the greater the effect on the core axial power distribution, which has a slow response.
느린 응답을 갖는 노심축방향 출력분포에 대해서는 ASI(축방향축력편차) 값의 크기를 통해서 계통안정성을 판단할 수 있다. For the axial power distribution along the core with slow response, the system stability can be judged through the size of the ASI (axial force deviation) value.
따라서 계통안정성은 빠른응답을 갖는 것에 대한 목표도달시간 및 느린반응을 갖는 것에 대한 제어 대상 크기와 안정도달시간을 안정성 판단기준으로 선정할 수 있다. 구체적인 판단은 기존 운전이력 등의 데이터를 검토 및 예측하여 해당 운전을 선택할지를 미리 선택할 수 있으며, 인공지능을 활용할 수도 있다.Therefore, the system stability can be selected as the stability judgment criteria for the target arrival time for fast response and the control target size and stability arrival time for slow response. Specific judgment can be made by reviewing and predicting data such as existing operation history to select the operation in advance, and artificial intelligence can also be utilized.
부하추종운전에 따라 원자로의 출력을 감발하는 경우 출력변동에 따른 발전소 전체적인 거동이 변화한다. 거동 변화는 계통안정성 및 기기 건전성에 영향을 미칠 수 있다. 단기적 변화 뿐만 아니라, 물리적 특성에 기인하여 제어봉 운전에 수반된 Xe 거동에 따른 축방향 출력분포에 영향을 주어 발전소의 안정성에 영향을 줄 수 있다.When the reactor output is reduced according to load following operation, the overall behavior of the power plant changes according to the output fluctuation. The behavior change can affect the system stability and equipment health. In addition to short-term changes, it can affect the axial power distribution according to the Xe behavior accompanying the control rod operation due to physical characteristics, which can affect the stability of the power plant.
특히, 빈번한 출력변동의 경우, 일정한 출력을 유지하는 경우에 비교할때, 기기에 stress를 유발하여 기기건전성 및 노후화에 영향을 줄 수 있다. In particular, in the case of frequent output fluctuations, compared to cases where constant output is maintained, it can cause stress to the device, which can affect the device's health and aging.
본 발명과 같이 원자로가 다수 모듈로 구성된 경우, 모듈마다 기기 건전성 및 노후화 정도가 다를 수 있다. 이를 평가하여 기기건전성/노후화가 덜 된 모듈을 운전하게 하여 균형있는 발전소 관리를 수행하는 것이다.In the case where a nuclear reactor is composed of multiple modules as in the present invention, the equipment health and aging level may differ for each module. This is evaluated and modules with less equipment health/aging are operated to perform balanced power plant management.
추종운전 원자로는 부하추종운전 수행(S700)하고 비추종운전 원자로는 정상 운전을 수행(S800)한다.The follower operation reactor performs load following operation (S700), and the non-follower operation reactor performs normal operation (S800).
본 발명에서는 신재생 에너지 생산이 적어서 판매단가가 높은 경우, 가용한 소형모듈형 원자력 발전소는 모두 전기생산을 담당한다. In the present invention, when renewable energy production is low and the selling price is high, all available small modular nuclear power plants are responsible for electricity production.
신재생 에너지 생산이 많아 판매단가가 낮은 경우, 소형모듈형 원자력 발전소중 일부 모듈만 운전하고, 일부는 잉여전기를 이용하여 수소 생산, 담수화 등의 목적으로 전기를 사용한다. In cases where renewable energy production is high and the unit sales price is low, only some modules of small modular nuclear power plants are operated, and some of them use the surplus electricity for purposes such as hydrogen production and desalination.
신재생 에너지 생산이 극도로 늘어나서 다목적(수소생산, 담수화) 생산을 제외하고도 잉여 전기생산이 있는 경우, 전기생산에 필요한 양을 위한 소형모듈형원자력 발전소만 운영하고, 해당 양을 초과하는 모듈은 기기 건전성 및 노후화 평가를 통해 해당 갯수만큼 정지하여 전기생산양을 줄이는 것이다.In cases where renewable energy production has increased significantly and there is surplus electricity production beyond multipurpose (hydrogen production, desalination) production, small modular nuclear power plants will be operated only for the amount required for electricity production, and modules exceeding that amount will be shut down by a corresponding number through equipment health and aging assessment, thereby reducing the amount of electricity production.
이때 정지하지 않고 운영중인 소형모듈형원자력 발전소의 일정한 전기양을 생산하여 계통안정성 및 기기건전성을 고려하여 초과하는 전기양을 버리더라도 100% 출력을 운전하거나, 전력망에서 요구하는 전기양만큼만 생산할 수 있도록 부하추종 운전을 통하여 전기를 생산한다.At this time, a small modular nuclear power plant that is not stopped and is in operation produces a certain amount of electricity, and considering the stability of the system and the health of the equipment, it operates at 100% output even if the excess amount of electricity is discarded, or produces electricity through load following operation so that only the amount of electricity required by the power grid is produced.
전술한 실시예들은 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The above-described examples are examples for explaining the present invention, and the present invention is not limited thereto. Those skilled in the art to which the present invention pertains will be able to implement the present invention by making various modifications thereto, and therefore the technical protection scope of the present invention should be defined by the appended patent claims.
Claims (7)
전기 판매단가에 따라 전기생산량과 다목적 생산량을 결정하는 단계;
결정된 상기 다목적 생산량이 상기 원자력발전소의 다목적 생산능력을 초과한 경우 상기 각 소형모듈형 원자로를 1차 평가하여 정지대상 원자로와 운전대상 원자로를 결정하는 단계;
상기 운전대상 원자로를 2차 평가하여 부하추종운전을 수행할 추종운전 원자로와 부하추종운전을 수행하지 않을 비추종운전 원자로를 결정하는 단계를 포함하며,
상기 다목적 생산량은 수소 생산량 및 담수 생산량 중 적어도 어느 하나를 포함하며,
상기 1차 평가에서는 상기 각 소형모듈형 원자로의 기기건전성과 노후화도를 평가하며,
상기 기기건전성과 노후화도는,
해당 기기에 가해지는 응력의 크기 및 응력이 가해지는 시간에 기초하여 판단하며,
상기 2차 평가에서는 상기 운전대상 원자로의 부하추종시 계통안정성 및 기기건전성을 평가하며,
상기 2차 평가에서의 기기건전성은 해당 기기의 누적피로계수를 기초하여 판단하는 방법.A method for operating a nuclear power plant comprising multiple small modular reactors,
Step for determining the amount of electricity produced and the amount of multipurpose production based on the electricity sales price;
A step of first evaluating each of the small modular reactors to determine which reactors are to be shut down and which reactors are to be operated, if the determined multipurpose production amount exceeds the multipurpose production capacity of the nuclear power plant;
It includes a step of performing a second evaluation of the above-mentioned target reactors to determine which reactors will perform load following operation and which reactors will not perform load following operation.
The above multipurpose production includes at least one of hydrogen production and fresh water production,
In the above first evaluation, the equipment integrity and aging of each small modular reactor are evaluated.
The above device health and aging rate are
It is judged based on the size of the stress applied to the device and the time over which the stress is applied.
In the above second evaluation, the system stability and equipment health are evaluated when the load of the target reactor is followed.
A method of judging the device health in the above second evaluation based on the cumulative fatigue coefficient of the device.
상기 2차 평가에서의 계통안정성은 부하추종 운전 시의 목표도달 시간 및 노심축방향 출력편차에 기초하여 판단하는 방법.In the first paragraph,
A method for judging system stability in the above second evaluation based on the target arrival time and core axial output deviation during load following operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220014836A KR102696301B1 (en) | 2022-02-04 | 2022-02-04 | Method for operating nuclear power plant comprising multiple SMR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220014836A KR102696301B1 (en) | 2022-02-04 | 2022-02-04 | Method for operating nuclear power plant comprising multiple SMR |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230118356A KR20230118356A (en) | 2023-08-11 |
KR102696301B1 true KR102696301B1 (en) | 2024-08-20 |
Family
ID=87565913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220014836A Active KR102696301B1 (en) | 2022-02-04 | 2022-02-04 | Method for operating nuclear power plant comprising multiple SMR |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102696301B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2519268B2 (en) * | 1987-11-16 | 1996-07-31 | 株式会社東芝 | Nuclear power plant load follow-up operation control device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10510455B2 (en) * | 2015-12-17 | 2019-12-17 | Nuscale Power, Llc | Multi-modular power plant with off-grid power source |
KR101806467B1 (en) | 2016-01-14 | 2017-12-08 | 한국남동발전 주식회사 | Integrated managing and operating system for local power plants |
AU2020272144A1 (en) * | 2019-04-12 | 2021-11-11 | Terrapower, Llc | Nuclear thermal plant with load-following power generation |
KR102463008B1 (en) * | 2020-06-11 | 2022-11-02 | 한국수력원자력 주식회사 | Reactor core for load follow operation |
-
2022
- 2022-02-04 KR KR1020220014836A patent/KR102696301B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2519268B2 (en) * | 1987-11-16 | 1996-07-31 | 株式会社東芝 | Nuclear power plant load follow-up operation control device |
Also Published As
Publication number | Publication date |
---|---|
KR20230118356A (en) | 2023-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Valverde et al. | Integration of fuel cell technologies in renewable-energy-based microgrids optimizing operational costs and durability | |
Hooshmand et al. | Stochastic model predictive control method for microgrid management | |
Fabrice et al. | Multistage power and energy management strategy for hybrid microgrid with photovoltaic production and hydrogen storage | |
Chen | Simulated annealing-based optimal wind-thermal coordination scheduling | |
Moradi et al. | Transmission Expansion Planning in the presence of wind farms with a mixed AC and DC power flow model using an Imperialist Competitive Algorithm | |
Basciotti et al. | Sensible heat storage in district heating networks: a novel control strategy using the network as storage | |
Karami et al. | Optimal scheduling of residential energy system including combined heat and power system and storage device | |
Tanrioven | Reliability and cost–benefits of adding alternate power sources to an independent micro-grid community | |
Zhang | Techno-economic analysis of a nuclear-wind hybrid system with hydrogen storage | |
Chen et al. | Optimal scheduling of combined heat and power units with heat storage for the improvement of wind power integration | |
Chaiyatham et al. | Design of optimal fuzzy logic-PID controller using bee colony optimization for frequency control in an isolated wind-diesel system | |
KR102696301B1 (en) | Method for operating nuclear power plant comprising multiple SMR | |
Wu et al. | Preventive control strategy for an island power system that considers system security and economics | |
Zavala et al. | Proactive energy management for next-generation building systems | |
Larik et al. | A new technique of load shedding to stabilize voltage magnitude and fast voltage stability index by using hybrid optimization | |
Saravanan et al. | Generation scheduling with large-scale integration of renewable energy sources using grey wolf optimization | |
CN117154727A (en) | Reliability control method and system for electric power system | |
Čepin | Evaluation of the importance factors of the power plants within the power system reliability evaluation | |
Bourguet et al. | Artificial neural networks in electric power industry | |
Chalishazar et al. | Data-driven reliability assessment for marine renewable energy enabled island power systems | |
Zamee et al. | Differential evolution algorithm based load frequency control in a two-area conventional and renewable energy based nonlinear power system | |
Gao et al. | A review of different methodologies for solving the problem of wind power's fluctuation | |
Moosavian et al. | Non-linear multiobjective optimization for control of hydropower plants network | |
Altai et al. | Solving Unit Commitment Including Wind Power Generation Using PSS® E | |
EP4402601B1 (en) | A method for obtaining an improved transformer design for a power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20220204 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20231218 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240806 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20240813 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20240814 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |